
In Search of Lost Time

Bernadette Charron-Bost1, Martin Hutle2, and Josef Widder3

1 CNRS / Ecole polytechnique, Palaiseau, France
2 EPFL, Lausanne, Switzerland

3 TU Wien, Vienna, Austria

Abstract

Dwork, Lynch, and Stockmeyer (1988) and Lamport (1998) showed that, in order
to solve Consensus in a distributed system, it is sufficient that the system behaves well
during a finite period of time. In sharp contrast, Chandra, Hadzilacos, and Toueg (1996)
proved that a failure detector that, from some time on, provides “good” information
forever is necessary . We explain that this apparent paradox is due to the two-layered
structure of the failure detector model. This structure also has impacts on comparison
relations between failure detectors. In particular, we make explicit why the classic
relation is neither reflexive nor extends the natural history-wise inclusion. Altough not
technically difficult, the point we make helps understanding existing models like the
failure detector model.

Keywords: distributed computing – failure detectors – asynchronous system – Consensus

1 Introduction

The aim of the paper is to deepen the understanding of one of the most classical model
in distributed computing, namely the failure detector model by Chandra and Toueg [2].
Roughly speaking, in the failure detector approach, a distributed system is represented
by two layers: a layer that corresponds to the system itself — formally defined in terms
of processes, automata, and communication links — that runs in a totally asynchronous
mode, and a second layer consisting of the failure detector — defined with respect to time —
accessible to the processes at any time.

From a modeling perspective, this two-layered approach radically changed from the
classic approaches (e.g., [3, 4, 7]) where the timing behavior of a system is restricted in order
to circumvent fundamental impossibility results [5]. Basically, the new idea in the failure
detector model [2] was to consider distributed computations with unrestricted timing while
the model is augmented with an oracle, expressed by a time-dependent layer that provides
information from outside. In this paper, we explain how some characteristic features of this
model actually originate from the interplay between the two layers, and the discrepancy
between their timeless vs. time dependent definitions.

One of these features was proven in [1], namely, that Consensus cannot be solved without
(implicit) permanent agreement on a leader from some time on. It seems in contradiction
with earlier positive results by Dwork, Lynch, and Stockmeyer [4] and by Lamport [7] who
showed that a sufficiently long finite “good” period makes Consensus solvable.

Another peculiarity of this bipartite model is the way failure detectors are compared:
Chandra and Toueg [2] introduced a comparison relation which we show to be not reflexive.
This is not just a formal problem that can be easily fixed. Actually, the problem again

1

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Infoscience - École polytechnique fédérale de Lausanne

https://core.ac.uk/display/147944905?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

originates from the interface between the system layer and the failure detector layer, and
the lack of timing control by the failure detector on the asynchronous system layer.

1.1 Permanent vs. intermittent limitation of asynchrony

The central result in fault-tolerant distributed computing is that Consensus cannot be
solved in an asynchronous system in the presence of crash failures [5]. Several approaches
have been proposed to circumvent this impossibility result. In particular, Dwork, Lynch,
and Stockmeyer [4] showed that Consensus can be solved if the asynchrony of the system
is intermittently limited during a polynomial (in the size of the system and their timing
parameters) amount of time. Similarly, Lamport proposed the Paxos algorithm [7] that
solves Consensus if processes can elect a common leader for a sufficiently long finite period
(the so-called “good periods”). These two positive results are very important as they both
provide restrictions which are quite reasonable for implementing Consensus in practice.

Meanwhile, Chandra and Toueg [2] introduced the notion of failure detectors that are
defined as external devices to the system: a failure detector is a distributed oracle which
is supposed to provide information about failures, and so augments the underlying asyn-
chronous system. Besides, Chandra, Hadzilacos, and Toueg [1] proved that a certain failure
detector denoted Ω can be extracted from any failure detector that makes Consensus solv-
able. Roughly speaking, Ω provides the following information: “There is a time after which
all the correct processes always trust the same correct process (the leader).” Contrary to
the correctness conditions of the Consensus algorithms in [4, 7] recalled above, Ω is a very
strong condition, clearly not achievable in real systems. In face of [4] and [7], it seems
paradoxical that an eventually forever leader is necessary to solve Consensus.

The eventually forever requirement was discussed in [1]: it was stated that “in practice”
it would suffice that some properties hold for sufficiently long , until an algorithm achieves
its goal, and that

[. . .] in an asynchronous system it is not possible to quantify “sufficiently long”,
since even a single process step or a single message transmission is allowed to
take an arbitrarily long amount of time. [1]

Unfortunately, the argument of “the impossible quantification” of the length of good
periods is fragmentary. Indeed, the point is to specify in terms of what a duration may be
quantified. For instance, if one considers the number of messages in a causality chain and
the number of steps taken by processes, one may quantify “sufficiently long” internally to
an asynchronous system. The approach taken in [4, 7] can be interpreted in such a way.

In this paper, we make explicit that the origin of this necessity lies in the two-layered
structure of the model. On the one hand, failure detectors are totally independent of the
execution of the system, and failure detector histories are defined only with respect to time.
On the other hand, the system is not “oracle-triggered”: a process may query its failure
detector module at any time, but cannot be incited by the failure detector or by some other
oracle (e.g., a clock) to make a step. Hence, the system runs totally asynchronously: steps
may occur at arbitrary times, and so may be arbitrarily delayed with respect to time. In
order to be of any help to solve a problem, a failure detector must therefore be insensitive
to such delays. In this paper, we formalize this intuition, and more generally we study the
impact of a two-layered structure on the modeling. The point is not technically difficult, but
we believe that a more thorough discussion on the basic properties of computational models
for distributed systems is essential. In particular, it may help in better understanding the
existing models such as the failure detector model.

2

To do that, we introduce for each failure detectorD, a failure detector D̃ which represents
all the possible “samplings” of the histories of D. More precisely, D̃ can be understood as the
collection of all the possible time-contracted versions of D, including D itself. Clearly, D is
stronger than D̃ in the sense that D provides more precise information than D̃. The central
point of our discussion is to show that given any (non real-time) problem P in asynchronous
systems, D̃ is actually sufficient to solve P if P can be solved using D. The basic reason lies
in the fact that our time-contraction has no “visible” effect in an asynchronous system. In
other words, the only information that can be exploited by an asynchronous system from a
failure detector D is its time-contracted version D̃, i.e., time is lost at the interface between
the asynchronous system and failure detector modules.

As a consequence, the weakest failure detector WP to solve P , if it exists, is time-
contraction insensitive. In particular, this holds for the failure detector Ω, which exactly
captures the necessity of an eventually forever leader to solve Consensus.

1.2 Comparison relation between failure detectors

The relation � introduced in [2] to compare failure detectors is defined from an operational
viewpoint: D′ � D if there is an asynchronous distributed algorithm that transforms D′ into
D. As explained above, timing information that may be given by the failure detector layer
is definitely lost at the interface between the two layers. Thereby, the coupling between
failure detectors and time — which by the way, may be very strong — cannot be handled
by such an operationally defined relation. In other words, as soon as D is weaker than some
other failure detector D′ with respect to �, D is in the restricted class of “time-free” failure
detectors. In particular, non time-free failure detectors are not comparable to themselves,
and � is not reflexive.

We shall explain why this shortcoming cannot easily be fixed in a two-layer model,
and propose a new definition of a preorder (reflexive and transitive) for comparing failure
detectors, which is quite different in essence: it compares failure detectors just with respect
to their capabilities to solve problems. This relation extends both the original relation �
and the inclusion relation between failure detectors.

2 Failure detectors, runs, and time

In this section we recall the definitions of the failure detector model to the extent necessary.1

We denote by Π the finite set of processes which constitute the distributed system.

2.1 Failure detector layer

Central to the definition of failure detectors is a discrete global time T = IN. A failure
pattern is a function F : T → 2Π. In the case of crash failures, p ∈ F (t) means that p has
crashed by time t, and so F (t) ⊆ F (t+ 1). We say that p is correct in F if p never crashes,
i.e., p ∈ correct(F) =

⋂
t∈T Π − F (t), and we only consider failure patterns F such that

correct(F) 6= ∅. An environment E is defined as a non-empty set of failure patterns.
A history H with range R, where R is any non-empty set, is a function H : Π×T → R.

A failure detector with range R is then defined as a function that maps each failure pattern
F ∈ E to a non-empty set of histories with range R.

Chandra and Toueg [2] introduced the notion of failure detector as a mapping from
failure pattern to histories in order to capture the notion of an oracle that provides some

1For complete and formal definitions, the reader is referred to the original papers [2, 1].

3

hints about failures. In particular, a natural choice is R = 2Π, and q ∈ H(p, t) for some
history H of a failure detector D means that D tells p to suspect q to have crashed by
time t. Alternatively, the failure detector Ω [1] has range R = Π, and q = H(p, t) encodes
the fact that Ω tells p that q is correct. The key property of Ω is that from some time on,
Ω provides the same information to all correct processes, and this information is correct.

The Ω property is invariant under time translation, allowing a large degree of freedom
regarding time. This is not a general property shared by all failure detectors. Indeed, a
failure detector may exhibit a strong relation to time: as an example, consider the history
HC with range T defined by

∀p ∈ Π, ∀t ∈ T : HC(p, t) = t,

and the constant failure detector C:

∀F ∈ E : C(F) = {HC}.

In sharp contrast to Ω, C gives no hint on failures but provides perfect information on time.
Hence the term failure detector may be somewhat misleading as in the case of C.

2.2 Asynchronous system layer

A distributed algorithm A over Π is a collection of deterministic automata (Ap)p∈Π. Com-
putation proceeds in steps of A. In each step, a process receives or not a message sent to
it, may query its failure detector module that replies some value d to p, undergoes a state
transition — depending on its current state, m, and d— and then sends a message to all
other processes. We can thus identify this step with the triple (p,m, d).

A schedule of A is a sequence of steps taken by processes executing A; the i-th step
of S is denoted by S[i]. The notion of the applicability of a step to a global state is then
naturally2 introduced and generalized to a schedule.

A run of A using a failure detector D is a tuple 〈F,H, I, S, T 〉, where F is a failure
pattern, H ∈ D(F) is a history of D, I is an initial global state of A, S is a schedule of A
applicable to I, and T is a sequence of increasing values in T (such that the i-th element
of T , T [i], represents the time at which the step S[i] occurs), and F , H, I, S, and T satisfy
the following consistency conditions: |S| = |T | and for any i ≤ |S|, if S[i] = (p,m, d),
then p 6∈ F (T [i]) and d = H(p, T [i]). In addition, R must satisfy the following fairness
properties: (1) each correct process takes an infinite number of steps in S, and (2) each
message sent to a correct process is eventually received. The two layers of the model are
thus connected solely via the condition which specifies that if process p takes a step at time
t, then p changes its state depending among others on the value of D at time t, which is
defined externally to the asynchronous system.

3 Comparing failure detectors

Numerous papers are devoted to determining a weakest failure detector to solve a given
problem. All of them use the same comparison relation � which has been introduced in [2].
Roughly speaking, � is defined as follows: D � D′ if there exists an algorithm A that
“transforms” D into D′. Thus, the relation � crosses the border between the two layers of
the model in the sense that two failure detectors are compared through the asynchronous

2Ensuring consistency as requiring that a received message has been sent and has not been received before.

4

system layer. In this section, we show that the definition of � leads to some meaningless
incomparability results, and we study how to fix the problem by extending the original
relation �.3 We explain why trivial extensions are not satisfactory, and propose a new
comparison relation which is a preorder, and whose definition does not resort anymore to
the asynchronous system layer.

Let us recall what it means for an algorithm A to transform a failure detector D into
another failure detector D′: algorithm A uses D to maintain a variable outp at every pro-
cess p. This variable, reflected in the local state of A, emulates the output of D′ at p. Let
OR be the history of all the outp variables in run R, i.e., OR(p, t) is the value of outp at
time t in run R. Algorithm A transforms D into D′ if for every run R = 〈F,H, I, S, T 〉 of
A using D, OR ∈ D′(F). If such an algorithm A exists, then D � D′. The output history
OR highly depends on the time list T in R. More precisely, if D′ is such that D � D′ for
some D, then D′ necessarily allows finite but unbounded stuttering: if process p does not
take a step at time t in run R, then OR(p, t) = OR(p, t − 1). This condition on D′ to be
weaker than some failure detector D strongly restricts the graph of the relation �, and in
particular it prevents � to be reflexive, contrary to what can be inferred from the notation.

3.1 Extending inclusion

We could easily fix the problem of non-reflexivity by considering the reflexive closure of �.
Unfortunately, the resulting preorder is still too restrictive as we explain below. Consider
the natural relation v between failure detectors:

D v D′ ⇔ ∀F ∈ E : D(F) ⊆ D′(F).

In other words, D′ provides additional possible histories compared to D, and so is less
accurate than D. Hence, a natural requirement for a comparison relation over failure
detectors is to be a preorder that extends v. Unfortunately, this is the case neither for �
nor for its reflexive closure. To see that, let us define the instantaneous strong completeness
which ensures that every crashed process is immediately suspected by every correct process:

∀F ∈ E , ∀H ∈ D(F), ∀t ∈ T , ∀p ∈ correct(F),∀q ∈ Π : q ∈ F (t)⇒ q ∈ H(p, t),

and consider the two failure detectors P+ and S+ that both satisfy instantaneous strong
completeness, but differ on their accuracy properties: P+ satisfies strong accuracy [2], i.e.,

∀F ∈ E , ∀H ∈ D(F), ∀t ∈ T , ∀p, q ∈ Π− F (t) : q 6∈ H(p, t),

whereas S+ satisfies only weak accuracy [2]

∀F ∈ E , ∀H ∈ D(F), ∃p ∈ correct(F), ∀t ∈ T , ∀q ∈ Π− F (t) : p 6∈ H(q, t).

Then one can easily show that:

Proposition 3.1. P+ v S+, but P+ 6� S+.

3.2 Time contraction

To fix the above problem, we can consider the relation �∗ defined as the union of � and v.
Clearly, the relation �∗ is a preorder, but it appears to be still too restrictive in the sense
that it does not relate failure detectors that should be comparable from the standpoint of
asynchronous systems, namely, failure detectors that only differ in their relation to time.

3In order to preserve all the weakest failure detector results, a new comparison relation must contain �.

5

H(r)
H(q)
H(p)

d

a

a

d

b

b

d

b

b

2
d

a

c

d

a

c

3
d

b

a

c

a

b

c

b

c

c

b

c

6

c

a

a

c

b

b

b

a

c

b

b

a

b

a

b

b

a

b

11
b

b

c

· · ·
· · ·
· · ·

t

Θ.H(r)
Θ.H(q)
Θ.H(p)

t

· · ·
· · ·
· · ·

Figure 1: The history Θ.H with range {a, b, c, d} and the sequence Θ = 2, 3, 6, 11, · · ·

To see that, for any failure detector D, we construct a new failure detector D̃ similar
to D except the coupling to time that is weaker in D̃ than in D. More precisely, each
history of D̃ is obtained by sampling a history H of D, i.e., taking at increasing times the
values from H while “cutting out” the remaining values (see Fig. 1). In other words, D̃ is
a time-contracted variant of D, where the contraction is homogeneous between processes.

Let Θ = (Θt)t∈IN be an increasing sequence in T , and S be the set of all such sequences.
The contracted variants of a history H and a failure pattern F with respect to some Θ ∈ S
are defined by:

Θ.H(p, t) = H(p,Θt) and Θ.F (t) = F (Θt).

Because failure patterns are non-decreasing functions of time, correct(F) = correct(Θ.F).
In the following, we assume that E is such that each Θ-contraction F → Θ.F is a surjec-
tion from E to E .4 Then, for every Θ ∈ S, we construct the failure detector Θ.D which is
obtained by the Θ-contraction of failure patterns and corresponding histories of D:

Θ.D(F) =
{

Θ.H ′ : ∃F ′ ∈ E , F = Θ.F ′ ∧ H ′ ∈ D(F ′)
}
.

We now define D̃(F) as the union of all possible Θ-contractions of the histories in D(F):

D̃(F) =
⋃
Θ∈S

Θ.D(F)

Specializing Θt = t, we obtain D v D̃, and so D �∗ D̃. In general the converse inclusion
does not hold, i.e., D and D̃ may be not equivalent with respect to �∗.

Proposition 3.2. C̃ 6�∗ C

Proof. Let Θ ∈ S be such that ∃t ∈ IN : Θt > t. Thus, for any F ∈ E there is a history
H ∈ C̃(F) such that ∀p ∈ Π : H(p, t) = Θt > t. Such a history H ∈ C̃(F) is not in
C(F), and thus C̃ 6v C. Moreover, C does not allow stuttering, and so C̃ 6� C. It follows
that C̃ 6�∗ C.

However, we now show that D and D̃ are always equivalent from the viewpoint of the
asynchronous system layer in the sense that any asynchronous algorithm cannot distinguish
D from D̃. In particular, we prove that D and D̃ have the same ability to solve (non
real-time) problems in an asynchronous system.

4This assumption holds in the case of the classical environment where at most f processes may crash.

6

Let Vin and Vout be two non-empty sets such that ⊥ ∈ Vout and ⊥ /∈ Vin. An initial
configuration is a function C0 : Π→ Vin, and an output sampling is a function Σ : Π× IN→
Vout.5 A problem P is a predicate over triples (F,C0,Σ), where F ∈ E , C0 is an initial
configuration, and Σ is an output sampling. To remove any time dependency, we only
consider problems such that

∀F, F ′ ∈ E : correct(F) = correct(F ′)⇒ P (F,C0,Σ) = P (F ′, C0,Σ).

Let A = (Ap)p∈Π be an algorithm with the sets of states and of initial states denoted
by Statesp and States0

p, respectively. We say that A solves P if there exist two mappings
σ0 : States0

p → Vin and σ : Statesp → Vout such that for any run R = 〈F,H, I, S, T 〉 of A,
P holds at (F, σ0(I), σ(I, S)), where σ0(I) is the initial configuration corresponding to I by
σ0 and σ(I, S) is the output sampling that naturally derives from I and S via σ.

If D v D′ and A solves P using D′, then A solves P using D since each run of an
algorithm A using D is also a run of A using D′. In particular, each run of A using D is
also a run of A using D̃. Conversely, a run of A using D̃ may be not a run of A using D.
However, for each run R of A using D̃ there is a run R′ of A using D with the same initial
state and the same schedule as in R, and with equivalent failure patterns:

Proposition 3.3. For every run R = 〈F,H, I, S, T 〉 of an algorithm A using D̃ there is a
run R′ = 〈F ′, H ′, I, S, T ′〉 of A using D such that correct(F) = correct(F ′).

Proof. For every history H ∈ D̃(F) there is some Θ ∈ S such that H ∈ Θ.D(F). It follows
that there exists some failure pattern F ′ ∈ E and some history H ′ ∈ D(F ′) such that
F = Θ.F ′ and H = Θ.H ′. Let T ′ denote the increasing time values defined by

∀i ∈ IN : T ′[i] = ΘT [i].

We are going to show that R′ = 〈F ′, H ′, I, S, T ′〉 is a run of A using D. We know that
F ′ ∈ E , and I is an initial state of A. We denote by S[i] = (p,m, d) the i-th step taken in
S. Since R is a run of A, d = H(p, T [i]). By definition of H ′ and T ′, we have

d = H(p, T [i]) = Θ.H ′(p, T [i]) = H ′(p,ΘT [i]) = H ′(p, T ′[i]).

Hence, d = H ′(p, T ′[i]). Furthermore, by definition of F ′ and T ′, we deduce that

F ′(T ′[i]) = F ′(ΘT [i]) = F (T [i]).

It follows that if p takes the i-th step in S, then p /∈ F (T [i]) as S is the schedule of run R,
and thus p /∈ F ′(T ′[i]), as needed. Finally, we know that each message sent in R to a
process in correct(F) is eventually received, and each correct process in F takes an infinite
number of steps in R since R is a run. As F and F ′ are equivalent, R′ also satisfies these
two fairness properties. Consequently, R′ is a run of A using D.

Theorem 3.4. An algorithm A solves a problem P using D iff A solves P using D̃.
5We use IN instead of T to insist on the fact that Σ(p, i) denotes the i-th output value and not the output

value at time i ∈ T .

7

3.3 Time regained

Hence, D and D̃ are equivalent in the asynchronous setting as they can be used to solve
a problem with the same algorithm. However, Proposition 3.2 shows that there are failure
detectors D such that D̃ 6�∗ D. We propose a comparison relation that keeps internal to the
failure detector layer, and thus does not erase the possible timing information that failure
detectors can contain. This new relation compares failure detectors just with respect to
their capabilities to solve problems. Formally, D �s D′ if any problem solvable using D′ is
also solvable using D. Clearly, the relation �s extends v, and �s is reflexive. Moreover, �s

is transitive, and so it is a preorder. As claimed in [2], if D � D′ then any problem solvable
with D′ is also solvable with D, i.e., �s extends the original relation �. Finally, Theorem 3.4
shows that any failure detector D is equivalent to D̃ with respect to the relation �s.

4 On weakest failure detectors

We are now in position to explain the apparent paradox between the positive results of [4, 7]
and the impossibility result in [1]. At some point, we will give only intuitive arguments,
as we do not want to go into the details of the formal characterization of eventual forever
properties in temporal logic.

Let R be a non-empty set and let ∆ be the set of failure detectors with range R. Given
some problem P , we denote by ∆P ⊆ ∆ the subset of failure detectors in ∆ that can be
used to solve P . Let & be any natural preorder to compare failure detectors in ∆, i.e., �s

extends & which in turn extends v. Recall that WP is a weakest failure detector to solve
P with respect to & if WP is a weakest element of (∆P ,&), i.e., (1) WP ∈ ∆P , and (2) for
any D in ∆P , D &WP . We now show that WP , if it exists, is necessarily a time-free failure
detector.

Theorem 4.1. If there exists a weakest failure detector WP in ∆ to solve P , then W̃P is
also a weakest failure detector to solve P , and W̃P is equivalent to WP .

Proof. Theorem 3.4 shows that W̃P ∈ ∆P , and so W̃P & WP . Since WP v W̃P and &
extends v, it follows that WP & W̃P . Hence, W̃P and WP are equivalent. Moreover for
any D in ∆P , we have D & WP , and by transitivity D & W̃P . This shows that W̃P is a
weakest element in (∆P ,&).

For a non-empty time interval τ , we define φ to be a condition on the collections of type(
Ft, (Dp,t)p∈Π

)
t∈τ

where for any t ∈ τ and any p ∈ Π, we have Ft ⊆ Π and Dp,t ∈ R. We say that a time
interval τ is a φ-good period for history H and failure pattern F if φ is satisfied by(

F (t), (H(p, t))p∈Π

)
t∈τ

.

For instance, a φ-good period may express that “the same correct process is trusted by all
processes”.

Let P be a problem for which there is a weakest failure detector WP to solve P that
ensures φ-good periods in each of its histories and takes arbitrary values outside φ-good
periods. Formally, for each failure pattern F and any history H ∈ WP (F), (a) there is at
least one φ-good period for H and F , and (b) any history H ′ with range R, that coincides

8

t
Θ.H ∈ D̃

t
H ∈ D φ φ

Figure 2: Finite good periods for H may lead to no good period for Θ.H.

with H outside the φ-good periods, is also in WP (F). Hence φ-good periods are necessary
and sufficient in each history for solving P .

To seek a contradiction, suppose now that φ-good periods have only finite duration in
some history H0 ∈ WP (F0). Let D0 be the failure detector in ∆ which coincides with WP

for any failure pattern F 6= F0, and

D0(F0) = {H : ∀p ∈ Π,∀t ∈ T , H(p, t) ∈ R}.

Since W̃P consists of all samplings of the histories of WP , it follows that there is some
history H ∈ W̃P (F0) without any φ-good period (cf. Fig 2). Even, H may be totally
arbitrary because of property (b) of WP . Hence, D0 v W̃P . Since & extends v, it follows
that D0 & W̃P . Moreover, Theorem 4.1 shows that W̃P ∈ ∆P . As �s extends &, we derive
that D0 ∈ ∆P . This shows that for F0, a φ-good period is not necessary to solve P , a
contradiction. Thereby, WP ensures infinite φ-good periods in each of its histories.

In conclusion, φ-good periods must have infinite duration in order to be useful to solve
a problem. In other words, φ must eventually hold forever, and this forever requirement
stems solely from the modeling and the decomposition of the model into two layers.

5 Discussions

In this paper we pointed out the restrictive nature of the classical comparison relation
between failure detectors, and we explained why in the failure detector model, Consensus
cannot be solved without an eventually forever agreement on a process that will never crash,
a non-realistic requirement in practice, whereas there are Consensus algorithms that run
correctly in real systems. Both modeling problems originate from the interface between
the failure detector layer and the asynchronous system layer, and from the lack of timing
control by failure detectors on the asynchronous system: the time-contracted version of any
failure detector D is equivalent to D from the viewpoint of the asynchronous system.

For comparing failure detectors, we proposed a new relation whose definition keeps
internal to the failure detector layer, and thus preserves the possible timing information
contained in failure detectors. On the contrary, there is no hope to weaken the properties
on failure detectors needed for solving Consensus since the necessity of an eventually forever
agreement is inherent to the nature of the model. This is the reason why we believe that the
failure detector model, and more generally any model of asynchronous systems augmented
with externally defined oracles, is not satisfactory as it leads to lower bound results that are
invalidated by the experience of DLS or Paxos algorithms in real systems. In this respect,
system models whose properties are defined internally, i.e., in terms of system transitions,
appear more appropriate.

9

Jayanti and Toueg [6] recently established that every problem has a weakest failure
detector with respect to yet another relation. While they mentioned that the classic relation
in [2] is not reflexive, they did not discuss the paradox highlighted in here. Their new relation
is reflexive and extends the inclusion relation v. As our relation �s, this new relation also
seems to extends the � relation of [2]. Unfortunately, Jayanti and Toueg [6] employed a
new model, different from the classical failure detector model. Therefore it is delicate to
establish a precise and formal comparison of these two different approaches of repairing the
original relation. Note that the new model in [6] is still structured in several layers defined
separately, and thus does not escape the paradox.

References

[1] Tushar Deepak Chandra, Vassos Hadzilacos, and Sam Toueg. The weakest failure detector for
solving consensus. Journal of the ACM, 43(4):685–722, June 1996.

[2] Tushar Deepak Chandra and Sam Toueg. Unreliable failure detectors for reliable distributed
systems. Journal of the ACM, 43(2):225–267, March 1996.

[3] Danny Dolev, Cynthia Dwork, and Larry Stockmeyer. On the minimal synchronism needed for
distributed consensus. Journal of the ACM, 34(1):77–97, January 1987.

[4] Cynthia Dwork, Nancy Lynch, and Larry Stockmeyer. Consensus in the presence of partial
synchrony. Journal of the ACM, 35(2):288–323, April 1988.

[5] Michael J. Fischer, Nancy A. Lynch, and M. S. Paterson. Impossibility of distributed consensus
with one faulty process. Journal of the ACM, 32(2):374–382, April 1985.

[6] Prasad Jayanti and Sam Toueg. Every problem has a weakest failure detector. In Proceedings of
the 27th ACM symposium on Principles of Distributed Computing (PODC), pages 75–84, 2008.

[7] Leslie Lamport. The part-time parliament. ACM Transactions on Computer Systems, 16(2):133–
169, May 1998.

10

