
POUR L'OBTENTION DU GRADE DE DOCTEUR ÈS SCIENCES

PAR

acceptée sur proposition du jury:

Prof. B. Moret, président du jury
Prof. A. Schiper, directeur de thèse

Prof. G. Candea, rapporteur 
Prof. P. Felber, rapporteur 

Prof. R. van Renesse, rapporteur 
 

Concurrency and Dynamic Protocol Update for Group 
Communication Middleware

Olivier Rütti

THÈSE NO 4244 (2009)

ÉCOLE POLYTECHNIQUE FÉDÉRALE DE LAUSANNE

PRÉSENTÉE le 23 janvier 2009 

À LA FACULTÉ INFORMATIQUE ET COMMUNICATIONS

LABORATOIRE DE SYSTÈMES RÉPARTIS

PROGRAMME DOCTORAL EN INFORMATIQUE, COMMUNICATIONS ET INFORMATION

Suisse
2009

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Infoscience - École polytechnique fédérale de Lausanne

https://core.ac.uk/display/147944799?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1




Abstract

The last three decades have seen computers invading our society: computers are
now present at work to improve productivity and at home to enlarge the scope of
our hobbies and to communicate. Furthermore, computers have been involved in
many critical systems such as anti-locking braking systems (ABS) in our cars, air-
plane control systems, space rockets, nuclear power plants, banking and trading
systems, medical care systems, and so on. The importance of these systems re-
quires a high level of trust in computer-based systems. For example, a failure in
a trading system (even if it is temporary) may result in severe economical losses.
Hence coping with failures is a key aspect of computer systems.

A common approach to tolerate failures is to replicate a system that provides a
critical service, so that once a failure occurs on a given replica, the requests to the
critical service are still executed by other replicas. This approach has the advantage
of masking failures, i.e., requests to the service are continuously executed even
in the presence of failures. However, replication introduces a performance cost,
mainly because the execution of the service requests must be coordinated among all
replicas. Furthermore, despite its apparent simplicity, replication is rather complex
to implement. Replication is made easier by group communication which defines
several abstractions that can be used by the designer of replicated systems. The
group communication abstractions are implemented by distributed protocols that
compose a group communication middleware.

The aim of the thesis is to study two techniques to improve the performance of
group communication middleware, and thus, reduce the cost of replication. First,
we study dynamic protocol update, which allows group communication middle-
ware to adapt to environment changes. More particularly, dynamic protocol update
consists in replacing at runtime a given protocol composing the group communi-
cation middleware with a similar but more efficient protocol. The thesis provides
several solutions to dynamic protocol update. For instance, we describe two al-
gorithms to dynamically replace consensus and atomic broadcast, two essential
protocols of a group communication middleware. Second, we propose solutions
to introduce concurrency within a group communication middleware in order to
benefit from the advantages offered by multiprocessor (or multicore) computers.

Keywords: Fault tolerance, replication, group communication, middleware,
adaptive systems, distributed algorithms, consensus, atomic broadcast, dynamic
protocol update, concurrency, SAMOA.
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Résumé

En trois décennies les ordinateurs ont envahi notre société : les ordinateurs sont
présents sur notre place de travail pour améliorer notre productivité ainsi qu’à la
maison pour élargir nos possibilités de divertissements et pour communiquer. De
plus, les ordinateurs sont impliqués dans de nombreux systèmes critiques tels que
l’antiblocage des freins (ABS) dans nos voitures, les systèmes de contrôle aérien,
les fusées, les centrales nucléaires, les systèmes bancaires et boursiers, ou encore
les systèmes de santé. L’importance de ces systèmes requiert des ordinateurs avec
un haut degré de fiabilité. Par exemple, une panne (même si elle est temporaire)
dans un système boursier peut provoquer d’importantes pertes économiques. Pour
cette raison, le traitement adéquat des pannes est un aspect clé des systèmes impli-
quant des ordinateurs.

Une approche usuelle pour tolérer les pannes consiste à répliquer le système
sujet aux pannes. Ainsi, lorsqu’une réplique du système est victime d’une panne,
les autres répliques du système sont toujours disponibles pour éxécuter les tâches
attribuées au système. Une telle approche a l’avantage de masquer les pannes,
c’est-à-dire que les tâches sont éxécutées sans discontinuité même en présence de
pannes. Cependant, la réplication a un coût en terme de performance, un coût prin-
cipalement dû à la nécessité de coordonner l’éxécution des répliques du système.
De plus, malgré sa simplicité apparente, la replication est complexe à implémen-
ter. Cette tâche est facilitée par les communications de groupes qui définissent des
abstractions pouvant être utilisées par le developpeur d’un système répliqué. Les
abstractions pour les communications de groupes sont implémentées par des pro-
tocoles distribués qui composent ce qu’on appelle un intergiciel (middleware) de
communications de groupes.

L’objectif de cette thèse est d’étudier deux techniques pour améliorer la perfor-
mance des intergiciels de communications de groupes, et ainsi réduire le coût de
la replication. Premièrement, nous étudions le remplacement dynamique de proto-
coles qui permet aux intergiciels de communications de groupes de s’adapter aux
changements d’environnement. Plus particulièrement, le remplacement dynamique
de protocoles consiste à remplacer, pendant l’éxécution, un protocole faisant parti
d’un intergiciel de communications de groupes par un protocole similaire mais
plus performant. Dans cette thèse, nous présentons plusieurs solutions pour implé-
menter le remplacement dynamique de protocoles. Par exemple, nous décrivons
deux algorithmes pour remplacer les protocoles de consensus et de diffusion ato-
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IV RÉSUMÉ

mique, deux protocoles essentiels des intergiciels de communications de groupes.
Deuxièment, nous proposons des solutions pour introduire de la concurrence dans
les intergiciels de communications de groupes afin de bénéficier des avantages of-
ferts par les ordinateurs multi-processeurs (ou multi-cores).

Mots-clés : Tolérance aux fautes, replication, communication de groupes, in-
tergiciels, systèmes adaptifs, algorithmes distribués, consensus, diffusion atomique,
remplacement dynamique de protocoles, concurrence, SAMOA.
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Chapter 1

Introduction

1.1 Research Context and Motivation

The last three decades have seen computers invading our society: computers are
now present at work to improve productivity and at home to enlarge the scope of
our hobbies or to communicate with each other. Furthermore, computers have been
involved in many critical systems such as anti-locking braking systems (ABS) in
our cars, airplane control systems, space rockets, nuclear power plants, banking
and trading systems, medical care systems, and so on. The importance of these
systems requires a high level of trust in computer-based systems. For example, a
failure in a trading system (even if it is temporary) may result in severe economical
losses. Hence dependability is a key aspect of computer systems.

Dependability. The dependability of a system can be defined by several aspects
[Lap91], e.g., reliability (how vulnerable to failures is a system), availability (how
long does it take for a system to be repaired after a failure), or maintenance (how
easy is the repair of a system): dependability defines the capability of a system
to cope with failures. Basically, two approaches have been considered to achieve
dependability. First, fault avoidance consists in forecasting, preventing and re-
moving failures of a system during the design and the implementation processes.
Unfortunately, this approach does not prevent unexpected failures. Second, fault
tolerance, which is the approach considered in the thesis, consists in designing
computer systems, so that they can continue their operations even in the presence
of (unexpected) failures.

Fault-Tolerance by Replication. Fault tolerance can be achieved by replicating
a system (or a subpart of the system) that provides a critical service, so that, once
a failure occurs on a given replica, requests to the critical service are still executed
by the other replicas. This approach has the advantage to mask the failures, i.e., the
requests to the service are continuously executed even in the presence of failures.
However, it introduces a performance overhead, mainly because the execution of
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2 CHAPTER 1. INTRODUCTION

the service requests must be coordinated among all replicas. Moreover, the coordi-
nation is rather complex to implement.

Other approaches, that are not considered in the thesis, can be used to imple-
ment fault-tolerance: e.g., transactions (which prevent inconsistent states of the
system after failures) or checkpointing (which prevents losses of meaningful infor-
mation after failures). Contrary to replication, these approaches require to repair
the system after a failure. During the repair phase, the system cannot execute any
requests. As a result, these approaches are not sufficient for systems that must
remain highly available (i.e., systems in which temporary failures may have catas-
trophic consequences).

Numerous techniques, which can be combined, have been proposed to im-
plement replication. Two categories can be distinguished: hardware-based and
software-based techniques. The first category focuses on replicating dedicated
pieces of a computer system: e.g., replicating storage devices by using the RAID
[PGK88] technology. However, these techniques usually do not mask software
failures. In contrast, software-based techniques address replication at the higher
level of the application, which allow to efficiently mask software failures (as it
has been shown in [Gra86]). The thesis contributes to the development of group
communication, a well-known software-based replication technique.

Group Communication: Powerful Abstractions to Hide the Complexity of
Replication. The salient issue of replication is to coordinate the execution of
the different replicas. More specifically, the state of the different replicas must be
maintained consistent during the overall system lifetime. Two basic schemes have
been proposed to address this issue, namely passive replication [BMST93, GS97]
(also called primary backup) and active replication [Lam78, Sch93]. Both schemes
are quite complex to implement. This complex task is made easier by group com-
munication [Bir93] which defines a set of abstractions that can be used by the de-
signer of a replicated system. Among these abstractions, atomic broadcast [HT94]
and group membership [ST06] simplify the implementation of active replication
and passive replication. The common point between these two abstractions is to
allow several replicas to reach an agreement: on the order in which requests are ex-
ecuted by every replica in the case of atomic broadcast, and on the primary replica
chosen to execute the requests and to diffuse their results to other replicas in the
case of group membership.

The problem of reaching an agreement in a group of replicas (and more gener-
ally in a distributed system) is formally defined by the consensus problem [Fis83].
Consensus is a quite difficult problem; for instance, it cannot be solved determinis-
tically in an asynchronous network with a single (potential) failure [FLP85]. Con-
sensus has been the focus of many researches. In fact, numerous algorithms to
solve consensus have been proposed (see [BO83, Lyn96, CT96, Lam98, MR99]
among others), each algorithm being well suited to different environments.
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Finally, note that quorum systems [Tho79, Gif79] – another software-based
technique to facilitate the implementation of replication – has been considered,
especially before the introduction of group communication. However, this tech-
nique makes replication more difficult to implement than group communication,
see [ES05]. Quorum systems are not considered in the thesis.

Group Communication Middleware. A large number of group communication
implementations, so called group communication middleware, have been proposed
over the last fifteen years (see [Bir93, WMK94, Mal96, AMMS+95, vRBM96,
Hay98, Men06] among others). They are composed of distributed protocols; each
protocol usually implements a specific group communication abstraction by pro-
viding a set of well-defined primitives. Starting from a monolithic design (see
[Bir93, WMK94, Mal96, AMMS+95]) in which the dependencies between proto-
cols were hidden and not clearly defined, group communication middleware has
progressed to a highly modular design (see [vRBM96, Hay98, Men06]) in which
protocols are considered as black boxes, with well-specified interfaces, that interact
with each other. This evolution allowed group communication middleware to ben-
efit from several common advantages of modular programming. First, it provides
a high degree of configurability: the user can choose, at the initialization time, the
protocols composing the middleware according to (1) the needs of the application,
and (2) the properties of the underlying environment in order to optimize perfor-
mance. Second, it facilitates implementation and debugging. Finally, it simplifies
implementation of adaptive group communication middleware in which protocols
can be replaced at runtime to improve the performance of the middleware according
to the underlying environment changes, which is one topic of the thesis. Note that
modular programming has also a cost: it may prevent optimizations [RMES07].

Motivation. As previously mentioned, replicating a computer system induces a
performance overhead (due to the coordination of the replicas). The current thesis
explores two techniques to improve performance of (modular) group communica-
tion middleware (and thus, to reduce the overhead induced by replication):

• Concurrency. The recent rise of multiprocessors machines, which allow to
execute several computational tasks in parallel with improving performance,
has made research about concurrent programming more and more popular
(for instance, see the current success of the concept of software transactional
memory [ST97]). Unfortunately, concurrent programming is not an easy
task. Indeed, it requires to carefully synchronize the threads in order to avoid
race conditions and deadlocks.

In the context of a group communication middleware, we believe that paral-
lelizing the processing of different network and/or application messages may
result in a performance gain. Unfortunately, despite the quite large number
of tools to facilitate concurrent programming (e.g., locks, monitors and soft-
ware transactional memory), none is fully satisfactory in our context. This is
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mainly due to (1) the specificity of the interactions between protocols within
these middleware, and (2) the complexity of these middleware. In the thesis,
we design a solution to easily introduce concurrency within modular group
communication middleware.

• Adaptability. Adaptability denotes the capability of a protocol (or of the
entire middleware) to adapt its strategy to environment changes, mainly to
improve performance. For instance, in [MRA+05], the authors show that
adapting the strategy implemented by a best-effort multicast protocol signif-
icantly improves performance of a multi-user chat application. The case of
atomic broadcast protocols is another example where adaptivity is a promis-
ing feature to achieve good performance. The reason is the following. A
large number of strategies to solve atomic broadcast have been proposed
(see [DSU04]). However, no strategy clearly outperforms all others in all
environments, e.g., there is a trade-off between sequencer-based and token-
based strategies [LvRB+01].

Two solutions to implement adaptability can be considered. First, group
communication protocols can be implemented so that they are able to adapt
themselves to the environment changes. This solution has been, for instance,
implemented by the TCP protocol which adjusts its behavior according to
the network congestion. However, in addition to its complexity, this solution
has an inherent weakness: it allows protocols to adopt only predefined strate-
gies, excluding new strategies (that are more efficient). In contrast, Dynamic
Protocol Update (noted DPU hereafter) allows protocols to be updated at
runtime with completely new protocols implementing better strategies. In
the thesis, we consider only DPU to implement adaptability.

1.2 Research Contributions

Modular Approach to Dynamic Protocol Update (DPU). Most of current ap-
proaches to DPU (e.g., [vRBH+98, CHS01]) require an explicit interaction be-
tween (1) the protocol managing and coordinating the update, and (2) the protocol
that gets replaced. This interaction necessitates to implement some part of the
dynamic update within the updateable protocols, which leads to poor modularity.
Furthermore, it requires to understand some implementation details of the update-
able protocols. In contrast, we propose an approach that is fully modular and only
requires to understand the specification (rather than the implementation) of the up-
dateable protocols.

Predicate-Based Approach to Characterize DPU Protocols. Based on our mod-
ular approach to DPU, we propose a methodology to describe the scope of appli-
cability of DPU protocols (i.e., protocols that implement DPU). Our methodology
consists in describing each DPU protocol by a set of inference rules that are based
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on predicates; each predicate describes a core property of the updateable protocol.
By applying the rules to the protocol that gets replaced, we can easily determine
if the protocol is correctly replaced by a given DPU protocol. Moreover, the rules
can be (easily) verified, which simplifies the verification of DPU protocols. To our
knowledge only a single approach has concentrated on verification of DPU proto-
cols, namely [BKvRL01]. However, this approach is limited in the sense that it
allows to verify a restricted number of DPU protocols.

DPU Protocols to replace Group Communication Protocols. Based on our ap-
proaches to implement and characterize DPU protocols, we describe several DPU
protocols to replace a large scope of group communication protocols, including
consensus and atomic broadcast protocols, two of the most essential protocols of
group communication middleware.

Service Interface: A New Abstraction to Implement Adaptive Group Com-
munication Middleware. Group communication middleware are usually imple-
mented using protocol frameworks (e.g., Cactus [Cac01, BHSC98], Appia [App01,
MPR01] and Eva [BGT+01]), which are programming tools that simplify the mod-
ular implementation of the different protocols composing a group communication
middleware. Most protocol frameworks are based on the notion of events (which
is the case of all frameworks mentioned above). We show that events have several
drawbacks, and introduce a new abstraction, called service interface, that over-
comes these drawbacks. For instance, contrary to events, our new abstraction pro-
vides integrated mechanisms to implement DPU protocols.

Transparent Concurrency. We identify several correctness properties for con-
current execution within a group communication middleware. Based on these prop-
erties, we describe a runtime system to transparently manage concurrency. In other
words, the complexity induced by concurrency is shielded from the programmer,
which greatly facilitates his/her task.

The SAMOA Protocol Framework. In order to validate our ideas, we have im-
plemented an experimental protocol framework, called SAMOA, which facilitates
the development of concurrent and adaptive group communication middleware.
SAMOA is based on service interfaces (rather than on events) and provides a run-
time system for transparent concurrency. We used SAMOA to implement a con-
current and adaptive group communication middleware that is based on (1) the
Fortika toolkit [MRS06, Men06] and (2) the different DPU protocols presented in
the thesis.
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1.3 Structure of the Thesis

Preliminaries. Chapter 2 introduces basic concepts related to group communi-
cation middleware. Chapter 3 defines the problem of dynamic protocol update, and
discusses several issues related to dynamic protocol update in the general context
of adaptive systems. This third chapter is also an introduction of the following
chapters about dynamic protocol update (Chapters 4-7).

Dynamic Protocol Update. Chapter 4 presents our modular approach to DPU,
and compares it with existing approaches. Chapter 5 describes our approach to
characterize DPU protocols. Chapter 6 presents several DPU protocols dedicated
to the replacement of group communication protocols.

The SAMOA Protocol Framework. Chapter 7 presents the service-interface ab-
straction and shows its advantages over events when implementing adaptive group
communication middleware. Chapter 8 studies correctness properties of concurrent
executions and describes a runtime system that provides transparent concurrency.

Conclusion. Chapter 9 summarizes the contributions of the thesis, and discusses
open questions and future research directions.



Chapter 2

System Models and Specifications

The current chapter introduces the basis of group communication. First, we present
several system models that have been considered in this context. Second, we
present and clearly specify several abstractions that are implemented by group
communication protocols. Both the system model and the specifications strongly
influence the remainder of the thesis, especially algorithms for dynamic protocol
update (discussed in Chapters 5 and 6). Some aspects of concurrency (discussed
in Chapter 8) are also influenced by the properties implemented by the group com-
munication protocols.

2.1 System Models

We model a distributed system as a finite set of processes Π = {p1, ...., pn}. Pro-
cesses do not share memory, and thus, each process has its own memory space.
Processes are interconnected by communication channels, and communicate ex-
clusively by exchanging messages through these channels. Each message is con-
sidered to be unique, and is taken from the set M of all possible messages. In
a replicated system, the processes usually represent different host machines (each
machine being dedicated to a replica of the system) interconnected by channels
that are implemented by the low-level network.

A distributed system is usually defined by the assumptions made on the pro-
cesses and the communication channels. We consider here three different cate-
gories of assumptions. In each category, we briefly discuss the different choices
that can be established, and their consequences on the design and the properties
of group communication protocols. Furthermore, we clearly state which are the
assumptions that are made in the remainder of the thesis.

7
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2.1.1 Failures

One of the salient goals of group communication is to facilitate the design of fault-
tolerant systems. Therefore, the nature of the failures of both processes and chan-
nels is a key aspect of the system model. A communication channel may fail by
creating, duplicating or losing messages. Because a channel can be seen as a very
simple group communication abstraction, we will present more clearly which chan-
nel failures are considered in the thesis when presenting the channel specification
(see Section 2.2.1).

We now describe different process failures that have been considered in the
literature, starting from the most particular to the most general failures. The degree
of generality of the failures is proportional to the difficulty to cope with them.

• Crash. Upon crashing, a process stops its execution (and thus, ceases send-
ing and receiving messages). In the literature, two cases have been consid-
ered. First, the crash-stop model assumes that once a process has crashed, it
never recovers (i.e., it never restores its state and continues its execution). In
contrast, the crashed-recovery model [ACT98] allows processes to recover
after a crash.

• Send Omission. A process omits sending a message, but continues its ex-
ecution. Such failures include crashes: a crashed process can be actually
considered as a process that eventually forever omits to send messages.

• Byzantine Failure. This category of failures includes any arbitrary failures.
For instance, a Byzantine process may crash, omit message sending, alter
messages, create spurious messages, or even behave maliciously (as an ad-
versary of the group communication protocol). Furthermore, several Byzan-
tine processes may collaborate to maximize the disturbance of the system.

In this thesis, we consider the crash-stop model only. The crash-stop model has
been the focus of many researches over the last three decades, and thus, has reached
maturity. As a result, the specification of group communication for such a failure
model has been widely accepted. Since dynamic protocol update strongly depends
on the specifications, we naturally focus on this category of failures. However, we
believe that our contributions can be extended to other categories of failures.

We say that a process is correct if and only if it never crashes. Otherwise, the
process is faulty. Both these predicates hold for the whole execution (i.e., a process
is considered as faulty from the beginning of the execution and not only from the
time of the crash). The capability to tolerate failures of a distributed protocol (i.e.,
the maximum number of faulty processes for which the protocol is still correct)
strongly depends on the synchrony assumptions (see next section) and on the type
of failures [DLS88]. This shows the importance of such assumptions on the design
of group communication protocols.
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2.1.2 Synchrony

The synchrony defines the timing assumptions that are made on processes and
communication channels. Similarly to failures, the synchrony of a distributed sys-
tem has a major impact on the design of the group communication protocols. We
now discuss two extreme models (the least and the most permissive) that have been
considered.

Synchronous Model. In a synchronous system, there are known bounds on (1) the
relative speed of processes and (2) message transmission delays. The knowledge
of the bounds greatly simplifies the design of group communication protocols. For
instance, in the case of reliable channels (see Section 2.2.1), this knowledge allows
processes to easily detect when another process has crashed, which allows a lot of
distributed problems to be solved in presence of failures.

Such a model is however unrealistic for many practical systems. Intuitively,
the reason is the following: the variation of the transmission delays inherent to
distributed systems (for instance, due to unexpected loads on the network) makes
the bounds hard to define in practice.

Asynchronous Model. Contrary to the synchronous model, no bounds on process
speeds and message transmission delays exist in an asynchronous system. It makes
it impossible to detect crash failures: a process q cannot detect whether (1) the
messages sent by a process p takes an arbitrarily long time to be delivered, or
(2) process p stops sending messages due to a crash. As a result, in an asynchronous
system, a lot of distributed problems cannot be deterministically solved in presence
of crash failures (see [FLP85, CHTCB96] among others).

In between these two extremes, several models for synchrony have been pro-
posed. For instance, the partially synchronous model [DDS87, DLS88] weakens
the synchronous model. More specifically, this model assumes that the bounds
on process speeds and message transmission delays (1) hold but are a priori un-
known, or (2) are a priori known but hold only after an unknown period of time.
Despite these relatively weak assumptions, the partially synchronous model is suf-
ficient to solve interesting distributed problems in presence of failures. The timed
asynchronous model [CF99] is another example of a synchrony model. It allows
interesting distributed problems to be solved within stable components which are,
roughly speaking, subsets of processes in which the assumptions of the partially
synchronous model hold.

In the thesis, we consider the asynchronous model only. This model has the
advantage to be very general in the sense that any practical system implements this
model. In order to be able to solve interesting problems, we augment this model
with failure detectors [CT96]. Failure detectors are described in more details in
Section 2.2.3.
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2.1.3 Groups

Group communication protocols provide guarantees within specific groups of pro-
cesses. Usually a single group of processes is considered during the whole ex-
ecution. The static/dynamic assumption defines how these groups evolve during
execution.

Static Model. In a static model, the group(s) of processes is fixed upon system
initialization for the overall execution. This has the following drawback. Consider
a protocol that tolerates a single process crash. Once a process has crashed, the
protocol is no more fault tolerant (since no further crash is tolerated).

Dynamic Model. In the dynamic model, the membership of groups can change
during the execution. Typically, processes that have crashed can be removed from
a group, and new processes may be added to the group, e.g., to replace the crashed
processes. This has the following advantage. Consider a protocol that tolerates
a single crashed process in a group. In contrast to the static model, the crashed
process can be replaced by a new process, so that the protocol can tolerate a new
process crash after the crashed process has been replaced. However, this feature
does not allow two simultaneous crashes.

When a single group is considered during the overall execution, such a model
is known as the primary partition model. Some authors (see [CKV01, BDM01]
among others) also consider a model in which, contrary to the primary partition
model, several disjoint groups of processes can coexist during the execution. This
model is known as the partitionable model. However, in our opinion, the spec-
ifications in the partitionable model have not reached a sufficient level of matu-
rity [PRS08]. Therefore this model is not considered in the context of this thesis.

In the thesis, we focus on the static group model only, mainly because, contrary
to other models, the specifications with static groups has been widely accepted and
reached maturity. However, we think that our work is also relevant to the primary
partition model, but requires some adaptations. This hope is reinforced by the fact
that the specification of group communication in the primary partition model can
be expressed as a generalization of the specification in the static model [Sch06].

2.2 Specification of Group Communication

We now specify group communication, starting from the simplest to the most com-
plex abstractions. Each abstraction is clearly specified by a set of properties. Note
that for each property in Sections 2.2.4-2.2.6, we can distinguish the non-uniform
version (that applies to correct processes only) from the uniform version (that ap-
plies to all processes) of the property. In the thesis, we mostly consider uniform
properties, and consider a non-uniform property only when the corresponding uni-
form property does not make sense (e.g., because it cannot be guaranteed).
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2.2.1 Communication Channels

A communication channel can be seen as a special abstraction for point-to-point
communication between processes, which is defined by a subset of the following
properties.

No Creation. If a process q receives a message m from process p, then p has
previously sent m.

No Duplication. A process q receives a given message m at most once.

Fair Loss. If a correct process p sends an infinite number of messages to a correct
process q, then q eventually receives an infinite number of messages.

No Loss. If a correct process p sends a message m to a correct process q, then q
eventually receives message m.

A best-effort channel ensures the Fair Loss, No Creation, and No Duplication
properties. Such a channel is also called fair-lossy channel in literature. In contrast,
a (quasi-)reliable channel ensures the No Loss, No Creation, and No Duplication
properties.1 Note that fair-lossy channels are strictly weaker than reliable channels.

2.2.2 Local Ordering

Local ordering provides some guarantees on the order of message deliveries. We
say that the ordering is local when messages are ordered independently on each
process. We now present two different local ordering properties, and specify sev-
eral abstractions based on these properties. The first local ordering property, called
fifo order, ensures that two messages sent by a given process are received in the
order in which they are sent.

Fifo Order. Consider two message m and m′ that are sent by a process p, such
that m is sent before m′. If process q receives both messages m and m′, then q
receives m before m′.

Best effort fifo order and reliable fifo order are then defined by the fifo order
property plus the properties ensured respectively by best effort channels and re-
liable channels. These two abstractions simplify the implementation of complex
protocols: e.g., atomic broadcast protocols [EMS95, CHD98].

The causal order property is based on the happened before relation [Lam78].

Causal Order. Consider two message m and m′, such that m happened be-
fore m′. If process q receives both messages m and m′, then q receives m be-
fore m′.

1In literature, reliable channels sometimes denote a channel that ensures that any message sent
(by a correct or a faulty process) to a correct process p is eventually received by p. However, such
channels are not realistic from a practical point of view, and are only considered to prove theoretical
results. We do not consider such channels in the thesis.
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Causal order is strictly stronger than fifo order. Similarly to reliable fifo order,
reliable causal order is defined by the causal order property plus the properties
ensured by reliable channels. Causal order can be used to compute the global
consistent state [CL85] of a distributed computation.

2.2.3 Failure Detectors

Failure detectors have been introduced in [CT96]. A failure detector is a special
abstraction2 that provides to each process some information on the state (i.e., cor-
rect or faulty) of other processes. More precisely, a failure detector maintains for
each process p a set suspectedp of processes that p suspects to be faulty. The
information provided by the failure detector (i.e., all the sets suspectedp) can be
incorrect: for instance, some correct process can be wrongly suspected by some
other processes. In addition, the information is not necessarily consistent, i.e., a
process p may forever suspect a process q, while a process r never suspects q.

Formally, failure detectors are defined in terms of completeness and accuracy,
which determine how precise the information is about respectively correct and
faulty processes. We now specify different levels of completeness and accuracy
that are relevant to the thesis. Others can be found in [CT96].

Strong Completeness. Every incorrect process is eventually suspected by every
correct process.

Strong Accuracy. No correct process is ever suspected by any correct process.

Eventual Weak Accuracy. There is a time after which some correct process is
never suspected by any correct process.

We now can define the two classes of failure detectors that are considered in the
thesis. The perfect failure detector P is defined by strong completeness and strong
accuracy. On the other hand, the 3S failure detector is defined by strong complete-
ness and eventual weak accuracy. The perfect failure detector is strictly stronger
than the 3S failure detector. Augmenting an asynchronous network with one of
these two failure detectors allows us to implement complex group communication
abstractions (e.g., consensus, atomic broadcast and generic broadcast). Note that
our contribution in the context of dynamic protocol update (and more specifically,
the DPU protocol presented in Section 5.3.3) allows us to replace any classes of
failure detectors defined in [CT96] and not only the ones presented above.

2.2.4 Uniform Reliable Broadcast

Roughly speaking, reliable broadcast ensures that correct processes deliver the
same set of messages. This abstraction is usually used to implement more com-
plex abstractions, such as consensus and atomic broadcast. Reliable broadcast is

2Usually, we use the term of oracle rather than the term abstraction to qualify failure detectors.
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defined by the two primitives rbcast and rdeliver which are called when a mes-
sage is respectively sent and received. Reliable broadcast is formally defined by
the following three properties [HT94]:

Validity. If a correct process p rbcasts message m, then some correct process
rdelivers m.

Uniform Integrity. Every process rdelivers a message m at most once and only
if m was previously rbcast by some process.

Uniform Agreement. If a process rdelivers a message m, then every correct
process rdelivers m.

2.2.5 Consensus and Atomic Commitment

Consensus [Fis83] and non-blocking atomic commitment [BHG87] are close to
each other (a detailed comparison can be found in [CB03]). Both problems allow
processes to agree on a common value that is called the decision. However, the
conditions that must satisfy the decision differ (see below).

Consensus is an important problem in the context of group communication
from both a practical and a theoretical point of view [MSW03]. Consensus is
also a difficult problem that cannot be solved deterministically in an asynchronous
system with a single (potential) process failure [FLP85].

The consensus problem is defined by the two primitives propose (executed by
a process to propose a value) and decide (that returns the value that has been de-
cided). Formally, (uniform) consensus is specified by the following four properties:

Uniform Integrity. A process decides at most once.

Uniform Agreement. Two processes never decide differently.

Uniform Validity. If a process decides, the decision value has been proposed by
some process.

Termination. All correct processes eventually decide.

The non-blocking atomic commitment problem has been defined in the context
of database systems. The problem allows several processes to agree on committing
or aborting a given transaction. This problem is defined by the same properties as
consensus, except for the Uniform Validity property which is modified as follows:

Uniform Validity. The decision must satisfy the following two properties. If all
processes propose commit and no fault occurs, then the decision must be commit.
If one process proposes abort, then the decision must be abort.

A problem similar to the non-blocking atomic commitment problem, namely
atomic commitment, has been considered in the crash-recovery model. Atomic
commitment is defined by all properties of non-blocking atomic commitment ex-
cept Termination. This implies that protocols solving atomic commitment (e.g., the
two phase commit protocol [BHG87]) do not necessarily terminate (in the case of
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failures). In the remainder of the thesis, we only consider the non-blocking atomic
commitment problem. For readability, we later refer to it as the atomic commit-
ment problem.

2.2.6 Global Ordering

Global ordering provides guarantees on the order of message deliveries. Contrary
to local ordering, the order of deliveries is (partially) common to all processes
(i.e., the ordering is not performed independently on each process). We now de-
scribe two abstractions that provide global ordering, namely uniform atomic broad-
cast [HT94] and uniform generic broadcast [PS02]. Both are specified by the prop-
erties of uniform reliable broadcast plus one specific global ordering property.

Informally, atomic broadcast ensures that all processes deliver any pair of mes-
sages in the same order. Atomic broadcast is a powerful abstraction to implement
replicated state machines [Sch93] or active replication. Formally, it is defined by
the two primitives abcast and adeliver, and the properties of uniform reliable
broadcast plus the following property:

Uniform Total Order. For any two processes p and q and any two messages m
and m′, if p adelivers m before m′, then q adelivers m′ only after having adeliv-
ered m.

In the thesis we also consider a variant of uniform atomic broadcast, which is
called uniform fifo atomic broadcast [HT94]. Uniform fifo atomic broadcast is
defined by the properties of uniform atomic broadcast plus the fifo order property
(defined in Section 2.2.2).3

Uniform generic broadcast can be seen as a generalization of uniform atomic
broadcast and uniform reliable broadcast. Basically, uniform generic broadcast
ensures the same ordering guarantees as uniform atomic broadcast, but only for
conflicting messages. The conflict relation is defined by the application, and is
non-reflexive and symmetric. Formally, uniform generic broadcast is defined by
the two primitives gbcast and gdeliver and by the properties of uniform reliable
broadcast plus the following property:

Uniform Generic Order. For any two processes p and q and any two conflicting
messages m and m′, if p gdelivers m before m′, then q gdelivers m′ only after
having gdelivered m.

Note that if all messages conflict, uniform generic broadcast is strictly equivalent
to uniform atomic broadcast. On the other hand, if no message conflicts, it is equiv-
alent to uniform reliable broadcast. This explain why this abstraction can be seen
as a generalization of uniform atomic broadcast and uniform reliable broadcast.

3Note that our specification of uniform fifo atomic broadcast slightly differs from the one
in [HT94]. However these two specifications are equivalent.



Chapter 3

Dynamic Protocol Update and
Related Issues

This chapter aims at introducing the problem of dynamic protocol update (DPU)
which is the focus of the following chapters. We also clearly position the DPU
problem with respect to other issues that have been considered in the context
of adaptive group communication middleware and, more generally, adaptive dis-
tributed middleware. We distinguish three categories of issues. First, we discuss
tools for dynamic protocol update, i.e., middleware or programming languages that
facilitate the implementation of dynamic protocol update. Second, we focus on
context adaptation that denotes the self-adaptation of group communication mid-
dleware. Finally, we briefly present the problem of state transfer which deals with
the transfer, during DPU, of meaningful information from (1) the protocol that gets
replaced to (2) the new protocol.

3.1 Definitions

We introduce below simple definitions that clearly differentiate the implementa-
tion from the specification of group communication abstractions. This allows us to
clearly define DPU. Note that both the definitions and the notations that are intro-
duced in this section hold for the remainder of the thesis. These simple definitions
will be, however, extended later when necessary.

Distributed Protocols and Protocol Modules. A distributed protocol is an im-
plementation of a group communication abstraction. Distributed protocols are
composed of a set of identical protocol modules, each module running on a dif-
ferent process. Modules may maintain some data. Modules of the same protocol
may communicate with each other (by exchanging messages across the network).

Protocol Stacks. The set of modules (of different protocols) located on a process
is called a protocol stack. Modules can be dynamically added or removed to/from
a stack. Modules in a stack may interact with each other. However, they do not
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share data. In other words, accessing to the data of a given module requires explicit
interactions with this module.

Note that, despite its name, a stack is not strictly layered, i.e., a module may
interact with all other modules in the same stack, not only with the modules directly
above and below. In the remainder of the thesis, we use the terms process and stack
interchangeably.

Services. A service denotes the specification of a group communication abstrac-
tion. Thus, a protocol P can be seen as the implementation of some service p. We
say that protocol P provides service p. Similarly, we say that a module of proto-
col P located on stack i provides service p on stack i. For example, the service
s-atomic-broadcast is provided by a protocol p-atomic-broadcast represented by a
module m-atomic-broadcast on each stack. A protocol P providing some service p
may also require some other services.

Module Bindings. A module can be dynamically bound to a service that it
provides. It can be later unbound. Unbinding a module does not remove it from
the stack. Stacks may contain several modules that provide the same service p.
However, at most one module in a stack is bound to a given service p at a time.

Module bindings define the possible interactions between protocol modules in
a stack. A module requiring service p can interact with the module that is bound
to p. More precise definitions of protocol module interactions will be introduced
in the following chapters. Note that we may introduce different definitions for
protocol module interactions, each definition being adapted to the work that is
described. This allows us to simplify the presentation of our contributions, but
does not influence the coherence of the thesis.
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Figure 3.1: An example system.

Figure 3.1 shows an example system. Protocols are represented with capital
letters P , Q, and R, and services with small letters p, q, and r. We write Pi to
denote a module of the protocol P , which is part of stack i (i = 1, 2, ..). Mod-
ules are illustrated in figures as boxes. Services that are provided by a module are
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named in white trapezoids that are aligned outside the box of the module. Simi-
larly, a gray trapezoid named q inside the box representing a module Pi indicates
that Pi requires service q. For example, module Q1 provides service q and requires
service r (see Fig. 3.1). Finally, a link between the service provided by some mod-
ule Qi and service required by some other module Pi shows that module Qi is
bound to the service required by Pi. Note that we consider the network as being a
service (named Net).

3.2 Dynamic Protocol Update

We now define dynamic protocol update (DPU). Consider a service q. Furthermore,
assume that on each stack i, a module Qi is bound to service q (and thus, protocol Q
provides q). Imagine now that we want to replace protocol Q by a new protocol
newQ that also provides service q. Dynamic protocol update consists in unbinding
module Qi and binding new module newQi on each stack i ∈ Π while maintaining
the properties of service q. We require dynamic protocol update to be as smooth as
possible. In other words, we would like to reduce as much as possible the impact
of the update on the performance of the group communication stack.
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Figure 3.2: Effects of DPU in stack i.

If the new protocol newQ requires a new service s that is not provided by any
other protocol, a new protocol S that provides service s has to be added during the
dynamic update of protocol Q. We illustrate this example in Figure 3.2. Note that
to keep Figure 3.2 readable, we have removed modules Qi and Ri from stack i
after DPU. This does not mean that these modules must necessarily be removed
from stack i after DPU.

DPU Dimensions. We consider two complementary dimensions of DPU: (1) the
structural dimension and (2) the algorithmic dimension. These two dimensions are
discussed separately in this thesis. However, it should be noted that these dimen-
sions are not fully orthogonal, i.e., they cannot be addressed independently from
each other.
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• The structural dimension deals with the integration, into the system, of a
DPU manager which performs the DPU. In addition, the structural dimen-
sion is related to the addition and the removal of protocol modules in protocol
stacks. We discuss structural issues of DPU in Chapter 4.

• The algorithmic dimension deals with the DPU algorithm implemented by
the DPU manager. Furthermore, the algorithmic dimension concerns spec-
ifications and correctness proofs of DPU algorithms. These issues are dis-
cussed in Chapter 5. Moreover, we present several examples of DPU algo-
rithms in Chapter 6.

Discussion. One can observe that our definition of DPU is limited in the sense that
we consider that the protocols on which DPU is applied (i.e., Q and newQ) ensure
exactly the same specification (i.e., Q and newQ provide the same service). This
explains why some authors (see [AC03, RW04] among others) consider dynamic
protocol extension (DPE). The DPE problem is similar to DPU except that the
specification of newQ may extend or differ from the specification of Q.

We now show that DPE is equivalent to DPU in the sense that solving DPU
allows us also to solve DPE. Consider a protocol R that provides service r and
a protocol S that provides service s. Furthermore, assume that R is bound to
service r that is required by protocol Q (that provides service q). Consider now the
DPE of protocol R by protocol S. Two cases have to be considered:

• Service s extends r. This case is trivial. Protocol S obviously also provides
service r. As a result, the DPE of protocol R by protocol S is equivalent to
the DPU of R by S.

• Service s differs from r. Because protocol Q requires service r, protocol Q
may not be able to interact correctly with the new protocol S (which pro-
vides s). Thus, protocol Q must also be updated with a new protocol newQ
providing service q and requiring service s. As a result, solving DPE of
protocol R by protocol S is equivalent to solving DPU of Q by newQ.

3.3 Tools for Dynamic Protocol Update

We now briefly discuss two categories of programming tools that facilitate the im-
plementation of dynamic update in distributed systems: component-based mid-
dleware and programming languages. We study an additional category, namely
protocol frameworks, in more details in Chapter 7. Contrary to component-based
middleware and programming languages, protocol frameworks are specifically de-
signed to implement (adaptive) group communication middleware, and thus, are
more convenient for this purpose.
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Component-Based Middleware. Component-based models, such as Enterprise
JavaBeans [Sun06], COM+ [Mic01], or the CORBA Component Model [OMG04],
are the context of several papers about dynamic update in distributed systems. We
now present some work in this domain, and discuss its relevance in the context of
DPU. Let us first briefly describe the main abstractions defined in component-based
models,1 and explain how they are related to distributed protocols:

• Components are computational units with well-defined interfaces, that are
hosted on a given process. Different components (possibly hosted on differ-
ent processes) can cooperate with each other thanks to bindings.

• Bindings are (distributed) computational units with well-defined interfaces
that allow collaboration of different components. A common example of
bindings is remote invocation mechanisms (e.g., Object Request Broker,
RMI or RPC). In a component-based model, a distributed protocol can be
considered as a binding [CBCP02].

Some papers (e.g.,[HHD98, HLA03, BNS+05]) describe component-based mid-
dleware that facilitate dynamic update of components only, excluding dynamic
update of bindings. Thus, these middleware cannot be considered to implement
dynamic protocol update. In contrast, several authors [Led99, KRL+00, BCRP98,
CBCP02] present different middleware that allow implementation of dynamic up-
date of bindings. However, it is not clear if these middleware provide sufficient
features to allow correct implementation of DPU (especially in the case of group
communication protocols which, contrary to most bindings, ensures strong consis-
tency guarantees). More details and references about dynamic update in the context
of component-based middleware can be found in a survey paper on compositional
adaptation [MSKC04].

Programming Languages. We now discuss two of the main programming
languages that allow dynamic reconfiguration of distributed applications, namely
Conic [MKS89] and Argus [BD93]. These languages are based on basic abstrac-
tions called logical nodes in Conic and guardians in Argus, which both repre-
sent a piece of code located on a given process. These basic abstractions can be
grouped by interconnecting them using remote method invocation mechanisms or
basic communication primitives. A distributed protocols can be seen a group of
basic abstractions both in Argus and Conic.

Conic and Argus provide features to replace dynamically a group of basic ab-
stractions (and thus, a distributed protocol). However, their approach is based on
a preliminary phase where all basic abstractions of the group that is replaced are
put in a quiescent state. This preliminary phase requires to block all interactions
issued to the replaced group, and thus may result in a significant interruption of the
service availability during the dynamic protocol update.

1Our definitions were inspired from [CBG+08] and has been significantly simplified in order to
facilitate understanding of this paragraph.
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Note that several languages provide features for dynamic update of software
modules on a single process, i.e., without coordination support for dynamic update
in distributed environments. Examples of such languages can be found in [AV90,
WKG00, MPG+00, Dug01, Hic01, SHB+05].

3.4 Context Adaptation

Context adaptation is the capability of group communication middleware (or more
generally distributed middleware) to adapt themselves to the environment changes.
In [DL02], the authors distinguish three steps that occur during context adaptation.
First, environment observation consists in collecting meaningful information about
the underlying environment. Secondly, decision taking deals with choosing the
most appropriate protocols according to the underlying environment. Finally, the
last step is action, which consists in performing the necessary DPU to install the
most appropriate protocols. Different solutions can be used to address the first two
steps:

• Environment Observation. Two different solutions have been proposed to
collect environment information. In the context of component-based middle-
ware (see [KRL+00, BBI+00, DL02]), environment observation is achieved
through several components, each component being dedicated to the ob-
servation of a specific resource. The information is then centralized by a
dedicated component. Contrary to this solution, the work in the context of
group communication middleware proposes decentralized solutions to col-
lect the information about the environment (see [CHS01, MRA+05]). More
precisely, each protocol stack contains an observer module that (1) collects
information on the underlying environment and (2) disseminates it to the
observer modules on the other stacks.

• Decision Taking. Existing solutions are based on adaptation policies (see
[BBI+00, BCHS01, DL02]). Adaptation policies are, basically, lists of logi-
cal rules based on predicates that are computed from the information that is
collected during environment observation. The logical rules are then used to
deduce the most appropriate protocols according to the underlying environ-
ment. In this sense, the adaptation policies determine the dynamic protocol
updates to be performed. In [BCHS01], the authors advocate for adaptation
policies based on fuzzy logic [Zad72], which is closer to natural language
than deterministic logic. This similarity with natural language facilitates the
definition of efficient adaptation policies.

Note that the DPU solutions that are presented in next chapters can be applied
in conjunction with the solutions described here. In other words, our solutions
can be used to implement context adaption. We do not explore further context
adaptation in the remainder of the thesis.
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3.5 State Transfer

In order to maintain the properties of the service that is replaced during DPU, it may
be necessary to transfer some data from the protocol that gets replaced to the new
protocol. For instance, consider the DPU of a protocol P by a protocol newP such
that both P and newP provide a dynamic atomic broadcast service [Sch06]. This
service is similar to the atomic broadcast defined in Section 2.2.6, but is dedicated
to primary-partition model. Roughly speaking, dynamic atomic broadcast ensures
that messages are delivered in a total order among a set of processes, called a view,
while allowing dynamic changes of the view (initiated externally to the protocols
that provide the service). Thus, DPU of protocol P by protocol newP requires
to transfer the current view of P to newP . Otherwise, protocol newP will not
deliver messages to the correct view, and thus, the properties of dynamic atomic
broadcast will not be maintained through DPU. We now discuss both theoretical
and practical studies about state transfer.

Theoretical Work. In [BKvRC01, LvRB+01], the authors formally characterize
the distributed protocols that do not require state transfer upon DPU. Informally,
the characterization states the following. Consider a protocol P that provides a ser-
vice p. Protocol P does not require state transfer if interactions with a protocol Q
that requires p are not influenced by past interactions with this protocol Q.

Practical Work. In [SPW03], the authors define an approach for state transfer
that requires every module to implement two methods: the first one externalizes
the meaningful state of the module while the second one internalizes a given state
in the module. For instance, in the case of dynamic atomic broadcast module,
these methods respectively returns and sets the current view of a module. Similar
solutions are described in [BBI+00, KRL+00, CHS01, HLA03]. In [LC05], the
authors describe a method for state transfer that uses JAVA serialization [Sun04].
Unfortunately, none of these papers formally describe the properties that are en-
sured by the state transfer. This makes it difficult to reason about the correctness
of DPU with such solutions.

In this thesis, we do not discuss the problem of state transfer.





Chapter 4

Structural Issues of Dynamic
Protocol Update

This chapter focusses on the structural dimension of DPU (see Section 3.2). More
specifically, we discuss here the three following issues that are all related to the
changes of the stack structure induced by DPU:

• Integration of a DPU Manager. We show in Section 4.2 that existing so-
lutions do not satisfactorily integrate a DPU manager in a system. For in-
stance, in [vRBH+98, CHS01], the DPU manager explicitly interacts with
the updateable protocols, which leads to poor modularity. We propose a new
solution and show that it has several advantages over existing solutions.

• Protocol Addition. Before updating a given protocol with a new proto-
col newP , the modules of newP must be added in all stacks. This task is
precisely what we call protocol addition. We define in Section 4.3 correct-
ness properties for protocol addition in distributed systems. Based on these
properties, we provide a simple algorithm for protocol addition.

• Protocol Removal. After having unbound the modules of the protocol P
that gets replaced, modules of P may be removed from all stacks. We call
this operation protocol removal. In Section 4.4, we introduce safety proper-
ties which a protocol must ensure in order to be removed from the system.
We then discuss the implementation of protocol removal.

4.1 Protocol Module Interactions

We consider two kinds of protocol module interactions in our theoretical work
about DPU that is presented in Chapters 4 to 6: service calls and service responses
(see Figure 4.1). Informally, service calls allow a module to perform requests to
the services it requires. On the other hand, service responses denote interactions
that correspond to replies resulting from service calls.

23
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Service calls. When a service q is called, the module Qi that is bound to q is
executed. If no module is bound to q, the service call is blocked until some module
is bound to q.

Service responses. Consider a call to service q issued by some module Pi on
stack i. Assume that the module that is bound to q on stack i is module Qi (i.e., Qi

executes the call). We define the responses to this call to be any invocations of a
module Pj by Qj in some stack j (j = i or j 6= i) that result from the initial call.1

Note that a call may result in several service responses (on the same stack or/and
on different stacks).

If module Pj is not currently in stack j upon a service response, then the re-
sponse issued by Qj is delayed until Pj is added to stack j. However, we assume
that the module Qj that issues the response is not blocked while the response is
delayed. Finally, note that a module Qi can respond to a service call even if Qi is
not bound to service q at the time of the response (see module Q3 in Figure 4.1).
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Figure 4.1: Service calls and responses.

Figure 4.1 illustrates service calls and responses. The call of a service q made
by module P1 is shown with a solid arrow. Responses to this call are represented
with dashed arrows. Note that a call to service q can be seen as an interaction
within a stack that occurs between the module P1 that calls q and the module Q1

that executes the call. On the other hand, the responses to that call represents an
interaction within a protocol, e.g., interaction of P1 with P2 and P3.

4.2 Integration of a DPU Manager

This section first describes our solution which we illustrate in the context of a group
communication middleware. In a second step, we discuss representative existing
solutions. Based on these descriptions, we finally show that our solution has several
advantages over existing solutions.

1If service q is required by several modules in stack j, we assume that module Qj knows the
module Pi that initiates the call. This allows module Qj to invoke the correct module Pj upon
responses to the initial call. We discuss how to implement this feature in Chapter 7.
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4.2.1 Our Solution

The basic idea of our solution is to add a level of indirection between the proto-
col P that gets replaced and the protocols that use protocol P . To do so, for each
updateable protocol P , a DPU module is added to each stack in order to intercept
the calls and responses to/from the service provided by P .

Note that similar solutions are presented in literature. For example, the ap-
proach described in [BKvRL01] also intercepts service calls and responses issued
to/by the protocols that get replaced. However, the solution is designed for strictly
layered stacks, and thus, is less general than our solution. In [MR06], the authors
describe a solution to replace fifo atomic broadcast protocols which is based on an
approach to integrate a DPU manager that is very similar to ours.

Description. Consider a protocol P that has to be replaced. Moreover, assume
that the service p provided by P is required by two protocols Q and R. Thus,
in each stack i in a system without a DPU manager (see Figure 4.2, left), mod-
ules Qi and Ri call directly service p. Similarly, responses from service p issued
by module Pi are directly executed by module Qi or Ri.

On the other hand, in each stack i in a system that integrates our solution for
DPU (see Fig. 4.2, right), the modules Qi and Ri do not call service p directly but
via another service r-p provided by our DPU module (Repl-Pi). Thus, modules Qi

and Ri are slightly modified to require service r-p.2 Moreover, module Repl-Pi
requires service p, so that it can forward the calls of service r-p to the module that
is bound to p. Similarly to service calls, service responses from service p transit
by the module Repl-Pi. Note that modules Repl-Pi may require some services in
addition to service p.3
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Figure 4.2: The module composition without a replacement module (left) and with
the replacement module Repl-Pi (right).

On the right of Figure 4.2, we show the local replacement of module Pi by
module newPi. The dashed line connecting modules Repl-Pi and newPi shows
that Repl-Pi will bind newPi to the service p after having unbound module Pi
from that service. Note that modules Pi and newPi do not necessarily require the

2This change does not require to modify the algorithm implemented by modules Qi and Ri.
3We do not show this explicitly on the figure for clarity reason.
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same services. Section 4.3 discusses how module newPi can be correctly added to
some stack i, even if newPi requires different services than Pi.

Characteristics of our solution. First, our solution is fully modular, since it
decouples (1) the implementation of the DPU modules (Repl-Pi) from (2) the im-
plementation of the updateable modules (Pi and newPi). Second, the implemen-
tation of module Repl-Pi depends only on the service provided by the updateable
modules. Indeed, module Repl-Pi is not aware of the algorithm implemented by
updateable modules Pi and newPi.

Example. Figure 4.3 shows the architecture of a group communication stack that
allows both atomic broadcast and consensus protocols to be updated; it builds on
the Fortika toolkit [MRS06, Men06] which provides various implementations of
several group communication abstractions (that are described in Section 2.2). This
stack is used in order to evaluate the overhead induced by the DPU algorithms
described in Chapter 6:
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Figure 4.3: Architecture of the group communication stack.

• The UDP module implements best-effort channels.

• The RP2P module implements reliable channels.

• The FD module implements a failure detector; we assume that it ensures the
properties of the 3S failure detector [CT96].

• The CT module provides a distributed consensus service using the Chandra-
Toueg 3S consensus algorithm [CT96] based on a rotating coordinator.
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• The ABcast module implements the atomic broadcast service.

• The Repl-Cons module allows replacement of protocols that provide the dis-
tributed consensus service (see Section 6.1).

• The Repl-Abc module implements a replacement algorithm for the atomic
broadcast service (see Section 6.3).

4.2.2 Existing Solutions

Many solutions to integrate a DPU manager exist [vRBH+98, BBI+00, CHS01,
SPW03, LC05, MRA+05, KG07]. However, some of these solutions (e.g. [SPW03,
KG07, LC05]) are clearly not satisfactory. In [SPW03] the authors propose a so-
lution that uses a centralized DPU manager, which limits its tolerance to failures.
The approach presented in [KG07] assumes that no failure occurs during DPU.
Finally, the solution described in [LC05] considers replacement in a single stack
only.

We present now two example solutions to integrate a DPU manager, namely
(1) Maestro [vRBH+98] implemented within the Ensemble group communica-
tion toolkit [Ens01, RBH+98], and (2) Graceful Adaptation [CHS01] implemented
within the Cactus protocol framework [Cac01, BHSC98]. An approach described
in [MRA+05] is similar to Maestro, but implemented within the Appia protocol
framework [App01, MPR01]. In the context of component-based middleware,
[BBI+00] proposes a solution that is similar to Graceful Adaptation.

Maestro [vRBH+98]. Maestro supports only the replacement of complete pro-
tocol stacks, i.e., in order to replace a single protocol, the whole stack has to be
replaced.
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Figure 4.4 illustrates the solution implemented within Maestro. The main idea
of this solution is to add on each stack a stack switch module (represented by the
module SSi in Figure 4.4). The stack switching module has the two following
roles: (1) finalization of the modules of the current local stack, and (2) coordina-
tion of the start of the new modules. In order to finalize the old stack, some protocol
modules must be extended with a method finalize that properly terminates the pro-
tocols.4 This is represented in Figure 4.4 by rounded boxes beside protocol mod-
ules. The arrows from module SSi to finalize boxes denote the call of module SSi
to the methods finalize which occurs each time a stack replacement is initiated.

Graceful Adaptation [CHS01]. Figure 4.5 illustrates the Graceful Adapation
solution. This solution is based on special modules5 that can be adapted (see mod-
ule AQi). Each adaptive module AQi is composed of two different kinds of mod-
ules: one module adaptor (MAi) and several adaptive-aware modules (Qi and
newQi) that provide alternative implementations of the service provided by the
adaptive module. Note that modules Qi and newQi must require the same ser-
vices (that are also required by module AQi).

Upon calls to the service q provided by AQi or responses from the services r
required by AQi, only the adaptive-aware module (Qi or newQi) that is activated
is executed. Only one adaptive aware module is activated at a time. In Figure 4.5,
module Qi is activated. This is shown by links between the service provided (resp.
required) by AQi and the service provided (resp. required) by Qi.
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Figure 4.5: Graceful Adaptation.

4In [vRBH+98], the authors do not clearly define which protocols require to be extended. Note
that the finalize method has several purposes, i.e., it is also dedicated to the implementation of view
changes in the context of a dynamic group model (see Section 2.1.3).

5In [CHS01], the authors use the term component instead of module.
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The role of the module adaptor MAi is to perform DPU between the different
adaptive-aware modules Qi and newQi. This is done in three steps:

1. Preparation. The module adaptor asks the old and the new adaptive-aware
modules to prepare respectively deactivation and activation. The preparation
phase must be terminated on all stacks before the module adaptor starts the
deactivation and activation steps. This is ensured by a barrier synchroniza-
tion protocol. Note that barrier synchronization is executed in parallel with
the execution of adaptive modules, which reduces the impact of the prepara-
tion step on service availability.

2. Deactivation. The module adaptor deactivates the adaptive-aware module
that is currently activated (Qi).

3. Activation. The old adaptive-aware module (Qi) activates the new adaptive-
aware module (newQi). The old adaptive-aware module may also transfer
some state to the new adaptive-aware module.

In order to perform these three steps, the old adaptive-aware module, the new
adaptive-aware module and the module adaptor communicate with each other.
Thus, each adaptive-aware module must be extended in order to communicate with
the module adaptor and some other adaptive-aware modules during DPU. This is
shown in Figure 4.5 with rounded boxes beside the adaptive-aware modules Qi

and newQi.

4.2.3 Advantages of our Solution

Our solution has several advantages over existing solutions due to the way we
integrate a DPU manager in protocols stacks. Our comparison is based on three
perspectives, namely modularity, generality and flexibility:

• Modularity. In Maestro and Graceful Adaptation, updateable protocols
must be extended so that the DPU manager can perform the replacement.
In other words, replacement is not fully implemented by the DPU manager,
which leads to poor modularity (since updateable protocols implement some
part of the replacement). Our solution does not require to extend updateable
protocols. As a result, the DPU modules implement entirely the replacement.
Our solution is therefore modular in contrast to existing solutions.

• Generality. In our solution, the algorithm implemented by the DPU module
depends only on the specification (i.e., the service) of updateable protocols.
In the Maestro and Graceful Adaptation solutions, implementation of DPU
relies on the algorithm implemented by the updateable protocols, since such
protocols implement some part of the replacement. Hence, our solution is
more general in the sense that a (complete) implementation of DPU allows
to replace (1) all protocols ensuring a given specification instead of (2) one
protocol implementing a given algorithm.
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• Flexibility. In contrary to Graceful Adaptation, our solution does not limit
the possible replacements by imposing restrictions on the services that up-
dateable protocols may require. Unlike Maestro, replacement of a single
protocol in our system does not require a whole protocol stack to be also
replaced. In other words, contrary to other solutions, our approach to DPU
allows flexible and fine-grained reconfiguration of protocol stacks.

4.3 Protocol Addition

We have seen in the previous section how to add to a system a DPU manager
that performs the replacement of a given protocol with a new protocol newP .
In this section, we discuss the initial phase of the replacement, which consists
in adding newP in the system (more precisely, adding a module newPi in each
stack i). We first present basic properties that must be ensured upon addition of
new protocols. Then, we describe a simple algorithm to ensure our basic proper-
ties.

4.3.1 Correctness Properties

We first introduce two properties that guarantee correct module interactions within
(1) stacks and (2) protocols. First, the stack-operationability property ensures that
no call is forever blocked. Second, the protocol-operationability ensures that no
response for some module Pi of a given protocol P is forever delayed (except if
protocol P is later removed).

Stack-operationability. A stack i is operational if and only if whenever a mod-
ule Pi is added to i, then for each service q that is required by Pi there is a mod-
ule Qi that is bound to q.

Protocol-operationability. A protocol P is operational in a set of stacks Π, if
and only if whenever a module Pi is added to some stack i, then a module Pj is
eventually added to all correct stacks j ∈ Π.

Our last correctness property ensures coherence of initial bindings, i.e., the first
module that is bound to a service is the same on each stack.

Initial-binding-coherence. For each service p, the first module bound to p is the
same on each stack i ∈ Π.

Note that the specification of DPU algorithms ensures that the next bindings
(not only the initial ones) are coherent (see the Replacement Order property in
Section 5.2).

4.3.2 Algorithm to Add Protocols

Algorithm 1 implements the procedure addProtocol, which is called each time a
new protocol has to be added in the system. When this procedure is called with
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some protocol newP as a parameter (line 1), a message (addProt, newP ) is sent
to all stacks using the reliable broadcast service (line 2). The tag addProt in-
dicates that protocol addition is requested. Upon delivery of message (addProt,
newP ) on stack j (line 3), procedure create_module is executed (line 5). This
procedure first checks that there is a module bound to each service q required
by module newPj . If this it not the case, a module Qj is first created by call-
ing the create_module procedure, and then bound to service q (lines 9-11). We
assume that for each such service q, each stack j creates and binds the same mod-
ule Qj .6 Finally, procedure create_module terminates by adding module newPj
to stack j (line 12).

Algorithm 1 Protocol Addition: code of stack i.

1: upon addProtocol(newP ) do
2: RBcast(addProt, newP )

3: upon Rdeliver(addProt, newP ) do
4: newPi ← local module of newP
5: create_module(newPi)

6: procedure create_module(Pi)
7: for all s ∈ services required by Pi do
8: if no module is bound to service q in stack i then
9: find a module Qi providing q {on each stack, the same module Qi is chosen}

10: create_module(Qi)
11: Qi.bind()
12: add Pi to stack i

We now prove that our algorithm ensures our correctness properties.

Initial Binding Coherence. Trivially ensured by lines 9-11. �

Stack-operationability. Obvious from lines 6-12. �

Protocol-operationability. Consider a module Pi (providing service p) that is
added in stack i at line 12. Thus, stack i has called the procedure create_module
with module Pi as a parameter at line 5 or at line 10. In the second case, this
implies that the procedure create_module has been called at line 5. Let be Qi

the module passed in parameter at line 5 on stack i (Qi = Pi or Qi 6= Pi). Thus,
stack i has delivered a message (addProt, Q). Due to the properties of reliable
broadcast, each correct stack j eventually executes line 5 with a module Qj as a
parameter. The two following cases have to be considered.

• Qj = Pj . By lines 6-12, module Pj is added to stack j at line 12.

• Qj 6= Pj . This means that on stack i, module Pi has been added by re-
cursively calling the procedure create_module at line 10. By lines 8-11,
module Pi is the first module that is bound to service p in stack i. By the
initial-binding-coherence-property, either module Pj has already been added
in stack j or it is added by recursive calls to the create_module procedure. �

6This can be easily ensured by defining, on each stack, the default protocol for each service.
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4.4 Protocol Removal

While protocol addition is the initial step of DPU, protocol removal is the final
step of DPU. Protocol removal consists in removing all modules of a given pro-
tocol oldPi. This section introduces safety properties that a protocol must ensure
in order to be removed. We also discuss an approach for protocol removal that
ensures these properties.

4.4.1 Safety Properties

We present first two properties that guarantee that a given protocol can be removed
safely. These two properties hold in any context in the sense that they define safe
protocol removal independently from the DPU manager considered. The first con-
dition, namely call-completeness, ensures that no more call is executed by the pro-
tocol to be removed. Note that we consider that once a protocol has been un-
bound from a given service, it cannot be bound anymore.7 On the other hand, the
response-completeness property ensures that no more response is initiated by the
protocol to be removed.

Call-Completeness. Consider a protocol P . Protocol P is call-complete at time t
if in each stack i, module Pi has been unbound from service p before time t.

Response-Completeness. Consider a protocol P . Protocol P is response-complete
at time t if in each stack i, module Pi will not issue any response after time t.

If we consider our solution to integrate a DPU manager, the response-completeness
property can be slightly weakened. Since our DPU modules intercept responses of
updateable protocols, it may happen that the protocol that is replaced continues to
issue responses, while these responses are discarded by the DPU modules (in other
words, such responses do not influence the behavior of the DPU modules). The
response-safety property is based on this observation.

Response-Safety. Consider a protocol P and a DPU protocol Repl-P that allows
to dynamically update P . Protocol P is response safe at time t if in each stack i,
all responses issued by Pi after t are discarded by Repl-Pi.

4.4.2 Approach to Remove Protocols

We now present a simple approach to implement protocol removal. When a DPU
module on stack i discards all responses from a module oldPi that has been previ-
ously unbound, it sends a message (removeProt, oldP ) to all stacks. We show in
Chapter 6 (with concrete DPU algorithms) when this message has to be sent. Upon
reception of the message (removeProt, oldP ) from all non-crashed stacks j ∈ Π,
the DPU module in stack i can safely remove module oldPi. Indeed, at this time,

7Otherwise, detecting when no more call is executed by a given protocol P requires to predict
the future (and thus requires an omniscient observer).
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protocol oldP is both call complete and response safe. Note that this approach
requires a perfect failure detector [CT96].

4.5 Conclusion

In this chapter, we have discussed several issues related to the structural dimension
of DPU. First, we showed that existing solutions to integrate a DPU manager in a
distributed system suffer from major drawbacks. More specifically, the most rep-
resentative existing solutions (1) reduce modularity of protocol stacks, (2) result in
replacement based on the algorithm rather than on the specification of the update-
able protocols, and (3) limit flexibility of replacement. We provided a solution that
overcomes this problems. We discussed basic correctness properties for protocol
addition and removal. Finally, we presented solutions to ensure these properties.





Chapter 5

Algorithmic Issues of Dynamic
Protocol Update

This chapter is devoted to the algorithmic dimension of DPU (see Section 3.2).
The whole chapter is based on our approach to integrate a DPU manager (see Sec-
tion 4.2.1). Our solution, contrary to others that split DPU algorithms between (1)
the protocol that gets replaced and (2) the DPU manager, allows us to specify and
verify DPU algorithms. The contribution described in this chapter is twofold:

• DPU Specification. We introduce correctness properties that each DPU al-
gorithm must ensure. Contrary to [BKvRC01] where the authors consider
that a DPU algorithm is correct if and only if it is transparent (i.e., the prop-
erties of the service that gets replaced are maintained during DPU), we re-
quire correct DPU algorithms to be additionally consistent (the effects of
DPU are the same on each stack) and live (DPU eventually terminates).

• Approach to Characterize DPU Algorithms. We propose a methodology
to describe the characteristics of DPU algorithms (i.e., which protocols they
correctly replace). The methodology consists in characterizing DPU algo-
rithms by a set of inference rules that are easy to prove. The rules consist
of predicates that apply to group communication protocols. By applying the
set of rules to a given protocol P , we can simply determine if the proto-
col P is correctly replaced by the DPU algorithm that corresponds to these
rules. Note that our methodology can be applied to several existing DPU
algorithms, such as those described in [MR06, BKvRC01].

A similar approach has been presented in [BKvRC01]. Contrary to this ap-
proach, our methodology allows us to characterize and verify DPU algo-
rithms for reliable protocols (e.g., reliable broadcast, atomic broadcast or re-
liable channels). For instance, in Section 5.3.3 we characterize and verify a
simple DPU algorithm that correctly replaces reliable broadcast algorithms.
More complex DPU algorithms are characterized using our methodology in
Chapter 6.

35
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5.1 Model for DPU Algorithms

This section first describes service calls and responses from an algorithmic point of
view. This allows us to define the class of DPU algorithms considered in the thesis.
In the following sections, we discuss our approach to characterize DPU algorithms
based on these definitions.

Service calls. Upon a service call, an identifier k is transmitted to the module
that executes the service call. Two calls that occur on the same stack cannot have
the same identifier. However, two calls that occur on different stacks can have the
same identifier. For instance, consider the atomic commitment service [BHG87]
which allows a set of processes to agree on committing or aborting a transaction.
Each process calls the atomic commitment service to propose to commit or to abort.
Thus, each process must perform the call with the same identifier in order to clearly
identify that they try to commit or abort the same transaction.

We also assume that a set of stacks denoted by dst is given as parameter upon
service calls. A call results in service responses only on stacks i ∈ dst. Note that
a stack i ∈ dst does not necessarily generate a response. For instance, in the case
of a best-effort fifo order service, it is possible that some destination stack does not
generate a response. Two calls with the same identifier k have also the same set of
destinations dst.

Finally, additional parameters can be passed as an argument of a service call.
These additional parameters may only influence the additional parameters of the
corresponding responses. We denote by Cs,i(k, dst, par) the call to service s that
occurs on stack i with identifier k, set of stacks dst and additional parameters par.

Service responses. Similarly to service calls, an identifier is transmitted upon
each service response. This identifier corresponds to the identifier transmitted upon
the corresponding service call. In addition to an identifier, a set of stacks src is
passed as an argument upon each service response. The set src denotes all the
stacks on which a corresponding call (i.e., a call with the same identifier) occurs.
Usually, the set src contains only one stack. However, for some services such as
atomic commitment (see above) the set src may contain several stacks.

Again, similarly to service calls, additional parameters, denoted by par can
be passed as an argument upon a service response. Contrary to the identifier, the
parameters par passed on a service response are not necessarily identical to the
additional parameters passed on the corresponding call(s). The parameters par
of responses depend only on the corresponding call(s). Furthermore, the parame-
ters par may differ among the responses with identifier k.

We denote by Rs,i(k, src, par) the first response from service s that occurs on
stack i with identifier k, set of stacks src, and additional parameters par. We do
not introduce a notation for further responses with identifier k on stack i, since it
is useless for the purpose of the thesis.
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Figure 5.1: Notations for service calls and responses.

Figure 5.1 illustrates our notation for service calls and responses. The scenario
consists in a call to service q made by module P1 (shown with a solid arrow). The
call is identified by k and its destination is the set of stacks [1,2,3]. Responses
to this call (Rq,1(k, [1]), Rq,2(k, [1]) and Rq,3(k, [1])) are represented with dashed
arrows. For clarity, we do not consider additional parameters par in this scenario.

Generic DPU Algorithm. Algorithm 2 defines the generic behavior of most algo-
rithms presented in this thesis. All algorithms that are instances of Algorithm 2 in-
herit from the properties of our generic algorithm. Specifically, the DPU instances
do not arbitrarily create service responses (see discussion below). As a result, if
a service p (provided by the updateable protocol) guarantees that for each service
response, a corresponding service call has occurred, then service r-p (provided by
the DPU manager) also ensures this guarantee.

Each DPU module maintains two different sets calls and responses: Each set
contains respectively service calls and service responses. Upon a call to service r-p,
the DPU module adds the call to the set calls (line 8). Similarly, upon a response
from p, the DPU module adds the response to the set responses (line 11). Further-
more, each DPU module reacts to four categories of events: (1) calls to primitive
replaceProtocol for initiation of a replacement (line 5), (2) calls to service r-p
(line 7), (3) responses from service p (line 10), and (4) responses from any service
it requires (line 13). Upon any of these events1, a DPU module may perform any
sequence of the following basic actions:

1. Issue a call to service p (lines 16-18). The parameters of that call are taken
from the set calls. The call is made using a new identifier (FORWARD ,
k, inf) where FORWARD is a tag ensuring that the responses correspond-
ing to the call will be added to the set responses (see lines 10-11). The
parameter inf , which is optional, is any other information needed for DPU.

2. Issue a response from service r-p (lines 19-21). Similarly to call to service p,
the parameters of the response are taken from the set responses. The infor-
mation inf and the tag FORWARD added by a DPU module are removed
from the identifier upon the response to service r-p.

1Each upon block is executed in mutual exclusion.
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3. Call some service x related to the replacement task (lines 22-23). Similarly
to the call of the first basic action, this call is made using a special identifier
(INTERNAL, k, inf) where INTERNAL is a tag ensuring that the re-
sponses corresponding to the service call are not added to the set responses
(see lines 13-14). Again, inf is optional and denotes any other information
needed for DPU. Contrary to the first basic actions, all the parameters of a
call (i.e., k, inf , dst and par) are freely determined by the DPU module.
Finally, note that the service x can be the service provided by the protocol
that gets replaced (i.e., service p).

4. Perform locally the protocol update (lines 24-28). The local module Pi of the
current protocol is first unbound from service p. Then, a module newPi of
the new protocol is bound to service p and set as the current protocol module.
For simplicity, we assume that module newPi is in each stack i ∈ Π at the
time of binding. In other words, the DPU algorithms that are considered in
the remainder of the thesis do not explicitly implement protocol addition (see
Section 4.3). Protocol addition can be, however, easily implemented within
these DPU algorithms.

Algorithm 2 Generic DPU Algorithm: code of stack i.
1: Initialisation:
2: calls← ∅ {The set of calls to service r-p}
3: responses← ∅ {The set of responses from service p}
4: currentPi ← initial_protocol_module {The module currently bound to service p}

5: upon replaceProtocol(newP ) do
6: execute any sequence of basic actions

7: upon r-p.call(k, dst, par) do
8: calls← calls ∪ (k, dst, par)
9: execute any sequence of basic actions

10: upon p.response((FORWARD , k, inf ), src, par) do
11: responses← responses ∪ ((k, inf), src, par)
12: execute any sequence of basic actions

13: upon x.response((INTERNAL, k, inf ), src, par) do {x can be any service}
14: execute any sequence of basic actions

15: List of basic actions:
16: 1) Issue a call to service p:
17: select a call (k, dst, par) from calls according to some criterion
18: p.call((FORWARD , k, inf ), dst, par)
19: 2) Issue a response from service r-p:
20: select a response ((k, inf ), src, par) from responses according to some criterion
21: r-p.response(k, src, par)
22: 3) Call some service x:
23: x.call((INTERNAL, k, inf ), dst, par)
24: 4) Perform locally the protocol update:
25: currentPi.unbind()
26: newPi ← local module of the new protocol
27: newPi.bind()
28: currentPi ← newPi
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Discussion. From lines 10-23 of Algorithm 2, one can observe that our DPU
algorithms do not arbitrarily create responses. More precisely, for each response
from service r-p, a corresponding call to r-p has been issued.

We now explain why we ignore the additional parameters par except if stated
otherwise. Let us first define the notion of response-coherence. A DPU module
is response-coherent if and only if for any identifier k, all DPU modules issue
responses from service r-p (see line 21) based on responses from service p (see set
responses at line 20) that were issued by a module of the same protocol. It can
be easily seen that all DPU algorithms in the remainder of the thesis are response-
coherent for the service that they correctly replace. Furthermore, one can observe
that DPU modules do not change the parameters par transmitted by service calls
(see lines 7-8 and 16-18) and service responses (see lines 10-11 and 19-21). Thus,
properties related to these parameters are automatically preserved by DPU modules
that are response-coherent. In other words, any properties ensured by the service p
that apply to the additional parameters par of both service calls and responses, are
also ensured by service r-p of the DPU algorithms that are instances of our generic
algorithm.

5.2 DPU Specification

We now specify the properties that each DPU algorithm must ensure. These proper-
ties ensure transparent, consistent, and terminating dynamic update for a given ser-
vice p. The first property, namely Service Preservation, guarantees transparency:
The service r-p provided by the DPU protocol corresponds to the service p pro-
vided by the protocol that gets replaced.

Service Preservation. Service r-p ensures the same predicates2 as service p.

Additionally to this property, each DPU instance must ensure the following three
properties. In the specification of these properties, we assume the replacement of
protocol P by protocols newP and newP ′. Furthermore, for simplicity, once a
module has been unbound from service p, we assume that it cannot be bound again
to p.

Replacement Termination. If the primitive replaceProtocol is called with pro-
tocol newP as a parameter on some correct stack i ∈ Π, then module newPi will
be eventually bound to service p in stack i.

Replacement Agreement. If module newPi is bound to service p in some stack i,
then in each correct stack j ∈ Π, a module newPj will be eventually bound to
service p.

Replacement Order. If module newPi is bound to service p before mod-
ule newP ′i in some stack i, then each stack j ∈ Π binds module newP ′j to service p
only after it has bound module newPj to service p.

2Predicates can be understood as service properties, see Section 5.3.1
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The Replacement Termination property ensures live replacements in the sense
that each DPU instance eventually finishes. Roughly speaking, Replacement Agree-
ment guarantees that each dynamic protocol update is performed by either all cor-
rect stacks or by none of them. Replacement Order ensures that all stacks perform
the local update in the same order. These two properties ensure consistent DPU,
which means that if no replacement occurs anymore, the last module bound to a
given service is eventually the same for each stack. This is a desirable property to
allow efficient protocol removal in the sense that for each service p, it ensures that
eventually all protocols providing p except one can be removed. Note that if pro-
tocol removal is not considered, Replacement Agreement and Replacement Order
can simply be ignored.

5.3 Approach to Characterize DPU Algorithms

We have previously defined the generic behavior of DPU algorithms (see Algo-
rithm 2). Several DPU algorithms for group communication protocols can be in-
stantiated out of Algorithm 2. In this section, we introduce an approach to char-
acterize these DPU algorithms that facilitates correctness proofs. More precisely,
we show for a given DPU algorithm how to define, as exhaustively as possible, the
services it correctly replaces. A trivial solution consists in simply enlisting these
services and prove for each service that it is correctly replaced. Our solution is,
however, more elegant, since it allows concise description of DPU algorithms and
facilitates their proofs.

Our solution consists in a set of logical rules based on core properties of dis-
tributed services that we call service predicates. Each property provided by the
services considered in this thesis – except properties related to the additional pa-
rameters that are not considered here (see Section 5.1) – corresponds to a service
predicate. Our logical rules mainly allow us to determine if a DPU instance ensures
Service Preservation for a given service p. More precisely, a logical rule defines
the conditions on service p that ensure a predicate on service r-p, e.g. :

pred1(p) ∧ ... ∧ predl(p) ⇒ pred(r-p)

Furthermore, the logical rules also describe for which services the Replacement
Agreement, Replacement Order and Replacement Termination properties hold. For
most DPU algorithms, these properties are ensured for any service p. In this case,
the left part of the corresponding rule is equal to true (see Section 5.3.3).

This section is structured as follow. First, we present a (non-exhaustive) list of
service predicates that we illustrate with group communication services. Then, we
describe a simple example of DPU algorithm. This DPU algorithm is characterized
with logical rules based on service predicates. We also illustrate the use of the
logical rules with concrete examples. Finally, we illustrate correctness proofs with
our example of DPU algorithm.
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5.3.1 Service Predicates

Our first service predicate, namely At-Most-One-Response, ensures that at most
one service response – corresponding to a specific call – occurs on each stack. This
service predicate applies to several distributed protocols, especially to protocols
that prevent multiple deliveries of the same message on a stack.

At-Most-One-Response. Consider a service s and a call Cs,i(k, dst) that occurs
on stack i. The service s satisfies the predicate at-most-one-response if and only if
for each stack j ∈ dst, at most one response Rs,j(k, src) occurs.

The following service predicates provide guarantees about the existence of re-
sponses related to a given service call. We define three levels for these guarantees
on response reliability. The two first levels, namely Weak Reliability and Strong
Reliability, are well-known properties of distributed protocols. Note that Weak
Reliability is strictly weaker than Strong Reliability.

Weak Reliability. Consider a service s and an infinite number of service calls
Cs,i(k1, dst), Cs,i(k2, dst), ... that occur on a correct stack i. Service s is weakly
reliable if and only if an infinite number of corresponding responses Rs,j(k′1, src),
Rs,j(k′2, src), ... eventually occur on each correct stack j ∈ dst.

Strong Reliability. Consider a service s and a service call Cs,i(k, dst) that oc-
curs on a correct stack i. Service s is strongly reliable if and only if a response
Rs,j(k, src) eventually occurs on each correct stack j ∈ dst.

Our last level for reliability, called Group Reliability, applies to services requiring
a call from each process in the system in order to ensure a response.

Group Reliability. Consider a service s and a service call Cs,i(k, dst) that occurs
on each correct stack i ∈ Π. Service s is group reliable if and only if a response
Rs,j(k, src) eventually occurs on each correct stack j ∈ dst.

Note that a fourth level, namely Local Reliability, can be considered. Local relia-
bility ensures that, for each call occurring on some correct stack i, a corresponding
response occurs on the same stack i. Since this predicate is only relevant for Fail-
ure Detectors and is easily preserved by DPU algorithms, we do not consider it in
this thesis.

We now present a service predicate that guarantees atomicity of responses.
Informally, it ensures that a call results in either (1) no response or (2) a response
on each stack in the destination set.

Response Atomicity. Consider a service s, a service call Cs,i(k, dst) and a
corresponding service response Rs,j(k, src) that occurs on some stack j. Service s
is response atomic if and only if a response Rs,l(k, src) eventually occurs on each
correct stack l ∈ dst.

The following four service predicates characterize ordering services. The first
two service predicates guarantee that the order of service responses on a given stack
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corresponds to some precedence relation defined on the corresponding calls. These
two predicates only apply to services for which there is a single call per identifier.

The Fifo Order predicate relies on the local precedence relation that we now
define. A call k locally precedes a call k′ if and only if (1) both calls k and k′ occur
on the same stack i, and (2) call k′ occurs after call k on stack i.

Fifo Order. Consider a service s, two calls Cs,i(k, dst) and Cs,i(k′, dst′), such
that call Cs,i(k, dst) locally precedes call Cs,i(k′, dst′). Assume that two re-
sponses Rs,j(k, src) and Rs,j(k′, src) occur on some stack j ∈ dst ∩ dst′. Ser-
vice s is fifo ordered if and only if response Rs,j(k, src) occurs before response
Rs,j(k′, src) on stack j.

The second ordering predicate, called Causal Order, is based on the causal prece-
dence relation defined as follows. A call k directly causally precedes a call k′ if and
only if a call or a response k occurs before the call k′ on stack i. The causal prece-
dence relation is then defined as the transitive closure of the direct causal prece-
dence relation. Because the causal precedence relation is strictly stronger than the
local precedence relation, Causal Order is strictly stronger than Fifo Order.

Causal Order. Consider a service s, two calls Cs,i(k, dst) and Cs,j(k′, dst′)
(possibly i 6= j), such that call Cs,i(k, dst) causally precedes call Cs,j(k′, dst′).
Assume that two responses Rs,l(k, src) and Rs,l(k′, src) occur on some stack l ∈
dst∩dst′. Service s is causally ordered if and only if response Rs,l(k, src) occurs
before response Rs,l(k′, src) on stack l.

Finally, the last two service predicates, namely total order and generic order,
ensure that respectively (1) all, or (2) a subset (only those that conflict), of the
service responses are issued in the same order on each stack. Total order is strictly
stronger than generic order. Note that generic order depends on a (symmetric and
non-reflexive) conflict relation on service calls/responses.

Total Order. Consider a service s. Assume that a response Rs,i(k, src) occurs
before a response Rs,i(k′, src′) on stack i. Service s is totally ordered if and only if
for any stack j on which response Rs,j(k′, src′) occurs, then response Rs,j(k, src)
has occured before.

Generic Order. Consider a service s. Assume that a response Rs,i(k, src) oc-
curs before a response Rs,i(k′, src′) on stack i, such that the responses conflict.
Service s is generically ordered if and only if for any stack j on which response
Rs,j(k′, src′) occurs, then response Rs,j(k, src) has occured before.

5.3.2 Services and Service Predicates

Table 5.1 shows a list of services (that are defined in Section 2.2) in relation with
the service predicates presented above. For instance, Reliable Broadcast ensures
the four following predicates: At-Most-One-Response, Weak Reliability, Strong
Reliability and Response Atomicity.
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Best Effort Channel + + - - - - - - -
Reliable Channel + + + - - - - - -
Best Effort Fifo Order + + - - - + - - -
Reliable Fifo Order + + + - - + - - -
Reliable Causal Order [BJ87] + + + - - + + - -
Failure Detector [CT96] + - - - - - - - -
HO Predicate Layer [HS07] + - - + - - - - -
Consensus [CT96] + - - + + - - - -
Atomic Commitment [BHG87] + - - + + - - - -
Reliable Broadcast [CT96] + + + - + - - - -
Atomic Broadcast [HT94] + + + - + - - + +
Fifo Atomic Broadcast [HT94] + + + - + + - + +
Generic Broadcast [PS02] + + + - + - - - +

Table 5.1: Services and corresponding predicates.

One can observe that Consensus and Atomic Commitment services ensure ex-
actly the same service predicates (see Table 5.1). Indeed, the difference between
the two services is related to the additional parameters – transmitted upon service
calls or responses – that are not considered here (see Section 5.1). Thus, any in-
stance of our generic DPU algorithm that correctly replaces Consensus protocols,
also correctly replaces Atomic Commitment protocols, and vice versa.

5.3.3 First DPU Instance: A Simple Replacement Algorithm

We now describe a very simple DPU algorithm. We then characterize this DPU
algorithm with logical rules and explain the concrete meaning of these rules. This
will show that despite its (apparent) simplicity, our algorithm allows to replace
several distributed protocols. Note that for simplicity, we omit protocol removal
(see Section 4.4.2) from the description of our algorithm. Note that it can be rather
easily modified to implement protocol removal. However, these modifications may
differ depending on the service that gets replaced.

Algorithm. The basic idea of Algorithm 3 is to directly forward each call to
service r-p to the protocol bound to service p (see lines 7-9). A similar behavior
occurs on a response from service p (see lines 10-12). Note that the sets calls and
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Algorithm 3 Simple DPU Algorithm: code of stack i.
1: Initialisation:
2: calls← ∅ {The set of calls to service r-p}
3: responses← ∅ {The set of responses from service p}
4: currentPi ← initial_protocol_module {The module currently bind to service p}

5: upon replaceProtocol(newP ) do
6: ABcast.call((INTERNAL, newP ), Π) {Basic action: Call a service required}

7: upon r-p.call(k, dst) do
8: calls← calls ∪ (k, dst)
9: p.call((FORWARD , k), dst) {Basic action: Issue a call to service p}

10: upon p.response((FORWARD , k), src) do
11: responses← responses ∪ (k, src)
12: r-p.response(k, src) {Basic action: Issue a response from service r-p}

13: upon ABcast.response((INTERNAL, newP ), j) do
14: currentPi.unbind() {Basic action: Perform locally the protocol update}
15: newPi ← local module of protocol newP
16: newPi.bind()
17: currentPi ← newPi

responses can be ignored in this algorithm. We let them appear here in order to
make the link with the generic algorithm more explicit.

When a replacement is initiated on stack i (line 5), the new protocol is sent
using atomic broadcast (ABcast) to all other stacks in Π (line 6). When a process
executes the response of ABcast with the new protocol newP (line 13), it sim-
ply (1) unbinds the current protocol module (line 14), (2) binds the new protocol
module (line 16), and (3) sets the new protocol module as the current protocol
module (line 17).

Characterization. Because we use atomic broadcast to diffuse the new protocol,
Algorithm 3 ensures Replacement Agreement, Replacement Order and Replace-
ment Termination for whatever service p that gets replaced (see Rules A, B and C
in Table 5.2).

Concerning Service Preservation, Rules 1-4 in Table 5.2 show which predicates
are ensured by service r-p when a protocol providing a given service p is replaced.
For instance, if service p is weakly reliable then service r-p is also weakly reli-
able (see Rule 2 in Table 5.2). Thus, by the definition of Service Preservation (see
Section 5.2) and Best Effort Channel services (see Table 5.1), our DPU algorithm
ensures Service Preservation for the Best Effort Channel service. Because the other
correctness properties of DPU are ensured independently from the service that gets
replaced, best effort channel protocols are correctly replaced by our simple algo-
rithm.

Let us now illustrate properties stated by Table 5.2 with two other protocols.
First, assume that we want to replace reliable broadcast protocols. From Table 5.1,
we know that the following predicates apply to Reliable Broadcast: At-Most-One-
Response, Weak Reliability, Strong Reliability and Response Atomicity. From
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Rule A: true ⇒ Replacement Agreement
Rule B: true ⇒ Replacement Order
Rule C: true ⇒ Replacement Termination

Rule 1: At-Most-One-Response(p) ⇒ At-Most-One-Response(r-p)
Rule 2: Weak Reliability(p) ⇒ Weak Reliability(r-p)
Rule 3: Strong Reliability(p) ⇒ Strong Reliability(r-p)
Rule 4: Response Atomicity(p) ⇒ Response Atomicity(r-p)

Table 5.2: Characterization of Algorithm 3.

Table 5.2, all these predicates also apply to service r-p. Thus, Algorithm 3 ensures
Service Preservation when replacing reliable broadcast protocols.

Imagine now that we want to replace atomic broadcast protocols. Atomic
broadcast is characterized by the same predicates as Reliable Broadcast plus the
Total Order predicate. Since no logical rule allows to state that Total Order applies
on service r-p, we cannot conclude that atomic broadcast protocols is correctly
replaced by our simple DPU algorithm.

Proofs. We prove that Algorithm 3 corresponds to the characterization in Ta-
ble 5.2. The proofs related to Rules 1-4 are obvious and, thus, are omitted here.
We only prove below Rules A, B, and C, i.e., the Replacement Agreement, Re-
placement Order and Replacement Termination properties hold for any service p
(provided by the protocol that gets replaced). Note that other examples of charac-
terization proofs are given in Chapter 6 with more complex algorithms.

Rule A: true ⇒ Replacement Agreement: Assume that module newPi is
bound to service p in some stack i. Thus, stack i executes an ABcast response
with newP as a parameter (see lines 13-16). From Response Atomicity of ABcast
(see Table 5.1), each correct stack j ∈ Π eventually executes an ABcast response
with newP as a parameter (line 13), unbinds the old protocol module (line 14) and
finally binds the module newPi (line 15). �

Rule B: true⇒ Replacement Order: Assume that stack i binds the protocol
module newPi to service p before binding the module newP ′i (line 15). Thus,
stack i executes an ABcast response R with newP as a parameter before executing
a similar response R′ with newP ′ as a parameter (line 13). From Total Order
of ABcast (see Table 5.1), each stack j that executes response R′ has executed
response R before. Thus, each stack that binds the protocol module newP ′j has
bound module newPj before. �

Rule C: true ⇒ Replacement Termination: Assume that replaceProto-
col(newP ) occurs on some correct stack i. Thus, stack i executes the call to AB-
cast ((INTERNAL, newP ), Π) (line 6). From Strong Reliability of ABcast (see
Table 5.1), stack i eventually executes an ABcast response with ((INTERNAL,
newP ), i), unbinds the old protocol module and finally binds the module newPi. �
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5.4 Conclusion

In this chapter, we have specified the properties that DPU algorithms must ensure.
Furthermore, we have proposed a methodology for characterizing DPU algorithms
by logical rules, and we have shown how the approach facilitates proofs. Finally,
we have provided a very simple DPU algorithm that allow us to replace some
distributed protocols.



Chapter 6

Algorithms for Dynamic Protocol
Update of Group Communication
Protocols

In previous chapters, we proposed a general solution to (1) integrate a DPU man-
ager in a set of stacks, and (2) characterize and verify the DPU algorithms imple-
mented by DPU managers. The present chapter describes several DPU algorithms
based on our general approach. These DPU algorithms allow us to correctly replace
a large scope of group communication protocols, including consensus and atomic
broadcast protocols that are the main building blocks of our group communication
middleware described in Figure 4.3 (Section 4.2.1).

Our first DPU algorithm is dedicated to consensus protocols. We then describe
a DPU algorithm that uses the guarantees provided by the Fifo Order predicate.
This algorithm correctly replaces local ordering protocols such as reliable fifo or-
der and reliable causal order protocols. In contrast, our third DPU algorithm is
dedicated to global ordering protocols, which include generic broadcast and atomic
broadcast protocols. We next discuss existing DPU algorithms. Finally, we eval-
uate the overhead induced by the DPU algorithms described in this chapter. The
overhead is evaluated in two cases: (1) when no replacement occurs and (2) during
the replacement.

6.1 DPU Algorithm for Consensus Protocols

The present algorithm correctly replaces consensus protocols. Contrary to other
DPU algorithms presented in the thesis, the present algorithm is not an instance of
the generic Algorithm 2 (see Section 5.1), since it slightly modifies the additional
parameters passed upon service calls and responses. This modification allows us to
take advantage of the properties related to those parameters, i.e., the Validity and
Agreement properties as defined in Section 2.2.5. Based on those two properties,
we are able to guarantee that each instance of consensus is executed on each stack
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by the same consensus protocol (which ensures the correctness of our DPU algo-
rithm). This is done as follows. Once a replacement is initiated, the new consensus
protocol newP is sent to all stacks with a reliable broadcast protocol. Upon de-
livery of the new protocol, every stack attaches newP to the proposal value of
the following consensus instances. By the Validity property of consensus, the new
protocol will be attached to some decision value. The Agreement property ensures
that the same new protocol newP , if any, is attached to the decision value of each
instance of consensus. Thus, newP can be safely installed after the decision.

The description of our replacement algorithm for consensus protocols is struc-
tured as follows. We first describe some basic assumptions required by our algo-
rithm and discuss them. We then present the algorithm itself and prove its cor-
rectness. It should be noted that because the algorithm is dedicated to consensus
protocols only, no characterization is provided.

Basic Assumptions. Each correct stack participates to all replaceable consensus
instances.1 Particularly, for each instance k, every correct stack issues a call k and
the corresponding destination set is equal to Π.

Our second assumption guarantees that replaceable consensus instances are
initiated sequentially. In other words, on each stack, a call k to replaceable consen-
sus, where k is an integer, occurs only after the response for replaceable consensus
instance k − 1 has taken place. Note that this restriction can be easily removed,
but it complicates the algorithm. For presentation reasons, we chose to discuss the
simplest version of our algorithm.

Finally, we consider that an unbounded number of replaceable consensus in-
stances are initiated by protocol stacks. This assumption is only required for termi-
nation of dynamic updates (i.e., to ensure the Replacement Termination property).
We argue that this hypothesis is realistic for the following reason: If no more con-
sensus instance occurs, then the replacement is useless.

Algorithm 4. The replacement of the current protocol by a new protocol newP
is initiated by a call replaceProtocol(newP ) executed at line 6. This call triggers
a call to the reliable broadcast service (RBcast) to diffuse the new protocol newP
to all stacks. Upon the corresponding response R on some stack i (line 8), we first
check at line 9 that protocol newP has not already been bound to the consensus
service (i.e., newP /∈ boundProtocols i). This test prevents multiple binding of the
same protocol if, for instance, the protocol has been locally bound before response
R occurs. If the test succeeds, protocol newP is added to the list of protocols to
be bound to the consensus service (replacingProtocols i) and the Boolean variable
repRequested i is set to true (lines 10-11). From this point on, the replacement
algorithm does nothing: it just waits for calls to replaceable consensus (denoted by
r-consensus).

1As mentioned in Section 4.2.1, protocol stacks call the service provided by the DPU algorithm
(i.e., the replaceable consensus service) instead of directly calling the consensus service.
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Algorithm 4 DPU Algorithm for Consensus Protocols: code of stack i.
1: Initialisation:
2: currentPi ← initial_protocol_module {The module currently bind to consensus}
3: repRequestedi ← false {Is there a replacement requested?}
4: replacingProtocolsi ← λ {The list of protocols to be bound to consensus}
5: boundProtocolsi ← ∅ {The set of protocols that have been already bound to consensus}

6: upon replaceProtocol(newP ) do
7: RBcast.call((INTERNAL, newP ), Π)

8: upon RBcast.response((INTERNAL, newP ), src) do
9: if newP /∈ boundProtocolsi then

10: add newP to the end replacingProtocolsi
11: repRequestedi ← true

12: upon r-consensus.call(k, dst, proposal) do
13: newP ← first element in replacingProtocolsi (or nil if replacingProtocolsi = λ)
14: consensus.call(k, dst, (proposal , repRequestedi, newP ))

15: upon consensus.response(k, src, (decision, replacement , newP )) do
16: if replacement then
17: unbind currentPi

18: newPi ← local module of newP
19: bind newPi

20: RBcast.call((removeProt , currentPi), Π) {This line is only necessary for protocol removal}
21: currentPi ← newPi

22: remove newP from the list replacingProtocolsi
23: boundProtocolsi ← boundProtocolsi ∪ newP
24: if replacingProtocolsi = λ then
25: repRequestedi ← false

26: r-consensus.response(k, src, decision)

Whenever the replaceable consensus service is called (line 12), the call is sim-
ply redirected to the module currently bound to the consensus service (line 14).
Upon this redirection, the proposal value passed as an additional parameter of the
service call to r-consensus is modified to (proposal , replacement , newP ).2 The
Boolean value replacement is set according to the value of repRequested i and in-
dicates to other stacks if a replacement is needed. The variable newP represents
the new protocol to be bound to the consensus service and is chosen among the
protocols in the list replacingProtocols i (line 13).

When a consensus module returns a decision (by issuing a response to the
consensus service, see line 15), the replacement variable is tested. If its value
is true, the replacement takes place (lines 16-21). Then, the list replacingProtocols i
and the set boundProtocols i are updated (lines 22-23). If no more replacement
has to be performed (i.e., the list replacingProtocols i is empty), the Boolean vari-
able repRequested i is set to false (lines 24-25). Finally, for any value of the
replacement variable, a response to the replaceable consensus service with the

2By definition, consensus protocols solve consensus for a proposal of any type. So the modifica-
tion of the proposal has no impact on the current consensus protocol. Note that such a modification
makes our DPU algorithm incorrect for atomic commitment protocols. The reason is that, contrary
to consensus protocols, atomic commitment protocols expect only specific values for the proposal:
only commit or abort are correct proposal values.
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value decision as an additional parameter is initiated at line 26.
Note that line 20 is only used for protocol removal (see Section 4.4). Actu-

ally, it informs the other stacks that protocol currentP does not issue anymore
responses on stack i. If no more response is issued by protocol currentP on every
stack, this protocol can be removed. The details about the delivery of the message
sent at line 20 can be found in Section 4.4.2.

Proofs. Before showing that Algorithm 4 ensures the specifications of DPU when
replacing consensus protocols, let us show the following lemma that simplifies the
proofs.

Lemma 1. For any consensus instance k initiated at line 14, all stacks that execute
instance k, execute it with the same protocol.

Proof. The proof is done by recurrence. By the initial-binding-coherence prop-
erty (see Section 4.3), the module initially bound to consensus is the same for each
stack. Since the local replacement of a consensus module requires to execute con-
sensus, each stack executes the first consensus instance with the same protocol.

Assume now that all stacks that execute instance k of consensus, execute it
with the same protocol. We now proof that instance k + 1 is also executed with
the same protocol by all stacks that execute it. Each stack executes the response
corresponding to call (i.e., instance) k before any call k + 1 occurs (and more
generally before any call k′ > k occurs). By the Agreement property of consensus,
the decision (decision, replacement , newP ) passed upon response k is the same
on each stack. By lines 16-26, the module bound to the consensus service after
response k has been executed is the same for each stack. Thus, instance k + 1 is
executed with the same consensus protocol by all stacks that execute it. �

From Lemma 1, the Service Preservation, Replacement Agreement and Replace-
ment Order properties trivially hold for our DPU algorithm when replacing consen-
sus protocols. Let us now prove that our algorithm verifies the last DPU correctness
property, namely Replacement Termination.

Replacement Termination: Assume that some correct stack i executes the
primitive replaceProtocol with protocol newP as a parameter (line 6). Thus,
stack i sends newP to all stacks using the reliable broadcast service (line 7).
Because the Strong Reliability and Response Atomicity predicates apply to re-
liable broadcast (see Table 5.1), each correct stack j eventually delivers proto-
col newP , adds newP to its local list replacingProtocolsj , and sets its local
variable repRequestedj to true (lines 8-11) (*).

Let us finish the proof by contradiction. Assume that stack i never binds mod-
ule newPi to the consensus service. Thus, no consensus instance ends on a de-
cision (−, true, newP ). By lines 24-25 and (*), the variable repRequestedj is
eventually forever true on each correct stack. Stacks that are not correct eventually
crash and stop participating to consensus instances. Because there is an unbounded
number of consensus instances (see assumptions, page 48) and due to the Validity
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and Termination properties of consensus, each correct stack eventually forever de-
cides (−, true, −). By line 22, after each decision, each correct stack j removes a
protocol from the list replacingProtocolsj . Furthermore, by line 13, this protocol
was at the head of the list on some correct stack j. Thus, because new protocols are
added at the end of the list (see line 10), newP is eventually at the head of the list
replacingProtocolsj on each correct stack j. Thus, there is a consensus instance
for which all correct stacks propose a value of type (−, true, newP ). Due to the
Validity property, there is a consensus instance that decides on (−, true, newP ).
A contradiction. �

6.2 DPU Algorithm for Local Ordering Protocols

We now present a DPU algorithm that is an instance of the generic Algorithm 2, and
inherits from its properties.3 This new DPU algorithm assumes that the protocols
that get replaced ensure the Fifo Order predicate. It allows us to replace protocols
that locally order responses such as reliable fifo order and reliable causal order
protocols (see the characterization paragraph on page 54).

The basic idea is the following. Once a replacement occurs, each stack executes
a final call with the current protocol. From this time on, further calls are executed
by the new protocol. However, the responses from the new protocol are executed
only after all responses to the final calls issued by correct stacks (faulty stacks
are detected using a perfect failure detector). At this point, because the protocols
that get replaced ensure the Fifo Order predicate, the old protocol may issue only
responses to calls issued on faulty stacks. Such responses are discarded, which
means that the responses from the new protocol can be safely executed.

We first describe our algorithm. Then, we present its characterization and prove
the correctness of our algorithm. Finally, we discuss some variants of our algo-
rithm.

Algorithm 5. We first describe our algorithm when no replacement occurs. Each
time a call to the replaceable service r-p occurs (line 9), a transport call
((FORWARD , k, callNumberi), dst) is issued to the module currently bound
to service p (line 10). The variable callNumberi identifies the module currently
bound to service p. This scenario is shown in stack 1 on the left of Figure 6.1.4

The responses from service p are handled at line 11. First, the sequence num-
ber sn of the response is compared to the local variable respNumberi (see line 12).
The variable respNumberi identifies the protocol providing service p that is cur-
rently allowed to issue responses. Because no replacement occurs, the sequence
number sn is equal to the variable respNumberi. Thus, the response is immedi-
ately executed (line 13). In the case of transport responses (which are tagged with

3For clarity, we do not formally express the DPU algorithm as an instance of the generic algo-
rithm.

4For simplicity, we do not show module bindings in the figures of this section.
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Figure 6.1: Calls (left) and responses (right) when no replacement occurs.

FORWARD), a response to service r-p is issued (line 26). This scenario is shown
in stack 2 on the right of Figure 6.1.

We now consider the case of a replacement issued on stack i by the call rep-
laceProtocol(newP ), where newP is the protocol to be installed (see line 7).
Stack i first sends newP to all processes using the atomic broadcast service (AB-
cast) at line 8.5 Solid arrows in stack 1 on the left of Figure 6.2 illustrates this.
Upon a response from ABcast on stack j (line 16), a replacement
call ((INTERNAL, newP , callNumberj), Π) is issued to the module currently
bound to service p (line 17). This is shown in Figure 6.2 by dashed arrows. Af-
ter issuing the replacement call, stack j locally updates the current protocol mod-
ule currentPj with the new protocol module newPj (line 18-22). The role of
line 21 is to allow correct protocol removal (see lines 32-33). Finally, the vari-
able callNumberj is incremented (see line 23) to correspond to the new protocol
executing calls to service p on stack j.
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Figure 6.2: The beginning of the replacement on the initiator stack (left) and any
other stack (right).

5We assume that the modules bound to ABcast do not require service r-p. Otherwise, the DPU
may block. Note that this problem does not occur with the other DPU protocols presented in the
thesis.
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Algorithm 5 DPU Algorithm for Local Ordering Protocols: code of stack i.
1: Initialisation:
2: currentPi ← initial_ protocol_module {The current protocol used to process calls}
3: oldProtocolsi ← λ {The lists of protocols that can be later removed}
4: undeliveredi[ ]← [λ, ...] {The array that contains the lists of responses not yet delivered;

one list for each module providing p; all lists are initially empty (λ)}
5: callNumberi = 0 {The sequence number identifying the protocol used for calls}
6: respNumberi = 0 {The sequence number identifying the protocol used for responses}

7: upon replaceProtocol(newP ) do
8: ABcast.call((INTERNAL, newP ), Π)

9: upon r-p.call(k, dst) do
10: p.call((FORWARD , k, callNumberi), dst)

11: upon p.response((tag, obj, sn), src) do
12: if (sn = respNumberi) then
13: execute_response(tag, obj, src)
14: else if (sn > respNumberi) then
15: add (tag, obj, src) to the end of list undeliveredi[sn]

16: upon ABcast.response((INTERNAL, newP ), j) do
17: p.call((INTERNAL, newP , callNumberi), Π)
18: currentPi.unbind()
19: newPi ← local module of newP
20: newPi.bind()
21: add currentPi to the end of the list oldProtocolsi

22: currentPi ← newPi

23: callNumberi ← callNumberi + 1

24: procedure execute_response(tag, obj, src)
25: if (tag = FORWARD) then
26: r-p.response(obj, src) {Execute transport responses}
27: else
28: if execute response(INTERNAL, newP , src) from all non-crashed stacks src ∈ Π then
29: respNumberi ← respNumberi + 1 {Execute replacement responses}
30: for all (tag, obj, src) ∈ undeliveredi[respNumberi] according to the order in the list do
31: execute_response(tag, obj, src)

32: oldP ← remove the first element from the list oldProtocolsi

33: RBcast.call((removeProt , oldP ), Π)

At this point, each call C to service p is executed by the protocol newP . How-
ever, the corresponding responses on a stack j corresponding to C are not directly
executed in line 13. The reason is that in contrast to the variable callNumberi
on stack i, the variable respNumberj on stack j is not yet incremented and does
not correspond to the new protocol. Thus, responses issued at this time by mod-
ule newPj on stack j are added to the list undeliveredj [sn] (see lines 14-15),
where sn corresponds to the value of callNumberi at the moment of call C. Since
responses are added to the end of the list undeliveredj [sn], the order of responses
is maintained. In Figure 6.3, solid arrows with a black head show the execution
of a call to service r-p when module newP2 was recently bound but the variable
respNumber2 was not yet incremented.

Finally, upon execution of the replacement responses (INTERNAL, newP ,
callNumberi) from all non-crashed stacks (see lines 28-31 and dashed arrows
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Figure 6.3: The end of the replacement on the initiator stack (left) and any other
stack (right).

with a white head in Figure 6.3), the variable respNumberi is incremented. At
this point, the module newPi is allowed to issue responses. However, all re-
sponses from this module that were previously delayed are first executed (see
lines 30-31 and the dashed arrow with a black head in Figure 6.3). Note that
the responses are executed in the order in which they were inserted in the list
undeliveredi[respNumberi]. The last two lines 32-33 implement correct pro-
tocol removal. It can be easily observed that the protocol oldP (see line 32) is
identified by respNumberi−1. Thus, all further responses from protocol oldP are
discarded on stack i. As a result, the message for protocol removal (removeProt ,
oldP ) can be safely sent to other stacks (see Section 4.4.2).

Characterization. For identical reasons as Algorithm 3 in Section 5.3.3, Algo-
rithm 5 ensures Replacement Agreement, Replacement Order and Replacement
Termination for whatever service p that gets replaced. This is expressed with
Rules A, B and C in Table 6.1.

As explained in Section 5.3, the Rules 1-4 in Table 6.1 describe for which ser-
vice p the algorithm ensures Service Preservation. Specifically, the table shows
which predicates apply on service r-p given a service p that gets replaced. For

Rule A: true ⇒ Replacement Agreement
Rule B: true ⇒ Replacement Order
Rule C: true ⇒ Replacement Termination

Rule 1: At-Most-One-Resp(p) ⇒ At-Most-One-Resp(r-p)
Rule 2: Fifo Order(p) ∧ Strong Reliability(p) ⇒ Strong Reliability(r-p)
Rule 3: Fifo Order(p) ⇒ Fifo Order(r-p)
Rule 4: Causal Order(p) ⇒ Causal Order(r-p)

Table 6.1: Characterization of Algorithm 5.
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instance, consider the reliable fifo order service on which the following service
predicates apply (see Table 5.1): At-Most-One-Response, Weak Reliability, Strong
Reliability and Fifo Order. By Rule 2 in Table 6.1, service r-p is strongly reli-
able. Thus, because Strong Reliability is strictly stronger than Weak Reliability,
service r-p is also weakly reliable. Moreover, by the Rules 1 and 3 in Table 6.1,
service r-p ensures At-Most-One-Response and Fifo Order. Thus, our algorithm
correctly replaces reliable fifo order protocols. For similar reasons, it also correctly
replaces reliable causal order protocols.

Proofs. The proofs that Algorithm 5 ensures the properties Replacement Agree-
ment, Replacement Order and Replacement Termination for any service p that gets
replaced are similar to those in Section 5.3.3. For this reason, these proofs are
omitted here. We now focus on the proofs for the Service Preservation property,
which consists in showing that Algorithm 5 ensures Rules 1-4 of Table 6.1. Let us
first state several observations that allow us to simplify the proofs.

Observation 1. Because Replacement Order holds, a protocol can be unambigu-
ously identified by sequence number sn.

Observation 2. Because of lines 17-22, the last call executed on each stack by any
module bound to service p is a replacement call.

Observation 3. Once a protocol sn is allowed to issue responses on stack i (i.e.,
respNumberi=sn), all responses from this protocol that were delayed (i.e., the
responses in the list undeliveredi[sn]) are executed in the order in which they were
issued (see lines 14-15 and 30-31). Afterwards, new responses from protocol sn
are executed in the order in which they are issued (see lines 11-13). Thus, the order
of responses issued by a given protocol sn is maintained by the DPU algorithm.

Observation 4. From lines 11-15 and the fact that variable respNumberi is al-
ways increased, we have the following property. If sn′ > sn, all responses from
service r-p that result from a response issued by a protocol sn are issued before
responses from service r-p that result from a response issued by a protocol sn′.

In the proof that follows, we adopt the following simplified notation. A transport
call ((FORWARD , k, sn), dst) to service p on stack i is denoted by TCp,i(k,
sn, dst). Because of Observation 1, we use the sequence number sn to iden-
tify the protocol executing the call rather than the local variable callNumberi.
A transport response ((FORWARD , k, sn), src) from service p is denoted by
TRp,i(k, sn, src). Similarly, replacement calls and responses are denoted by
RCp,i(newP, sn, dst) and RRp,i(newP, sn, src).

Rule 1: At-Most-One-Response(p)⇒ At-Most-One-Response(r-p): Consider
a call Cr-p,i(k, dst) that occurs on some stack i (line 9). Then, a transport call
TCp,i(k, sn, dst) is executed by the protocol sn (line 10). From the predicate
At-Most-One-Response of service p, we know that at most one transport response
TRp,j(k, sn, src) occurs on each stack j ∈ dst (*).
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Upon transport response TRp,j(k, sn, src) on each stack j (see lines 11-15),
three cases are possible:

• sn < respNumberj : Nothing is done.

• sn = respNumberj : The response is immediately executed (line 13) and
one single response Rr-p,j(k, src) is issued at line 26.

• sn > respNumberj : The tuple (FORWARD , k, src) is added to un-
deliveredj [sn] (line 15). From lines 30-31, we know that all responses in
undeliveredj [sn] are executed at most once (line 31). Thus, because at
most one tuple (FORWARD , k, src) is in undeliveredj [sn] and no other
transport response TRp,j(k, sn, src) occurs on stack j due to (*), at most
one response Rr-p,j(k, src) is issued at line 26. �

Rule 2: Fifo Order(p) ∧ Strong Reliability(p)⇒ Strong Reliability(r-p): Con-
sider a call Cr-p,i(k, dst) that occurs on correct stack i (line 9). Then, a transport
call TCp,i(k, sn, dst) is issued (line 10) and executed by the protocol sn (and
thus, callNumberi=sn). From Strong Reliability of service p, a transport response
TRp,j(k, sn, src) is eventually executed on every correct stack j ∈ dst (line 11).
Upon response TRp,j(k, sn, src) on stack j, we distinguish three cases:

• sn < respNumberj : The last call executed by protocol sn on stack i is
a replacement call RCp,i(newP, sn, Π) (see Observation 2). Because ser-
vice p is fifo ordered, the transport response TRp,j(k, sn, src) is executed
before the replacement response RRp,j(newP, sn, i) on stack j. Since the
variable respNumberj is increased after reception of the replacement re-
sponse (see lines 28-29), this case is not possible.

• sn = respNumberj : The response is immediately executed (line 13) and
a response Rr-p,j(k, src) is issued at line 26.

• sn > respNumberj : The tuple (FORWARD , k, src) is added to unde-
liveredj [sn] (line 15). Because callNumberi=sn, process i has executed
line 23 sn times. Thus, process i has executed sn responses from ABcast
(line 16). Due to the properties of ABcast, each correct stack l ∈ Π even-
tually executes sn responses from ABcast and issues sn replacement calls.
From Strong Reliability of service p, stack j eventually executes sn replace-
ment responses from every correct stack l ∈ Π and increases the variable
respNumberj until it reaches sn. Then, the tuple (FORWARD , k, src) is
executed (lines 30-31) and a response Rr-p,j(k, src) is issued (line 26). �

Finally, the following two results follow trivially from Observations 3 and 4:

Rule 3: Fifo Order(p)⇒ Fifo Order(r-p).

Rule 4: Causal Order(p)⇒ Causal Order(r-p).
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First Variant. We now briefly explain how Algorithm 5 can be modified in or-
der to ensure an additional characterization rule (see below). More precisely, the
modification allows us also to correctly replace best effort fifo protocols.

Rule 5: Fifo Order(p) ∧Weak Reliability(p) ⇒ Weak Reliability(r-p)

In order to understand our modification, let us first explain why Algorithm 5
does not ensure this rule. If service p is weakly reliable, this implies that replace-
ment responses may be lost. Thus, variable respNumberi may never be incre-
mented to correspond to the new protocol (see lines 28-29). As a result, the re-
sponses initiated by the new protocol are never executed and no more response
from service r-p are initiated by the DPU algorithm. This clearly violates weak re-
liability of service r-p. This problem can be easily solved by modifying line 17 to
issue an infinite number of replacement calls for each new protocol to be installed.
Thus, because service p is weakly reliable, at least one replacement response per
correct stack and new protocol occurs on each correct stack.

Second Variant. We now discuss how to make our algorithm independent from
the detection of non-crashed stacks (with a perfect failure detector), which restricts
the scope of applicability of our DPU algorithm. More precisely, Rule 4 no more
holds with this second variant.

The basic idea of our second variant is to consider on each stack i an array
of variables respNumberi[n] instead of a single variable respNumberi. The jth

element in the array denotes the protocol allowed to issue responses that correspond
to a call issued on stack j. This implies the following modifications to Algorithm 5:

• Lines 11-15. A response is executed if the corresponding call was issued on
stack j with the protocol identified by sn, such that sn = respNumberi[j].
Otherwise, the response is added to the end of the list undeliveredi[sn].

• Lines 28-31. Each variable respNumberi[j] is incremented upon reception
of a replacement response from stack j. At the same time, we execute all
responses in the list undeliveredj [respNumberi[j]] that correspond to a
call issued on stack j (i.e., src = j).

With these modifications, Observation 4 no more holds. The reason is that the
elements of the array respNumberi[n] are incremented independently from each
other. Thus, different protocols may be allowed to issue responses at the same time
on a given stack i. As Observation 4 no more holds, we can no longer prove Rule 4.
Note that Rule 3 still holds, since our variant ensures the following property. On
each stack i, a response issued by protocol sn is executed before a response issued
by protocol sn′ if sn′ > sn and both responses correspond to calls issued on the
same stack.
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6.3 DPU Algorithm for Global Ordering Protocols

In the previous section, we described a DPU algorithm for local ordering proto-
cols. This algorithm requires a perfect failure detector to detect the non-crashed
stacks (see line 28 of Algorithm 5). In contrast, this section describes a DPU al-
gorithm that (1) does not require perfect failure detection, and (2) is dedicated to
protocols that ensure a global order of responses (i.e., protocols that ensure at least
the Generic Order predicate), such as generic broadcast and atomic broadcast pro-
tocols.

The central idea of our algorithm is the following. Each time a replacement
is initiated, a special call is initiated to the service p provided by the module that
gets replaced. This special call conflicts with all other calls to service p. Since
this algorithm assumes that p ensures the Generic Order predicate, the responses to
the special calls are totally ordered with respect to the other responses issued from
the module that gets replaced. This information allows us to synchronize the local
replacement on all stacks.

The remainder of this section is structured as follows. In order to facilitate the
understanding of the present algorithm, we first present its main algorithmic differ-
ences with Algorithm 5. We then describe preliminary assumptions that simplify
our algorithm for global ordering protocols and provide a detailed description of it.
Finally, we present its characterization and prove its correctness.

Differences with Algorithm 5. There are three major differences between the
DPU algorithm for local ordering protocols (i.e., Algorithm 5) and the one for
global ordering protocols:

1. Diffusion of the new protocol. Algorithm 5 diffuses the new protocol using
atomic broadcast (see line 8), while the present algorithm uses the service p
that gets replaced. As a result, the Replacement Order, Replacement Agree-
ment, and Replacement Termination do not hold for any service p with the
latter algorithm (see characterization paragraph on page 61).

2. Replacement steps. In Algorithm 5, the replacement requires two steps
in addition to the diffusion of the new protocol. First, upon the reception
of the new protocol newP , a replacement call is issued to the old protocol
(lines 16-17). From this time on, the calls to the replaceable service are redi-
rected to newP (see lines 18-23), but only the responses from the old proto-
col are allowed. Second, upon the reception of all responses corresponding
to the replacement calls issued by correct stacks, the responses from newP
are allowed and those from the old protocol are discarded (lines 28-31).

In contrast, the present algorithm merges these two steps. More precisely,
upon reception of the new protocol newP , the calls to the replaceable service
are redirected to newP and the responses from newP are allowed. From this
time on, all responses from the old protocol are discarded.
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3. Reissuing calls. Because Algorithm 5 assumes that the service that gets
replaced ensures Fifo Order, no response to a call issued by a correct stack
to the old protocol is discarded. This is not the case for the present algorithm.
Hence, the calls issued to the old protocol by a correct stack for which the
responses have been discarded must be reissued to the new protocol.

Preliminary Assumptions. We assume that each call to the replaceable ser-
vice r-p has a set of destination stacks dst equal to Π. This hypothesis simplifies
the algorithm and facilitates its understanding. Note that only minor modifications
are required to lift this assumption.

We also consider that a non-infinite number of replacements occurs; actually,
we only require that there are sufficient long periods where no replacement occurs.
This assumption is necessary, among others, to preserve Strong Reliability of the
service that gets replaced (see proofs below). Indeed, upon replacement, some
responses from the old protocol may be discarded. In this case, the corresponding
calls are reissued to the new protocol. However, if a new replacement occurs,
the responses to the reissued calls may be again discarded. Thus, without this
assumption, such scenario may occur infinitely.

Algorithm 6. Let us first explain how the algorithm executes a call to the re-
placeable service r-p (see line 9). Such a call results in a transport call to the
service p provided by the protocol that gets replaced. The transport call is iden-
tified by (FORWARD , k, seqNumberi): The variable k represents the identifier
of the call to r-p, while seqNumberi identifies locally the protocol used to exe-
cute the call to p. Note that contrary to Algorithm 5, this algorithm uses the same
variable to identify the protocol used to (1) execute calls and (2) issue responses
to/from p. Finally, the call to p is added to the end of the list pendingi that contains
the calls to p for which no corresponding response has been yet effectively executed
(line 11). We say that a response R is effectively executed if R is executed in pro-
cedure execute_response (see lines 17-32). We will see later how responses from
service p are effectively executed.

The same occurs upon initiation of the replacement of the current protocol by
a new protocol newP . Such a replacement is initiated by calling the procedure
replaceProtocol(newP ) at line 6. The call results in a replacement call to service p
that is identified by (INTERNAL, newP, seqNumberi). Note that the replace-
ment call conflicts with all other calls redirected to service p. Again, this call is
added to the end of the list pendingi (line 8).

Upon a replacement or a transport response R from service p (executed at
line 12), the algorithm first checks the sequence number sn attached to R (sn
identifies the protocol that executes the call corresponding to R). If the sequence
number corresponds to the protocol currently allowed to issue responses, the re-
sponse R is effectively executed (see lines 13-14). Otherwise, if (1) sn is bigger
than seqNumberi and (2) there is no replacement response with sequence num-
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Algorithm 6 DPU Algorithm for Global Ordering Protocols: code of stack i.
1: Initialisation:
2: currentPi ← initial_protocol_module {The current protocol used to process calls}
3: undeliveredi[ ]← [λ, ...] {The array that contains the lists of responses not yet delivered;

one list for each module providing p; all lists are initially empty (λ)}
4: pendingi ← λ {The list of pending calls}
5: seqNumberi = 0 {The sequence number identifying the protocol used

for calls and responses}

6: upon replaceProtocol(newP ) do
7: p.call((INTERNAL, newP, seqNumberi), Π)
8: add (INTERNAL, newP,Π) to the end of list pendingi

9: upon r-p.call(k, dst) do
10: p.call((FORWARD , k, seqNumberi), dst)
11: add (FORWARD , k, dst) to the end of list pendingi

12: upon p.response((tag, obj, sn), src) do
13: if sn = seqNumberi then
14: execute_response(tag, obj, src)
15: else if sn > seqNumberi and (INTERNAL,−,−) /∈ undeliveredi[sn] then
16: add (tag, obj, src) to the end of list undeliveredi[sn]

17: procedure execute_response(tag, obj, src)
18: if (tag, obj,−) ∈ pendingi then
19: remove (tag, k,−) from list pendingi

20: if tag = FORWARD then
21: r-p.response(k, src); {Execute transport responses}
22: else
23: currentPi.unbind(); {Execute replacement responses}
24: newPi ← local module of obj
25: newPi.bind()
26: RBcast.call((removeProt , currentPi), Π)
27: currentPi ← newPi

28: seqNumberi ← seqNumberi + 1
29: for all (tag, obj, dst) ∈ pendingi according to the order in the list do
30: p.call((tag, obj, seqNumberi), dst)
31: for all (tag, obj, src) ∈ undeliveredi[seqNumberi] according to the order in the list do
32: execute_response(tag, obj, src)

ber sn, then response R is delayed and added to the end of the list undeliveredi[sn]
(see lines 15-16). In all other cases, response R is discarded.

To complete the description of our algorithm, let us now describe how re-
sponses to service p are effectively executed (see lines 17-32). First the call corre-
sponding to the response is removed from the list pendingi. In the case of transport
responses, a response to service r-p is simply issued at line 21. Otherwise, the re-
placement is performed as follows. First, the current module is locally updated
with a module of the new protocol (lines 23-27). Similarly to the previous algo-
rithms, line 26 is necessary for protocol removal. Then, the sequence number is
incremented to correspond to the new protocol (line 28) and all calls in pendingi
are reissued to the new protocol (lines 29-30). Finally, similarly to Algorithm 5,
the responses from the new protocol that were previously delayed are now executed
(lines 31-32).
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Rule A: Gen. Broad.(p) ⇒ Replacement Agreement
Rule B: Gen. Broad.(p) ⇒ Replacement Order
Rule C: Gen. Broad.(p) ⇒ Replacement Termination

Rule 1: Gen. Broad.(p) ⇒ At-Most-One-Resp.(r-p)
Rule 2: Gen. Broad.(p) ⇒ Strong Reliability(r-p)
Rule 3: Gen. Broad.(p) ⇒ Resp. Atomicity(r-p)
Rule 4: Gen. Broad.(p) ∧ Fifo Order(p) ⇒ Fifo Order(r-p)
Rule 5: Gen. Broad.(p) ∧ Causal Order(p) ⇒ Causal Order(r-p)
Rule 6: Gen. Broad.(p) ⇒ Gen. Order(r-p)
Rule 7: Gen. Broad.(p) ∧ Total Order(p) ⇒ Total Order(r-p)

Table 6.2: Characterization of Algorithm 6.

Characterization. Because Algorithm 6 uses the service p provided by the mod-
ule that gets replaced to diffuse the new protocol to other stacks (line 7), the Re-
placement Agreement, Replacement Order, and Replacement Termination proper-
ties are not ensured independently from service p. More precisely, these proper-
ties hold for services that ensure the Generic Broadcast predicate (Gen. Broad.)
as described by Rules A, B, and C in Table 6.2. The Generic Broadcast predi-
cate is introduced here for readability and is the conjunction of the following four
predicates: At-Most-One-Response, Strong Reliability, Response Atomicity and
Generic Order.

Let us now illustrate Table 6.2 when the service p that gets replaced is the
atomic broadcast service. This service ensures the following six predicates: At-
Most-One-Response, Weak Reliability, Strong Reliability, Response Atomicity,
Generic Order and Total Order (see Table 5.1). By definition, the Generic Broad-
cast predicate holds for the atomic broadcast service. From Rules A, B and C, the
Replacement Agreement, Replacement Order and Replacement Termination prop-
erties are ensured for any service p that ensures the Generic Broadcast predicate
(which is the case of the atomic broadcast service).

We now consider the Service Preservation property. From Rule 2, the predicate
Strong Reliability applies to the replaceable service r-p when the service p that gets
replaced is atomic broadcast. Because Strong Reliability is strictly stronger than
Weak Reliability, the latter predicate also applies to service r-p. Similarly, from
Rules 1, 3, 6, 7, the other predicates that apply to atomic broadcast also apply to
the replaceable service. As a result, the Service Preservation property holds for the
atomic broadcast service. Therefore, we can conclude that our DPU algorithm cor-
rectly replaces atomic broadcast protocols. For similar reasons, our DPU algorithm
is correct for generic order and fifo atomic broadcast protocols.
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Proofs. Let us first recall that the Generic Broadcast predicate is the conjunc-
tion of the At-Most-One-Response, Strong Reliability, Response Atomicity and
Generic Order predicates. In order to simplify the proofs, we start with the follow-
ing lemma, which allows us to identify a protocol by the sequence number sn on
each stack i. We then state some observations that simplify the following proofs.

Lemma 2. Consider that service p ensures the Generic Broadcast predicate. For
each sequence number sn, we have the following property. If some stack i identifies
protocol P by sequence number sn, then each correct stack j identifies protocol P
by sn.

Proof. By the initial-binding-coherence property (see Section 4.3), the module
initially bound to service p is the same for each stack i. Thus, the same protocol P
is identified by seqNumberi = 0 on each stack i (*).

Consider now that some stack i identifies protocol newP by sequence number
sn = 1. By lines 17-28, this means that stack i effectively executes a replace-
ment response R with obj = newP when seqNumberi = 0. By line 12-16 and
because seqNumberi is only increased upon replacement response, replacement
response R is the first replacement response issued by protocol P on stack i. Be-
cause service p ensures the Response Atomicity predicate, response R is issued
by P on each correct stack j. By the Generic Order predicate and the fact that a
replacement response conflicts with all other responses, response R is the first re-
placement response issued by protocol P on each correct stack j. Thus, by lines 13-
16 and because the seqNumberj is incremented upon execution of a replacement
response, replacement response R is the first replacement response effectively ex-
ecuted on each correct stack j. As a result, each correct stack j identifies the same
protocol newP with sequence number seqNumberj = 1.

By a simple induction, we can conclude that the same result holds for any
sequence number sn > 0. �

Observation 5. Once a protocol sn is allowed to issue responses on stack i (i.e.,
seqNumberi=sn), all responses from this protocol that were delayed (i.e., the re-
sponses in the list undeliveredi[sn]) are effectively executed in the order in which
they were issued (see lines 15-16 and 31-32). Afterwards, new responses from pro-
tocol sn are effectively executed in the order in which they are issued (see lines 12-
14). Thus, the order of responses issued by a given protocol sn is maintained by
the DPU algorithm.

Observation 6. From lines 13-16 and the fact that variable seqNumberi is always
increased, no response from protocol sn is effectively executed after a response
from protocol sn′ if sn′ > sn.

Observation 7. Because calls to r-p are directly redirected to the protocol that
is currently bound to p (see lines 9-10) and reissued to a new protocol in the or-
der in which they occur (see lines 11 and 29-30), the order of calls issued to the
replaceable service r-p is maintained by the DPU algorithm.
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Observation 8. Assume that service p ensures the Generic Broadcast predicate.
Consider a stack i that identifies a protocol by sn ≥ 1. Because the replacement
response that results in identifying protocol sn conflicts with all other responses,
the responses issued by protocol sn− 1 that are effectively executed on any stack j
is a subset of those that are effectively executed on stack i.

By Lemma 2, Rules A and B hold trivially.

Rule A: Gen. Broad.(p)⇒ Replacement Agreement.

Rule B: Gen. Broad.(p)⇒ Replacement Order.

We now prove the remaining rules.

Rule C: Gen. Broad.(p) ⇒ Replacement Termination: Assume that some
correct stack i calls the primitive replaceProtocol(newP ) at line 6. Thus, the re-
placement call C is added to the end of the list pendingi (line 8). We finish the
proof by contradiction: Assume that module newPi is never bound to service p on
stack i. By lines 18-27, call C is forever in the set pendingi (*).

We now consider the time when all faulty stacks have been crashed and no more
replacement is initiated (see preliminary assumptions, page 59). Let us denote
by sn the protocol allowed to execute calls and to issue responses to/from p on
stack i at this time. Because of lines 29-30 executed after protocol sn has been
bound to p and due to (*), call C has been (re)issued to protocol sn. Let us denote
by R the first replacement response that is issued by protocol sn on stack i. Since p
ensures the Strong Reliability predicate, such a response eventually occurs. By
lines 13-16 and because the seqNumberi is only incremented upon execution of R,
response R is effectively executed and stack i identifies a protocol P by sn + 1.
By Lemma 2, each correct stack j identifies protocol P by sn + 1. Thus, stack j
also effectively executes response R. By lines 18-19, the replacement call that
corresponds to response R is removed from the set pendingj of the stack j that
issues the replacement call (**).

Because no more replacement is initiated, the only replacement calls issued
to protocol sn + 1 are initiated from the set pendingj of every correct stack j at
lines 29-30 (upon the effective execution of response R). By (**), the number of
replacement calls reissued to protocol sn + 1 is strictly smaller than the number of
replacement calls that have been issued to protocol sn.

By a simple induction, we can show that stack i eventually identifies a proto-
col sn′ such that no replacement call is reissued to sn′. A contradiction with (*). �

Rule 1: Gen. Broad.(p)⇒ At-Most-One-Resp.(r-p): Assume that some stack i
issues a call C to service r-p at line 9. Thus, a transport call C ′ is added to the
list pendingi (line 11). Consider that a response to C occurs on stack j. By
lines 17-21, only the responses to C ′ that are effectively executed result in a re-
sponse to C. We identify by R′ the first response to C ′ that is effectively executed
on some stack j and by sn the protocol that issues R′.
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We now show that no other response to C ′ are effectively executed on stack j.
Because service p ensures the At-Most-One-Response predicate, no other response
to call C ′ is issued by sn on stack j. By Observation 6, no response to C ′ issued
by a protocol sn′ < sn is effectively executed. For the protocols sn′ > sn, the
following two cases have to be considered:

• Stack i does not identify any protocol sn′ > sn. As a result, stack i does
not reissue call C ′ to a protocol sn′ > sn. Thus, no response to call C ′ is
issued by any protocol sn′ > sn on stack j.
• Stack i identifies a protocol sn′ > sn. By Observation 8, stack i has

effectively executed the response R′ issued by protocol sn. By lines 18-
19, the call C ′ has been removed from the list pendingi. Thus, no further
response R′ is issued by a protocol sn′ > sn on stack j. �

Rule 2: Gen. Broad.(p) ⇒ Strong Reliability(r-p): Assume that a call C to
service r-p occurs on some stack i at line 9. Thus, a transport call C ′ is added to
the list pendingi (line 11). Because there is a limited number of replacement, there
is a protocol (that we identify by sequence number sn) that is the last protocol to
be bound to service p on stack i. By Lemma 2, protocol sn is the last protocol
identified by each correct stack. Two cases have to be considered:

• There is a protocol sn′ < sn such that stack i effectively executes a
response to call C ′ issued by sn′. By Observation 8, each correct stack also
effectively executes a response to call C ′ issued by sn′. By lines 17-21, a
response to call C is issued on each correct stack.
• There is no protocol sn′ < sn such that stack i effectively executes a

response to call C ′ issued by sn′. By lines 17-21, call C ′ has not been re-
moved from pendingi before stack i identifies protocol sn. By lines 29-30,
call C ′ is reissued to protocol sn. Because the service p ensures the Strong
Reliability predicate, protocol sn eventually issues a response R′ to call C ′

on each correct stack. Because the variable seqNumberj is no more incre-
mented after a correct stack j identifies protocol sn (otherwise, sn is not
the last protocol to be bound to service p on stack j), each correct stack ef-
fectively executes the response R′. By lines 17-21, a response to call C is
issued on each correct stack. �

Rule 3: Gen. Broad.(p) ⇒ Response Atomicity(r-p): Consider a call C to
service r-p. Assume that some response R to C occurs on stack i. By lines 17-21,
a transport response R′ has been effectively executed on stack i. Let us identify
by sn the protocol that issues R′. Consider now any correct stack j 6= i. By
Lemma 2, stack j identifies the same protocol by sn. The following two cases
have to be considered:

• Stack j identifies a protocol by sn′ > sn. By Observation 8, stack j also
effectively executes the response R′ issued by sn. By lines 17-21, a response
to call C is issued on stack j.
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• Stack j does not identify any protocol by sn′ > sn. Because service p
ensures the Response Atomicity predicate, a transport response R′ is issued
by protocol sn on stack j. Because the variable seqNumberi is no more
incremented after stack j has identified protocol sn (otherwise, stack j iden-
tifies a protocol by sn′ > sn), stack j effectively executes the response R′.
By lines 17-21, a response to call C is issued on stack j. �

Finally, the following four results trivially hold by Observations 5 to 8.

Rule 4: Gen. Broad.(p) ∧ Fifo Order(p)⇒ Fifo Order(r-p).

Rule 5: Gen. Broad.(p) ∧ Causal Order(p)⇒ Causal Order(r-p).

Rule 6: Gen. Broad.(p)⇒ Gen. Order(r-p).

Rule 7: Gen. Broad.(p) ∧ Total Order(p)⇒ Total Order(r-p).

6.4 Related Work

We present in this section two published DPU algorithms. The first algorithm,
the Switching Algorithm, has been described in [BKvRC01] and has been de-
signed for the Ensemble [Ens01, RBH+98] group communication toolkit. The
Adaptive Total Order Algorithm described in [MR06] has been implemented in the
Appia [App01, MPR01] protocol framework. These two algorithms can be imple-
mented with our approach (described in Chapters 4 and 5). Other DPU algorithms
have been described in literature. However, most of these algorithms require to
modify the protocols that get replaced. Examples are given in Section 4.2.2.

Switching Algorithm [BKvRC01]. To our understanding, the switching algo-
rithm behaves like Algorithm 5, except during the switching phase.6 Contrary to
Algorithm 5, the switching algorithm assumes that the destination set of each call
is equal to Π. Moreover, it is not clear how the switching algorithm tolerates fail-
ures. We now describe the switching algorithm by pointing out the main conceptual
differences with Algorithm 5:

• Instead of issuing a replacement call to the protocol sn that must be replaced
(see line 17 of Algorithm 5), each stack i sends to all stacks the number of
calls nci that have been executed locally by protocol sn.

• Instead of incrementing the variable respNumberi when all responses to
replacement calls occur on stack i (see lines 28-29 of Algorithm 5), this
variable is incremented when the number of responses nri issued by proto-
col sn on stack i corresponds to the number of calls executed by protocol sn
on all (non-crashed) stacks. In other words, the variable respNumberi is
incremented when nri =

∑n
j=1 ncj .

6No formal description of this algorithm has been found in literature.
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To our understanding, the switching algorithm correctly replaces similar proto-
cols as Algorithm 5. However, the lack of description of the mechanism to tolerate
failures makes it difficult to understand which protocols are correctly replaced by
the switching algorithm.

Adaptive Total Order Algorithm [MR06]. The central idea of this algorithm is
to use both the protocol that gets replaced and the new protocol during the switch-
ing phase. According to the authors, this allows to reduce the impact of the DPU
algorithm during the replacement. This claim has to be compared with the results
that we obtained in Section 6.5.3.

We now describe how the adaptive total order algorithm behaves upon replace-
ment. Upon initiation of a replacement on some stack i, stack i diffuses the new
protocol to all stacks. Once a stack j delivers the new protocol newP , stack j
issues a special call to the protocol P that gets replaced. From this time on, each
call issued to the replaceable service is redirected to both (1) the protocol that gets
replaced and (2) the new protocol. However, only the responses from protocol P
are executed. The responses issued by newP are simply delayed.

Once the responses corresponding to the special calls issued by all non-crashed
stacks occur on some stack j, all responses from the old protocol are discarded.
Furthermore, all the responses from the new protocol (including those that were
delayed) are executed. However, before executing a response R from the new
protocol, the algorithm checks that no similar response has been already issued by
the old protocol. The check ensures that for each call redirected to the old and the
new protocols, only one response is executed.

We can make the following comments. First, the algorithm assumes that re-
placement are initiated sequentially, i.e., a new replacement can be initiated only if
no replacement currently occurs. Second, the algorithm is dedicated to fifo atomic
broadcast protocols only. Finally, similarly to Algorithm 5, the adaptive total order
algorithm requires a perfect failure detector. Note that the authors explain how to
modify their algorithm so that it only requires a 3S failure detector. However, no
convincing argument is provided to show that the algorithm is still correct with 3S.

6.5 Performance Evaluation

The goal of this section is to evaluate the overhead induced by DPU algorithms
when replacing consensus or fifo atomic broadcast protocols. The overhead is
computed in the following two cases: (1) when no replacement occurs, and (2)
during the replacement. Our experiments shows that the overhead induced by our
DPU algorithms is acceptable (around 30% in most cases) when no replacement
occurs. On the other hand, during the replacement, the overhead significantly in-
creases (it can reach 800%). However, it should be noted that the effects of the
replacement are observed only during a short period.
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We start this section by defining our experimental setup. Specifically, we define
the system setup, the benchmark and the performance metrics considered in our
experiments. Then, we present our results when replacing consensus protocols.
Finally, we evaluate several algorithms to replace (fifo) atomic broadcast protocols,
and compare their performance.

6.5.1 Experimental Setup

System Setup. The benchmarks were run on a cluster of machines running SuSE
Linux (kernel 2.6.11). Each machine has a Pentium 4 processor at 3.2 GHz and 1
GB of RAM. The machines are interconnected by Gigabit Ethernet (which is exclu-
sively used by the cluster machines) and run Sun’s 1.5.0 Java Virtual Machine, but
use a light-weight marshaling library [PHN00, HNMP05] instead of standard Java
serialization [Sun04]. The machines were dedicated to the performance bench-
marks and had no other load on them.

Benchmark. Our experiments use the group communication middleware de-
scribed in Section 4.2.1 (see Figure 4.3). The overhead of DPU algorithms is
computed on the basis of the performance of the (fifo) atomic broadcast service
when using either (1) a DPU algorithm for consensus7 or (2) a DPU algorithm for
fifo atomic broadcast protocols. Note that the atomic broadcast algorithm of our
group communication middleware also provides the fifo atomic broadcast service.
In order to evaluate independently the overhead of each DPU algorithm, the DPU
module that implements replacement of consensus protocols is removed from the
stack when the overhead of the DPU algorithm for (fifo) atomic broadcast protocols
is evaluated, and vice versa.

Each of our experiment has been conducted as follows. Messages of a given
size were sent using the (fifo) atomic broadcast service under a constant load on
each stack. In the middle of the experiment, some process triggers a (single) re-
placement and then continues to issue messages to the (fifo) atomic broadcast ser-
vice. Note that the replacement procedure updates a protocol P with a new pro-
tocol newP , such that P and newP implement exactly the same algorithm. This
allows us to measure the exact impact of the replacement. We consider that the
replacement starts when some process triggers a replacement, and finishes when
all stacks have replaced the old modules by new modules.

For each DPU algorithm that we tested, several experiments were conducted
involving either n = 3 or n = 7 stacks (machines). Furthermore, we varied (1)
the size s of messages sent, and (2) the offered load l under which the messages
were sent. The offered load specifies the maximal amount of messages that are
sent per second among all stacks. We chose a simple symmetric workload where
all processes send messages at the same load. Note that our atomic broadcast

7Since our atomic broadcast protocol uses consensus, the performance of atomic broadcast is
influenced by the replacement of consensus protocols.



68 CHAPTER 6. DPU ALGORITHMS FOR GROUP COMMUNICATION

algorithm uses a flow-control mechanism that blocks a process when too many
messages are sent. The flow-control mechanism has been designed so that the
performance of the atomic broadcast protocol is optimized.

For each value of the parameters n, s and l and each DPU algorithms, several
experiments were conducted. We also conduct for each value of the parameters n,
s and l, some experiments without any DPU algorithm in our stack. The perfor-
mance obtained with these last experiments were used as a reference to observe the
overhead induced by DPU algorithms.

We have only evaluated the overhead of DPU algorithms in good runs, i.e.,
without any process failures. This overhead is measured once the system has
reached a stationary state (at a sufficiently long time after the start). We ensure that
the system stays in a stationary state by verifying that the performance of atomic
broadcast stabilizes over time.

Performance Metrics. We use two performance metrics to evaluate the perfor-
mance of atomic broadcast: average latency and throughput [Urb03]. For a single
message sent using atomic broadcast, the average latency L is defined as follows.
Let t0 be the time at which the message is sent and let ti be the time at which the
message is delivered on stack i, with i ∈ 1, . . . , n. The average latency L is then

defined as L
def
= (

∑n
i=1 ti − t0)/n.

Two other measures for latency can be considered: (1) early latency (i.e.,
mini (ti − t0)) and (2) late latency (i.e., maxi (ti − t0)). The results for these
two measures are similar to the results for average latency, and thus, will not be
discussed.

The throughput T is defined as follows. Let ri be the rate at which messages
are delivered on a stack i, with i ∈ 1, . . . , n. The throughput T is then defined as

T
def
= 1

n

∑n
i=1 ri and is expressed in messages per second (or msgs/s).

In our performance evaluation, the mean for L and T is computed over many
messages and for several executions. For all results, we computed 95% confidence
intervals. Note that for most experiments the confidence intervals are negligible
and are not shown in this case.

6.5.2 Replacement of Consensus Protocols

We now present the results that we obtained when using Algorithm 4 (see Sec-
tion 6.1), i.e., our algorithm for replacement of consensus protocols. We first show
that the impact of the replacement for specific values of the parameters n, s and l.
We then present the overhead as a function of these parameters.

Figure 6.4 shows the impact of one replacement. The figure shows the average
latency as a function of the time at which the corresponding message was sent
using atomic broadcast. We show the results of several experiments with the same
parameters, which is why several values are shown on the vertical axis for a given
time t. This allows us to make the impact of the replacement clearly visible. The
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experiments are with 3 stacks. In each experiment, the replacement was invoked
at time 5000. The offered load and the message size are respectively equal to
4000 msgs/s and 4KB. We can observe that the average latency increases around
t = 5000, but quickly stabilizes to reach the level it had before the replacement.
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Figure 6.4: Latency as a function of the time at which ABcast is issued.

Figure 6.5 shows both the average latency (top) and the throughput (bottom) as
a function of the offered load (left) or message size (right). For the graphs where
the offered load varies, the message size is set to 4KB, and for the graphs where the
message size varies, the offered load is set to 1000 msgs/s. Note that we only show
results for experiments involving 3 stacks. The results obtained with 7 stacks are
similar. The dashed graphs represent the results obtained with the normal version
of our group communication stack, i.e., without any DPU algorithm. The solid
graphs show the results obtained when no replacement occurs but with our DPU
algorithm for consensus. Finally, the dotted graphs represent the results during
the replacement. Figure 6.5 shows that the cost of adding a DPU algorithm for
consensus protocols is acceptable (around 30% in most cases). It also shows that
the overhead induced by our DPU algorithm during the replacement is important
(it can reach 800%). However, it should be noted that this overhead is observed
only during a short period: less than one second (see Figure 6.4).

6.5.3 Replacement of Fifo Atomic Broadcast Protocols

Similarly to our DPU algorithm for consensus, our DPU algorithm for fifo atomic
broadcast protocols induce (1) an acceptable overhead when no replacement oc-
curs, and (2) an important overhead during the replacement (which lasts for a short
period). For this reason, we do not show the corresponding graphs. Instead, we
compare two different DPU algorithms that can be used to replace fifo atomic
broadcast protocols.

We compare (1) Algorithm 6 (see Section 6.3), and (2) the Adaptive Total
Order algorithm described in [MR06] (see Section 6.4).8 Our comparison shows
that Algorithm 6 has the best performance. It should be also noted that, contrary to

8 In order to fairly compare these two algorithms, we adapt the Adaptive Total Order algorithm,
so that it allows replacement to be initiated concurrently.



70 CHAPTER 6. DPU ALGORITHMS FOR GROUP COMMUNICATION

 0

 10

 20

 30

 40

 50

 60

 70

 0  500  1000  1500  2000  2500  3000  3500  4000

av
er

ag
e 

la
te

n
cy

 (
m

s)

offered load (msgs/s)

   normal

   DPU algorithm

   replacement

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 0  2000  4000  6000  8000  10000  12000  14000  16000

av
er

ag
e 

la
te

n
cy

 (
m

s)

message size (bytes)

   normal

   replacement

   DPU algorithm

 0

 200

 400

 600

 800

 1000

 1200

 0  500  1000  1500  2000  2500  3000  3500  4000

th
ro

u
g
h
p
u
t 

(m
sg

s/
s)

offered load (msgs/s)

   replacement
   DPU algorithm

   normal

 0

 100

 200

 300

 400

 500

 600

 700

 0  2000  4000  6000  8000  10000  12000  14000  16000

th
ro

u
g
h
p
u
t 

(m
sg

s/
s)

message size (bytes)

   DPU algorithm
   normal

   replacement

Figure 6.5: Average latency (top) and throughput (bottom) as a function of the
offered load (left) or message size (right).

the Adaptive Total Order Algorithm, it allows the replacement of non-fifo atomic
broadcast protocols, and does not require a perfect failure detector.

Figures 6.6 and 6.7 show the performance obtained respectively when no re-
placement takes place and during the replacement. In each figure, both the latency
(top) and the throughput (bottom) are represented as a function of the offered load
(left) or message size (right). For the graphs where the offered load varies, the
message size is set to 4KB, and for the graphs where the message size varies,
the offered load is set to 1000 msgs/s. The solid and dashed graphs represent the
results obtained respectively with Algorithm 6 and the Adaptive Total Order algo-
rithm [MR06]. The dotted graph shows the results obtained with our stack without
any DPU algorithm.

Figures 6.6 and 6.7 clearly show that Algorithm 6 performs better than the
Adaptive Total Order algorithm. This can be explained by the fact that contrary to
other Algorithm 6, the Adaptive Total Order algorithm uses both the old and the
new protocols during the replacement. Furthermore, in order to ensure that each
message is delivered only once on each stack, the Adaptive Total Order algorithm
requires (1) additional computations, and (2) to attach to each message some in-
formation that is not required by our algorithm. Note that these results seem to
contradict the results presented in [MR06], where the authors compare the Adap-
tive Total Order algorithm with Algorithm 6 thanks to the SSFNet network simula-
tor [NLLY03]. However, these differences may be explained by the different sys-
tem setup considered: a simulated network in [MR06] versus a real network here.
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Figure 6.6: Average latency (top) and throughput (bottom) as a function of the
offered load (left) or message size (right), when no replacement occurs.
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Figure 6.7: Average latency (top) and throughput (bottom) as a function of the
offered load (left) or message size (right), during the replacement phase.
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6.6 Conclusion

In this chapter, we have first described several DPU algorithms to correctly replace
group communication protocols. Specifically, we presented DPU algorithms for
(1) consensus protocols, (2) local ordering protocols, and (3) global ordering pro-
tocols. All these algorithms allowed us to validate our approach for DPU described
in Chapters 4 and 5. Furthermore, we discussed two existing DPU algorithms.

In a second step, we evaluated the overhead induced by DPU algorithms. We
have shown that the overhead is acceptable when no replacement occurs. We have
also shown that the important overhead during the replacement phase can be tol-
erated, since the effects of the replacement lasts during a short period of time.
Finally, we have shown that our algorithm for global ordering protocols performs
well compared to an existing algorithm when replacing fifo atomic broadcast pro-
tocols.



Chapter 7

Service Interface: A Convenient
Abstraction to Implement
Modular and Updateable
Distributed Protocols

This chapter focuses on protocol frameworks, which are programming tools for
developing modular (and updateable) distributed protocols: protocol frameworks
allow complex protocols to be implemented by composing several simple modules
that cooperate with each other.

Most protocol frameworks, such as Cactus [Cac01, BHSC98], Appia [App01,
MPR01], Ensemble [Ens01, RBH+98], Eva [BGT+01], SDL [SDL00] and Neko
[Nek01, UDS02], are based on events. Events are simple abstractions that allow
protocol modules in a stack to interact with each other. However, the use of events
raises some problems (as shown in Section 7.4). For instance, the composition of
modules may require connectors to route events, which introduces a burden for a
protocol composer [BMN05, EMPS04]. Protocol frameworks such as Appia and
Eva extend the event-based approach with channels. This solution is, however, not
satisfactory since composition of complex protocol stacks becomes more difficult.

In [BMN05], the authors propose a new approach for implementing distributed
protocols, which is based on message headers rather than on events. Despite this
approach solves most of the problems inherent to the use of events, it is not con-
sidered in this chapter since it does not provide the necessary features for the im-
plementation of updateable protocols.

In this chapter, we propose a new approach for developing modular and update-
able protocols, that is based on service interfaces. We compare this new approach
with the classical event-based approach. We show that service-interfaces has sev-
eral advantages, such as (1) adequate representations of protocol module interac-
tions, (2) fairly straightforward compositions of protocol modules, and (3) inte-
grated mechanisms to facilitate implementation of DPU managers (the modules

73
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that implement the DPU algorithms described in Chapter 6). For all these reasons
we advocate the use of service interfaces (instead of events) to implement modular
(and updateable) distributed protocols. To validate our claim, we implement an
experimental framework based on service interfaces, called SAMOA [Sam08]. We
use SAMOA to compare the service-interface- and the event-based implementa-
tions of the group communication stack illustrated in Figure 4.3 (see Section 4.2).

7.1 Protocol Module Interactions

In this chapter, we consider the three following kinds of protocol module inter-
actions between modules of the same stack. Note that these interactions are very
similar to service calls and responses (which were introduced in Chapter 4).

• Requests are issued by protocol modules or applications. A request corre-
sponds to an invocation of a (single) module Pi in order to use the service
provided by Pi. The result of a request, if any, is not returned upon the end
of the invocation, but requires an additional interaction (see Replies).

• Replies transport the result of a request. A single request may generate
several replies on the same stack or on different stacks. Only the modules of
the same protocol as the module that initiates the request are concerned by
the corresponding replies. For example, a request by module Pi in stack i
generates replies that concern only module Pj in any stack j (j = i or j 6= i).

• Notifications allow a module to inform (possibly many) other modules about
a meaningful change in its state. A notification issued by module Pi can be
modeled, for each module Qi concerned by the notification, as an implicit
request to Pi (to require the state of Pi) plus an explicit reply (to return to Qi

the state of Pi).

7.2 Event-Based Protocol Frameworks

In event-based protocol frameworks, protocol modules cooperate thanks to the fol-
lowing two abstractions, namely events and handlers.

Events. An event is a special object for communication between protocol modules
in the same stack. Events may transport some information, e.g., a network message
or some other data. Each event is an instance of an event type. Events enable one-
to-many indirect communication, i.e., a module that triggers an event (1) interacts
with possibly several modules and (2) is not aware of the modules it interacts with.

Handlers. Protocol modules are implemented as sets of handlers, which are
special methods dedicated to handle events. In the same module, handlers may
share data. Each handler can be dynamically bound to some event type. Handlers
can also be unbound dynamically.
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Upon triggering some event e, all handlers bound to the type of e are executed.
If no handler is bound, the behavior is usually unspecified. Triggering an event can
be done either synchronously or asynchronously. In the former case, the thread
that triggers an event e is blocked until all protocol modules that handle e have
finished handling of event e. In the latter case, the thread that triggers the event is
not blocked.

Network

Application

S

RQ

P

EF

G GH

Send

AppSend

Deliver

AppDeliver

1

1 1

1

Figure 7.1: Example of an event-based protocol stack (stack 1).

In Figure 7.1, we show an example of an event-based stack. A handler imple-
mented by module P1 is represented by a white trapezoid inside module P1. Event
types are denoted by capital letters (e.g., E, F and G) and are represented by arrows.
An arrow from module P1 to module Q1 with label E denotes that (1) module P
may trigger events of type E, and (2) module Q implements a handler bound to E.
Note that the network and the application are represented as special modules that
respectively handle events Send and AppDeliver and respectively trigger events
Deliver and AppSend.

Specific Features. Some protocol frameworks have special features to improve
the use of events. Below, we present some of those features.

In Cactus [Cac01, BHSC98], the programmer can give a priority number to a
handler upon binding it to an event type. When an event is triggered, all handlers
are executed following the order of priority. A handler h is also able to cancel the
execution of an event trigger: all handlers that should be executed after h according
to the priority are not executed.

Appia [App01, MPR01] and Eva [BGT+01] introduce the notion of channels.
Channels allow to build routes of events in protocol stacks. Each protocol module
has to subscribe to one or many channels. All events are triggered by specifying
a channel. When a protocol module triggers an event e specifying channel c, all
handlers bound to the type of e, that are part of a protocol that subscribes to c, are
executed (in the order prescribed by the definition of channel c).
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7.3 Service-Interface-Based Protocol Frameworks

We now describe our new approach for implementing protocols which is based
on service interfaces. We show in Section 7.4 the advantages of service-interface-
based protocol frameworks over event-based protocol frameworks.

In a service-interface-based framework, protocol modules in the same stack
communicate by issuing requests, replies and notifications to a special object called
service interface. In order to process these protocol module interactions, protocol
modules are implemented as a set of special components, called executers, listeners
and interceptors, which may share data. We now describe these components.

Executers. Executers handle requests. An executer can be dynamically bound to
a specific service interface. It can be later unbound. However, at most one executer
at any time can be bound to a service interface on each stack.

A request issued to a service interface si leads to the execution of the executer
bound to si. If no executer is bound to si, the request is delayed until some executer
is bound to si.

Listeners. Listeners handle replies and notifications. Similarly to executers,
listeners can be dynamically bound and unbound to/from a specific service inter-
face si. However, several listeners can be bound to a single service interface.

A notification issued to a service interface si is handled by all listeners bound
to si in the local stack. On the other hand, a reply issued to a service interface si is
handled by one single listener (that is not necessarily bound to si). To ensure that
one single listener handles a reply, a module Pi has to identify, each time it issues a
request, the listener (belonging to Pi) that handles the possible reply. If the request
and the reply occur, respectively in stack i and in stack j, the service interface si
on i communicates to the service interface si′ on j the listener that must handle the
reply. If the listener that must handle the reply does not exist, the reply is delayed
until the listener is created.

In Figure 7.2, we show an example of a service-interface-based stack. We denote
a service interface by small letters (e.g., t, u, v and net) in an hexagonal box. The
service interface net allows to access the network and the service interface t allows
the application to interact with the stack. The dashed black arrow from module P1

to service interface u shows that module P1 may generate requests to u. The fact
that module P1 may generate replies and notifications to service interface t is rep-
resented by a dashed white arrow. Similarly, module S1 may generate (1) requests
to service interface net and (2) replies and notifications to service interface v. We
represent executers with white boxes inside protocol modules and listeners with
white boxes with a gray border. For example, module Pi implements an executer
and a listener. The connecting line between service interface t and the executer e
implemented by Pi shows that e is bound to t. Similarly, the fact that the listener l
implemented by Pi is bound to service interface u is represented by a connecting
line between l and u.
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Figure 7.2: Example of a service-interface-based protocol stack (stack 1).

Interceptors. An interceptor plays a special rôle. Similarly to executers, in-
terceptors can be dynamically bound or unbound to a service interface. They are
executed each time a request, a reply or a notification is issued to the service in-
terface they are bound to. This is illustrated in Figure 7.3. In the right part of the
figure, the interceptor of the protocol module T1 is represented by a rounded box.
The interceptor is bound to service interface t. The left part of the figure shows
that an interceptor can be seen as an executer plus a listener. When P1 issues a
request req to the service interface t, the executer-interceptor of T1 is executed.
Then, module T1 may forward a request req′ (possibly req′ 6= req) to the service
interface t.1 When module Q1 issues a reply or a notification, a similar mechanism
is used, except that this time the listener-interceptor of T1 is executed. In short, a
protocol module Ti, that has an interceptor bound to a service interface t, is able
to intercept, modify, cancel or delay the requests, replies and notifications that are
issued to t.

Upon requests, if several interceptors are bound to the same service interface,
they are executed in some deterministic order. Upon replies and notifications, the
order is reversed.

1The two service interfaces t in the left part of Figure 7.3 represent the same service interface t.
The duplication is only to make the figure readable.
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Figure 7.3: Execution of protocol interactions with interceptors (in stack 1).

7.4 Advantages of Service-Interface-Based Protocol Frame-
works

This section aims at showing the advantages of protocol implementations based on
service interfaces over the ones based on events. We structure our discussion in
three parts. First, we present how protocols interactions (as defined in Section 7.1)
are modeled in both event-based and service-interface-based protocol frameworks.
Then, we discuss the composition of protocol modules. Note that protocol compo-
sition actually corresponds to define module bindings (see Section 3.1). Finally, we
show that, contrary to events, service interfaces provide a convenient mechanism to
implement DPU managers (see Section 4.2). The whole discussion is summarized
at the end of the section.

7.4.1 Protocol Module Interactions

For each protocol module interaction, we describe how it is modeled in both cat-
egories of frameworks. This leads to the following two conclusions: (1) service
interfaces provide an adequate model for each interaction, while (2) events inade-
quately model requests and replies, which increases the risk of programming errors.

Requests. In service-interface-based frameworks, a request is generated to a ser-
vice interface. Each request is handled by at the most one executer, since we allow
only one executer to be bound to a service interface at a time. On the other hand,
in event-based frameworks, a protocol module emulates a request by triggering an
event. There is no guarantee that this event is bound to only one handler, which
may lead to programming errors (remember that by definition, a request should not
be processed by several modules).

Replies. When a protocol module generates a reply to a service interface, only the
correct listener (identified when the corresponding request was issued) is executed.
This ensures that a request issued by some protocol module Qi, leads to replies
handled only by protocol modules Qj (i.e., protocol modules of the same protocol).



7.4. ADVANTAGES OF SERVICE INTERFACES 79

This is not the case in event-based frameworks, as we now show. Consider pro-
tocol module Q1 in Figure 7.1 that triggers event of type G to emulate a request.
Module S1 handles the request. When modules Si triggers an event of type H to
emulate a reply (remember that a reply can occur in any stack), both modules Qi

and Ri will handle the reply (they both contain a handler bound to H). This be-
havior is not correct: by definition, only protocol modules Qi should handle the
reply. Moreover, as modules Ri are not necessarily implemented to handle replies
dedicated to Qi, this may lead to errors.

Solutions to solve this problem exist. However, they introduce an unnecessary
burden on the protocol programmers and the stack composer. For instance, chan-
nels allow to route events to ensure that modules handle only relevant events. How-
ever, the protocol programmer must take channels into account when implementing
protocols. Moreover, the composition of stacks becomes more difficult due to the
fact that the composer has to create many channels to ensure that modules han-
dle events correctly. An addition of special protocol modules (named connectors
[BMN05, EMPS04]) for routing events is also not satisfactory, since it requires
additional work from the composer and introduces overhead.

Notifications. Contrary to requests and replies, notifications are well modeled
in event-based frameworks. The reason is that notifications correspond to the one-
to-many communication scheme provided by events. In service-interface-based
frameworks, notifications are also well modeled. When a module generates a noti-
fication to a service interface si, all listeners bound to s are executed.

7.4.2 Protocol Module Composition

Since replies are the results of a request, there is a semantic link between these two
kinds of interactions. The composer of protocol modules must preserve this link
in order to compose correct stacks. We explain now that service based frameworks
provide a mechanism to preserve this link, while in event-based frameworks the
lack of such mechanism leads to error-prone composition.

In service-interface-based frameworks, requests and corresponding replies are
issued to the same service interface. Thus, a service interface introduces a link
between these interactions. To compose a correct stack, the composer has to bind to
each service interface si an executer of a module that issues replies to si. Applying
this simple methodology, ensures that requests issued to a service interface si are
(1) effectively handled by some executer, and (2) result in replies issued to the same
service interface si.

In event-based frameworks, all protocol interactions are issued through differ-
ent event types. As a result, there is no explicit link between an event triggered
upon a request and an event triggered upon the corresponding reply. Thus, the
composer of a protocol stack must know the exact meaning of each event type in
order to preserve the semantic link between replies and requests, and no simple
methodology can be applied to compose correct stacks. Moreover, nothing pre-
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vents the binding of a handler that should handle requests to an event type used to
issue replies. This last problem can be, however, solved by typing handlers.

7.4.3 Implementation of DPU Managers

In Figure 7.4, we show how our solution to integrate a DPU manager (see Sec-
tion 4.2) can be implemented in protocol frameworks that are based on service
interfaces (in the left part of the figure) and on events (in the right part of the fig-
ure). The two-sided arrows point to the protocol modules P1 and newP1 that are
switched.

P1

1R

Repl−P1

Q1

1P
newP1

Repl−P1

newP1

Q1 R1

H’

t

H G G

G’

Figure 7.4: Implementation of a DPU manager to replace protocol P (stack 1).

It can be seen that the approach that uses service interfaces has advantages.
The intercepting module Repl-P1 has an interceptor bound to service interface t
that intercepts every request handled by modules P1 and all replies and notifica-
tions issued by P1. The addition of a DPU manager in a stack is therefore fully
transparent to other protocols.

In event-based frameworks, the solution requires to add an intermediate mod-
ule Repl-P1 that intercepts the requests issued to P1 and also the replies and no-
tifications issued by P1. Although this ad-hoc solution may seem similar to the
service-interface-based approach, there is an important difference; DPU managers
cannot be transparently added to a stack. Indeed, the event-based solution requires
to (1) introduce new events (i.e., G’ and H’) and (2) slightly modify the module P1

since instead of handling events of type G and triggering event of type H, P1 must
now handle and trigger events of different types G’ and H’ (see Fig. 7.4).

Note that, contrary to other event-based frameworks, Cactus [Cac01, BHSC98]
allows to transparently add DPU managers to protocol stacks. We now explain
why. Remember that Cactus allows to define priority for handler executions. This
means that handlers with a low priority has a similar behavior as interceptors. Thus,
a DPU manager that must intercept some event types G and H can be transparently
implemented with two handlers with low priority which are respectively bound to
G and H.
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7.4.4 Summary

Table 7.1 summarizes the whole discussion.

service-interface-based event-based
Protocol Module Interaction an adequate an inadequate

representation representation
Protocol Module Composition clear and safe complex

and error-prone
Implementation of DPU Managers an integrated ad-hoc solutions

mechanism

Table 7.1: Service-interface-based vs. event-based.

7.5 Implementation

We have implemented an experimental service-interface-based protocol framework,
called SAMOA [Sam08]. Our implementation is light-weight: it consists of ap-
proximately 18002 lines of code in Java 1.5 (with generics).

We now describe the main three classes of our implementation: Service (en-
coding service interfaces), ProtocolModule (encoding protocol modules), and
ProtocolStack (encoding protocol stacks). We next evaluate the service-interface
based implementation of a group communication stack with respect to the corre-
sponding event-based stack.

The Service Class. A Service object implements two methods: call (for issuing
requests) and respond (for issuing replies and notifications). Both methods accept
a special argument, called message. A message represents a piece of information
sent over the network. Messages determine the kind of interactions issued upon
call to method respond , as we now explain. When a protocol module executes the
method call , it has to specify, within the message, the listener that must handle
the corresponding reply. When a protocol module executes the method respond , a
reply is issued if the message passed as an argument specifies a listener. Otherwise,
a notification is issued. In addition to a message, each method may accept other
arguments. Note that the user have to specify the type of these additional arguments
for both methods call and respond of each Service object.

Executers, listeners and interceptors are encoded as inner-classes of the Service
class. This allows to provide type-safe protocol interactions. For instance, exe-
cuters can only be bound to the Service object they belong to. Thus, the parameters
passed to requests (that are verified statically) always correspond to the parameters
accepted by the corresponding executers.

2This number does not take into account the different algorithms for transparent concurrency
described in Chapter 8. In total, SAMOA actually consists of approximately 3600 lines of code.
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Finally, some Service object so can be easily defined as a subtype of another
Service object so′. In practice, this means that if a protocol module Pi can issue
requests to a service interface UDP , then it may also issue a request to a service
interface TCP that is a subtype of UDP .

The ProtocolModule Class. A ProtocolModule object consists of three sets of
components, one set for each component type (executers, listeners and intercep-
tors). ProtocolModule objects are characterized by names to retrieve them easily.
Moreover, we have added some features to bind and unbind all executers, listeners
or interceptors to/from the corresponding Service objects. These simple features
facilitate implementation of dynamic replacement of distributed protocols.

The ProtocolStack Class. A ProtocolStack object consists of two sets of re-
spectively protocol modules and services. Each ProtocolStack object provides a
flow control mechanism [Men06] that allows protocol modules in a stack to con-
trol the number of requests issued by the application to the stack. We have also
implemented methods to add or remove dynamically service interfaces and proto-
col modules to/from a stack. These methods simplify implementation of protocol
addition and removal (see Sections 4.3 and 4.4). Finally, we provide a graphical
user interface that facilitates protocol stack composition. Our interface allows the
user to store the stack that it has composed as a special file, which can be loaded
by ProtocolStack objects.
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Figure 7.5: Implementation of a group communication stack: service-interface-
based (left) vs. event-based (right)
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Performance Evaluation. To evaluate our implementation of service inter-
faces, we have implemented the group communication stack illustrated in Fig-
ure 4.3 (Section 4.2.1), adopting both the service-interface- and the event-based
approaches (see Figure 7.53). The event-based implementation uses the Cactus
[Cac01, BHSC98] protocol framework. This choice is not arbitrary: Cactus is
widely used and has been shown to have good performance [MCGS03]. Finally,
both implementations of our stack assume sequential executions, i.e., only one
thread is executed in our protocol stack at a time. Techniques to introduce concur-
rency in protocol stacks are discussed in Chapter 8.

Performance tests have been performed with 3 and 7 machines (stacks) that
send messages of 4KB under a constant offered load using atomic broadcast. All
experiments have been performed using the system setup presented in Section 6.5.
Similarly, the performance metrics and the benchmark (but without any DPU man-
ager activated) which are considered here are described in the same section.
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Figure 7.6: Comparison between SAMOA and Cactus: average latency (left) and
throughput (right).

In Figure 7.6, we show average latency (left) and throughput (right) both with
respect to offered load. Latencies and throughputs are shown on the vertical axis,
while offered loads are shown on the horizontal axis. The dashed lines show the
results obtained with the SAMOA framework, while the solid lines show the results
obtained with the Cactus framework. In all graphs and for all frameworks, the
upper (resp. lower) line represents the results obtained with 7 (resp. 3) processes.
It can be observed that SAMOA performs better than Cactus. This can be explained
by the (necessary) use of connectors in Cactus. Furthermore, the better results
obtained by the SAMOA implementation can be explained by a better strategy to
implement timeouts: Cactus spawn a new thread for each timeout, while SAMOA
manage all timeouts with a single thread (see Section 8.4). Finally, note that similar
results were obtained with different message sizes and different metrics (such as
early latency or late latency).

3Note that each arrow in the event-based architecture represents an event type. We do not name
event types in the figure for readability.
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7.6 Conclusion

In this chapter, we proposed a new approach for protocol frameworks that is based
on service interfaces instead of events. We have shown that service-interface-
based frameworks have several advantages over event-based frameworks. Service-
interface-based frameworks allow us to: (1) model accurately protocol interactions,
(2) reduce the risk of errors during the composition phase, and (3) elegantly im-
plement DPU managers. We have finally shown that our experimental protocol
framework SAMOA based on service interfaces perform well with respect to Cac-
tus, a representative event-based protocol framework.



Chapter 8

Transparent Concurrency for
Modular Protocol Design

We have seen in Chapter 7 a new abstraction that simplifies the implementation of
protocol stacks. In this chapter, we discuss techniques to improve the performance
of protocol stacks by introducing concurrency. In our opinion, existing protocol
frameworks do not provide convenient features to allow concurrent executions in
protocol stacks. For example, the Appia protocol framework [App01, MPR01]
enforces sequential executions of protocol stacks. On the other hand, the Cactus
protocol framework [Cac01, BHSC98] does not restrict the amount of concurrency
but it relies on the programmer, who must implement the synchronization to pre-
vent incorrect executions. However, the synchronization code is rather subtle and
error-prone, especially in complex protocol stacks, and has to be tailored for the
particular stack composition. We propose in this chapter a better solution.

Our solution consists in transparently adding concurrency to protocol stacks.
In other words, the synchronization mechanisms that allow correct concurrent exe-
cutions are provided by the runtime system and thus, are hidden from the program-
mer. We first define in this chapter a correctness property that must be ensured by
concurrent executions. Our correctness property, called module-order, is very sim-
ilar to the well-known isolation property considered in database systems: it ensures
that concurrent request execution is identical to executing the requests sequentially.

We then show how the module-order property can be relaxed in order to in-
crease the amount of concurrency, while ensuring correct executions. Roughly
speaking, the relaxation consists in ensuring the module-order property only for
the protocol module interactions that require synchronization to be correct. For
instance, some synchronization is required for the delivery of atomic broadcast
messages (in order to maintain the delivery order), while no synchronization is
required for the delivery of reliable broadcast messages (that are not ordered).

We validated our ideas by designing several algorithms to ensure the module-
order property. Our algorithms have been implemented within the SAMOA [Sam08]
protocol framework that has been described in Section 7.5. This allowed us (1) to
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evaluate the amount of concurrency provided by our algorithms, and (2) to com-
pute the gain in performance that we can expect with concurrent executions within
a group communication middleware.

8.1 Model

In this section we define a simple model, based on events, for concurrent executions
in protocol stacks. We choose the notion of "event" to describe concurrency in pro-
tocol stacks for readability. The contributions of this chapter are, however, also rel-
evant to service-interface-based protocol frameworks. Actually, we implemented
the algorithms for concurrency that are described in the following sections within
the SAMOA [Sam08] protocol framework (which is based on service-interfaces).
We describe how to adapt the algorithms to service-interfaces in Section 8.4.

We say that a module P handles some event e if P implements a handler that
handles e. We assume that each handler is statically bound to one specific event
type. We explain in Section 8.4 how to allow dynamic bindings of handlers, which
is required for dynamic protocol update.

Below, we define the notion of computation, which is the basis for our defini-
tion of sequential and concurrent executions. Basically, a computation is a set of
events that result from a request issued to the stack (i.e., an event triggered exter-
nally to the stack). Before formally defining computations, let us introduce some
basic notions.

Internal and External Events. An internal event denotes an event that has been
triggered by any handler implemented by a protocol module in the protocol stack.
For instance, events of types E, F , G, H , Send and AppDeliver in Figure 8.1 are
internal events. We say that an event is external if it is not internal. In Figure 8.1,
only events of types Deliver and AppSend are external, since they are triggered
respectively by the network and the application.

Causal Dependency. An event e directly causally depends on an event f if there
is a handler h in the stack that triggers e while handling f . The causal dependency
relation is defined as the transitive closure of the direct causal dependency relation.
Note that each internal event causally depends on exactly one external event, while
external events do not causally depend on any event.

Computations. A computation C is the set of all events that causally depend on a
specific external event e. We assume that computation C also includes the external
event e. Hence, each event (internal or external) is part of exactly one computation.

We show two example computations C and C ′ in Figure 8.1. Computation C
starts with an event of type AppSend and contains also events of type E, G and
Send. Similarly, computation C ′ starts with an event of type Deliver and contains
also events of types H , F and AppDeliver. A dashed arrow from event type E
to event type G denotes that, in the same computation, an event of type G directly
causally depends on an event of type E.
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Figure 8.1: Example of computations (in stack 1).

Based on the notions previously introduced, we now define our execution model
which precisely defines how computations are executed. We then define sequential
and concurrent executions.

Execution Model. We assume that one handler per module is executed at a time.1

In other words, we do not consider here the problem of concurrent modifications
to the data maintained by modules. We say that an event e is handled before an
event f if no handler executes f before all handlers executing e have terminated.
We assume that events of the same computation C are executed sequentially, i.e.,
for any pairs of events e and f of C, event e is handled before f or vice versa. In
short, we only focus on the issues related to the concurrent executions of events
(1) belonging to different computations, and (2) handled by different modules.

A computation starts when the corresponding external event is triggered. At
this time, a task (i.e., a thread) dedicated to the execution of the computation is
created. Each computation is identified by a unique identifier. We denote by C(e)
the identifier of the computation that contains event e.

Each task dedicated to some computation collaborates with a scheduler, which
ensures the correctness of the execution. The scheduler has also to manage the
event triggering initiated by (1) externalTrigger(e) (for an external event e), and (2)
internalTrigger(e) (for an internal event e). The task dedicated to a computation
is created by the scheduler upon a call to externalTrigger. Upon creation of the
computation task, an identifier id and the corresponding external event e are passed
as a parameter by the scheduler. In the following sections, we describe schedulers
that ensure correct concurrent executions.

1This can be easily implemented with a monitor for each module. Note that there is no risk of
deadlock since, in our model, no thread can enter a monitor while in another monitor.
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We now precisely describe how tasks execute computations (see Algorithm 7).
Basically, each task executes sequentially the events of a computation (see
lines 4-8). Before executing each event e, the task calls method startHandling(e)
(line 5), which blocks until event e can be safely executed (according to the cor-
rectness property that is ensured by the scheduler). After the event e is executed,
the thread indicates to the scheduler that the event e has been executed by calling
the method endHandling(e) (line 7). The next event to be executed is returned by
the call to method next(id), where id identifies the computation executed by the
thread. The list of events to be executed is updated by the scheduler upon (1) calls
to internalTrigger (initiated upon execution of line 6) which adds events to the list,
and (2) calls to endHandling which removes events from the list. If all events of
the computation have been executed, the method next(id) returns nil.

Algorithm 7 Task for the Execution of a Computation

1: task computation(identifier, initialEvent)
2: id← identifier {The identifier of the computation}
3: e← initialEvent {The next event of the computation to be executed}
4: while e 6= nil do
5: startHandling(e)
6: execute sequentially all handlers bound to the type of e {The events triggered upon the execution

of e are later returned by the method next.}
7: endHandling(e)
8: e← next(id)

It should be noted that the contribution presented in this chapter can be easily
adapted to other thread models. For instance, our schedulers can be adapted to
a thread model in which a given thread executes all events handled by a given
protocol instead of executing all events of a given computation. Different thread
models for protocol stacks have been compared in [MY98].

Sequential Executions. Roughly speaking, an execution is sequential if computa-
tions are executed one by one. Formally, an execution is sequential if the following
property holds. For any two events e and f that belong to computations C and C ′

respectively, if C starts before C ′, then event e is handled before f .
If an execution is not sequential, we say that the execution is concurrent. We

define in the next sections different ordering properties for concurrent executions.

8.2 The Module-Order Property

This section first defines the module-order property, which ensures that the result
of a concurrent execution is the same as a particular sequential execution. Note
that it is not sufficient that the result of a concurrent execution is equivalent to any
sequential execution. For instance, consider two external events triggered by the
application to send a message through a fifo protocol. In this case, the external
events must be executed in the order in which they are triggered, otherwise the
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properties ensured by the fifo protocol are violated. This means that the concurrent
execution of these two events must have the same result as the sequential execution
in which these two external events occur in the same order. Since no module shares
data (see Section 3.1), this can be guaranteed if each module handles events in the
same order as in the sequential execution. This is precisely what is ensured by
the module-order property, which is formally defined below. We next propose a
simple scheduler that ensures the module-order property and prove its correctness.
Finally, we present two variants of our simple scheduler that increase concurrency.

Module-Order. Consider two events e and f such that e belongs to a computation
that starts before the computation that contains f . If there is a module P that
handles both e and f , then e is handled before f .

We now describe a simple scheduler that ensures the module-order property. The
basic idea is to order the computations that contain an event handled by a given
module P with a list dedicated to P . The computations in the list are ordered ac-
cording to the order in which they are initiated. When all events in the computation
have been handled, the computation is removed from the list. Thus, to ensure the
module-order property, an event of a given computation C handled by P can be
executed only when computation C is at the head of the list.

Simple Module-Order Scheduler. Algorithm 8 describes our simple module-
order scheduler. It assumes that, upon triggering an external event e, the set of
modules that may handle an event that belongs to the computation initiated by e is
passed as a parameter of the method externalTrigger (see parameter dep in line 5).
The set dep can be easily computed by the scheduler if for each handler h, the pro-
grammer specifies the type of the events that may be triggered by h. Indeed, from
this information, we can deduce the type of all events that may causally depend on
a given external event, and thus deduce the modules in the set dep.

The simple module-order scheduler maintains two arrays of lists, namely mod-
ules and computations. The list modules[P ] orders the computations that may
contain an event handled by module P according to the order of their initiation. On
the other hand, the list computations[id] contains the events of the computation
identified by id that have not yet been executed. We now describe how the sched-
uler ensures the module-order property by describing the following procedures:2

• externalTrigger(e, dep) first adds the identifier nextId corresponding to the
computation C initiated by e to the end of the list modules[P ] for each
module P in the set dep (lines 6-7). Then, the new task that executes com-
putation C is initiated (line 8) and the event e is added to the list of events
of C (line 9). Finally, the identifier nextId is incremented to correspond to
the next computation (line 10).

2Each procedure block is executed in mutual execution. A wait statement (see line 17) releases
mutual exclusion (similarly to a wait in a monitor).
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Algorithm 8 Simple Scheduler for the Module-Order Property
1: Initialisation:
2: modules[ ]← [λ, ....] {The lists of computations that may execute a given protocol module;

one list per protocol module; all lists are initially empty (λ)}
3: computations[ ]← [λ, ...] {The lists of events that are triggered but not handled;

one list per computation; all lists are initially empty (λ)}
4: nextId ← 1 {The identifier for the next computation to be initiated}

5: procedure externalTrigger(e, dep)
6: for all P ∈ dep do
7: add nextId to the end of the list modules[P ]

8: new task computation(nextId , e)
9: add e to the head of the list computations[nextId ]

10: nextId ← nextId + 1

11: procedure internalTrigger(e)
12: add e to the end of the list computations[C(e)]

13: procedure next(id)
14: return an event e such that e ∈ computations[id] (nil if computations[id] = λ)

15: procedure startHandling(e)
16: for all modules P such that P handles event e do
17: wait until C(e) is at the head of list modules[P ]

18: procedure endHandling(e)
19: remove e from the list computations[C(e)]

20: if computations[C(e)] = λ then {The computation corresponding to e terminated}
21: for all modules P do
22: if C(e) ∈ modules[P ] then
23: remove C(e) from the list modules[P ]

• internalTrigger(e) simply adds the event e to the list of events of the com-
putation (lines 11-12).
• next(id) returns any event of the computation identified by id (lines 13-14).

The order in which the events of the same computation id are returned is not
relevant to this chapter, and thus, no specific order is considered here. Note
that we discuss this issue in Section 8.4.2.
• startHandling(e) blocks until C(e) is at the head of all lists of modules that

handle e (lines 15-17).
• endHandling(e) simply removes the event e from the list of events that have

not been executed (line 19). Furthermore, when the computation of event e
terminates (i.e., the list computations[C(e)] is empty), the identifier C(e)
is removed from all lists modules[P ] that contain C(e) (lines 20-23).

We now prove that our simple scheduler ensures the module-order property.
In addition, we show that our scheduler is live in the sense that all computations
eventually terminate. Liveness holds under the assumptions that (1) each execution
of a handler eventually terminates, and (2) each computation contains a bounded
number of events. In other words, liveness is ensured if the code written by the
stack programmer is live.
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Module-Order: Consider two events e and f such that e belongs to a computa-
tion C that starts before the computation C ′ that contains f . Moreover, assume that
there is a module P that handles both events e and f . Because C starts before C ′,
the identifier of computation C is added before the identifier of computation C ′ in
the list modules[P ] at line 7 (*).

By procedure internalTrigger (lines 11-12) and definition of computations, the
set computations[C(e)] is not empty before the call endHandling(e) terminates.
By lines 20-23, the identifier C(e) is removed from the list modules[P ] only by
this call (more precisely, by the similar call corresponding to the last event of com-
putation C(e)), and thus, after event e has been handled (**).

By the definition of the task that executes computations, event f is handled only
after the call startHandling(f ) returns. Due to lines 15-17, and (*), (**), the call
returns after event e has been handled. Thus, event e is handled before event f . �

Liveness: By lines 6-7, the first computation C to start has the following prop-
erty. For each event e ∈ C, the call startHandling(e) is non-blocking (*). Be-
cause of Algorithm 7, and due to our assumptions for liveness (see above), the list
computations[id] where id is the identifier of C is eventually empty (i.e., com-
putation C has terminated). Thus, by lines 20-23, the identifier of C is eventually
removed from all lists modules[P ] that contains this identifier. At this time, the
property (*) holds for the computation that was the second to start. By applying a
simple induction, we can show that all computations eventually terminate. �

One can observe that our simple scheduler has the following problem: The
identifier of a computation C is removed from a list modules[P ] only when the
computation terminates, instead of removing the identifier when all events of C
handled by P have been executed. The next two variants try to detect when no more
events from a computation C are handled by a module P . As a result, the identifier
of C can be removed earlier from list modules[P ], which increases concurrency
in the protocol stack.

Our first variant, named bounded module-order scheduler, requires to know for
each computation C the upper bound b for the number of events that are handled by
a given module P . This allows to remove the identifier of C from list module[P ]
as soon as b events from C have been handled by P . Note that the bound b must be
carefully set. Indeed, if the bound b is too large, it may never be reached. In this
case, this variant is equivalent to the simple module-order scheduler.

The route module-order scheduler – our second variant – is based on the knowl-
edge of the routes in our protocol stack. A route for event type E describes the
types of the events that causally depend on events of type E. With this informa-
tion, we can detect, for a given computation, when all events of a given type have
been executed. Thus, a computation C can be removed from the list module[P ] as
soon as all events of any types to which a handler implemented by P is bound have
been executed.

Similarly to the simple module-order scheduler, the information required by
our variants (i.e., the bounds or the routes) can be easily computed by the scheduler.
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We now describe the modifications to the simple scheduler that are required by our
variants. Note that the correctness proofs for these variants are very similar to the
ones for our simple scheduler, and thus are omitted here.

Bounded Module-Order Scheduler. Contrary to the simple scheduler, the
bounded scheduler assumes that the parameter dep contains a list of modules,
where each module P appears as many times as the maximum number of events of
the corresponding computation that P may handle. In addition, the following two
procedures have to be modified:

• externalTrigger(e, dep) adds b times the computation identifier correspond-
ing to e to the end of the list modules[P ] for each module P , where b cor-
responds to the number of occurrence of P in dep. Lines 8-10 remain the
same.

• endHandling(e) removes one occurrence of C(e) from the list modules[P ]
for each module P that handles event e. When the computation termi-
nates, all occurrences of the computation identifier are removed from all
lists modules[P ].

Route Module-Order Scheduler. Contrary to the previous variant, the route
scheduler assumes that the parameter dep is a directed graph, where each node
is an event type and each arrow between two event types E and F shows that an
event of type F might be triggered upon handling an event of type E. Moreover,
the following two procedures have to be adapted:

• externalTrigger(e, dep) adds the computation identifier corresponding to e
to the end of the list modules[P ] for each module P that implements a han-
dler bound to a node of dep that can be reached from the type of e. Lines
8-10 remain the same.

• endHandling(e) removes C(e) from the list modules[P ] for a module P if
the following condition holds: Every event in the list computations[id] has
a type E such that all handlers implemented by P are bound to a type that is
not reachable from E in dep. When the computation terminates, the compu-
tation identifier C(e) is removed from all lists modules[P ] that contain this
identifier.

8.3 Relaxing the Module-Order Property

We first present in this section a simple example showing that the module-order
property is too restrictive in the sense that it prevents several concurrent executions
that are actually correct. Based on this observation, we define a new property,
called relaxed module-order that allows more concurrent executions. Finally, we
explain how this property can be ensured by adapting the schedulers described in
the previous section.
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Module-Order is too Restrictive. We show in Figure 8.2 a simple stack that
we use to illustrate that the module-order property is too restrictive. The stack is
composed of two protocol modules: the module ABcast1 implements the atomic
broadcast service, while the module RBcast1 implements the reliable broadcast
service. Protocol modules in our stack communicate using six different event types.
The events of types Abcast, Rbcast and Send are triggered to send a message
respectively through the atomic broadcast, reliable broadcast and network modules.
Similarly the events of types Adeliver, Rdeliver and Deliver are triggered to
deliver a message from those modules.

Application

Network

Rdeliver Rbcast

Adeliver

Deliver Send

Abcast

C

C’ RBcast

ABcast 1

1

Figure 8.2: Example of computations showing the restriction of module-order.

In order to show that the module-order property is too restrictive, we consider
two computations C and C ′ (starting in this order): computation C contains only
events to send messages, while computation C ′ contains only events for message
deliveries (see Figure 8.2). If we assume that the execution of these computations
ensures the module-order property, we end up with the following execution. Be-
cause (1) module RBcast1 handles an event of both C and C ′, and (2) C starts
before C ′, no event of computation C ′ can be handled before the event of type
Rbcast from computation C has been handled. As a result, no events are handled
concurrently in the stack.

Consider now the execution in which events of types Deliver and Abcast, and
afterwards events of types Rdeliver and Rbcast are handled concurrently. This
execution violates the module-order property. However, because of the semantic
of events types Rbcast and Deliver, two events of these types can be handled
by module RBcast1 in any order without altering the properties ensured by the
protocol stack. In other words, this execution is still correct despite the fact that it
does not ensure the module-order property.

We have seen with this example that the module-order property does not need to
be ensured for all events. We now define for which kinds of events this property
has to be ensured.
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Critical Event Type. An event type is critical if an event of that type must be
handled in a specific order with respect to any other event(s) (that may be of a
different type). By extension, we say that an event is critical if its type is critical.
For instance, the event type Adeliver in Figure 8.2 is critical, since two events of
that type have to be handled in a specific order (the first event triggered must be the
first to be handled). All other event types in Figure 8.2 are non-critical.

P

Q

R E’

E

1

1

1
F

Figure 8.3: Example of critical event types.

Figure 8.3 shows another example of critical event types. The event type F
denotes events that notify a change of the state of module R1 (such as a process
suspicion). Any event e′ of type E′ directly causally depends on an event e of
type E, and has to be handled with the same knowledge of the state of R1 as e.
As a result, events of types E and E′ have to be handled in a specific order with
respect to events of type F . Therefore, these three event types are critical.

Path. A path [e, end[ is the set of events that causally depend on event e and
do not causally depend on any event in the set end, including e, but excluding all
events in the set end. A path [e, end[ starts when event e is triggered. Note that a
computation initiated by the external event e corresponds to the path [e, ∅[.

Critical Path. A path [e, end[ is critical if and only if (1) all events of the path are
critical, (2) event e does not directly causally depend on a critical event, and (3) no
event in end is critical. Conditions (2) and (3) ensure that a critical path is never
included in another critical path. In other words, each critical event belongs to
exactly one critical path.

Based on the definition of critical paths, we are able to propose a relaxed version
of the module-order property. Basically, the relaxed module-order property ensures
the module-order property for critical paths instead of computations. As a result,
the module-order property can be seen as a particular case of the relaxed module-
order property where all event types are critical (and thus, critical paths correspond
to computations).
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Relaxed Module-Order. Consider two events e and f belonging to two different
critical paths such that e belongs to a critical path that starts before the critical path
that contains f . If there is a module P that handles both e and f , then e is handled
before f .

Because the relaxed module-order property is a generalization of the module-
order property, the scheduler for the first property is very similar to the one to
ensure the latter property. Below, we describe how to adapt the simple scheduler
(see Algorithm 8) to ensure the relaxed-module order property.3. Obviously, the
two variants described in the previous section can be also adapted to the relaxed
module-order property.

Adapting the Simple Module-Order Scheduler. The basic idea is to use the
array of lists modules to order critical paths instead of computations. This requires
the following. Similarly to computations, an identifier is attached to a critical path
when its starts. Furthermore, at this time, the identifier is added to the end of the
list modules[P ], for all modules P that handle an event of the critical path. For
this purpose, we assume that the set of modules that handle an event of a critical
path P is known when P starts. This set can be easily computed by the scheduler if
the programmer specifies (1) the critical event types, and (2) similarly to the simple
module-order scheduler, the types of the events triggered by each handler. Contrary
to computations, a critical path can be started upon both internal or external events.
The start of a critical path can be, however, easily detected: it corresponds to the
triggering of an event e such that (1) e is critical, and (2) e does not directly causally
depend on a critical event.

Removing a critical path from the lists modules[P ] is similar to removing
computations. For this purpose, the scheduler maintains a list of all events of the
critical path that have not been executed: critical events are added to the list when
they are triggered, and removed upon calls to endHandling. Once there are no more
events in the list, the critical path can be removed from the lists modules[P ].

Two additional modifications are required. First, similarly to Algorithm 8,
calls to the method startHandling(e) must block until the identifier of the critical
path of e is at the head of the lists modules[P ], for all modules P that handle e.
However, if event e is not critical, the call is non-blocking. Second, instead of
returning any event of a computation id, the method next(id) returns an event e
with the following property: (1) event e is not critical or (2) no event of id that
has not been executed belongs to a critical path started before the critical path of e.
This is necessary to prevent deadlock among computations as we now explain.
Imagine two critical paths P and P ′ of the same computation id, such that P starts
before P ′. Consider two events e and e′ belonging respectively to critical paths P
andP ′, that are handled by the same module. If method next(id) returns e′ before e,
the computation will block forever, since e′ can be executed only after e.

3A complete description of the relaxed module-order scheduler can be found in Annex A.
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8.4 Implementation

We implemented four schedulers within the SAMOA protocol framework [Sam08]
(described in Section 7.5). The first three schedulers are respectively the Simple
Module-Order, the Bounded Module-Order, and the Route Module-Order sched-
ulers (described in Section 8.2). We adapted the schedulers so that the programmer
can choose to ensure the module-order property or the relaxed-module order prop-
erty. The last scheduler ensures sequential executions. This allowed us to compare
the performance of a "concurrent" group communication stack with the perfor-
mance obtained by the corresponding "sequential" stack (see Section 8.5).

Instead of being based on events, the schedulers have been adapted to service-
interfaces. The adaptation is straightforward as we now explain (see Table 8.1).
Every service interface corresponds to three event types; one per type of interac-
tion (i.e., request, reply, or notification). Therefore, requests, replies and notifica-
tions are equivalent to events. Finally, each executer or listener corresponds to one
handler, while each interceptor is equivalent to two handlers.

One Service-Interface ∼= Three Event Types
One Reply, one Request or one Notification ∼= One Event
One Executer or one Listener ∼= One Handler
One Interceptor ∼= Two Handlers

Table 8.1: Equivalences between service-interfaces and events.

We now present several optimizations and additional features implemented by
our schedulers. For readability, we still use the event terminology.

8.4.1 Optimizations

Thread Pool. Instead of creating a new thread for each computation, our sched-
ulers use a pool of threads. The size of the pool can be set by the programmer.
When a computation C is initiated, one thread of the pool starts to execute C. If
no thread is available (i.e., all threads already execute a computation), the compu-
tation is simply delayed. The use of a pool has two advantages. First, it avoids
to create new threads, which is a rather costly operation. Second, it reduces the
number of context switches (so their overall cost), since the number of concurrent
threads is bounded.

It must be added that the scheduler adds a computation C to the list modules[P ]
only when a thread is available to execute C (instead of adding C at the time of its
initialization). This allows us to bound the size of lists modules[P ] by the size of
the thread pool. As a result, the cost (in memory) of the operations on these lists is
reduced.
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Computing the Parameter dep. Remember that the parameter dep contains
all the modules that may handle events of a critical path, and must be known at
the initialization of a critical path (or a computation). One can observe that this
parameter depends exclusively on the type of the event that initiates the critical
path. Thus, it can be computed by a scheduler upon the initialization of the protocol
stack (rather than on the initialization of the corresponding critical path), which
minimizes the cost induced by the initialization of critical paths.

8.4.2 Additional Features

Extended Causal Order. Events of a given computation are handled with respect
to the extended causal order property which has been described in [UMDK06,
Men06].4 This property provides basic ordering guarantees that are useful for pro-
tocol programmers, e.g., it ensures that two events triggered by a given handler
execution are handled in the order in which they are triggered. More precisely, the
property is the following. Consider two events e and f of the same computation
that are triggered by the same module P . Assume that e is triggered before f .
Then, each event e′ that causally depends on e but does not causally depend on an
event e′′ 6= e triggered by P after f , is handled before event f . In this case, we say
that event e′ causally precedes f .

Ensuring the extended causal order property requires to carefully define the set
of critical event types. Indeed, the following scenario has to be avoided. Consider
two critical events e and f belonging respectively to the critical paths P and P ′
such that P starts before P ′. If event f causally precedes e, we have a contradic-
tion: (1) e must be handled before f (due to the relaxed module order property),
and (2) f must be executed before e (due to the extended causal order property).
However, note that we never observed such a scenario in practice although several
group communication stacks (such as the ones described in [Men06]) were im-
plemented using the SAMOA protocol framework. In any case, it is sufficient to
ensure the module-order property (see definition on page 89) instead of the relaxed
module-order property (see definition on page 95) to avoid such a scenario.

Atomic Tasks. In addition to triggering external events, the application can ini-
tiate atomic tasks. Atomic tasks allow to execute a piece of code that modifies the
state of the protocol stack (e.g., to initialize or to checkpoint the protocol stack). To
ensure correct executions, each atomic task T is executed atomically in the sense
that no other atomic task and no computation is executed while T is executed.

Timeouts. Some modules need to periodically perform some specific tasks. For
instance, consider a module P that implements a failure detector based on heart-
beats [CT96]. Such a module periodically triggers an event to send a special mes-
sage to other stacks, so that they can compute the set of alive stacks. To facilitate

4The property was slightly adapted to correspond to the context of our work, since the authors
in [UMDK06, Men06] do not consider the notion of computation.
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the implementation of such modules, our schedulers provide a simple interface to
trigger events after a given timeout. Both the delay after which the timeout event
occurs and the recurrence of the event can be set by the programmer.

To implement this special feature, our schedulers run a special thread that man-
ages all the timeout events to be triggered. All timeout events are considered as
external, and thus initiate a new computation. Finally, note that the programmer
may also initiate atomic tasks after a given timeout (e.g., to checkpoint the state of
a stack every t minutes).

Dynamic Bindings. Dynamically binding or unbinding handlers raises the fol-
lowing problem. Consider a critical path P that contains an event e of a type E.
Assume that after the initialization of P (and thus, after P has been added to
the lists modules[P ]), but before the handling of e, a handler of module Q is
bound to type E. In such an execution, the critical path P is not added to the list
modules[Q]. As a result, the (relaxed) module-order property can be violated.

To solve the problem, the dynamic bindings must be performed atomically,
i.e., no computation should be executed in concurrence with the dynamic bind-
ings. Thus, one solution consists in using atomic tasks. However, such a solution
requires to slightly modify the DPU algorithms described in Chapter 6. We also
provide another solution. At any time, the scheduler can be turned into a sequen-
tial mode, i.e., all computations are executed sequentially. At this time, any module
(such as a DPU manager) can safely dynamically bind or unbind handlers. Obvi-
ously, the scheduler can be afterwards again turned into a concurrent mode.

8.5 Performance Evaluation

The contribution of this section is twofold. First, we evaluate the amount of concur-
rency allowed by our schedulers. To do so, we define a simple concurrency metric.
Informally, this metric measures the rate of events that are executed concurrently.
Second, we evaluate the performance of a group communication middleware exe-
cuted (1) with our schedulers for concurrency and (2) with our sequential scheduler.
This allows us to measure the possible performance gain induced by concurrency.

In order to evaluate the amount of concurrency and the gain induced by con-
currency, we use the group communication middleware described in Section 4.2.1
(see Figure 4.3). The benchmark and the performance metrics considered in this
section are the ones described in Section 6.5. However, we consider here a differ-
ent system setup that is composed of three two-processor machines (so that we can
take advantage from concurrency). Note that the system setup considered here is
less recent than the one considered for previous performance evaluations, which
explains the comparatively less performant results presented below.

We start this section by describing our new system setup. We then discuss some
details of our benchmark that are relevant to the present context. More specifically,
we describe the critical events of the stack used in the benchmark, and the differ-
ent threads that compose our benchmark. This allows the reader to understand the
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different results that we present below. We next introduce our metric for concur-
rency, and discuss the amount of concurrency allowed by our schedulers. Finally,
we discuss the performance results.

System Setup. The benchmarks were run on a cluster of three machines run-
ning Mac OS X 10.4.11 (kernel Darwin 8.11.0). Each machine has two processors
PowerPC G5 (3) at 1.8 GHz and 1 GB of RAM. The machines are interconnected
by 100Mbits Ethernet (which is exclusively used by the cluster machines) and
run Sun’s 1.5.0 Java Virtual Machine, but use a light-weight marshaling library
[PHN00, HNMP05] instead of standard Java serialization [Sun04]. The machines
were dedicated to the performance benchmarks and had no other load on them.

Some Remarks about the Benchmark. Figure 8.4 shows the implementation of
our group communication stack from which we removed the DPU protocols (since
dynamic bindings require sequential execution). We differentiate here the events
to send and to deliver reliable messages through/from the network (i.e., event types
Send and Deliver) from the corresponding events for unreliable messages (i.e.,
event types USend and UDeliver ). We denote critical event types by dashed ar-
rows (i.e., only the event types Adeliver, Deliver and Suspect are critical). Thus,
in our stack, every critical path contains a single event (of type Adeliver, Deliver
or Suspect). Note that the Deliver events are critical due to the following rea-
son: these events may transport special messages to initialize the TCP connections,
which have to be processed in a specific order.

Network

ABc.

CT

RP2P UDP

FD Timeout

Application

Manager

AdeliverAbcast

Deliver
Send USend

UDeliver

Timeout

 nt x

  n x

Suspect

Figure 8.4: Implementation of our benchmark.

We now briefly explain how computations are executed in our stack. Compu-
tations can be initiated by four types of events: Abcast, Deliver, UDeliver and
Timeout. All modules in the stack may handle events of a computation initiated by
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an event of type Deliver. Similarly, all modules except ABc may handle events
of computations initiated by events of type UDeliver or Timeout. Finally, only
modules ABc and RP2P may handle events of computations initiated by events
of type Abcast.

The implementation of our stacks uses the following threads (which are de-
noted by arcs in Figure 8.4). The network uses n threads; one thread per process,
including the local process. This allows to parallelize the serialization task, which
is a rather costly operation (see [Men06]). Both the timeout manager and the ap-
plication use a single thread. Finally, we vary the number nt of threads of the stack
itself during our experiments.

Note that the implementation of the JGroups protocol stack [Ban08] has some
resemblances with our implementation. Similarly to our benchmark, JGroups is
based on n threads for the network layer and one thread for the application layer.
However, no thread is dedicated to the execution of the protocol stack. Instead,
the threads composing the network and the application layers directly execute the
code implemented by the protocol stack. Moreover, the guarantees ensured upon
concurrent executions of these threads in the protocol stack are unclear.

Amount of Concurrency. We define the amount of concurrency for a given ex-
ecution as follows. We denote by E the set of events that were triggered during the
execution, and by nt the number of threads executed in our stack. Let T be the
time to handle all events in E , and let Te be the time to handle event e. Then, the
amount of concurrency is defined as C = nt

nt−1(1− TP
e∈E Te

).
One can observe that if the execution is sequential, we have T =

∑
e∈E Te.

Therefore, C = 0. On the other hand, if concurrency is maximal, we have T =P
e∈E Te

nt , which implies that C = 1. Informally, our concurrency metric measures
the rate of events that have been executed concurrently. The purpose of the factor
nt
nt−1 is to normalize the rate with respect to the maximum amount of events that
can be executed concurrently.

Module-Order Relaxed Module-Order
Simple Scheduler 0.08 0.28
Bounded Scheduler 0.19 0.28
Route Scheduler 0.23 0.28

Table 8.2: Amount of concurrency.

Table 8.2 shows the amount of concurrency that we obtained with our three
concurrent schedulers while ensuring either the module-order or the relaxed module-
order property. These results were obtained in experiments with high values of the
offered load l (i.e., l ≥ 1000 msgs/s) and with 4 threads executing our stacks. Note
that even if only 2 processors were available, we think that running experiments
with more than 2 threads executing our stack is interesting for the following reason:
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with our schedulers for concurrency, a computation (thread) may be blocked for a
while (at the startHandling method, see Algorithm 7). Therefore, executing four
computations concurrently may be more efficient than executing two computations
concurrently, even with only two processors. We also conducted experiments with
different values for these parameters (i.e., 100 ≤ l < 1000 and 1 < nt < 4), and
obtained similar values: we observe a maximum difference of 2% with the results
presented in Table 8.2.

The results first show that the simple scheduler provides less concurrency while
ensuring the module-order property. This can be explained by the nature of the
computations in our stack. Most computations involve most of the modules in our
stack, while the simple scheduler allow only concurrency between two computa-
tions that involve disjoint sets of modules. By detecting as soon as possible when
a module does not handle anymore events of a computation, the bounded and the
route schedulers increase the amount of concurrency (as shown in the second col-
umn of Table 8.2).

Second, as expected, we can observe that the relaxed module-order property
allows more concurrency than the module-order property (compare second and
third columns of Table 8.2). Contrary to the module-order property, the bounded
and the route versions of our concurrency scheduler do not increase the amount
of concurrency while ensuring the relaxed-module order property. This is because
critical paths in our stack always contain a single event e. As a result, the bound
and the route schedulers cannot detect that some module P has handled e before
the end of the critical path (the time when the simple scheduler detects that the
critical path can be removed from the list modules[P ]).

Performance Results. Initially, we performed experiments using our concurrent
schedulers with only one thread executing our stack. The results of these exper-
iments showed that our concurrent schedulers perform as well as the sequential
scheduler in such a configuration. From this observation, we can conclude that
the overhead induced by our concurrent schedulers is negligible. We now dis-
cuss the results that we obtained when several threads are used by our concurrent
schedulers. We only show results for the simple scheduler ensuring the relaxed
module-order property, since the results with other schedulers, or ensuring the
module-order property, are very similar (and lead us to the same conclusions). All
experiments were performed with 64B messages.

In Figure 8.5, we show average latency (left) and throughput (right) both as a
function of the offered load, when 2 (left) or 4 (right) threads execute our stack.
The solid lines show the results obtained with the simple scheduler when ensuring
the relaxed module-order property. To observe the influence of concurrency on the
results, the graphs also include the results obtained with the sequential scheduler
(see dashed lines in Figure 8.5). Obviously, the sequential scheduler uses always
one single thread.
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Figure 8.5: Average latency (top) and throughput (bottom) as a function of the
offered load when 2 (left) or 4 (right) threads execute our stack.

Surprisingly, the results show that concurrency in the protocol stack does not
improve the performance of our stack. Instead, concurrency decrease the perfor-
mance of our group communication stack. This can be explained as follows. First,
our benchmark is composed of several threads in addition to the threads dedicated
to our schedulers (and thus, to the execution of our stack). Thus, our experiments
with our sequential scheduler benefit also from the two processors of each machine.
Second, all our experiments involve more threads (i.e., nt + n + 2, see Figure 8.4)
than the available two processors. Hence, context switches occur during all our
experiments. As a result, increasing the number of threads increases the number
of context switches and their costs (this can be observed by comparing the results
obtained with 2 and 4 threads). The gain that we can expect with concurrency is
therefore ruined by the cost of context switches.

As a conclusion, our results show that concurrency to improve performance
requires to carefully design the number of threads with respect to the available
processors. Despite our results, we still believe that concurrency may improve
performance in group communication stacks. This will require further experiments
and research with machines that have more processors (or cores).

8.6 Related Work

Several algorithms to ensure correct concurrent execution in various contexts can
be found in the literature. We now briefly describe the most relevant work related
to ours.
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Software Transactional Memory (STM). The concept of STM has been first in-
troduced in [ST97], and has been the focus of many research over recent years (see
[MIS05, CS06, HG06, HLM06, RFF06] among others). In this context, a trans-
action is a sequence of operations (read or write) on memory that are executed in
isolation. The isolation property ensures that the result of executing two transac-
tions concurrently is equivalent to any sequential execution of these transactions.
In contrast, the module-order property ensures that the concurrent execution of two
transactions (i.e., computations) is equivalent to the sequential execution in which
the transactions are initiated in the same order as in the concurrent execution. So,
the isolation property does not ensure that events are handled in a specific order,
which is a necessary property in our context.

There is a second major difference between STM and our work. Most of STM
implementations assume that a transaction can be aborted, and then rollbacked
(i.e., all the effects of the transaction are cancelled). In our context, this is not pos-
sible, since transactions have side effects. For instance, a transaction may result in
sending a message through the network. Such a message cannot be trivially can-
celled. To prevent this problem (known as the output commit problem [EAWJ02]),
the message must be delayed until the transaction commits (i.e., successfully termi-
nates). However, delaying the message may significantly decrease the performance
of protocol stacks.

Isolation in Database Systems. Similarly to STM, transactions in database sys-
tems are executed in isolation, and thus the above comments about STM are also
relevant in the context of databases. Note that transactions in databases ensure
other properties in addition to isolation (i.e., durability, atomicity and consistency).
However, these properties are irrelevant in our work.

Quite a large number of concurrency control algorithms have been proposed
to ensure isolation in centralized or distributed database systems. The algorithms
generally fall into one of the following two basic categories: locking algorithms
and non-locking algorithms. A comprehensive study of such algorithms can be
found in [BHG87].

Our schedulers have some resemblance with the basic two-phase locking (the
most basic locking algorithm). Similarly to the two-phase locking algorithm which
takes the locks on the resources (modules) that are accessed by a transaction (in
the 1st phase) and releasing the locks (in the 2nd phase), our schedulers order
a transaction with respect to other transactions accessing shared resources using
one list per resource (in the 1st phase), and remove the transaction from the lists
(in the 2nd phase). However, the first phase in our schedulers is non-blocking,
which allows two computations to access different resources in parallel, even if
they access a common set of resources.

As in implementations of STM, non-locking algorithms may result in aborting
transactions. Therefore, the output commit problem (and its consequences in the
context of protocol stacks) can also be observed with such algorithms.
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Resource Allocation. Methods for deadlock avoidance in allocating resources
[Tan01, SGG02] are also relevant to our work, since our schedulers must ensure
that each computation C (thread) can access the modules (resources) that handle
an event of C. The banker’s algorithm [Dij02] is one of the methods for deadlock
avoidance that allows the highest level of concurrency. Roughly speaking, this
algorithm considers each resource request as it occurs, and assigns the resource
to a thread only if there is a guarantee that no deadlock can occur in the future.
Similarly to our schedulers, this algorithm requires to know a priori the resources
used by each thread. However, in our context, the resources can be easily computed
by the scheduler itself, which is not the case with the banker’s algorithm. More
precisely, when a computation starts, it does not have to declare which resources
will be accessed, while in the banker’s algorithm, processes must explicitly provide
this information.

8.7 Conclusion

We proposed in this chapter a correctness property for concurrent execution in
protocol stacks and we have shown how the property can be relaxed in order to
increase the level of concurrency. We presented afterwards several schedulers to
transparently ensure our correctness properties, i.e., our schedulers require a mini-
mum information from the stack programmer to ensure correct concurrent execu-
tions. All the schedulers have been implemented within our experimental protocol
framework SAMOA, which allowed us to measure the amount of concurrency in-
duced by our schedulers. The measures showed that our schedulers introduce a
relatively high level of concurrency in our group communication stack.

We have also conducted some experiments to observe the gain introduced by
concurrency. Unfortunately, the results that we obtained did not allow us to con-
clude that concurrency improves performance in the context of group communi-
cation stacks. However, we strongly believe that better results can be obtained by
using machines with a sufficient number of processors or cores. The current de-
velopment in the area of multiprocessor machines requires further experiments in
order to validate (or invalidate) this hypothesis.
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Conclusion

9.1 Research Assessment

The thesis has proposed two techniques to improve the performance of group com-
munication middleware. First, we provided solutions to dynamic protocol update,
so that group communication middleware can adapt to environment changes. Sec-
ond, we investigated solutions to introduce concurrency within group communica-
tion middleware in order to take advantage of multiprocessor machines. We now
assess the main contributions of the thesis in more details.

Modular Approach to Dynamic Protocol Update (DPU). We have proposed
a simple approach to DPU, and compared it with two of the most representative
existing solutions [vRBH+98, CHS01]. Our comparison showed that our solution
has some advantages over these solutions. First, our solution is highly modular: it
does not require to extend the updateable protocols. Second, our solution enforces
DPU to be only based on the specification of the updateable protocol rather than on
its implementation, which facilitates the verification of DPU. Third, our solution is
highly flexible, e.g., it allows a single protocol to be replaced at a time (and does
not require to replace the whole middleware in order to update a single protocol).

Predicate-Based Approach to Characterize DPU Protocols. We have intro-
duced an elegant approach to characterize DPU protocols with a set of rules based
on predicates that apply to group communication protocols. These rules concisely
describe the scope of applicability of DPU protocols, i.e., they allow us to easily
determine if a given protocol can be replaced by a DPU protocol. Furthermore,
the rules can be easily verified independently from each other, which simplifies
correctness proofs of DPU protocols.

DPU Protocols to replace Group Communication Protocols. We have described
four DPU protocols that allow us to replace most protocols of a group communi-
cation middleware. More specifically, we have first presented a very simple DPU
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protocol that is mostly dedicated to the replacement of low-level protocols such as
reliable channels, failure detectors and reliable broadcast. Then we have designed
and verified three more complex DPU protocols to replace respectively (1) consen-
sus protocols, (2) local ordering protocols (e.g., reliable fifo), and (3) global order-
ing protocols (e.g., atomic broadcast). Furthermore, we have evaluated our DPU
protocols for consensus and global ordering protocols. Our evaluation showed that
the performance overhead induced by these DPU protocols is acceptable. This
showed that our DPU protocols can be used to implement efficient adaptive group
communication middleware.

Service Interface: A New Abstraction to Implement Adaptive Group Com-
munication Middleware. We have introduced a new abstraction, called service
interface, which simplifies the implementation of adaptive group communication
middleware. We have then compared service interfaces with events, a well-known
and widely-used abstraction to implement (adaptive) group communication mid-
dleware. The comparison highlighted the advantages of service interfaces over
events: service interfaces (1) adequately model protocol interactions, (2) simplify
protocol composition, and (3) provide integrated mechanisms to implement DPU.
All these advantages reduce the risk of programming errors during the development
of adaptive group communication middleware.

Transparent Concurrency. We have first identified a correctness property for
concurrent executions within group communication middleware, and discussed
how to relax the property in order to increase concurrency. We then described
several schedulers that ensure our property. These schedulers hide the complexity
induced by concurrency from the programmer (who has the impression that there
is no concurrency). Hence, introducing concurrency in a group communication
middleware is greatly simplified.

We also showed that our schedulers are efficient in the sense that they intro-
duce a relatively high level of concurrency. Unfortunately, we could not observe a
gain in performance resulting from the gain in concurrency. We believe that this is
mainly due to the few number of processors on the machines used for our exper-
iments, and strongly think that better results will be obtained with machines with
additional processors.

The SAMOA Protocol Framework. We have implemented all our ideas within
SAMOA, our service-interface-based protocol framework dedicated to the devel-
opment of concurrent and adaptive group communication middleware. SAMOA
is light-weight (3600 lines of Java code), and exhibits good performance with re-
spect to Cactus [Cac01, BHSC98], an efficient event-based framework. To validate
our framework, SAMOA was used to implement a concurrent and adaptive group
communication middleware based on (1) the Fortika toolkit [MRS06, Men06] and
(2) the DPU protocols that have been presented in the thesis.
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9.2 Open Questions and Future Research Directions

DPU Protocols for Other System Models. All DPU protocols that have been
presented in the thesis assume a crash-stop model with static groups. However, we
believe that these DPU protocols can be rather easily adapted to different system
models. For instance, in our opinion, our DPU protocol to replace global order-
ing protocols requires only slight modification in order to correctly replace atomic
broadcast protocols designed for the crash-recovery model with static groups (e.g.,
[MS05]). The main modification is to periodically save the structure of protocol
stacks (i.e., module bindings and protocols composing the stack), so that crashed
stacks can recover with a consistent state.

State Transfer. We discussed in Section 3.5 the problem of transferring some
state from the protocol that gets replaced to the new protocol when the replacement
occurs. Our approach to DPU currently does not consider this problem, but we
believe that it can be extended to allow state transfer. This raises several issues:
for instance, it should be clearly defined which part of the protocol state must be
transferred (e.g., the state that is particular to a given implementation (protocol)
should not be transferred). We are considering to extend our approach with state
transfer as a future work.

Dynamic Addition/Removal of DPU Protocols. We showed in Chapter 6 that
our DPU protocols induced some performance overhead when no replacement oc-
curs. We think that this cost can be suppressed with the following approach. Ini-
tially, the group communication middleware does not contain any DPU protocols.
A DPU protocol is dynamically added to the middleware only when a replace-
ment is required, and dynamically removed immediately after the replacement ter-
minates. We planned to extend our approach to DPU in order to allow dynamic
addition and removal of DPU protocols.

Efficient Self-Adaptive Group Communication Middleware. We discussed in
Section 3.4 some solutions, based on DPU, to render a group communication mid-
dleware self-adaptive. However, to our knowledge, none of these solutions propose
efficient strategies for self-adaptation. For instance, it is not clear which environ-
ment changes can be expected in practice, and which protocols are optimal for
a given environment. Therefore, we think that an interesting continuation of our
work is to design efficient self-adaptation strategies, and implement them within
our adaptive group communication middleware.

Transparent Concurrency and Further Experimental Research. As mentioned
in Chapter 8, additional experiments with powerful multiprocessor machines (with
more than 2 processors or cores) are required in order to show that concurrency
improves performance of group communication middleware. Apart from this, we
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believe that some additional issues can be explored to improve concurrency within
group communication middleware. For instance, it is not clear yet if one thread per
computation (which is the case of our implementation) is a better strategy than one
thread per protocol. In addition, we think that our execution model can be slightly
relaxed to improve concurrency, e.g., by allowing several events of the same com-
putation to be executed in parallel.
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Appendix A

Scheduler for the Relaxed
Module-Order Property

Algorithm 9 describes in details our simple relaxed module-order scheduler (that
is briefly presented in Section 8.3). It assumes that, upon triggering of an event e
(internal or external), the set of modules that may handle an event that belongs to
the critical path initiated by e is passed as a parameter of the methods internal-
Trigger and externalTrigger (see parameter dep in lines 7 and 11). If event e does
not initiate a critical path, we assume that the set dep is empty. Similarly to the
simple module-order scheduler, this set can be easily computed by the scheduler
if, for each handler h, the programmer specifies the type of the events that may be
triggered by h. In addition, the programmer has to specify the critical event types.

Similarly to computations, a critical path is identified by an integer. We denote
by P(e), the critical path to which event e belongs. If event e is not critical (and
thus, does not belong to a critical path) and only in this case, P(e) is equal to zero.

Similarly to the simple module-order scheduler, Algorithm 9 maintains the ar-
rays of lists modules and computations. However, the list modules[P ] orders
critical path instead of computations. In addition, Algorithm 9 maintains an addi-
tional array of lists, called criticalPaths, which contain for each critical path the
events that have not been executed. We now describe how the scheduler ensures
the module-order property by describing the following procedures:

• externalTrigger(e, dep) first performs the task related to the triggering of an
event by calling internalTrigger at line 8 (see below). Then, the new task that
executes the computation of e is initiated (line 9), and the identifier nextId
is incremented to correspond to the next computation (line 10).

• internalTrigger(e, dep) first adds the event e to the list of events of the com-
putation (line 12). Then, if the event initiates a critical path (i.e., dep 6= nil),
the variable nextPId (1) is added to the lists modules[P ], such that P ∈
dep, and (2) is incremented to correspond to the next critical path (lines 13-
16). Finally, if the event is critical (i.e., P(e) 6= 0), event e is added to the
list criticalPath[P(e)] (lines 17-18).
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• next(id) returns an event e of the computation identified by id, such that
there is no event e′ of computation id such that P(e′) < P(e) and e′ has not
been executed (lines 19-21).
• startHandling(e) blocks until P(e) is at the head of all lists of modules that

handle e if and only if e is critical (lines 22-25).
• endHandling(e) first updates the list computations[C(e)] at line 27. If

event e is critical, it is removed from the list corresponding to its critical path
(line 29). Finally, when this list is empty (i.e., the critical path terminates),
the identifier P(e) is removed from all lists modules[P ] that contain P(e)
(lines 30-33).

Algorithm 9 Simple Scheduler for the Relaxed Module-Order Property
1: Initialisation:
2: modules[ ]← [λ, ....] {The lists of critical paths that may execute a given protocol module;

one list per protocol module; all lists are initially empty (λ)}
3: computations[ ]← [λ, ...] {The lists of events that are triggered but not handled;

one list per computation; all lists are initially empty (λ)}
4: nextCId ← 1 {The identifier for the next computation to be initiated}
5: criticalPaths[ ]← [λ, ...] {The lists of events that are triggered but not handled;

one list per critical path; all lists are initially empty (λ)}
6: nextPId ← 1 {The identifier for the next critical path to be initiated}

7: procedure externalTrigger(e, dep)
8: internalTrigger(e, dep)

9: new task computation(nextCId , e)
10: nextCId ← nextCId + 1

11: procedure internalTrigger(e, dep)
12: add e to the end of list computations[C(e)]

13: if dep 6= ∅ then {Event e starts a critical path}
14: for all P ∈ dep do
15: add nextPId to the end of the list modules[P ]

16: nextPId ← nextPId + 1

17: if P(e) 6= 0 then {Event e is part of a critical path}
18: add e to the end of list criticalPaths[P(e)]

19: procedure next(id)
20: pathId← minimal value of P(e) such that e ∈ computations[id]
21: return any event e ∈ computations[id] such that P(e) = pathId (nil if computations[id] = λ)

22: procedure startHandling(e)
23: if P(e) 6= 0 then {Event e is part of a critical path}
24: for all modules P such that P handles event e do
25: wait until P(e) is at the head of list modules[P ]

26: procedure endHandling(e)
27: remove e from the list computations[C(e)]

28: if P(e) 6= 0 then {Event e is part of a critical path}
29: remove e from list criticalPaths[P(e)]
30: if criticalPaths[P(e)] = λ then {The critical path of e terminated}
31: for all modules P do
32: if P(e) ∈ modules[P ] then
33: remove P(e) from list modules[P ]
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