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Résumé

L’un des caractéristiques des systèmes répartis modernes est que les pannes y sont
une norme plutôt qu’une exception. Dans un grand nombre de cas, ces pannes ne
sont pas bénignes. Internet peut par exemple provoquer de nombreux comporte-
ments malicieux (également appelés Byzantins ou arbitraires) et asynchrones. En
conséquence, la recherche dans le domaine des systèmes repartis asynchrones et
tolérants aux pannes Byzantines (TPB) a fleurit.
La tolérance au comportement arbitraire et à l’asynchronisme demande des

algorithmes très sophistiqués. Cela est en particulier le cas pour les solutions
TPB qui visent à assurer les propriétés comme: (a) la résilience optimale, i.e., la
tolérance à un aussi grand nombre de pannes Byzantines que possible et (b) la
performance optimale par rapport à une métrique de complexité adéquate.
La plupart des algorithmes TPB sont développés è partir de zéro ou par mod-

ification de solutions existantes de manière non modulaire, ce qui rend ces algo-
rithmes difficiles à comprendre et gène leur adoption. Nous attribuons cette com-
plexité au manque d’abstractions adéquates pour la programmation asynchrone
TPB. La motivation de cette thèse est de proposer les abstractions réutilisables
pour mettre des algorithmes répartis asynchrones TPB qui ont une résilience
et/ou une complexité optimales, avec un accent fort sur l’une des importantes
métriques de complexité - la complexité en temps (également appelée la latence).
Les abstractions proposées dans cette thèse sont construites avec comme ob-

jectif trois applications réparties fondamentales: (a) le stockage écriture/lecture
(également appelé le registre), (b) le consensus et (c) la réplication de machine
d’état ("state machine replication" - RME). Dans cette thèse, nous expliquons
comment utiliser nos abstractions dans ces applications pour inventer des algo-
rithmes asynchrones TPB, caractérisés par la meilleure complexité parmi tous les
algorithmes que nous connaissons, outre la résilience optimale.
Nous présentons tout d’abord la notion de système de quorums raffinés (SQR)

d’un ensemble S comme l’ensemble de trois classes de sous-ensembles de S: les
quorums de la première classe sont également des quorums de la deuxième classe,
eux-mêmes étant également des quorums de la troisième classe. Les quorums de
la première classe ont de grandes intersections avec tous les autres quorums, les
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quorums de la deuxième classe ont typiquement des intersections plus petites avec
ceux de la troisième classe, ces derniers correspondent simplement à des quorums
traditionnels. L’abstraction de systèmes de quorums raffinés aide la conception
d’algorithmes tolérant la concurrence entre les processus, l’asynchronisme d’une
longueur indéfinie et un grand nombre des pannes, néanmoins qui se réagissent
vite si peu de pannes ce produisent, si le système est synchrone et s’il n’y a pas
de concurrence, i.e., sous les conditions qui sont considérés fréquentes en pra-
tique. En d’autres mots, les SQR aident combiner la résilience optimale avec la
latence du meilleur cas optimale. Intuitivement, sous les conditions synchrones et
sans concurrence, l’implémentation d’un objet reparti faciliterait l’opération si le
quorum de la première classe est accédé, puis se dégraderait gracieusement selon
qu’un quorum de la deuxième ou de la troisième classe est accédé. Notre notion
de RQS a été inventée en supposant un adversaire général, et ceci essentielle-
ment peut permettre aux algorithmes qui dépendent de system RQS de relâcher
l’hypothèse de pannes indépendants des processus. Nous illustrons le pouvoir
des RQS en présentant de nouvelles implémentations optimales d’un stockage
atomique et un algorithme de consensus.
Notre deuxième abstraction est un nouveau mécanisme d’estampillage nommé

les estampilles à haute définition (eHD), qui pourraient être vues comme une
variante des horloges matricielles. Grosso modo, une estampille à haute défini-
tion contient une matrice d’estampilles locales de (un sous-ensemble de) processus
tel que vu par (un sous-ensemble) des autres processus. Complémentaires aux
SQR, les eHD simplifient la conception d’algorithmes répartis TPB qui combi-
nent la résilience optimale et la latence au pire cas optimale. Nous appliquons les
estampilles à haute définition afin de concevoir des algorithmes de stockage écri-
ture/lecture dans lesquels les eHDs sont utilisées pour la détection et le filtrage
des processus Byzantins, ce qui ouvre la voie à des algorithmes de stockage TPB
qui combinent la résilience optimale avec la latence au pire cas optimale.
Finalement, nous introduisons Abstract, une abstraction générique qui simpli-

fie la tache notoirement difficile du développement des protocoles de réplication
de machine d’état TPB. Abstract ressemble à une réplication de machine d’état
et pourrait être utilisée afin de rendre n’importe quel service partagé tolérant
aux pannes Byzantines, avec une exception: elle pourra parfois abandonner la
requête de client. La condition de non trivialité sous laquelle Abstract ne pourra
pas abandonner est un paramètre générique. Nous voyons un protocole RME-
TPB comme une composition d’instances d’Abstract développées et analysées
indépendamment. Afin de illustrer notre approche, nous décrivons deux nou-
veaux algorithmes TPB caractérisés par une résilience optimale. Le première,
qui utilise nos quorums raffinés, a la plus petite latence parmi tous les protocoles
RME-TPB que nous connaissons dans les périodes synchrones qui sont libres
de concurrence et pannes. Le deuxième algorithme à le débit le plus haut en
périodes synchrones sans pannes; cet algorithme soutient l’applicabilité générale
d’Abstract en développant des services partagés TPB caractérisés par une com-
plexité optimale, au delà de la complexité en temps.

Mots-clés: asynchronisme, complexité, consensus, système de stockage réparti,
résilience optimale, réplication de machine d’état.



Abstract

In modern distributed systems, failures are the norm rather than the exception.
In many cases, these failures are not benign. Settings such as the Internet might
incur malicious (also called Byzantine or arbitrary) behavior and asynchrony.
As a result, and perhaps not surprisingly, research on asynchronous Byzantine
fault-tolerant (BFT) distributed systems is flourishing.
Tolerating arbitrary behavior and asynchrony calls for very sophisticated al-

gorithms. This is in particular the case with BFT solutions that aim to pro-
vide properties such as: (a) optimal resilience, i.e., tolerating as many Byzantine
failures as possible and (b) optimal performance with respect to some relevant
complexity metric.
Most BFT algorithms are built from scratch or by modifying existing solu-

tions in a non-modular manner, which often renders these algorithms difficult to
understand and, consequently, impedes their wider adoption. We attribute this
complexity to the lack of sufficient number of adequate abstractions for asyn-
chronous BFT distributed computing.
The motivation of this thesis is to propose reusable abstractions for devis-

ing asynchronous BFT distributed algorithms that are optimally resilient and/or
have optimal complexity, with strong focus on one of the most important com-
plexity metrics — time complexity (or latency). The abstractions proposed in
this thesis are devised with three fundamental distributed applications in mind:
(a) read/write storage (also called register), (b) consensus and (c) state machine
replication (SMR). We demonstrate how to use our abstractions in these appli-
cations to devise asynchronous BFT algorithms that feature the best complexity
among all algorithms we know of, in addition to optimal resilience.
First, we introduce the notion of a refined quorum system (RQS) of some set

S as a set of three classes of subsets (quorums) of S: first class quorums are
also second class quorums, themselves being also third class quorums. First class
quorums have large intersections with all other quorums, second class quorums
typically have smaller intersections with those of the third class, the latter simply
correspond to traditional quorums. The refined quorum system abstraction helps
design algorithms that tolerate contention (process concurrency), arbitrarily long
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periods of asynchrony and the largest possible number of failures, but perform
fast if few failures occur, the system is synchronous and there is no contention,
i.e., under conditions that are assumed to be frequent in practice. In other words,
RQS helps combine optimal resilience and optimal best-case time complexity. In-
tuitively, under uncontended and synchronous conditions, a distributed object
implementation would expedite an operation if a quorum of the first class is ac-
cessed, then degrade gracefully depending on whether a quorum of the second
or the third class is accessed. Our notion of RQS is devised assuming a general
adversary structure, and this basically allows algorithms relying on RQS to relax
the assumption of independent process failures. We illustrate the power of refined
quorums by introducing two new optimal BFT atomic object implementations:
an atomic storage and consensus algorithm.
Our second abstraction is a novel timestamping mechanism called high reso-

lution timestamps (HRts), which can be seen as a variation of a matrix clocks.
Roughly speaking, a high resolution timestamp contains a matrix of local times-
tamps of (a subset of) processes as seen by (a subset of) other processes. Com-
plementary to RQS, HRts simplify the design of BFT distributed algorithms
that combine optimal resilience and worst-case time complexity. We apply high-
resolution timestamps to design read/write storage algorithms in which HRts are
used to detect and filter out Byzantine processes, which paves the path to the first
BFT storage algorithms that combine optimal resilience with optimal worst-case
time complexity.
Finally, we introduce ABsTRACT (Abortable Byzantine faulT-toleRant stAte

maChine replicaTion), a generic abstraction that simplifies the notoriously diffi-
cult task of developing BFT state machine replication algorithms. ABsTRACT
resembles BFT-SMR and it can be used to make any shared service Byzantine
fault-tolerant, with one exception: it may sometimes abort a client request. The
non-triviality condition under which ABsTRACT cannot abort is a generic pa-
rameter. We view a BFT-SMR algorithm as a composition of instances of AB-
sTRACT, each instance developed and analyzed independently. To illustrate our
approach, we describe two new optimally resilient BFT algorithms. The first,
that makes use of our refined quorums, has the lowest time complexity among
all BFT-SMR algorithms we know of, in synchronous periods that are free from
contention and failures. The second algorithm has the highest peak throughput
in failure-free and synchronous periods; this algorithm argues for general appli-
cability of ABsTRACT in developing BFT shared services that feature optimal
complexity, beyond the time complexity metric.

Keywords: asynchrony, complexity, consensus, distributed storage, optimal re-
silience, state-machine replication.
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viii

[AGGV05] G. Avoine, F. C. Gärtner, R. Guerraoui and M. Vukolić.
Gracefully degrading fair exchange with security mod-
ules. In Proceedings of the 5th European Dependable
Computing Conference (EDCC), pages 55–71, 2005.

[DGLV05] P. Dutta, R. Guerraoui, R. R. Levy and M. Vukolić.
How fast can a distributed atomic read be? Technical
Report LPD-REPORT-2005-001, EPFL, School of Com-
puter and Communication Sciences, Lausanne, Switzer-
land. 2005.

[GLV06] R. Guerraoui, R. R. Levy and M. Vukolić. Lucky
read/write access to robust atomic storage. In Pro-
ceedings of the IEEE International Conference on De-
pendable Systems and Networks (DSN), pages 125–136,
2006.

[GV06] R. Guerraoui and M. Vukolić. How fast can a very robust
read be? In Proceedings of the 25th ACM Symposium
on Principles of Distributed Computing (PODC), pages
248–257, 2006.

[GV07] R. Guerraoui and M. Vukolić. Refined quorum sys-
tems. In Proceedings of the 26th annual ACM Sympo-
sium on Principles of Distributed Computing (PODC),
pages 119–128, 2007. The paper is invited to the special
issue of Distributed Computing.

[GV08] R. Guerraoui and M. Vukolić. A scalable and oblivious
atomicity assertion. In Proceedings of the 19th Interna-
tional Conference on Concurrency Theory (CONCUR),
pages 52–66, 2008.

[GQV08] R. Guerraoui, V. Quéma, and M. Vukolić. The next
700 BFT protocols. Technical Report LPD-REPORT-
2008-008, EPFL, School of Computer and Communica-
tion Sciences, Lausanne, Switzerland. 2008.

[CGKV] G. Chockler, R. Guerraoui, I. Keidar and M. Vukolić.
Reliable distributed storage. IEEE Computer. To ap-
pear.



Contents

Résumé i

Abstract ii

Acknowledgements v

Preface vii

1 Introduction 3
1.1 Context . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.2 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.3 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.3.1 Refined Quorum Systems . . . . . . . . . . . . . . . . . . . 6
1.3.2 High-resolution timestamps . . . . . . . . . . . . . . . . . . 7
1.3.3 ABsTRACT (Abortable BFT-SMR) . . . . . . . . . . . . . 8

1.4 Roadmap . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2 Preliminaries 11
2.1 Processes and Algorithms . . . . . . . . . . . . . . . . . . . . . . . 11
2.2 Time Complexity . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.3 Distributed Storage . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.3.1 Fast Storage Implementations . . . . . . . . . . . . . . . . . 15
2.3.2 Safe, Regular and Atomic Storage . . . . . . . . . . . . . . 15

2.4 Consensus . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

3 Refined Quorum Systems 19
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

3.1.1 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . 21
3.1.2 Roadmap . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

3.2 Refined Quorum Systems . . . . . . . . . . . . . . . . . . . . . . . 23
3.2.1 Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . 23



x Contents

3.2.2 Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
3.3 Atomic storage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

3.3.1 Atomic storage algorithm . . . . . . . . . . . . . . . . . . . 27
3.3.2 Optimality . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

3.4 Consensus . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
3.4.1 Consensus Algorithm . . . . . . . . . . . . . . . . . . . . . . 38
3.4.2 Optimality . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

3.5 Correctness of the atomic storage algorithm . . . . . . . . . . . . . 51
3.6 Correctness of the consensus algorithm . . . . . . . . . . . . . . . . 62

4 Optimizing Worst Case Latency Using High-Resolution Timestamps 75
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
4.2 Lower Bound . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
4.3 Safe Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . 80

4.3.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
4.3.2 Read implementation . . . . . . . . . . . . . . . . . . . . . 84
4.3.3 Correctness . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

4.4 Regular Implementation . . . . . . . . . . . . . . . . . . . . . . . . 90
4.4.1 Performance optimization . . . . . . . . . . . . . . . . . . . 93
4.4.2 Correctness . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

4.5 Atomic storage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97
4.6 Server-Centric Model . . . . . . . . . . . . . . . . . . . . . . . . . . 98

5 Fast BFT Atomic Storage 99
5.1 A Fast BFT Atomic Storage Implementation . . . . . . . . . . . . 101

5.1.1 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . 101
5.1.2 Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101
5.1.3 Correctness of the Fast Implementation . . . . . . . . . . . 105

5.2 Lower Bound . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

6 ABsTRACT 115
6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

6.1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . 115
6.1.2 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . 116
6.1.3 Roadmap . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118

6.2 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118
6.3 System Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120
6.4 Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121

6.4.1 Abstract specification . . . . . . . . . . . . . . . . . . . . . 121
6.4.2 Abstract initialization and composition . . . . . . . . . . . 122
6.4.3 Building BFT-SMR using Abstract(s) . . . . . . . . . . . . 123
6.4.4 Byzantine clients . . . . . . . . . . . . . . . . . . . . . . . . 128

6.5 Abstract implementations . . . . . . . . . . . . . . . . . . . . . . . 128
6.5.1 Decentralized Abstract (DEC) . . . . . . . . . . . . . . . . 129
6.5.2 Chain Abstract . . . . . . . . . . . . . . . . . . . . . . . . . 134
6.5.3 Zyzzyva-like Abstract (AZyzzyva) . . . . . . . . . . . . . . 145
6.5.4 Implementing Backup using any BFT-SMR . . . . . . . . . 146



Contents 1

6.6 Implementation correctness . . . . . . . . . . . . . . . . . . . . . . 147
6.6.1 DEC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147
6.6.2 Chain . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149

6.7 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153
6.7.1 Latency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154
6.7.2 Throughput . . . . . . . . . . . . . . . . . . . . . . . . . . . 155
6.7.3 Fault scalability . . . . . . . . . . . . . . . . . . . . . . . . 159
6.7.4 Impact of slow clients . . . . . . . . . . . . . . . . . . . . . 160
6.7.5 Switching cost . . . . . . . . . . . . . . . . . . . . . . . . . 163
6.7.6 Lightweight checkpointing subprotocol . . . . . . . . . . . . 165

7 Concluding Remarks 167

List of Figures 181

List of Tables 183

Curriculum Vitæ 185



2 Contents



1
Introduction

1.1 Context

A distributed system consists of several entities (typically called processes) able
to compute and/or store information locally and communicate with each other in
order to achieve some common goal. Distributed computing is about computing
on such systems.

When compared to traditional computing on a singe centralized server that rep-
resents a single point of failure and may be a performance bottleneck, distributed
computing solutions can offer fault-tolerance and increase availability, as well
as provide better scalability. Furthermore, fault-tolerant distributed solutions
based on commodity hardware may be considerably cheaper than the expensive
dedicated centralized servers. Distributed computing solutions can also facilitate
deployment of new services, since such solutions are less subject to expensive
licenses and regulations; some examples include mobile ad hoc networks, sensor
networks and, of course, the Internet.

Two challenges underlie distributed computing: failures and asynchrony. By
increasing the number of processes performing the computation, failures become
the norm, rather than the exception. In addition, in many settings, it is very
risky to assume that these failures are of a benign type. For example, today, a
significant number of home and corporate networks are connected to the Internet,
which makes these networks a potential target for a malicious hacker, worm or
virus, to name just few threats. Simply put, the more players into the game, the
higher the risk of some of them being malicious.

Asynchrony means that a distributed solution cannot (always) rely on the net-
work to be delivering messages in a timely manner. Synchronous solutions, often
suitable for closed networks, expose very clearly their vulnerability: an attacker
may simply target the timely delivery of messages in order to compromise the
service. On the other hand, asynchrony, while tolerating unpredictable message
delays, poses a considerable challenge to distributed algorithm design since it
makes it impossible to distinguish slow processes from faulty ones.



4 CHAPTER 1. INTRODUCTION

1.2 Motivation
Above, we briefly discussed an obvious need for an extensive research in the area
of asynchronous distributed malicious-fault-tolerant computing. It is, therefore,
not surprising that ever since 1980, when Pease, Shostak and Lamport intro-
duced malicious failures in their seminal paper [PSL80] (they named malicious
failures Byzantine in [LSP82]) and opened a new chapter in the history of dis-
tributed computing, great number of papers on Byzantine fault-tolerant (BFT)
systems have been published. Two of the most important challenges addressed
by these BFT algorithms are to provide: (a) optimal resilience, i.e., tolerating as
many Byzantine processes as possible (see e.g., [LSP82,CL99,MAD02a,CML+06,
ACKM06,KAD+07]) and (b) optimal performance with respect to some relevant
complexity metric. One of the obvious performance metrics of distributed al-
gorithms is their time complexity (or latency) that, roughly speaking, measures
how quickly a given algorithm can terminate. Time complexity is typically mea-
sured by the number of message delays (or rounds of communication) before
an algorithm terminates [Awe85, Sch97] (see Figure 1.1(a) for illustration). Fre-
quently, when client processes are accessing passive processes, e.g., commodity
disks, a communication round-trip (equivalent to two rounds of communication)
is used as a time complexity metric (see Figure 1.1(b)). BFT algorithms that op-
timize time complexity are numerous (e.g., [CL99,GWGR04,CML+06,AGG+05,
RC05,MA06, Zie06, ACKM06,KAD+07,ACKM07]). The other important met-
rics are throughput, i.e., the number of requests that can be treated per time unit
(e.g., [GGL03,vRS04,GLPQ06,GKLQ07]) and message-complexity, i.e., the total
number of messages exchanged (e.g., [CKS00,GGK07]).

p
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(a) 3 message delays (rounds)

client
process

d
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k
s

(p
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v
e)

(b) 2 round-trips (4 rounds)

Figure 1.1: Time complexity (latency)

The motivation of this thesis is to propose reusable abstractions for devising
asynchronous BFT distributed algorithms that are optimally resilient and/or have
optimal complexity. The main focal complexity metric in this thesis is time com-
plexity (although we discuss some throughput optimal implementations as well).
In general, a point common to many BFT distributed algorithms, especially those
that aim at combining optimal resilience and optimal time complexity, is that
they are typically built from scratch (e.g., [CL99, KAD+07, AGG+05, MA06]),
or by modifying existing solutions in a non-modular manner (e.g., [CML+06]).
This can often render such BFT algorithms difficult to understand and, conse-
quently, impede their wider adoption. We attribute this complexity to the lack of
a sufficient number of adequate abstractions for asynchronous BFT distributed
computing, especially those that are envisioned for devising optimally resilient
and/or latency optimal BFT algorithms. The goal of this thesis is to propose
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such abstractions.
The abstractions presented in the thesis are designed with three fundamental

problems in mind:

1. Read/write storage (also called read/write register) [Lam86,ABD95,MR98,
JCT98]. Distributed storage algorithms constitute an active area of research
and are appealing alternatives to classical centralized storage systems based
on specialized hardware [SFV+04, ACC+05, CDH+06,KHGFZ04]. In dis-
tributed storage, client processes access the base objects over which storage
is implemented, such that the end user is provided with an illusion of ac-
cessing centralized storage. At the heart of such distributed storage lies a
read/write storage abstraction (register). This thesis focuses on a funda-
mental class of read/write storage algorithms that support a single writer
and multiple readers (SWMR) [ABD95, ACKM06, ACKM07]. The chal-
lenge, when devising distributed storage algorithms, is to ensure that reads
and writes have low latency while (a) tolerating asynchrony and the (pos-
sibly Byzantine) failures of any number of clients that access the storage
(wait-freedom [Her91]), as well as the largest possible number of Byzantine
base object failures (optimal resilience) and (b) ensuring strong consistency.
The most desirable consistency criterion for distributed storage is atom-
icity [Lam86] (also called linearizability [HW90]). Atomicity provides an
illusion to the clients that storage is accessed sequentially. Other (weaker)
consistency criterions include safety and in particular regularity [Lam86].
Safe storage guarantees that a read which is not concurrent with any write
returns the last value written. The applicability of safe storage is limited
since a read concurrent with a write may return an arbitrary value. On the
other hand, regular storage strengthens safety by ensuring that read always
returns a value actually written, and is not older than the value written by
the last preceding write.

2. Consensus [LSP82, FLP85, DLS88, CT96, Lam98]. Consensus is probably
the most fundamental problem in distributed computing. In (BFT) con-
sensus, processes propose a value and are required to agree on a common
value, such that: (a) no two correct (non-faulty) processes decide differently
(agreement), (b) every correct process eventually decides (termination), and
(c) if all processes that propose a value are correct, then the decision value
is one of the proposed ones.
Unfortunately, asynchronous fault-tolerant consensus is impossible [FLP85],
even with a single non-Byzantine process failure.1 Therefore, in this thesis,
under the notion of asynchronous consensus algorithms, we consider indul-
gent [Gue00] algorithms, i.e., those that tolerate arbitrarily long periods
of asynchrony and that provide agreement and validity even in the purely

1The impossibility result of [FLP85] applies to deterministic consensus. On the other hand,
this is not the case if a probabilistic form of consensus is assumed [CKS00,BO83,Rab83], in
which consensus properties may sometimes be violated (albeit with negligible probability).
However, the focus of this thesis is on deterministic object implementations (although many
of our abstractions and results are relevant in the probabilistic case as well).
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asynchronous system. However, to circumvent the impossibility of [FLP85]
and make termination possible, we study the consensus problem in an even-
tually synchronous model [DLS88,Gaf98] in which (roughly speaking) there
is a time, not known to the processes, after which the system becomes syn-
chronous and messages are delivered in a timely manner.

3. State-machine replication (SMR) [Lam78, Sch90, Lam98]. State machine
replication is a software technique for tolerating failures using commodity
hardware. The critical service (be it storage, consensus, or any other ser-
vice) to be made fault-tolerant is modeled by a state machine. Several,
possibly different, copies of the state machine are then placed on different
nodes. Clients of the service access the replicas through a replication algo-
rithm which ensures that, despite concurrency and failures, replicas perform
client requests in the same order. At the heart of a SMR algorithm lies a
repeated form of consensus.

1.3 Contributions
This thesis proposes the following abstractions for asynchronous BFT distributed
computing:

1.3.1 Refined Quorum Systems

The first proposed abstraction is refined quorum systems (RQS). Quorum systems
are powerful mathematical tools to reason about distributed implementations of
shared objects, in particular read/write storage (see e.g., [ABD95,MR98,JCT98])
and consensus abstractions. More specifically, quorum systems have been used to
reason about algorithms that tolerate arbitrarily long periods of asynchrony and
process failures (i.e., indulgent algorithms). Originally, a quorum system was de-
fined as a set of subsets that intersect [Gif79] and this notion was key to reasoning
about crash-resilient (non-Byzantine) asynchronous algorithms. More sophisti-
cated forms of quorum systems have been introduced to cope with Byzantine
failures: these require larger intersections among subsets [MR98].
However, while being very useful to reason about the resilience dimension, tra-

ditional quorums (be they simple or Byzantine) are not adequate to capture the
complexity dimension. This is particularly important given the appealing na-
ture of optimistic [Ped01] distributed object implementations, e.g., [Sch97,CL99,
BGMR01,GWGR04,RC05,AGG+05,Lam06b,CBS06,MA06,CML+06,Zie06,KAD+07].
In addition to being indulgent, these implementations are also geared to re-
duce best-case complexity, i.e., latency under situations of synchrony and no-
contention, which are typically argued to be “normal”, i.e., the most frequent in
practice. More specifically, these implementations are tuned to expedite opera-
tions in uncontended and synchronous situations, provided “enough” servers/base
objects are accessed. This very notion of “enough servers to expedite an opera-
tion” is crucial, but is not captured by traditional quorum systems. It is natural
to search for a mathematical abstraction that captures it in precise yet general
terms. This is the motivation behind refined quorum systems.
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In short, an RQS of some set of elements S is a set of three classes of sub-
sets (quorums) of S: first class quorums are also second class quorums, which
are also third class quorums. Quorums of the first class have large intersections
with quorums of other classes, those of the second class typically have smaller
intersections with those of the third class, the latter simply correspond to tra-
ditional quorums. In the context of a distributed object implementation, set S
would typically contain a set of failure-prone base object processes over which
some object abstraction (e.g., storage or consensus) is implemented. Intuitively,
under uncontended and synchronous conditions, a distributed object implemen-
tation would expedite an operation if a quorum of the first class is available, then
degrade gracefully depending on whether a quorum of the second or the third
class is available. Moreover, (as detailed in Chapter 3) the RQS property of third
class quorums is anyway necessary to provide resilience, since it is necessary to
prevent network partitioning [MAD02a]. As a result, our RQS allow for com-
bining optimal resilience and optimal best-case complexity of asynchronous BFT
algorithms.
Furthermore, our refined quorum systems are designed to handle a general

adversary structure in which various subsets of processes can collude to defeat
the algorithm [HM97,MR98, JM03]. With such a general structure, we relax
the assumption of independent and identically distributed failures (assumed in
e.g., [CL99,GWGR04,RC05,AGG+05,CML+06,Lam06b,MA06,Zie06,KAD+07]).
We illustrate the power of our notion of refined quorum systems by introducing

two new atomic object implementations: (1) single-writer multi-reader atomic
storage and (2) consensus. As detailed in Chapter 3 of this thesis, each of the
two algorithms is interesting in its own right and is, in a precise sense, the first
fully optimal algorithm of its kind in terms of best case time complexity.

1.3.2 High-resolution timestamps

As described previously, refined quorum systems are a useful abstraction for com-
bining optimal best-case time complexity and optimal resilience of asynchronous
BFT algorithms. The question that naturally arises if one desires a complete pic-
ture is: what about the optimal worst-case time complexity? In this thesis, this
question is tackled from the perspective of read write-storage. Strictly speak-
ing, fault-tolerant asynchronous consensus is impossible even with one benign
failure [FLP85] and the notion of worst-case complexity is not clear.
We introduce a new timestamping [Lam78] mechanism called high-resolution

timestamps to achieve the first asynchronous BFT (safe and regular) storage
algorithm that combines optimal worst-case time complexity and optimal re-
silience. In effect, high resolution timestamps can be seen as a variation of ma-
trix clocks [WB84,RS96]. In matrix clocks, roughly speaking: (a) all processes in
the system maintain their own local timestamp, (b) all processes in the system
maintain the view on other timestamps in the system (i.e., copies of other times-
tamps), and (c) all processes maintain a copy of a view of every other process.
In contrast, in high-resolution timestamps: (a) not all processes are required to
maintain their own local timestamp (only clients are) and (b) clients do not store
copies of timestamps of other processes in the system; this information is stored
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only at base objects.
Basically, a high resolution timestamp consists of the traditional writer’s mono-

tonically increasing timestamp accompanied by the base objects’ view (i.e., their
latest copies) of the readers’ local timestamps. Evidently, high-resolution times-
tamps require readers to write (meta-data) into storage, in order to optimize
the (worst-case time) complexity. The fact that readers need to write in order to
achieve the optimal complexity follows from [ACKM06] and the lower bounds and
algorithms presented in Chapter 4. This observation is of independent interest
and complements the previous findings that readers need to write in order to im-
plement (regular) wait-free BFT storage with limited storage capacities [CGK07]
and fault-tolerant atomic storage [Lam86,ABD95].
High resolution timestamps allow our optimally resilient safe and regular stor-

age algorithms to have both reads and writes that complete in two round trips.
This complexity was proven optimal for the case of a write operation by [ACKM06],
whereas this thesis proves it optimal for the case of a read operation. Moreover,
by using our results and a simple transformation from regular to atomic stor-
age [GR06] the worst-case optimal latency of atomic BFT storage can be bounded
to between 2 and 4 round-trips (the exact latency remains an open problem).
We further complement these results by answering the following questions:

(1) is there a fast BFT implementation where none of the operations (read or
write) requires more than one communication round-trip? and (2) if yes, how
much resilience do we need to sacrifice in order to have such an implementation?
Clearly, fast implementations would be optimal in terms of time complexity.
Since the answer to the two question is known in the case of safe and regular
storage [MR98], our focus is on atomic storage. Our results, that in effect extend
the results of [DGLC04] from the crash-only fault model to BFT, answer the
first question affirmatively and precisely quantify the resilience tradeoff in the
hybrid failure model [TP88] (which distinguishes Byzantine and benign failures).
We express this tradeoff as a function of the number of readers R, the threshold
on the total number of faulty (i.e, Byzantine or crash-faulty) base objects t and
the threshold on the number of Byzantine base objects b (b ≤ t). Having these
parameters in mind, we establish a tight lower bound on the number S of base
objects required by a fast BFT atomic storage implementation — S ≥ (R+ 2)t+
(R+ 1)b+ 1.

1.3.3 ABsTRACT (Abortable BFT-SMR)

Finally, we present ABsTRACT, Abortable Byzantine faulT-toleRant stAte ma-
Chine replicaTion (simply written Abstract): a new abstraction that significantly
reduces the development and maintenance cost of BFT-SMR algorithms and
makes it significantly easier to develop efficient ones. Abstract resembles state
machine replication and it can be used to make any shared service Byzantine
fault-tolerant, with one exception: it may sometimes abort a client request. The
(non-triviality) condition under which Abstract cannot abort is a generic param-
eter.
At one extreme, one can for example specify a (useless) Abstract instance that

could abort in every execution. At the other extreme, one can prevent Abstract
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from ever aborting: this is exactly BFT-SMR. Interesting instances are those in
between, e.g., (a) an Abstract instance that cannot abort if there is no concur-
rency, asynchrony or failures, or (b) one that can abort only if there is asynchrony
or failures.

When a particular instance of Abstract aborts a client request, Abstract returns
an unforgeable (digitally signed) request history that can be used by the client
to “recover” using another instance of Abstract. This paves the path to the
composability of Abstract. Any composition of Abstract instances is possible; we
expect many of these to lead to interesting flexible BFT-SMR algorithms. In fact,
and to illustrate Abstract composability, this thesis presents Modular BFT-SMR:
a BFT-SMR algorithm built using two Abstract instances: (i) the first, which is
denoted as any Abstract, would typically be an Abstract with a weak non-triviality
condition that can be implemented very efficiently in a speculative [KAD+07] and
optimistic manner, whereas (ii) the second is a stronger Abstract (called Backup)
with a non-triviality property that guarantees not to abort a certain number of
requests k; this can easily be implemented on top of any BFT-SMR algorithm
(e.g., [AGG+05,CL99,CML+06,KAD+07]).

Such a modular approach allows for “black-box” code reuse and can signifi-
cantly reduce the development cost of new BFT-SMR algorithms. Namely, all
BFT-SMR algorithms we looked at (e.g., [AGG+05, CL99, CML+06,KAD+07])
consist of more than 20.000 lines of C++ code. Moreover, each of these algo-
rithms assumes certain “normal” conditions; as soon as these conditions are not
met, the algorithm fails to deliver its optimal performance.

On the other hand, developing new and mimicking existing BFT-SMR al-
gorithms using our Modular BFT-SMR scheme requires significantly less code
(sometimes less than 25%, as detailed in Chapter 6). Furthermore, the Abstract
composability allows for modular code extension in case of fluctuating “normal”
conditions: it suffices to switch to another, small-footprint, optimistic Abstract
box, which can be often implemented in a purely asynchronous system, without
worrying, e.g., about the complex BFT view-change and leader election [CL99]
mechanisms (captured within the Backup Abstract in our Modular BFT-SMR
scheme).

We also illustrate how new Abstract-based BFT-SMR algorithms can be devel-
oped by giving two optimistic Abstract implementations and plug these into our
Modular BFT-SMR scheme. The first Abstract implementation (called Decen-
tralized Abstract or simply DEC ) leverages our experience with refined quorum
systems (Section 1.3.1) to build a very optimistic, yet optimally resilient BFT-
SMR algorithm that outperforms all algorithms we know of in terms of time
complexity (latency) when there is no concurrency, asynchrony or failures. Its
C++ implementation improves the latency of [KAD+07] and [AGG+05] in such
executions by more than 33%. Our second optimistic Abstract implementation,
called Chain is the first chain-based [vRS04] BFT-SMR algorithm; it also out-
performs all algorithms we know of in terms of peak throughput in synchronous
and failure-free executions. Its C++ implementation improves the throughput
performance of [KAD+07] and [CL99] by up to 375%.
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1.4 Roadmap
Chapter 2 of our thesis gives our system model and important definitions used
in the remainder of the thesis. Chapter 3 presents our notion of refined quorum
systems (RQS) and gives our best-case optimal algorithms that use RQS. Chap-
ter 4 presents our safe and regular storage algorithms built using high-resolution
timestamps. These combine worst-case optimal time complexity and optimal
resilience. We extend these results in Chapter 5 by establishing a tight bound
on fast BFT atomic storage algorithms. Chapter 6 presents our ABsTRACT
abstraction, as well as our new throughput and latency optimal BFT-SMR algo-
rithms built around it. The thesis concludes in Chapter 7.



2
Preliminaries

2.1 Processes and Algorithms

We model processes as deterministic I/O automata [LR89]. Processes are in-
terconnected with point-to-point communication channels and communicate via
message-passing. The state of the communication channel chp,q between pro-
cesses p and q is modeled as a set msetp,q = msetq,p containing messages that are
sent by p to q (or vice versa) but not yet received processes (p and q are called
ends of the communication channel chp,q). We assume that every message m has
two tags which identify the sender and the receiver of the message.
We model a distributed algorithm as a collection of automata Ap, each assigned

to a process p. A computation of a process p proceeds in steps of Ap. A step of A
is denoted by a pair of process id and message set < p,M > (M might be ∅). In
step sp =< p,M >, a benign process p atomically does the following (we say that
p takes step sp): (1) (receive substep) p removes the messages of M from msetp,∗
(we also say: p receives the messages of M), (2) (computation substep) p applies
M and its current state stp to Ap, which outputs a new state st′p and a set of
messages M ′ to be sent, and p adopts st′p as its new state and (3) (send substep)
puts the output messages (M ′) in msetp,∗ (we also say: p sends the messages of
M ′). We say that channels are reliable if, for every message m and every process
p and q, if there is a step by q that puts a message m in msetq,p such that p is
the receiver of m and both q and p take an infinite number of steps of Aq and Ap
(respectively), then there is a subsequent step < p,M > such that m ∈ M (i.e.,
eventually, p receives m).
A Byzantine process [LSP82] pB (also called arbitrary faulty [JCT98]) does not

need to follow an automaton ApB assigned to it. In this thesis, we distinguish
two models that define the possible behavior of Byzantine processes:

1. In the first model, called unauthenticated, a Byzantine process pB can per-
form arbitrary actions: (a) pB can remove/put an arbitrary message m
from/into msetpB ,∗ at an arbitrary time t, and (b) pB can change its state
in an arbitrary manner. Still we assume that channels are secure, i.e., that
a Byzantine process pB cannot put (resp., remove) any message into (resp.,
from) the channel pB is not an end of (in practice, this is often achieved
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using message authentication codes (MACs) [MVO96]). Throughout the
thesis, unless explicitly stated otherwise, we assume an unauthenticated
Byzantine failure model.

2. The second model, called authenticated is strictly stronger than the unau-
thenticated model. Namely, in the authenticated model, we assume that
every non-Byzantine process (such processes are also called benign) can
produce cryptographic digital signatures. The functionality of the digital
signature scheme provides two operations: σ for signing and V for signa-
ture verification. The invocation of σ takes a process ID, say p and a bit
string m as parameters and returns a bit string sig, called signature. The
verification operation V takes a process ID p, and two bit strings m and
sig as parameters and returns a boolean. The verification function has the
property that V (p,m, sig) invoked by a benign process evaluates to true if
and only if process p executed σ(p,m) in some previous step. Furthermore,
no process (including Byzantine ones) other than p may invoke σ(p,m) (we
say signatures are unforgeable); hence, alternatively, we also write σ(p,m)
as σp(m) In the following, we refer to a pair (m,σp(m)) as mσp (we say that
m is an authenticated or (digitally) signed message). Moreover, if a benign
process can evaluate V (p,m, sig) to true (i.e., if sig = σp(m)), we say that
a pair (m, sig) contains a valid signature (or, alternatively, that (m, sig) is
valid).

Given any algorithm A, an execution of A is an infinite sequence of steps of
A taken by benign processes, and actions of Byzantine processes, such that the
following properties hold for every benign process p: (1) initially, for each benign
process q, msetp,q = ∅, (2) the current state in the first step of p is a special state
Init, and (3) for each step < p,M > of A, and for every message m ∈ M , p is
the receiver of m and ∃q,msetp,q that contains m immediately before the step
< p,M > is taken. A process p is correct in execution ex if p takes in ex an an
infinite number of steps of Ap. Moreover, we say that a benign process p fails by
crashing in ex if p takes a finite number of steps in ex. We say that a process is
faulty (in execution ex) if p is Byzantine or if it fails by crashing (in ex).
A partial execution is a finite prefix of some execution. A (partial) execution

ex extends some partial execution ex′ if ex′ is a prefix of ex. At the end of a
partial execution, all messages that are sent but not yet received are said to be
in transit.

2.2 Time Complexity
We assume that the system is asynchronous: there is no bound on message prop-
agation delays (i.e., we consider asynchronous algorithms). However, for ease
of presentation, we sometimes refer to a global clock that is not accessible to
processes.
In this thesis we rely on the definition of time complexity of an asynchronous

algorithm of [Awe85]. The (worst-case) time complexity (or latency) of an asyn-
chronous algorithm is the worst-case number of time units over all possible ex-
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ecutions from the start to the completion of the algorithm, assuming that the
propagation delay of every message sent from a correct process p to another cor-
rect process q is at most one time unit (of course, an asynchronous algorithm
must be correct with arbitrary propagation delays). In the above definition, the
propagation delay of message m is defined as the difference between the time re-
ceiver q receives m and the time sender p sends m. We sometimes refer to latency
of k time units as k message delays.
We also speak about best case latency; this is the worst case number of time

units measured not over all possible execution, but rather over a subset of execu-
tions that satisfy certain constraints (e.g., when the system is synchronous and
there is no concurrency or failures). In particular, we say that an asynchronous
system is synchronous (during time interval [t, t′]) if, for every two correct pro-
cesses p1 and p2, the propagation delay of every message sent by p1 to p2 (during
time interval [t, t′]) is at most one time unit ∆, where ∆ is known to all correct
processes. Similarly, we say that a set of processes P is synchronous if the above
holds for every two correct processes p1, p2 ∈ P .
Moreover, we assume that, when the system is synchronous, it takes negligible

time for a correct process p to take a step (by doing this, our latency metric be-
comes equivalent to the notion of the latency degree of [Sch97]). This applies to
both unauthenticated and authenticated model; however, it is worth noting that,
in practice, all known techniques that allow for the assumption on unforgeable
signatures are computationally expensive. Therefore, verifying and, in partic-
ular, sending signed messages in the authenticated model is considerably more
computationally expensive than receiving/sending plain messages in the unau-
thenticated model. Hence, the main focus of this thesis is to provide latency
efficient techniques that can be applied to the more general of two models, i.e.,
the unauthenticated model.

2.3 Distributed Storage

A distributed storage (or, simply, storage, also called a register [Lam86]) can be
viewed as a read/write abstraction implemented by a finite set S of processes
called base objects (we use also sometimes the notion of servers), and a distinct,
potentially unbounded, set of processes called clients. We assume that any par-
ticular client may be faulty, in contrast to only a fraction of base objects. Precise
assumptions on the number of allowed base object failures are problem specific
and are detailed in the following Chapters; however, we say that a storage algo-
rithm is optimally resilient if it tolerates the maximum possible number of base
object failures.
We further assume single-writer multi-reader (SWMR) storage, i.e., storage in

which the set clients has two distinct subsets, a singleton writer and a set readers
(with cardinality R). We assume clients and servers are related with reliable
point-to-point channels (defined as in Section 2.1). In this thesis we assume that
base objects do not intercommunicate (i.e., we assume no channels among base
objects). By doing this, we follow the frequently assumed model in distributed
and cluster-based storage research, motivated by storage area networks (SANs)
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and network attached storage (NAS) (see e.g., [GWGR04,ACC+05,CM05]), in
which base objects model commodity disks with read-modify-write (see [AW98])
capabilities [RFGN01]. While we give all our storage related results in the above
model, we also discuss how our respective results extend to the stronger model
where base objects can communicate among themselves as the first class processes
(we call such model the server-centric storage model).
A read/write storage is a shared object consisting of the following:

1. set of values D, and a special value val0 = ⊥ /∈ D (called the initial value),

2. set of operations write(v), v ∈ D and read()

3. set of responses D ∪ {ack},

4. sequential specification of storage is any sequence of read/write operations
such that the responses of operations comply with the following:
a) write(v) , x := v; return ack (where x is initialized to v0)
b) read() , return x

To access the storage, a client invokes an operation execution by taking a step
called an invocation step (when there is no risk of ambiguity we say operation
when we should be saying operation execution). Clients access the storage through
two operations: (1) write(v) (invoked by the writer), to write a value v in storage,
and (2) read() (invoked by readers), to read the value from storage. We say that
an operation op invoked by client c is complete if c takes a special response step
for op. In this thesis, we focus solely on wait-free [Her91] storage algorithms in
which every read/write operation invoked by a correct client eventually completes.
An algorithm execution ex is said to be well-formed, if (a) no benign client c

invokes a new operation in ex before all operations previously invoked by c have
completed in ex, and (b) no operation completes at a benign client before it is
invoked. In this thesis we consider only well-formed executions. An operation op
is said to be pending in an execution ex, if ex contains the invocation step of op,
but not its response step.
A history of a (partial) execution is a sequence of invocation and response

steps of read or write operations in the same order as they appear in the (partial)
execution. We say that a history H1 completes history H2 if H1 can be obtained
through the following modification of H2: for each incomplete invocation step
sp in H2, either sp is removed from H2, or any valid matching response for that
invocation is appended to the end of H2.
Moreover, we say that a complete operation op precedes an operation op′ (or,

alternatively, that op′ follows op) in execution ex (these definitions also extend
to execution histories) if the response step for op precedes the invocation step of
op′ in ex; we denote this by op ex op

′, where the index ex is omitted in places
where the execution (or the history) is evident from the context). Let op and op′
be two invoked operations in ex; if neither op  ex op

′), nor op′  ex op), we say
that op and op′ are concurrent (in ex). In addition, we say that an operation op
is uncontended if op is not concurrent with any write operation. We also say that
op is synchronous if the system is synchronous during the interval between the
invocation and completion of op.
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2.3.1 Fast Storage Implementations

In our storage model, in which there is no base object intercommunication, and
in which any particular client may fail, the message exchange pattern is that of
communication round-trips (we also say simply rounds), in which: (i) a client
c sends a message to (a subset of) base objects, (ii) a base object on reception
of a message from c, processes the received message (in a computation substep)
and sends a reply to c, and (iii) c collects certain number of such replies before
possibly proceeding to a subsequent round.
Therefore, we say that a storage implementation (algorithm) A completes in

n communication round-trips (rounds) if its time complexity is 2n. This naming
convention extends to individual read/write operations as well. Moreover, we say
that a storage implementation is fast if it completes in a single round. We also
extend this notion to individual read/write operations.
Furthermore, we generalize the notion of fast storage algorithms in two ways.

First, we define (m,P )–fast storage algorithms in the following way (where P is
a set of sets of base objects):

Definition 1. (m,P )–fast storage algorithm. Consider any synchronous and
uncontended operation op invoked by a correct client. We say that a storage
algorithm A is (m,P )–fast if in every execution of A in which some set P ∈P
contains only correct base objects, op completes in at most m rounds.

Second, we say that a storage implementation is a fast read (resp., fast write)
implementation if all read (resp., write) operations complete in a single round.
In other words, a fast storage implementation is at the same time a fast read
and a fast write implementation. However, a fast read implementation needs not
necessarily be a fast write one (and vice versa).

2.3.2 Safe, Regular and Atomic Storage

The notions of safe, regular and atomic storage were introduced by Lamport
in [Lam86]. A storage algorithm A is safe (resp., regular, atomic), if every ex-
ecution of A satisfies safety (resp., regularity, atomicity). In the following, we
give definitions of safety, regularity and atomicity restricted to our single-writer
setting, in which write operations in (well-formed) executions have a natural or-
dering which corresponds to their physical order. Denote by wrk the kth write an
execution (k ≥ 1), and by valk the value written by wrk. Recall that val0 = ⊥.
A (partial) execution satisfies safety if every uncontended read operation re-

turns (1) a value valk, if there is a write wrk such that wrk  rd (i.e., wrk
precedes rd) and there is no l > k such that wrl  rd (we say that wrk is the
last preceding write for rd), or (2) val0 in case there is no such a write. A read
concurrent with a write is allowed to return any value.
Similarly, we say that a (partial) execution ex satisfies regularity if it satis-

fies safety and, if every contended read returns a value written by one of the
concurrent writes or the value written by the last preceding write.
Finally, we define the atomicity property. Roughly speaking, an execution ex

satisfies atomicity if ex satisfies regularity and read inversion does not occur in
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ex, i.e., if a read rd′ follows some other read rd, then rd′ does not return an older
value than rd.
More formally, a (partial) execution satisfies atomicity, if for every history H ′

of any of its partial executions, there is a history H that completes H ′ and H
satisfies the properties A1-A3 below (Lemma 13.16 of [Lyn96]). Let Π be the
set of all operations in H. There is an irreflexive partial ordering ≺ of all the
operations in H such that: (A1) if op1 precedes op2 in H then it is not the
case that op2 ≺ op1, (A2) if op1 is a write operation in Π and op2 is any other
operation in Π, then either op1 ≺ op2 or op2 ≺ op1 in Π, and (A3) the value
returned by each read operation is the value written by the last preceding write
operation according to ≺ (or val0 = ⊥ if there is no such write operation).
In our single writer setting, the above sufficient condition for atomicity can be

considerably simplified using the natural ordering among writes already discussed
above. Indeed, consider a relation ≺ such that op1 ≺ op2 if and only if op1
returns vali and op2 returns valj such smaller that i < j (here ‘returned’ stands
for ‘written’ in case an operation is a write). Then, it is straightforward to show
that the ≺ is a partial ordering that satisfies atomicity properties A1-A3, if the
following properties are satisfied:

• (SWA1) If a read returns, it returns a value written by a writer (i.e., some
vali, for i > 0) or val0.

• (SWA2) If a read rd is complete and wrk  rd (i.e., rd follows write wrk),
then rd returns vall such that l ≥ k.

• (SWA3) If a read rd returns valk (k ≥ 1), then wrk  rd (i.e., wrk precedes
rd) or wrk is concurrent with rd.

• (SWA4) If some read rd1 returns valk (k ≥ 0) and a read rd2 returns vall
and rd1  rd2 then l ≥ k.

Indeed, it is straightforward to see that property (A1) of ≺ is implied by the
above properties (SWA2) and (SWA4), whereas property (A3) is implied by prop-
erties (SWA1), (SWA2) and (SWA3). Finally, Property (A2) follows immediately
from our definition of ≺, the ordering of write operations and (SWA1).

2.4 Consensus
Our consensus framework is composed of three sets of processes: proposers,
acceptors and learners [Lam98]. Roughly, proposers propose values that are
to be agreed upon by learners, where the role of acceptors is to help learners
agree. Consensus exports one operation: propose(v), that can be invoked only
by proposers (we say that a proposer p proposes v), whereas it returns a value at
every learner (we say that a learner l learns v). We assume that every proposer
p is initialized with a single proposal value and all processes are interconnected
with unreliable point-to-point communication channels. In this thesis, as in for
example [YMV+03], we assume that the set acceptors does not intersect with the
set proposers∪learners, i.e., no proposer or learner can be an acceptor (note that
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we allow a proposer to be also a learner). We assume that any proposer/learner
can be Byzantine, whereas only a fraction of acceptors can be crash-faulty or
Byzantine (as detailed later).
An algorithm A solves consensus if every (partial) execution of A satisfies the

following properties.

• (Validity) If a benign learner learns a value v and all proposers are benign,
then some proposer proposed v;1

• (Agreement) No two benign learners learn different values;

• (Termination) If a correct proposer proposes a value, then eventually, every
correct learner learns a value.

To circumvent the impossibility of an asynchronous consensus [FLP85] with
faulty processes, we assume that the system is eventually synchronous [DLS88,
Gaf98]. Eventual synchrony means that there is a point in time GST (Global
Stabilization Time), not known to processes, such that, after GST , the system is
synchronous (i.e., the system can be asynchronous for arbitrarily long, yet finite
period of time). In addition, we assume that no message sent between two correct
processes before GST , is received after GST .

1Some similar definitions of Validity property, e.g., the one in [Lam03]: “Only a value proposed
by a proposer can be learned“, are impossible to ensure in the presence of Byzantine pro-
posers. Intuitively, a Byzantine proposer pB cannot be restricted of invoking propose with a
value v and than immediately replacing v with a different value v′, as if pB were correct and
proposed v′.
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3
Refined Quorum Systems

3.1 Introduction
To illustrate the motivation behind refined quorum systems, consider the simple
context of a crash-resilient asynchronous implementation of an atomic storage.
For instance, the classical, optimally crash-resilient single-writer multi-reader
(SWMR) solution [ABD95] (that assumes a majority of correct base objects)
requires two rounds for a read, in contrast to only a single round for writes.
As we discussed in Chapter 1, it is practically appealing to look into best-case

complexity and ask if it is possible to expedite both reads and writes within a single
round in a synchronous and contention-free period. Clearly, if the reader (resp.
the writer) access all base objects in the first round, then it can immediately
return a valid response. But do we need to access all base objects for that? How
many base objects actually need to be accessed to achieve such fast read/write
operations under best-case conditions?

wr=WRITE(v)

w

r

r’

s
e
r
v
e
r
s

1

2

3

4

5

rd=READ() −> v

(a) ex2

wr=WRITE(v)

rd=READ() -> v

(b) ex3

...

wr=WRITE(v)

rd’
rd=READ() -> v

(c) ex4

Figure 3.1: Violation of atomicity in case the single-round operations access only
3 base objects.

Consider 5 base objects implementing a crash-tolerant atomic storage assuming
t = 2 base object failures (optimal resilience). We argue below that any algorithm
that greedily expedites synchronous and uncontended read/write operations in one
round whenever S − t = 3 base objects are accessed, violates atomicity. This is
depicted through several executions of such an algorithm (Figure 3.1):
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1. In the first execution (ex1), the writer w invokes wr = write(v) and base
objects 4 and 5 are faulty. Then, wr writes value v into the subset of base
objects Q1 = {1, 2, 3} and completes in a single round.

2. The second execution (ex2, Fig. 3.1(a)) is slightly different because base
objects 4 and 5 are actually correct. Yet wr also completes in a single
round, after writing in Q1, since the writer cannot distinguish ex1 and
ex2. Then, base objects 1 and 2 crash, as well as the writer, and a read
rd (by reader r) is invoked. Assuming synchrony, rd accesses base object
set Q2 = {3, 4, 5} and (since there is no contention) completes in a single
round. Notice that, since rd follows wr, rd must return v.

3. The third execution (ex3, Fig. 3.1(b)) is similar to ex2 except that (1) the
write is incomplete (the writer crashes while executing wr) and writes only
to base object 3, (2) base objects 1 and 2 (i.e., base objects from set Q1\Q2)
are correct, but the communication between the reader and the base objects
from Q1 \ Q2 is delayed. Read rd does not distinguish ex3 from ex2 and
completes in a single round, returning v.

4. Finally, the fourth execution (ex4, Fig. 3.1(c)) extends ex3 by: (1) the crash
of base objects 3 and 5 and (2) the invocation of read rd′ by a different reader
r′. This reader cannot return v using Q3 = {1, 2, 4} regardless of how many
rounds are used. Atomicity is violated.
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(b) |Q′1| = |Q′2| = 4

Figure 3.2: Quorum intersections

Essentially, atomicity is violated because Q1∩Q2∩Q3 = ∅ (Figure 3.2(a)). On
the other hand, we can devise a storage algorithm in which reads and writesare
fast whenever 4 base objects are accessed. For instance:

• A write wr completes in a single round only if it writes v to 4 base objects,
say Q′1 = {1, 2, 3, 5}. A subsequent single-round read rd will also have to
access at least 4 base objects, say Q′2 = {2, 3, 4, 5} (including at least 3 base
objects from Q′1). A subsequent read rd′ that accesses some subset Q3 of 3
base objects will surely learn about v since there is a set X = Q′1∩Q′2 of (at
least) 3 base objects that witnessed both wr and rd, and X intersects with
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any set of 3 base objects. This base object in the intersection will inform
rd′ about the value written by wr.

The key to ensuring atomicity is to have Q′1 ∩ Q′2 ∩ Q3 6= ∅. Namely, (Fig-
ure 3.2(b)) in a system of 5 elements, any two subsets of 4 elements intersect
with any subset of 3 elements. Basically, boosting complexity requires to access
subsets of base objects that have larger intersections than traditional quorums.
The above example is (relatively) simple because we considered: a) crash fail-
ures only, b) a threshold adversary (at most t faulty processes) and c) no graceful
degradation, i.e., achieving the next best possible latencies, when the best possible
one (e.g., a single round) cannot be achieved.
Our motivation is precisely to characterize the required intersection properties

in a precise and general manner. We aim at a characterization that is necessary
and sufficient for optimizing the best-case complexity of various distributed object
implementations (with emphasis on atomic storage and consensus), in various
failure models, under various adversary structures, and also considering graceful
degradation. We believe that this characterization is provided by our notion of
refined quorum systems (RQS).

3.1.1 Contributions

As we already mentioned in the introduction in Chapter 1, a refined quorum
system of some set of elements S is a set of three classes of subsets (quorums) of
S: first class quorums are also second class quorums, which are also third class
quorums. In the context of a distributed object implementation, set S would
typically contain the set of fault-prone base object processes over which some
object abstraction (e.g., storage or consensus) is implemented.
Under uncontended and synchronous conditions, a distributed object imple-

mentation would expedite an operation if a quorum of the first class is available,
achieving the best possible latency, and then degrade gracefully depending on
whether a quorum of the second or the third class is available. We argue that our
quorum notion is, in a sense, complete: there is no need for further refinement of
quorums with the goal of optimizing best-case efficiency. Indeed, as we explain
in the following, the properties provided by our third class quorums are any-
way necessary for hindering the partitioning of the asynchronous system, which
is key to any resilient distributed object implementation. Moreover, and as we
show in the following, optimally resilient and best-case efficient implementations
of the seminal register and consensus abstractions have exactly three possible
latencies under uncontended and synchronous conditions. This observation is of
independent interest.
We illustrate the power of our notion of refined quorum systems by introducing

two new atomic object implementations. The first algorithm illustrates the case
of a quorum system accessed by benign (non-Byzantine) clients, where the second
alleviates the need for this assumption.

• Our first object implementation is a new BFT asynchronous distributed
atomic storage algorithm that uses a refined quorum system. Our algorithm
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combines optimal resilience with the lowest possible read/write latency in
best-case conditions (no-contention and synchrony). Under such conditions,
our algorithm expedites storage operations (reads and writes) in a single
communication round-trip (round) if a first class quorum is accessed, in two
rounds if a second class quorum is accessed and in three rounds otherwise.
The latter case is when a third class quorum is available which is a necessary
condition for resilience anyway. Our algorithm assumes an unauthenticated
model (i.e., does not rely on using messages authenticated using digital
signatures), and matches the resilience lower bound of [MAD02a] (even
when this bound is extended to a general adversary structure), together
with two new time/complexity lower bound we establish here. Our new
bounds capture the best-case complexity of fast and gracefully degrading
atomic storage implementations.

• Our second algorithm implements a BFT consensus abstraction in the gen-
eral consensus framework of [Lam98], distinguishing different process roles:
proposers that propose values to be learned by learners with the media-
tion of acceptors, as described in Chapter 2. Our algorithm is the first to
tolerate (1) any number of Byzantine failures of proposers and learners,
(2) the largest possible number of acceptor failures (i.e., our algorithm is
optimally resilient), and (3) arbitrarily long periods of asynchrony. On the
other hand, under best-case conditions, our algorithm allows a value to be
learned in only two message-delays in case a first class quorum is accessed,
and in three (resp., four) message delays in case a second (resp., third) class
quorum is accessed. Note here that (a) learning in a single message delay
is obviously impossible with multiple or potentially Byzantine proposers,
and (b) the availability of a third class quorum is anyway necessary for re-
silience. Our algorithm matches the resilience and complexity lower bounds
of [Lam03] (including when these bounds are extended to a general adver-
sary structure), together with a new complementary bound we establish
here on consensus algorithms that degrade gracefully in best-case execu-
tions. These bounds state minimal conditions under which consensus (and
consequently, the state-machine replication approach) can be made opti-
mally resilient and best-case efficient. Until now, it was not clear whether
the conditions of [Lam03] were also sufficient. We show they are and we
complement them.

We believe that it would have been very hard to devise such algorithms, es-
pecially in the context of a general adversary structure, without the notion of a
refined quorum system, though we might be subjective here.

3.1.2 Roadmap

The rest of the Chapter is organized as follows. Section 3.2 first presents our
quorum notion and illustrates how it generalizes previous ones through examples
from the literature. Sections 3.3 and 3.4 introduce our two new distributed object
implementations that exploit the full features of refined quorums. Proofs of
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correctness of our two algorithms are postponed to the end of the chapter for
better readability.

3.2 Refined Quorum Systems
In the following, sets of sets of elements are written in boldface for better read-
ability; e.g., S= {S1, S2}, where Si denotes a set of (base) elements.

3.2.1 Definitions

A refined quorum system is expressed in the abstract context of a non-empty set
S of elements, and an adversary structure (or, simply, adversary) B defined as
follows [HM97]:

Definition 2. Let B be any set of subsets of S. B is an adversary (for S) if:
∀B ∈B: B′ ⊆ B ⇒ B′ ∈B.

Let RQS be any set of subsets of S.

Definition 3. Refined Quorum System. We say that RQS is a re-
fined quorum system for a set S and adversary B, if RQS has two subsets
QC1 ⊆QC2 ⊆RQS such that the following properties hold: (every QCi is called
a quorum class, and elements of QCi are called class i elements)

Property 1. The intersection of any two elements of RQS does not belong to B,
i.e.,

• ∀Q,Q′ ∈RQS: Q ∩Q′ /∈B.

Property 2. The intersection of any two class 1 elements and any element of
RQS is not a subset of the union of any two elements of B, i.e.,

• ∀Q1, Q
′
1 ∈QC1, ∀Q ∈RQS, ∀B1, B2 ∈B: Q1 ∩Q′1 ∩Q * B1 ∪B2.

Property 3. The intersection of any class 2 element Q2 and any element Q of
RQS is:
(a) not a subset of the union of any two elements of B (we say P3a(Q2, Q) holds),
or
(b) its intersection with every class 1 element1 is not an element of B (we say
P3b(Q2, Q) holds), i.e.,

• ∀Q2 ∈QC2, ∀Q ∈RQS, ∀B1, B2 ∈B:
(Q2 ∩Q * B1 ∪B2) ∨ (QC1 6= ∅ ∧ ∀Q1 ∈QC1: Q1 ∩Q2 ∩Q /∈B).

We simply call elements of a refined quorum system — quorums, and we some-
times refer to any quorum that is not a class 2 quorums as a class 3 quorum
(we write QC3 = RQS). Note that class 1 quorums are also class 2 quorums,
which are also class 3 quorums. Notice also that, when QC1 =QC2, Property

1Assuming there is at least one class 1 element, i.e., QC1 6= ∅.
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2 implies Property 3. Furthermore, when B = ∅, Property 1 implies Property 3.
Therefore, Property 3 is interesting on its own only if B 6= ∅ and QC1 6=QC2.
To get an intuition of these properties, we instantiate them here in the con-

text of a k-bounded threshold adversary, denoted Bk. This is a special case
of an adversary that contains all subsets of S with cardinality at most k (i.e.,
Bk = {B|B ⊆ S ∧ |B| ≤ k}). In this context, the RQS properties can be ex-
pressed as follows:

Property 1. Any two quorums intersect in at least k + 1 elements.

Property 2. The intersection of any two class 1 quorums intersects with any quo-
rum in at least 2k + 1 elements.

Property 3. Any class 2 quorum intersects with any quorum in at least 2k + 1
elements or this intersection itself intersects with any class 1 quorum in at least
k + 1 elements.

3.2.2 Examples
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Figure 3.3: Example of a RQS for the threshold adversary Bk (k = 1).

Example 1. Figure 3.3 depicts a simple illustration of a refined quorum system
for the 1-bounded threshold adversary B1: 4 quorums are involved. Every pair
of depicted sets intersects in at least k + 1 elements (satisfying Property 1). Q1
intersects with every other set in at least 2k+ 1 elements (satisfying Property 2,
for an intersection with itself). Moreover, P3a(Q2, Q

′) and P3a(Q2, Q1) hold (since
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|Q2∩Q′| = 2k+1 = |Q2∩Q1|) as well as P3b(Q2, Q) (since |Q2∩Q∩Q1| = k+1).
Hence, RQS= {Q,Q′, Q2, Q1} is a refined quorum system, where Q1 (resp., Q2)
is a class 1 (resp., class 2) quorum.
As depicted by the example, the cardinality of a quorum is not always a good

indication of its class: it is the intersection with others that matters. Quorum Q1
contains 5 elements and is a class 1 quorum, while quorum Q′ contains 6 elements
yet is only a class 3 quorum.
In the following, we give more illustrations of our quorum notions by explain-

ing how it extends traditional ones. Later in the Chapter, we will introduce new
optimal algorithms that make full use of our quorum notion. In the following, we
consider that an adversary B for a set of processes S contains all subsets of S
that can simultaneously be Byzantine. In our description, a process that simply
fails by crashing is not called Byzantine. We also denote by Qi the set of subsets
of S that contains all subsets of S that contain all but at most i elements of S,
i.e., Qi = {P |P ⊆ S ∧ |P | ≥ |S| − i}.

Example 2. Consider the case where: (a) B = {∅}, (b) QC1 =QC2 = ∅ and
(c) RQS =Qb(|S|−1)/2c. In other words, every majority subset of S is a quorum.
Property 1 is trivially satisfied. So are Properties 2 and 3, since QC1 =QC2 = ∅.
This quorum system is typically used when devising algorithms that tolerate (a
minority of) crash-failures, e.g., [Tho79,Gif79,NW94,ABD95,CT96,Lam98].

Example 3. Consider the case of an adversary Bb(|S|−1)/3c, where (a) QC1 =
=QC2 = ∅ and (b) RQS=Qb(|S|−1)/3c. In this case, each quorum contains
more than two thirds of processes and satisfies Property 1. Properties 2 and 3
are also satisfied (sinceQC1 =QC2 = ∅). Such a quorum system is typically used
to tolerate (up to one third of) Byzantine failures, e.g., [PSL80,CL99,MAD02a,
CML+06].

Example 4. A refined quorum system for which QC1 =QC2 = ∅ is a dissemi-
nating quorum system in the sense of [MR98]. In [MR98], disseminating quorum
systems are used to build resilient distributed services that store authenticated
(also called self-verifying) data. On the other hand, a refined quorum system
in which QC1 = ∅ and QC2 =RQS is a masking quorum system in the sense
of [MR98]. These systems have been used to build resilient distributed services
that store unauthenticated data.

So far, in examples 2-4, we considered refined quorum systems in which QC1 =
∅. In the rest of the Chapter, we study the more general case where QC1 6= ∅.
This is the case where our refined quorum systems capture both the resilience
and the best-case complexity dimensions of distributed algorithms.

Example 5. Consider the case of a refined quorum system where ∅ 6=QC1 =QC2.
Such a RQS corresponds to the quorum system used in [Lam06b] for the specific
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case B = {∅}, to devise a consensus algorithm that tolerates asynchronous pe-
riods and a threshold t of process (crash) failures, yet expedites decisions in
best-case scenarios. In fact, although not used in the algorithm, the idea of a
fast quorum (class 1 quorum in our terminology) was used to explain the algo-
rithm. In the special case of an adversary Bk, where (a) RQS =Qt, and (b)
QC1 =QC2 =Qq (q ≤ t), Property 2 is satisfied if |S| > 2q+t+2k and Property
1 is satisfied if |S| > 2t + k. These inequalities correspond to Lamport’s lower
bounds for “asynchronous” consensus [Lam03]. The special case of this RQS
where k = q = t (i.e., where QC1 =RQS) corresponds to the quorum system
used in [AGG+05,MA06], also with the goal of boosting consensus latency.

Example 6. Even more interesting is the case where ∅ 6=QC1 6=QC2 ⊆RQS
(e.g., Fig. 3.3), especially when RQS, QC1 and the adversary are defined as in
Example 5, QC2 =Qr, and 0 ≤ q < r ≤ t. In other words, each quorum contains
all but at most t processes, while class 1 (resp., class 2) quorums contain all but
at most q (resp., r) processes. RQS satisfies (i) Property 1 if |S| > 2t + k, (ii)
Property 2 if |S| > t+ 2k+ 2q, and (iii) Property 3 if |S| > t+ r+ k+min(k, q),
i.e., RQS is a refined quorum system if |S| > t+k+max(t, k+2q, r+min(k, q)).
This RQS corresponds to the quorum system we used in [DGV05,GLV06], and
which was later used in [Zie06].
A very important instantiation of this refined quorum system is the one with
|S| = 3t + 1 processes out of which t may be Byzantine (k = t), and where all
quorums are class 2 quorums (r = t), whereas the set that contains all processes
is a class 1 quorum (q = 0). It is important to notice that, in this particular case,
there are no genuine class 3 quorums (i.e., class 3 quorums that do not belong at
the same time to class 2).
As we just discussed, our RQS notion was implicitly used, in partial forms,

in various distributed objects implementations. In the following, we present two
new algorithms that make full and explicit use of our notion of RQS.

3.3 Atomic storage

We show in this section how to use a refined quorum system to wait-free im-
plement the abstraction of a SWMR atomic storage with optimal resilience and
optimal best-case time complexity (latency). As defined in Chapter 2, optimal
resilience means here tolerating the maximal number of base object failures while
still ensuring wait-freedom in the face of contention and asynchrony (worst-case
conditions).
We present our storage algorithm assuming the unauthenticated model, as

specified in Chapter 2, complemented as follows. We assume that communication
channels are reliable. Denoting the set of base objects by S, and the adversary by
B, we construct a refined quorum systemRQS (obeying the properties defined in
Section 3.2) known to all clients. In the above, we assume that, for any execution
ex, Bex ∈B, where Bex contains all base objects Byzantine in ex. Moreover, any
number of clients and base objects may fail by crashing, as long as there is at
least one quorum in RQS that contains only correct base objects.
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In the following, we overview our storage algorithm and then state its op-
timality. This includes establishing two new tight bounds on latency efficient
atomic storage implementations. The full correctness proof of our atomic storage
implementation is given in Section 3.5.

3.3.1 Atomic storage algorithm

Our storage algorithm is (m,QCm)–fast (see Section 2.3.1 for the definition) for
all m ∈ {1, 2, 3}. Note that this implies that, in our algorithm, all synchronous
and uncontended operations complete in at most 3 communication round-trips
(we say simply rounds).

Initialization:
0: ts := ts0; timeout := 2∆; QC′

2 := ∅

write(v) is {
1: inc(ts)
2: round(1)
3: if acks received from some class 1 quorum then return(OK)
4: forall Q2 ∈QC2
5: if acks received from Q2 then QC′

2 :=QC′
2∪{Q2}

6: round(2)
7: if acks received from some quorum from QC′

2 then return(OK)
8: QC′

2 := ∅; round(3)
9: return(OK) }

round(ρ) is {
10: send wr〈ts, v,QC′

2, ρ〉 to all base objects
11: if ρ < 3 then trigger(timeout)
12: wait for (reception of wr_ack〈ts, ρ〉 from some quorum) and (expiration of timeout or ρ = 3) }

Figure 3.4: Atomic storage algorithm: writer code

The pseudocode of the algorithm is given in Figures 3.4, 3.5 and 3.6. The write
code (Figure 3.4) is simple, thanks to the underlying RQS. The writer maintains
a monotonically increasing local timestamp ts that is assigned to the written
value v and sent to base objects in every round. A write consists of at most three
rounds. In every round ρ, the writer sends a wr〈ts, v,QC′2,ρ〉 message containing
value v to be written, along with timestamp ts and a set of quorums (i.e., quorum
ids) QC′2 to all base objects (this set is empty in rounds 1 and 3 and only used in
round 2, as explained below). In every round, the writer awaits acks from some
quorum, and in the first two rounds, awaits for the timer set to 2∆.
A write terminates at the end of the first round, if the writer receives acks from

some class 1 quorum by the expiration of the timer. If this is not the case, the
writer proceeds to round 2. If, in round 1, the writer received acks from some
class 2 quorums, the ids of these quorums are added to QC′2 (lines 4-5, Fig. 3.4).
If the writer receives again acks from some quorum from QC′2 in round 2 (line
7, Fig. 3.4), the write terminates at the end of round 2. Finally, if this is not
the case, the writer proceeds to round 3 and completes at the end of this round,
upon reception of round 3 acks from any quorum.
The pseudocode of the base objects is given in Figure 3.5. Upon receipt of the

message wr〈ts, v,QC′2, ρ〉, a base object si stores the received data in its historyi
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matrix, by storing historyi[ts, j].tsval = 〈ts, v〉 for all j, 1 ≤ j ≤ ρ and by adding
QC′2 to historyi[ts, ρ].sets. Then, a base objects sends an ack to the client.

Initialization:
1: historyi[∗, ∗].tsval := 〈ts0,⊥〉; historyi[∗, ∗].sets := ∅

2: upon reception of a wr〈ts, v,QC′
2, ρ〉 message from some client c do

3: for rnd = 1 to ρ do
4: if historyi[ts, rnd] = 〈〈ts0,⊥〉, ∅〉 or historyi[ts, rnd] = 〈〈ts, v〉, ∗〉 then
5: historyi[ts, rnd].tsval := 〈ts, v〉
6: if rnd = ρ then historyi[ts, rnd].set := historyi[ts, rnd].sets∪QC′

2
7: send wr_ack〈ts, ρ〉 to c

8: upon reception of a rd〈tsr, ρ〉 message from reader rj
9: send rd_ack〈tsr, ρ, historyi〉 to reader rj

Figure 3.5: Atomic storage algorithm: base object si code

The read is more involved, yet our pseudocode in Figure 3.6 (in the remainder
of this section we refer to this Figure) is easy to follow since we assume an RQS.
As many other atomic storage algorithms (e.g., [ABD95]) our algorithm consists
of two parts: (1) the part that implements regular storage (lines 20-35, along with
the predicates defined in lines 3-12) and (2) the part that prevents read inversion
and enforces atomicity, in which readers write the value back to a “sufficient”
number of base objects (lines 40-49, with predicates in lines 1-2).
In the heart of our algorithm, in particular of the second part that ensures

atomicity, lies a Best-Case Detector abstraction (BCD, defined by the predicates
in lines 1-2). Roughly, BCD detects if a read operation is synchronous and un-
contended. The second, critical part of the algorithm is orchestrated around the
outcome of BCD, as well as the accessed RQS quorums.
In the following, we explain the intuition behind the best-case latency of read.

Consider indeed an uncontended and synchronous read rd. Moreover, let wr be
the last write that precedes rd and assume that wr wrote value v with timestamp
ts in W rounds. Note that, by atomicity, rd must return v.
In the first part of the algorithm (that implements regular semantics) a reader ri

first invokes series of rounds (lines 22-34) in which ri sends a rdmessage containing
the unique identifier of the ri’s read operation, denoted by read_no, as well as
the current round number of read read_no, rd_rnd. In every round, the reader
waits for responses (i.e., rd_ack messages) from some quorum. Moreover, in the
first round, the reader waits for acks until the expiration of the timer (lines 27-28)
and stores ids of all class 2 quorums it received replies from in the set QC′2 (lines
30-31).
This series of read rounds is invoked until the following conditions become

satisfied, for some timestamp/value pair c = 〈ts′, v′〉: (a) safe(c) holds, i.e., c is
confirmed in the history of some subset of base objects that is not an element
of an adversary (lines 11 and 33-34), and (b) highCand(c) holds, i.e. all values
v′ with a ts′ > ts are invalid (lines 9,12 and 33-34). A sufficient condition for
a pair c′ = 〈ts′, v′〉 to become invalid is that the response of every base object
from some quorum Q contains only values with timestamps smaller than ts′ (or
a pair 〈ts′, v′′ 6= v〉). In this case none of the predicates valid1(c′, Q) (line 6),
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Definitions:
1: BCD(c, 1,W ) ::= ∃Q1 ∈ QC1, ∃QW ∈QCW , ∃QC ⊆ QC2∪ ∅:

(Q1 ∩QW ⊆ {i : history[i, c.ts,W ] = 〈c,QC〉}) ∧ ((W 6= 2) ∨ (QW ∈QC))
2: BCD(c, 2,W ) ::=

{Q2 | (Q2 ∈QC′
2) ∧ (∃QW ∈QCW : QW ∩Q2 ⊆ {i : history[i, c.ts,W ] = 〈c, ∗〉})}

3: c � c′ ::= (c.ts < c′.ts) ∨ (c = c′)
4: last[i, ρ] ::= c : (∀ts′ > c.ts : history[i, ts′, ρ].tsval = 〈ts0,⊥〉) ∧ (history[i, c.ts, ρ] = 〈c, ∗〉)
5: lastset[i, Q] ::= c : (∀ts′ > c.ts : Q /∈ history[i, ts′, 1].sets)∧

∧(∃QC⊆QC2: (history[i, c.ts, 1] = 〈c,QC〉) ∧ (Q ∈QC))
6: valid1(c,Q) ::= ∃T ⊆ Q, ∀si ∈ T : (T /∈B) ∧ (∃c′ : last[i, 1].tsval = c′ ∧ c � c′)
7: valid2a(c,Q) ::= ∃si ∈ Q,∃c′ : (last[i, 2].tsval = c′) ∧ (c � c′)
8: valid2b(c,Q) ::= ∃si ∈ Q,∃c′,∃Q2 ∈QC2: (lastset[i, Q2] = c′) ∧ P3b(Q2, Q) ∧ (c � c′)
9: invalid(c) ::= ∃Q ∈RQS: ¬(valid1(c,Q) ∨ valid2a(c,Q) ∨ valid2b(c,Q)) ∨ (c′.ts > highest_ts)

10: read(c, i) ::= ∃ρ ∈ {1, 2} : history[i, c.ts, ρ] = 〈c, ∗〉
11: safe(c) ::= {i : read(c, i)} /∈B
12: highCand(c) ::= ∀c′,∀i : read(c′, i) ∧ (c′.ts > c.ts)⇒ invalid(c′)

Initialization:
timeout := 2∆; history[∗, ∗, ∗] := 〈〈ts0,⊥〉, ∅〉; highest_ts := ts0; read_no := 0; first = 1; second = 2

read() is {
20: rd_rnd := 0
21: inc(read_no)
22: repeat
23: inc(rd_rnd)
24: if rd_rnd = 1 then trigger(timeout)
25: send rd〈read_no, rd_rnd〉 to all servers
26: wait for receive rd_ack〈read_no, rd_rnd, ∗〉 from some quorum
27: if rd_rnd = 1 then
28: wait for expiration of timeout
29: highest_ts := last[i, ρ].tsval.ts : (∀j, ρ′ : last[j, ρ′].tsval.ts ≤ last[i, ρ].tsval.ts)
30: forall Q2 ∈QC2
31: if acks received from Q2 then QC′

2 :=QC′
2∪{Q2}

32: endif
33: C := {c : (safe(c) ∧ highCand(c))}
34: until C 6= ∅
35: csel := c : (c ∈ C) ∧ (∀c′ ∈ C : c′ � c)

40: if (∃i ∈ {1, 2, 3} : BCD(csel, 1, i)) and (rd_rnd = 1) then return(csel.val)

41: if (∃i ∈ {1, 2, 3} :BCD(csel, 2, i) 6= ∅) and (rd_rnd = 1)) then
42: if (∃i ∈ {2, 3} :BCD(csel, 2, i) 6= ∅) then writeback(second, csel, ∅); return(csel.val)
43: trigger(timeout)
44: writeback(first, csel,BCD(csel, 2, 1))
45: wait for expiration of timeout
46: if acks received from some quorum from BCD(csel, 2, 1) then return(csel.val)
47: writeback(second, csel, ∅); return(csel.val)
48: endif

49: writeback(first, csel, ∅); writeback(second, csel, ∅); return(csel.val)

upon reception of rd_ack〈read_no, rd_rnd, historyi〉 from server si do
50: history[i] := historyi
}
writeback(round, c, Set) is {
60: send wr〈c.ts, c.val, Set, round〉 message to all servers
61: wait for reception of wr_ack〈c.ts, round〉 message from some quorum
}

Figure 3.6: Atomic storage algorithm: reader code
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valid2a(c′, Q) (line 7) or valid2b(c′, Q) (line 8) will hold. This sufficient condition
is met whenever the read is synchronous and uncontended, since we assume the
availability of some quorum that contains only correct base objects. Hence, in
this case, the first part of the algorithm (i.e., lines 20-35) is executed only once
and, therefore, the first part of rd takes only a single communication round. In
this case, the reader selects timestamp-value pair csel = 〈ts, v〉 in line 35 (i.e., the
timestamp/value pair written by wr, the last write that precedes rd).
Then, the reader proceeds to the second part of the read algorithm (that guar-

antees atomicity, lines 40-49). Basically, this part of the algorithm is a sophisti-
cated writeback procedure, based on the outcome of a BCD: it proceeds as follows.
First, the reader queries BCD with csel = 〈ts, v〉 as a parameter (line 40). The
outcome of BCD governs the remainder of the writeback procedure, namely:

1. If the reader received acks from a class 1 quorum (containing only correct
processes) in round 1, then BCD(csel, 1,W ) holds (line 1) and rd completes
at the end of round 1, without any additional writeback round (line 40).
Notice that, by line 1, BCD(csel, 1,W ) holds only if there is a class 1
quorum Q1 and a class W quorum QW such that all base objects from
Q1 ∩ QW had received a round W wr message containing ts and v (either
from the writer or some reader writing-back the pair csel) and responded
to the reader. Since read rd is uncontended, BCD(csel, 1,W ) is guaranteed
to hold in case rd accesses a class 1 quorum of correct processes in the first
round.

2. Else, if the reader received acks from some class 2 quorum(s) Q2 (containing
only correct processes) in round 1, then set X = BCD(csel, 2,W ) (line 2)
is non-empty (since Q2 ∈X). Indeed, notice that X = BCD(csel, 2,W )
contains a set of all class 2 quorums Q2 such that: (a) the reader received
replies from Q2 in round 1 (i.e., Q2 ∈QC′2), and (b) there is a classW (W ∈
1 . . . 3) quorum QW such that all base objects from Q2 ∩QW received the
roundW wr message containing ts and v. Since the read rd is uncontended,
X is guaranteed to contain all class 2 quorums that replied to the reader in
round 1 (more precisely, all such class 2 quorums that contain only correct
processes).

Since X is non-empty, rd proceeds to round 2 (or, in other words, the first
round of the writeback procedure, line 41). If W = 2 or W = 3, then
the reader sends wr〈ts, v, ∅, 2〉 to all base objects, waits for acks from some
quorum and returns (lines 42 and 60-61). Else, if W = 1, the first round of
the writeback procedure (round 2 of rd) is more sophisticated. Namely, in
this case, the reader: (a) triggers a timer (line 43), (b) sends wr〈ts, v,X, 1〉
to all base objects (line 44 and 60), and (c) waits for acks until some quorum
responds and the timer expires (lines 44-45 and 61). The read completes
at the end of round 2 (the first writeback round) only if the reader receives
acks from some quorum from X = BCD(csel, 2, 1) (line 46).

3. Otherwise, if no quorum from X replies, the second round of the writeback
procedure (i.e., the third round of rd) is invoked (line 47). Note that the
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second part of the read algorithm (i.e., in lines 40-49) takes at most 2 rounds.
Hence, when the read is synchronous and uncontended, it completes in at
most 3 rounds.

The correctness proof of our atomic storage algorithm is given in Section 3.5.
The critical part of the proof consists of several short lemmas. The main theorems
(that make use of the above mentioned lemmas), despite being long, are easy
to follow, since these are mainly case-by-case analysis, where the intersection
properties of RQS allow critical lemmas to be easily applied.

3.3.2 Optimality
Let Q be any set of subsets of the set of base objects S. We say that an algorithm
A is (Q,B )–atomic, if A wait-free implements an atomic SWMR storage despite
the adversary B provided that in every execution of A, there is a set Q ∈Q
that contains only correct base objects. Moreover, denote by P3(Q(1),Q(2),Q(3))
(resp., P1(Q(3)); P2(Q(1),Q(3))) the property obtained from Property 3 (resp.,
Property 1; Property 2) of Definition 3 by replacingQCi withQ(i), for i = 1 . . . 3.
The minimality of our RQS is captured via the following three theorems.

Theorem 1. If an algorithm A is (Q(3), B)–atomic, then P1(Q(3)) holds.

Theorem 2. If a (Q(3), B)–atomic algorithm A is (1,Q(1))–fast, then P2(Q(1),Q(3))
holds.

Theorem 3. If a (Q(3), B)–atomic algorithm A is both (1,Q(1))–fast (for some
Q(1) 6= ∅) and (2,Q(2))–fast, then P3(Q(1),Q(2),Q(3)) holds.

As a corollary of Theorems 1–3, our atomic storage implementation of Sec-
tion 3.3.1 is optimally resilient and has the optimal (best-case) complexity.
Theorem 1 has been established for the special case of threshold-based quorums

and with an implicit notion of quorums in [MAD02a]. It is not difficult to extend
this bounds to the general adversary structure and the RQS setting.
Theorems 2 and 3 are novel; Theorem 3 is particularly interesting, due to the

unusual or condition that appears in Property 3 of RQS. In the following we
prove Theorem 2 and Theorem 3.

Proof. (Theorem 2). Theorem 2 states that there is no (Q(3), B)–atomic stor-
age algorithm that is also (1,Q(1))–fast, if Property 2 of RQS is violated. Assume
by contradiction that such a storage algorithm A exists even if Property 2 of RQS
is violated. Consider a simple SWMR storage algorithm with a single writer w
and two distinct readers r1 and r2 (w 6= r1 6= r2 6= w). In the following, we
denote by X the set S \X, where X is any subset of S (recall that S denotes the
set of all base objects). Negating P2(Q(1),Q(3)) (Property 2 of RQS) yields:

∃Q1, Q
′
1 ∈Q(1), ∃Q ∈Q(3), ∃B′1, B′2 ∈B: (Q1 ∩Q′1 ∩Q) ⊆ (B′1 ∪B′2).

Since (Q1 ∩ Q′1 ∩ Q) ⊆ (B′1 ∪ B′2) and B is an adversary for S, we can fix,
without loss of generality B1 and B2 such that B1 ⊆ B′1 and B2 ⊆ B′2, such that
Q1 ∩Q′1 ∩Q = B1 ∪B2.
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To exhibit a contradiction, we construct several partial executions (sketched
in Figure 3.7) of the algorithm A including one in which atomicity is violated.
More specifically, in this particular partial execution, a read operation returns a
value that was never written.

• Let ex1 be the execution in which all base objects from Q1 are correct,
while all others (i.e., those from Q1) fail by crashing at the beginning of the
execution. Furthermore, let wr1 be the write operation invoked at time t1 by
the correct writer w in ex1 to write value v1 6= ⊥ in the storage. Moreover,
assume that the system is synchronous in ex1. Hence, wr1 is synchronous
and uncontended. Since A is (1,Q(1))–fast and Q1 ∈Q(1), wr1 completes
in ex1, say at time t′1, in a single communication round, after the writer
receives the replies from base objects belonging to Q1 in round 1.

• Let ex′1 be the partial execution that ends at t′1, such that ex′1 is identical
to ex1 up to time t′1, except that, in ex′1, base objects from Q1 do not crash,
but, due to asynchrony, all messages sent by the writer to Q1 during wr1
remain in transit. Since the writer cannot distinguish ex′1 from ex1, wr1
completes in ex′1, in a single communication rounds, at time t′1.

• Let the partial execution ex2 extend ex′1 such that: (1) base objects from Q′1
crash at t′1, (2) rd1 is a synchronous read operation invoked by the correct
reader r1 after t′1, and (3) no other operation is invoked in ex2 (hence, rd1
is uncontended). Since A is (1,Q(1))–fast, rd1 completes in a single round
(since a set Q′1 of base objects is correct and Q′1 ∈Q(1)) at time t2 and
returns (by atomicity) v1. Moreover, let ex2 end at t2. All messages that
were in transit in ex′1 remain in transit in ex2.

• Let ex′2 be the partial execution identical to ex2 except that in ex′2 base
objects from Q′1 do not crash, but, due to asynchrony, the message sent
from r1 to base objects in Q′1 during rd1 remains in transit in ex′2. Since
r1 and all base objects, except those from Q1, cannot distinguish ex′2 from
ex2, rd1 completes in ex′2 in a single round, at time t2, and returns v1.

• Let ex′′2 be the partial execution identical to ex′2 except that, in ex′′2: (1)
the writer crashes during wr1 and its round 1 messages are not received by
any base object from Q′1. In other words, in ex′′2, no object that belongs
to Q′1 ∪Q1 receives the round 1 message from the writer; only base objects
from Q′1 ∩Q1 = B1 ∪B2 ∪ (Q′1 ∩Q1 ∩Q) receive the round 1 message from
the writer. Since r1 and all base objects, except those from Q′1∩Q1, cannot
distinguish ex′′2 from ex′2, rd1 completes in ex′′2 at time t2 and returns v1.

• Consider now a partial execution ex3 slightly different from ex′′2 in which the
writer (resp., reader r1) crashes during the round 1 of wr1 (resp., rd1) such
that the round 1 messages sent by the writer (resp., r1) in wr1 (resp., rd1)
are received only by the base objects from set B1 (resp., B1∪(Q1∩Q′1∩Q)).
We refer to the state of the base objects that belong to set B1 (if any) after
sending the reply to wr1 as to σ1. In ex3, all base objects are correct except
those from set Q that fail by crashing at the beginning of partial execution
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Figure 3.7: Illustration of the partial executions used in the proof of Theorem 2.
Only base objects that belong to set Q1 ∪Q′1 ∪Q are depicted.
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ex3. Assume that the writer crashes at time tfailw and that r1 crashes at
time tfailr > tfailw . Let rd2 be a read operation invoked by the correct
reader r2 6= r1 at time t′3 > max(tfailr , t2). Since all base objects from
set Q are correct in ex3 and A is a (Q(3), B)–atomic storage algorithm,
rd2 eventually completes, at some point in time t3, after n communication
rounds and returns value vR.

• Let ex4 be a partial execution identical to ex′′2 except that in ex4: (1) a
read operation rd2 is invoked by the correct reader r2 at t′3 (as in ex3),
(2) due to asynchrony all messages sent by the base objects from Q to r2
are delayed until after t3 (i.e., until after nth round of rd2) and (3) in ex4,
all base objects from B2 (if any) are Byzantine: these base objects forge
their state at time t2 to σ0 (the initial state of base objects); otherwise,
base objects from B2 respect the algorithm (including with respect to the
writer and reader r1). Note that r2 and the base objects from Q\B2 cannot
distinguish ex4 from ex3 and, hence, rd2 completes in ex4 at time t3 (as in
ex3) and returns vR. On the other hand, r1 cannot distinguish ex4 from
ex′′2. Hence, rd1 completes in a single round and returns v1. By atomicity,
since rd1 precedes rd2, vR must equal v1.

• Consider now the partial execution ex5, identical to ex3, except that in ex5:
(1) wr1 is never invoked, (2) base objects from B1 (if any) are Byzantine in
ex5 and forge their state to σ1 (see ex3) at the beginning of the execution;
otherwise, base objects from B1 send the same messages as in ex3, and
(3) base objects from Q do not crash in ex5, but, due to asynchrony, all
messages sent from base objects from Q to r2 are delayed until after t3
(i.e., nth round of rd2). Reader r2 and the base objects from Q \B1 cannot
distinguish ex5 from ex3, so rd2 completes at time t3 and returns vR, i.e.,
v1 (see ex4). However, by atomicity, in ex5, rd2 must return ⊥, the initial
value of the atomic storage. Since v1 6= ⊥, ex5 violates atomicity.

Now we prove Theorem 3. The techniques used in this proof resemble those
used in the proof of Theorem 2.

Proof. (Theorem 3). Theorem 3 states that there is no (Q(3), B)–atomic stor-
age algorithm that is both (1,Q(1))–fast (for some Q(1) 6= ∅) and (2,Q(2))–fast,
if Property 3 of RQS is violated. Assume by contradiction that such a storage
algorithm A exists even if Property 3 of RQS is violated. As in the proof of
Theorem 2, consider a simple SWMR storage algorithm with a single writer w
and two distinct readers r1 and r2 (w 6= r1 6= r2 6= w). Again, we denote by
X the set S \ X, where X is any subset of the set of base objects S. Negating
P3(Q(1),Q(2),Q(3)) (Property 3 of RQS) yields (having in mind Q(1) 6= ∅):

∃Q2 ∈Q(2), ∃Q ∈Q(3), ∃Q1 ∈Q(1), ∃B′1, B′2 ∈B: ((Q2∩Q) ⊆ (B′1∪B′2)∧(Q2∩
Q ∩Q1) ∈B.
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In the following, we denote the set Q2 ∩ Q ∩ Q1 by B0 (note that B0 ∈B).
Since B0 ⊆ Q2 ∩ Q and B is an adversary for S, we may fix, without loss of
generality, B1 and B2, such that:

• B1, B2 ∈B,

• B1 ⊆ B′1,

• B2 ⊆ B′2,

• Q2 ∩Q = B1 ∪B2, and

• B0 ⊆ B1.

Hence, Q2 ∩Q ∩Q1 = B2 ∪ (B1 \B0).
To exhibit a contradiction, we construct several partial executions (sketched

in Figure 3.8) of the algorithm A including one in which atomicity is violated.
More specifically, in this particular partial execution, a read operation returns a
value that was never written.

• Let ex1 be the execution in which all base objects from Q2 are correct,
while all others (i.e., those from Q2) fail by crashing at the beginning of
the execution. Furthermore, let wr1 be the write operation invoked at time
t1 by the correct writer w in ex1 to write value v1 6= ⊥ in the storage.
Moreover, assume that the system is synchronous in ex1. Hence, wr1 is
synchronous and uncontended. Since A is (2,Q(2))–fast, wr1 completes in
ex1, say at time t′1, in at most two communication rounds, after the writer
receives the replies in round 2 from base objects from Q2.

• Let ex′1 be the partial execution that ends at t′1, such that ex′1 is identical
to ex1 up to time t′1, except that, in ex′1, base objects from Q2 do not crash,
but, due to asynchrony, all messages sent by the writer to Q2 during wr1
remain in transit. Since the writer cannot distinguish ex′1 from ex1, wr1
completes in ex′1, in two communication rounds, at time t′1.

• Let the partial execution ex2 extend ex′1 such that: (1) base objects from
Q1 crash at t′1, (2) rd1 is a synchronous read operation invoked by the
correct reader r1 after t′1, and (3) no other operation is invoked (hence,
rd1 is uncontended). Since A is (1,Q(1))–fast, rd1 completes in a single
round (since set Q1 contains correct base objects) at time t2 and returns
v1. Moreover, let ex2 end at t2. All messages that were in transit in ex′1
remain in transit in ex2.

• Let ex′2 be the partial execution identical to ex2 except that in ex′2 base
objects from Q1 do not crash, but, due to asynchrony, the message sent
from r1 to base objects in Q1 during rd1 remains in transit in ex′2. Since
r1 and all base objects, except those from Q1, cannot distinguish ex′2 from
ex2, rd1 completes in ex′2 in a single round, at time t2, and returns v1.
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Figure 3.8: Illustration of the partial executions used in the proof of Theorem 3.
Only base objects that belong to set Q2 ∪Q are depicted.
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• Let ex′′2 be the partial execution identical to ex′2 except that, in ex′′2: (1)
the writer crashes during wr1 and its round 2 messages are not received
by any base objects from Q1 ∪ Q2 (i.e., only base objects from Q1 ∩ Q2
receive the round 2 message from the writer). Note that all base objects
from set B2 ∪ (B1 \B0) belong to Q1 and, hence, do not receive a round 2
message from the writer. Since r1 and all base objects, except those from
Q1 ∩Q2, cannot distinguish ex′′2 from ex′2, rd1 completes in ex′′2 at time t2
and returns v1.

• Consider now a partial execution ex3 slightly different from ex′′2 in which
the writer (resp., reader r1) crashes during the round 1 of wr1 (resp., rd1)
such that the round 1 messages sent by the writer (resp., r1) in wr1 (resp.,
rd1) are received only by the base objects from set B2 (resp., Q∩Q2 ∩Q1).
We refer to the state of the base objects that belong to set B2 after sending
the reply to the round 1 message of wr1 as to σ1. In ex3, all base objects
are correct except those from set Q that fail by crashing at the beginning
of partial execution ex3. Assume that the writer crashes at time tfailw
and that r1 crashes at time tfailr > tfailw . Let rd2 be a read operation
invoked by the correct reader r2 6= r1 at time t′3 > max(tfailr , t2). Since
all base objects from set Q are correct in ex3 and A is a (Q(3), B)–atomic
storage algorithm, rd2 eventually completes, at some point in time t3, after
n communication rounds and returns value vR.

• Let ex4 be a partial execution identical to ex′′2 except that in ex4: (1) a
read operation rd2 is invoked by the correct reader r2 at t′3 (as in ex3),
(2) due to asynchrony all messages sent by the base objects from Q to r2
are delayed until after t3 (i.e., until after nth round of rd2) and (3) in ex4,
all base objects from B1 (and B0, since B0 ⊆ B1) are Byzantine: these
base objects forge their state at time t2 to σ0 (the initial state of base
objects); otherwise, base objects from B1 respect the algorithm (including
with respect to the writer and reader r1). Note that r2 and the base objects
from Q \ B1 = B2 ∪ (Q ∩Q2) cannot distinguish ex4 from ex3 and, hence,
rd2 completes in ex4 at time t3 (as in ex3) and returns vR. On the other
hand, r1 cannot distinguish ex4 from ex′′2. Hence, rd1 completes in a single
round and returns v1. By atomicity, since rd1 precedes rd2, vR must equal
v1.

• Consider now the partial execution ex5, identical to ex3, except that in ex5:
(1) wr1 is never invoked, (2) base objects from B2 are Byzantine in ex5 and
forge their state to σ1 (see ex3); otherwise, base objects from B2 send the
same messages as in ex3, and (3) base objects from Q do not crash in ex5,
but, due to asynchrony, all messages sent from base objects from Q to r2
are delayed until after t3 (i.e., until after the nth round of rd2). Reader
r2 and the base objects from Q \ B2 = B1 ∪ (Q ∩ Q2) cannot distinguish
ex5 from ex3, so rd2 completes at time t3 and returns vR, i.e., v1 (see ex4).
However, by atomicity, in ex5, rd2 must return ⊥, the initial value of the
atomic storage. Since v1 6= ⊥, ex5 violates atomicity.
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3.4 Consensus

In our storage algorithm, we assumed that (1) processes that access a RQS (the
clients) might crash but cannot be Byzantine, and (2) processes that form a RQS
(base objects) do not communicate directly with each other. In this section, we
illustrate the case where (1) processes accessing a RQS might be Byzantine and
(2) processes that form a RQS may directly communicate. By considering such
a different model we: (a) argue for general applicability of RQS and (b) give the
intuition about the best-case latency that can be achieved by applying RQS to
the server-centric storage model.
The example we consider here is that of implementing a consensus abstraction.

The consensus algorithm we present tolerates Byzantine failures of processes and
unbounded periods of asynchrony. In fact, it is the first consensus algorithm that
tolerates an unbounded number of Byzantine proposers and learners. The algo-
rithm is optimal in terms of resilience as well as complexity, matching the lower
bounds of [Lam03] and closing, we believe, a very important gap. The notion
of complexity considered here is again best-case complexity for this is consid-
ered practically appealing on one hand and, on the other hand, the worst-case
time complexity of a consensus algorithm that tolerates arbitrarily long periods
of asynchrony is anyway unbounded. Our algorithm expedites the consensus de-
cision under best-case conditions (synchrony and no contention) without using
authenticated (digitally signed) messages; however, when best-case conditions are
not met, authenticated messages are indeed used.
We assume the authenticated model specified in Chapter 2 complemented as

follows.
To illustrate application of RQS on different models, channels are not assumed

to be reliable (i.e., messages can be lost). Moreover, we construct a refined quo-
rum system RQS around the set acceptors for an adversary B, such that RQS
is known to all processes. Recall that, in addition to these Byzantine acceptors,
any number of proposers and learners can be Byzantine. Consensus safety (i.e.,
Validity and Agreement) is guaranteed as long as the set of Byzantine acceptors
in any execution belongs to B, while consensus liveness (i.e., Termination) is
ensured if there is a correct quorum of acceptors Qc ∈RQS.
In the remainder of this section, we describe our consensus algorithm and then

state its optimality. The correctness proof of our consensus algorithm is given in
Section 3.6.

3.4.1 Consensus Algorithm

Our consensus algorithm is designed to have optimal time complexity in best case
executions. More precisely, we say that an execution ex of a consensus algorithm
is a best-case execution if, in ex: (1) there is no contention, i.e., (a) all proposers
are benign and (b) exactly one proposer p proposes, say some value v at time t
(and p is correct) and (2) the system is synchronous (during [t, t + 4∆] — see
Chapter 2 for the definition of synchronous system and ∆). Let P be any set of
subsets of acceptors.
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Definition 4. (m,P )–fast consensus algorithm. We say that a consensus
algorithm is (m,P )–fast if its time complexity over all best-case execution ex in
which some set P ∈P contains only correct acceptors, is m+ 1 message delays,
and no authenticated messages are used in such executions.

Our consensus algorithm is (m,QCm)–fast for all m ∈ {1, 2, 3}.
The algorithm consists of two modules: (1) a Locking module that ensures

safety, and (2) an Election module used to help ensure liveness. The algorithm
proceeds in a sequence of views. In every view, a single proposer is the leader,
except in the initial view (initV iew) where all proposers can be seen as lead-
ers. The Locking module consists of a consult (Fig. 3.11) and an update phase
(Fig. 3.10). In initV iew, the proposer, on proposing a value, skips the consult
phase and executes immediately the update phase (see Fig. 3.9). In the following,
we first explain the update phase.

Initialization:
view, initV iew := 0

propose(v) is {
if (view 6= initV iew) then

consult phase
endif
update phase }

upon pj is elected
propose(v)

Figure 3.9: The Locking module: High level pseudocode of a proposer pj

Update phase.

This phase proceeds in the following communication steps (we refer to Fig. 3.10):

1. On proposing value v, proposer p sends a prepare message to all acceptors
containing (line 9): (a) its proposal value v, (b) view number view (initially
view = initV ew = 0), and (c) array of authenticated messages vProof
that originates from a quorum Q of acceptors (the ID of quorum Q is also
included in the prepare message). Roughly, vProof serves as a certificate
for the proposed value v. We detail how vProof is constructed later when
explaining the consult phase. It is important to notice that, in the initV iew,
vProof equals nil (i.e., contains no messages).

2. A benign acceptor aj , on reception of a messagem = prepare〈v, view, vProof,Q〉
from p, checks if (line 31): (a) aj is in view, (b) aj did not already re-
ceive a prepare message in view (or in a higher view), and (c) (unless
view = initV iew) whether p is the leader of view and whether vProof
matches value v (this is done using the choose() function that is explained
later in details). If these checks succeed, aj stores v into a local vari-
able Prep and the view number in the set variable Prepview (we simply
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at every proposer pj :
Initialization:
view, initV iew := 0; vProof := nil; Q:= ∅
9: send prepare〈v, view, vProof,Q〉 to acceptors

at every acceptor aj :
Initialization:
viewaj := initV iew;
Prepview, old, Updateproof [∗, ∗], Updateview[∗], UpdateQRM [∗, ∗] := ∅;
Prep, Update[∗] := nil

upon received m = prepare〈v, viewaj , vProof,Q〉 from pi
31: if (∀w ∈ Prepview : w < viewaj ) and

((viewaj = initV iew) or ((pi is the leader of viewaj ) and (v matches choose(v, vProof,Q)))) then
32: if Prep = v then Prepview := Prepview ∪ {viewaj } else Prep := v; Prepview := {viewaj }
33: send m1 = update1〈v, viewaj , ∅〉 to acceptors ∪ learners; old := old ∪m1

upon received m = updatestep〈v, viewaj , ∗〉 from some quorum Q (for step ∈ {1, 2}) and
v = Prep and
viewaj ∈ Prepview

34: if Update[step] = v then Updateview[step] := Updateview[step] ∪ {viewaj }
35: else Update[step] := v; Updateview[step] := {viewaj };
36: UpdateQRM [step, ∗] := ∅; Updateproof [step, ∗] := ∅
37: if (Q /∈ UpdateQRM [step, viewaj ] and step = 1) or

(UpdateQRM [step, viewaj ] = ∅ and step = 2) then
38: UpdateQRM [step, viewaj ] := UpdateQRM [step, viewaj ] ∪Q
39: send mstep+1 = updatestep+1〈v, viewaj , Q〉 to acceptors ∪ learners; old := old ∪mstep+1

at every acceptor and learner x: at every learner lj :
upon received the same update1〈v, view, ∗〉 from Q1 ∈QC1 upon lj decides v
51: if x has not yet decided then decide(v) 60: learn(v)

upon received the same update2〈v, view,Q2〉 from Q2 ∈QC2
52: if x has not yet decided then decide(v)

upon received the same update3〈v, view, ∗〉 from Q3 ∈RQS
53: if x has not yet decided then decide(v)

Figure 3.10: The Locking module: update phase
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say, aj prepares v in view). If Prep was already equal to v, then aj sim-
ply adds view to set Prepview (line 32). Then aj echoes v by sending an
update1〈v, view, ∅〉 message to all acceptors and learners (line 33).

3. A benign acceptor aj , upon receiving update1 messages from some quorum
Q with the same value v and view number view, checks if its local view
equals view and if it already prepared a message with value v in view. If
this check succeeds, aj performs the following local computations (we say aj
1-updates v in view with the quorumQ). In case the local variable Update[1]
does not equal v (i.e., if a new value is 1-updated — line 35), aj stores v into
Update[1], view into Updateview[1] and empties sets UpdateQRM [1, ∗] and
Updateproof [1, ∗]. In case value v was already 1-updated (in some previous
view — line 34), aj simply adds view into Updateview[1]. Then, aj adds
the identifier of the quorum Q into set UpdateQRM [1, view] and sends an
update2〈v, view,Q〉 message to all acceptors and learners (here, an update2
message is sent once per every different quorum Q — line 38).

4. A benign acceptor aj , upon receiving update2 messages from some quorum,
performs the similar steps as when receiving a quorum of update1 messages
(we say aj 2-updates v in view), including sending an update3 message
containing v and view to all acceptors and learners (lines 34-39). The
difference with respect to the step (3) is that an acceptor sends only one
update3〈v, view, ∗〉 message to other acceptors and learners.

Moreover, all acceptors and learners decide on v upon receiving update1 mes-
sages with the same value v and view number view from a class 1 quorum (line
51). Similarly, acceptors and learners decide on v upon receiving the same
update2〈v, view,Q2〉 messages from some class 2 quorum Q2 (note here that,
besides the value and the view number, the quorum identifier within update2
messages must be the same — line 52). Finally, acceptors and learners decide
on v upon receiving update3 messages with the v and view from any (class 3)
quorum of acceptors (line 53). Besides, a benign learner lj learns v as soon as lj
decides v (line 60).
The above scheme guarantees that, in the best case execution, in which only

a single proposer proposes in the initV iew and the system is synchronous, all
correct learners learn v in two (resp., three; four) message delays in case a class
1 (resp., class 2; class 3) quorum of correct acceptors is available.2 Note that, in
the above sequence, all messages are unauthenticated.

Consult phase.

In the best-case execution, the Election module, responsible for view changes,
does not change the view before all correct acceptors (and learners) decide v.
However, if more than one proposer proposes in initV iew, or some proposer is
Byzantine, or if the system is asynchronous, the Election module might designate

2Since an availability of a class 3 quorum of acceptors is anyway assumed, our algorithm
guarantees that a value will be learned by all correct learners in at most four message delays
in any best-case execution.
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at every proposer pj :
Initialization:
view, initV iew := 0; viewProof, vProof := nil; faulty:= ∅
2: send new_view〈view, viewProof〉 to acceptors
3: repeat
4: wait for valid acks from some quorum Q ∈RQS \ faulty
5: vProof := array of received acks from Q
6: (v, abort) := choose(v, vProof,Q)
7: if abort then faulty := faulty ∪{Q}
8: until ¬(abort)

at every acceptor aj :
Initialization:
viewaj := initV iew;
Prepview, old, Updateproof [∗, ∗], Updateview[∗], UpdateQRM [∗, ∗] := ∅;
Prep, Update[∗] := nil

upon received new_view〈view, viewProof〉 from pi
21: if (view > viewaj ) and (pi is the leader of view) and (viewProof matches view) then
22: viewaj := view
23: ∀step ∈ {1, 2},∀w : w ∈ Updateview[step] ∧ Updateproof [step, w] = ∅ do
24: send sign_req〈Update[step], w, step〉 to some quorum in UpdateQRM [step, w]
25: for every sent sign_req〈Update[step], w, step]〉 message
26: wait for acks with a valid signature from some subset of acceptors Tstep,w, Tstep,w /∈B
27: Updateproof [step, w] := received acks from Tstep,w
28: send new_view_ack〈viewaj , P rep, Prepview, Update[1..2], Updateview[1..2],

Updateproof [1..2, ∗], UpdateQRM [1..2, ∗]〉σaj to pi

upon received sign_req〈v, w, step〉 from ai
29: if m = updatestep〈v, w, ∗〉 ∈ old then send sign_ack〈m〉σaj to ai

Figure 3.11: The Locking module: consult phase
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a different proposer pw to be the leader for the new view w (see Fig. 3.9). Upon
being elected, proposer pw starts the consult phase of w by sending the new_view
message to acceptors (line 2, Fig. 3.11). The new_view message contains a view
number and a set of messages, viewProof , which are provided to the proposer by
the Election module. Set viewProof consists of signed (authenticated) messages
from a quorum of acceptors — this vouches for the authenticity of the new_view
message. After sending the new_view message, pw waits for a quorum Q of valid
signed acks (line 4) containing the last prepared, 1-updated and 2-updated values,
along with the corresponding view numbers. An acceptor acks a new_view mes-
sage only if (line 21, Fig. 3.11): (a) view number w is higher than the acceptor’s
local view number, (b) pw is the leader of view w (i.e., if pw = pw mod |proposers|),
and (c) set viewProof matches w, i.e., if viewProof proof contains a quorum of
authenticated messages vouching that pw may issue a new_view message for view
w.
An ack (i.e., a new_view_ack message — line 28, Fig. 3.11) for view w is

considered valid in line 4, Fig. 3.11 if every value vstep in Update[step] and every
view number w′ in Updateview[step] (step ∈ {1, 2}) is accompanied by a set of
signatures, Updateproof [step, w′]. Here, every Updateproof [step, w′] must be a set
of signed updatestep〈vstep, w′, ∗〉messages sent from all acceptors from some subset
of acceptors that is not an element of an adversary (to guarantee that a message
is signed by at least one benign acceptor). An acceptor aj must obtain all the
necessary sets of signatures before replying to the new_view message — this is
done in lines 23-27, Fig. 3.11, unless aj already possesses the required proofs.
Then, the leader pw evaluates acks from Q using the choose() function (line 6,

Fig. 3.11 and Fig. 3.12). This function ensures the following crucial property: if
any value v is decided in some view w, then a benign acceptor accept only v in any
view higher than w. We sketch the arguments (based on RQS properties) behind
this property, for view w + 1 (which gives the base step of the induction-based
proof). In the following, we refer to Figure 3.12.
Let v be the value decided by some benign process (acceptor or learner) in

view w upon receiving update1 (resp., update2; update3) messages from some
Q1 ∈QC1 (resp., Q2 ∈QC2; Q3 ∈QC3). Then, for any Q, substituting for Q1
(resp., Q2; Q3), Cand2(v, w) holds in line 2 (resp., Cand3(v, w, char) holds for
some char ∈ {‘a‘, ‘b‘} in line 3; Cand4(v, w) holds in line 4). In this case, we say
that v is a candidate with view w. It is not difficult to see that there can be no
candidate v with view w′ > w (since no benign acceptor prepares or updates any
value in a view higher than w), i.e., w = viewmax in line 12. Hence, choose()
may return only the candidate with view w. In case such candidate is not unique:

— If Cand3(v, w, ‘a‘) holds (line 13), P3a(Q2, Q) holds. From Property 3a of
RQS and line 3, acceptors from some subset that is not an element of an ad-
versary 1-updated v in w, including at least one benign acceptor. Similarly, if
Cand4(v, w) holds, at least one benign acceptor 2-updated v in w (there is a
subset of signatures from a subset of acceptors that is not an element of an ad-
versary in Updateproof [2] received from some aj ∈ Q). Since benign acceptors
1-update or 2-update v in w only if a quorum of acceptors prepared v in w (more
precisely, only if all benign acceptors from some quorum prepared v in w), all
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Definitions:
2: Cand2(v, w) ::= ∃Q1 ∈QC1, ∃B ∈B,∀aj ∈ (Q1 ∩Q) \B :

(w ∈ vProof [aj ].P repview) ∧ (vProof [aj ].P rep = v)
3: Cand3(v, w, char) ::= ∃Q2 ∈QC2: ∃B ∈B,∀aj ∈ (Q2 ∩Q) \B :∧

(char = ‘a‘⇒ P3a(Q2, Q) ∧ char = ‘b‘⇒ P3b(Q2, Q))∧
(vProof [aj ].Update[1] = v)∧
(w ∈ vProof [aj ].Updateview[1])∧
(Q2 ∈ vProof [aj ].UpdateQRM [1, w])

4: Cand4(v, w) ::= ∃aj ∈ Q : (vProof [aj ].Update[2] = v) ∧ (w ∈ vProof [aj ].Updateview[2])

choose(v′, vProof,Q) returns(vret, abort) is {
10: vret := v′; abort := false
11: if ∃v : Cand2(v, ∗) ∨ Cand3(v, ∗, ∗) ∨ Cand4(v, ∗) then
12: viewmax := max{w|∃v : (Cand2(v, w)) ∨ Cand3(v, w, ∗) ∨ Cand4(v, w)}
13: if ∃v : Cand3(v, viewmax, ‘a‘) ∨ Cand4(v, viewmax) then vret := v; return
14: if ∃v, v′ : (v 6= v′) ∧ Cand2(v, viewmax) ∧ Cand3(v′, viewmax, ‘b‘) then
15: abort := true; return
16: if ∃v, v′ : (v 6= v′) ∧ Cand3(v, viewmax, ‘b‘) ∧ Cand3(v′, viewmax, ‘b‘) then
17: abort := true; return
18: vret := v : (Cand2(v, viewmax)) ∨ (Cand3(v, viewmax, ‘b‘)); return
19: return

Figure 3.12: choose() function

benign acceptors from some quorum indeed prepared v in w — by Property 1 of
RQS, choose() can return v.

— If Q contains only benign acceptors, then the condition in line 14 (resp.,
16) cannot hold by Property 3b (resp., Property 1) of RQS. Namely, if these
conditions hold, then at least one Byzantine acceptor is in Q — choose() aborts,
waits for other ack(s) and reiterates (lines 3-8, Fig. 3.11).

The Election module. The Election module given in Figure 3.13 is very sim-
ple and guarantees progress in case the system is eventually synchronous. It is
based on an exponential increase of the timeouts (maintained by acceptors) be-
tween views. This scheme can be seen as inefficient, and impact the worst-case
performance of our algorithm. Different optimizations of this simple scheme are
possible, but these are out of the scope of this thesis.
The pseudocode of the Locking module, combined from pseudocodes of Fig-

ures 3.9, 3.10 and 3.11 is given in Figure 3.14. The additional part of the Locking
module consists of lines 40 and 101-103, Fig. 3.14, that serve solely to facili-
tate the property of the Election module that its view-change mechanism can be
permanently stopped (line 9, Fig. 3.13) as well as to halt proposers (line 203,
Fig. 3.14). If we allow view changes to occur permanently, lines 40 and 101-103
of Fig. 3.14 can be omitted.
The correctness proof of our consensus algorithm is given in Section 3.6. In

the following we state the optimality of our algorithm.

3.4.2 Optimality

We say that an algorithm A implements (Q,B)–consensus if A ensures consensus
Validity and Agreement, as long as, for any execution ex of A, the set of accep-
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at every acceptor aj :
suspectT imeout, initT imeout := 5∆; nextV iewaj := initV iew % Initialization

upon reception of prepare〈∗, initV iew, ∗, ∗〉 or sync message for the first time
0: trigger(suspectT imeout)

upon expiration of (suspectT imeout)
1: suspectT imeout := suspectT imeout ∗ 2
2: inc(nextV iewaj )
3: nextLeader := nextV iewaj mod |proposers|
4: send view_change〈nextV iewaj 〉σaj to pnextLeader
5: trigger(suspectT imeout)

upon decide(v)
8: send decision〈v〉 to acceptors

upon reception of a valid decision〈v〉 from some quorum Q ∈RQS
9: stop(suspectT imeout)

at every proposer pj :

upon reception of view_change〈nextV iew〉σai with the same nextV iew from all ai from some Q ∈RQS
10: if nextV iew > view then
11: viewProof := ∪ received signed view_change〈nextV iew〉 messages
12: view := nextV iew
13: elect(self)

upon pj proposed a value for the first time
201: wait some preset time
202: send 〈decision_pull〉 to acceptors

upon received decision〈v〉 (with the same v) from some quorum Q ∈RQS
203: halt

Figure 3.13: The Election module
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at every proposer pj :
Initialization:
view, initV iew := 0; viewProof, vProof := nil; Q, faulty:= ∅
propose(v) is {
1: if (view 6= initV iew) then % consult phase
2: send new_view〈view, viewProof〉 to acceptors
3: repeat
4: wait for valid acks from some quorum Q ∈RQS \ faulty
5: vProof := array of received acks from Q
6: (v, abort) := choose(v, vProof,Q)
7: if abort then faulty := faulty ∪{Q}
8: until ¬(abort)
9: send prepare〈v, view, vProof,Q〉 to acceptors % update phase

upon pj is elected
10: propose(v)

at every acceptor aj :
Initialization:
viewaj := initV iew; Prep, Update[∗] := nil;
Prepview, old, Updateproof [∗, ∗], Updateview[∗], UpdateQRM [∗, ∗] := ∅;

upon received new_view〈view, viewProof〉 from pi % consult phase (lines 21-29)
21: if (view > viewaj ) and (pi is the leader of view) and (viewProof matches view) then
22: viewaj := view
23: ∀step ∈ {1, 2},∀w : w ∈ Updateview[step] ∧ Updateproof [step, w] = ∅ do
24: send sign_req〈Update[step], w, step〉 to some quorum in UpdateQRM [step, w]
25: for every sent sign_req〈Update[step], w, step]〉 message
26: wait for acks with a valid signature from some subset of acceptors Tstep,w, Tstep,w /∈B
27: Updateproof [step, w] := received acks from Tstep,w
28: send new_view_ack〈viewaj , P rep, Prepview, Update[1..2], Updateview[1..2],

Updateproof [1..2, ∗], UpdateQRM [1..2, ∗]〉σaj to pi
upon received sign_req〈v, w, step〉 from ai
29: if m = updatestep〈v, w, ∗〉 ∈ old then send sign_ack〈m〉σaj to ai

upon received m = prepare〈v, viewaj , vProof,Q〉 from pi % update phase (lines 31-39 and 51-60)
31: if (∀w ∈ Prepview : w < viewaj ) and

((viewaj = initV iew) or ((pi is the leader of viewaj ) and (v matches choose(v, vProof,Q)))) then
32: if Prep = v then Prepview := Prepview ∪ {viewaj } else Prep := v; Prepview := {viewaj }
33: send m1 = update1〈v, viewaj , ∅〉 to acceptors ∪ learners; old := old ∪m1

upon received m = updatestep〈v, viewaj , ∗〉 from some quorum Q (for step ∈ {1, 2}) and
v = Prep and viewaj ∈ Prepview

34: if Update[step] = v then Updateview[step] := Updateview[step] ∪ {viewaj }
35: else Update[step] := v; Updateview[step] := {viewaj };
36: UpdateQRM [step, ∗] := ∅; Updateproof [step, ∗] := ∅
37: if (Q /∈ UpdateQRM [step, viewaj ] and step = 1) or

(UpdateQRM [step, viewaj ] = ∅ and step = 2) then
38: UpdateQRM [step, viewaj ] := UpdateQRM [step, viewaj ] ∪Q
39: send mstep+1 = updatestep+1〈v, viewaj , Q〉 to acceptors ∪ learners; old := old ∪mstep+1

upon reception of 〈decision_pull〉 from a process q
40: if decided v then send decision〈v〉 to acceptors ∪ {q}

at every acceptor and learner x: at every learner lj :
upon received the same update1〈v, view, ∗〉 from Q1 ∈QC1 upon lj decides v
51: if x has not yet decided then decide(v) 60: learn(v)

upon received the same update2〈v, view,Q2〉 from Q2 ∈QC2
52: if x has not yet decided then decide(v)

upon received the same update3〈v, view, ∗〉 from Q3 ∈RQS
53: if x has not yet decided then decide(v)

at every learner lj :
upon lj received decision〈v〉 from some subset of acceptors T , T /∈B
101: if lj has not yet learned a value then learn(v)

upon value not learned
102: wait some preset time
103: if value not learned then send 〈decision_pull〉 to acceptors

Figure 3.14: The Locking module
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tors Byzantine in ex belongs to B, as well as Termination in case the system
is eventually synchronous and there is a set Q ∈Q that contains only correct
acceptors. In addition, analogously to Section 3.3.2, we define the properties
P1(Q(3)), P2(Q(1),Q(3)) and P3(Q(1),Q(2),Q(3)), where Q(i) is some set of sub-
sets of acceptors. The following theorems capture the minimality of our RQS,
assuming |proposers| ≥ 2 and |learners| ≥ 3.

Theorem 4. If an algorithm A implements (Q(3), B)–consensus, then P1(Q(3))
holds.

Theorem 5. If a (Q(3), B)–consensus algorithm A is (1,Q(1))–fast, then P2(Q(1),Q(3))
holds.

Theorem 6. If a (Q(3), B)–consensus algorithm A is both (1,Q(1))–fast (for
some Q(1) 6= ∅) and (2,Q(2))–fast, then P3(Q(1),Q(2),Q(3)) holds.

Theorem 4 is not new; it follows directly from [JM03]. Moreover, in the special
threshold case, where (a) B=Bk, (b) all elements of Q(1) (resp., Q(3)) contain
all but at most q (resp., t) acceptors, and (c) q = t−2k, Theorems 4–5 correspond
to the lower bounds identified in [Lam03].
In the following, we prove Theorem 6. To strengthen the optimality result

established by Theorem 6, we assume that proposers and learners may not be
Byzantine, yet that any number of proposers and learners may fail by crashing.

Proof. To prove Theorem 6, we assume full information protocols in the round-
by-round eventually synchronous model [Gaf98,KS06]. The assumption of a full
information protocol is indeed without loss of generality, since if, in some partic-
ular algorithm A, a process p does not send a message to process q in round rnd,
we model this by having process p send to q a default (unauthenticated) mes-
sage msgnil in rnd and q does not change its state upon reception of a message
msgnil. Moreover, denote by mj

rnd[i] the message sent by process j to process i
in round rnd of some execution. For presentation simplicity we assume that, in
each round, every process combines all the messages mj

rnd[i] it is about to send in
rnd and sends the same message mj

rnd to all processes, such that every process i
(including Byzantine ones) ignores all the portions of the message except mj

rnd[i]
(it is not difficult to see that this is indeed without loss of generality).
Assume, by contradiction, that there is a (Q(3), B)–consensus that is both

(1,Q(1))–fast (for someQ(1) 6= ∅) and (2,Q(2))–fast such that P3(Q(1),Q(2),Q(3))
is violated, i.e.:

∃Q2 ∈Q(2), ∃Q ∈Q(3), ∃Q1 ∈Q(1), ∃B1, B2 ∈B: ((Q2 ∩ Q) ⊆ (B1 ∪ B2)) ∧
(Q2 ∩Q ∩Q1) ∈B.

In the following, we denote the set Q2 ∩ Q ∩ Q1 by B0 (note that B0 ∈B).
Since B0 ⊆ Q2∩Q and B is an adversary for acceptors, we may assume, without
loss of generality, that B0 ⊆ B1. Moreover, since B is an adversary for acceptors,
without loss of generality we may fix B1 and B2 such that Q2∩Q equals B1∪B2.
Note that this implies (B1∪B2) ⊆ Q2 and (B1∪B2) ⊆ Q. Furthermore, denote by
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X the set acceptors\X, whereX is any subset of acceptors. Hence, Q2∩Q∩Q1 =
B2 ∪ (B1 \B0).
Denote by p0 and p1 two distinct proposers (p0 6= p1) (such proposers exist

since |proposers| ≥ 2). Since there are at least three learners, there exists a
learner l1 ∈ learners \ {p0, p1}. Denote by l2 some learner different from l1.
Without loss of generality, we assume that if l2 ∈ {p0, p1} then p0 = l2. Recall
that (proposers ∪ learners) ∩ acceptors = ∅.
We only consider the cases where p0 proposes 0 and p1 proposes 1 (as this is

sufficient to prove the theorem). Letm0 = mp0
0 (resp., m1 = mp1

1 ) be the message
sent by p0 (resp., p1) in round 1 of some best case execution ex,when p0 (resp.,
p1) is correct and proposes 0 (resp., 1). We say that a process ai plays 0 (resp. 1)
to some process aj in round 2 of ex if aj cannot distinguish, at round 2, execution
ex from some execution ex′ in which (1) ai has received m0 (resp. m1) from p0
(resp., p1) in the first round, and (2) ai is correct.
To exhibit a contradiction, we construct several (partial) executions (sketched

in Figure 3.15) of the algorithm A, including the one in which agreement is
violated. In these executions, we consider only processes from set acceptors ∪
{p0, p1, l1, l2}. Other processes can be assumed without loss of generality to fail
by crashing at the beginning of each of the following executions.

• Let ex1 be the best-case execution in which all processes fail by crashing at
the beginning of ex1, except p1, l1 and acceptors from Q2 that are correct
in ex1 (such an execution is possible since p1 and l1 are not acceptors, and,
hence, p1 and l1 are not in Q2). Moreover, a correct proposer p1 proposes
1 in round 1 at the beginning of ex1 (we denote this time by t0). Since
the system is synchronous in the first three rounds of a best-case execution
ex1 (i.e., during [t0, t0 + 3∆]), all round 1-3 messages exchanged among all
correct processes are delivered in ex1. By our assumption that A is (2,Q2)–
fast, l1 learns 1 by the end of round 3 (i.e., in three message-delays).

• Let ex2 be the best case execution in which all processes fail by crashing at
the beginning of ex2, except p0, l1 and acceptors from Q1 that are correct
in ex2 (such an execution is possible since pl and l1 are not acceptors, and,
hence, pl and l1 are not in Q1). Moreover, a correct proposer pl proposes
0 in round 1 at the beginning of ex2 (i.e., at time t0). Since the system
is synchronous in the first two rounds of a best-case execution ex1 (during
[t0, t0 + 2∆]), all round 1 and 2 messages exchanged among all correct
processes are delivered in ex2. By our assumption that A is (1,Q1)–fast,
l1 learns 0 by the end of round 2 (i.e., in two message-delays).

• Let ex3 be a partial execution in which all processes are correct except
(1) acceptors from Q, (2) learner l1 and (3) proposer p1, which all crash in
ex3 at the beginning of round 3. At the beginning of ex3, at time t0, both
proposers p0 and p1 propose values 0 and 1, respectively. The messages
sent in the first two rounds of ex3 are delivered as follows:
– (Round 1 messages.) By the end of round 1: processes from Q2 ∪ {l1}

receive m1, while processes from Q2 ∪ {l2} receive m0. Moreover,
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Figure 3.15: Illustration of the partial executions used in the proof of Theorem 6.
Only acceptors that belong to set Q2 ∪Q. For clarity, learner l2, as
well as messages received by proposers and those sent by learner l1
are not depicted.
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acceptors from B2 receive the message from p0 (i.e., m0) in round 2,
while those from B1 receive m0 in round 3. No other process receives
m1 (since p1 crashes in ex3).

– (Round 2 messages) The following round 2 messages are delivered by
the end of round 2: (a) from {p0, l2} ∪ Q to p0, l2, Q ∩ Q2 and B2,
(b) from {p1, l1} ∪ Q2 to p1, l1, Q2 ∩ Q and B1. Note that, at the
end of round 1, processes from Q2 ∪ {p1, l1} (resp., Q2 ∩ Q1) cannot
distinguish ex3 from ex1 (resp., ex2) and therefore play 1 (resp., 0)
to all processes in round 2. Moreover, acceptors from B1 receive the
round 2 messages sent by processes from (Q∩Q2)∪{p0, l2} in round 3.
Finally, no other round 2 message is delivered in ex3, (this is possible,
since the only remaining round 2 messages are (a subset of) those sent
by/to processes from Q ∪ {p1, l1} which fail by crashing in ex3). In
particular, note that processes from {p0, l2} ∪ B2 ∪ (Q ∩ Q2) never
receive any round 2 message sent by processes from {p1, l1}∪(Q2∩Q).

Note that, in ex3, by the end of round 2, all processes from {p0, p1, l1, l2} ∪
Q2 ∪ Q receive all the messages sent in the first two rounds by (a) at
least one proposer, (b) some quorum of acceptors, and (c) at least one
learner. Processes from {p1, l1} ∪ (Q2 ∩Q) ∪B1 cannot distinguish, at the
end of round 2, ex3 from ex1, while processes from {p0, l2}∪ (Q∩Q2)∪B2)
cannot wait for any additional round 1 or round 2 message since these
processes received all the messages sent by correct processes in first two
rounds. Therefore, in ex3 no process from {p0, p1, l1, l2} ∪Q2 ∪Q waits for
any additional message before moving to round 3. At the beginning of round
3 processes from Q ∪ {p1, l1} fail by crashing such that no process receives
any message sent by some of these processes in round 3. Furthermore,
assume that in every round i ≥ 3, all round i messages exchanged among
correct processes are delivered by the end of round i. Since (a) p0 is correct
in ex3 and proposes a value (note that p0 can be correct in ex′3 since p0 /∈
{p1, l1} ∪ Q), (b) there is a quorum of correct acceptors Q ∈Q(3), (c)
the system is eventually synchronous, and (d) A implements (Q(3), B)–
consensus, eventually a correct learner l2 (l2 can be correct since, l2 /∈
{p1, l1} ∪Q) learns some value v ∈ {0, 1}, say at round K.

• Let ex4 be an execution identical to ex3, except that, in ex4:
– Processes fromQ∪{p1, l1} do not crash at the beginning of round 3, but

due to asynchrony, no message sent in rounds 3 to K by some process
from Q∪{p1, l1} is delivered before round K+1, with the exception of
round 3 messages sent by processes from {p1, l1}∪ (Q2 ∩Q) to learner
l1 (we assume here that, in ex4, GST is not reached by the end of
round K).

– Acceptors from B2 are Byzantine and in round 3 send the same mes-
sage as in the round 3 of ex1 to l1 (i.e., as if they received round 2
messages (only) from Q2 ∪ {p1, l1}). Otherwise, acceptors from B2 in
rounds 3 to K respect the algorithm A and send the same messages
as in ex3.
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– In round 3 of ex4, the messages sent by {l1, pl} ∪Q2 (including those
from B2) are delivered to l1; other messages sent to l1 are delayed until
after round K. Since benign processes {l1, pl} ∪Q2 do not distinguish
round 2 of ex3 (and, hence, ex4) from round 2 of ex1, they send the
same messages in round 3 of ex4 as in round 3 of ex1.

Hence, at the end of round 3, l1 cannot distinguish ex4 from ex1 and learns
1. Other round 3 and later messages in ex4 are delivered as in ex3. Since
proposer p0 is correct in ex4, (note that p0 /∈ {p1, l1} ∪ B2 ∪ Q), a correct
learner l2 (l2 /∈ {p1, l1} ∪ B2 ∪ Q) cannot distinguish ex4 and ex3. Hence,
l2 learns value v by the end of round K. Since both l1 and l2 are correct in
ex4, by the agreement property, v must equal 1.

• Let ex5 be an execution in which all processes are correct except acceptors
from B1 that are Byzantine. At the beginning of ex5, p0 proposes 0, while p1
proposes 1. In round 1 of ex5 the message are delivered exactly as in round
1 of ex3, except that (1) benign acceptors from Q1 (including those from
Q2 ∩ Q ∩ Q1) receive m0, but not m1 and (2) acceptors from B0 receive
both m1 and m0. In round 2 and later rounds, B0 plays 1 to processes
other than l1. Moreover all acceptors from Q1 (including those from B0)
play 0 to l1 in round 2 (here, benign acceptors from Q1 obey the algorithm
— they cannot distinguish round 1 in ex5 from that of ex2) and all such
messages are delivered in round 2. Moreover, all other round 2 messages
sent to l1 are delivered in round 3. Clearly, at the end of round 2, l1
cannot distinguish ex5 from ex2 (since l1 receives the same set of messages
from acceptors in round 2, and the same message from p0 in rounds 1 and
2 in both executions), and hence, learns 0. All other round 2 messages
are delivered as in ex3. Hence, just like in ex3, in ex5 no process from
{p0, l2} ∪ (Q ∩ Q2) ∪ B2 receives any round 2 message from any process
from {p1, l1} ∪ (Q2 ∩ Q). Starting from round 3 acceptors from B1 forge
their state as if they received the round 2 messages as in ex3 and ex1,
i.e., as if all processes from Q2 ∪ {p1, l1} played 1 to acceptors from B1
in round 2 of ex5 (which is actually the case, except for processes from
(Q2 ∩Q∩Q1)∪ {l1}), and acceptors from B1 received these messages (this
is possible since the messages sent in the round 2 of the best-case execution
ex1 are not authenticated). Moreover, no message sent in rounds 3 to K by
some process from Q ∪ {p1, l1} is delivered before round K + 1. All other
messages in round 3 and later are delivered as in ex3. Since a correct learner
l2 cannot distinguish ex5 and ex3 (note that p0, l2 /∈ {p1, l1} ∪ B1 ∪ Q), l2
learns value v by the end of round K. Since v equals 1 (see ex4), and both
l1 and l2 are correct, in ex5 agreement is violated.

3.5 Correctness of the atomic storage algorithm
In this Section, we prove the correctness of our atomic storage algorithm of Sec-
tion 3.3.1. For simplicity of presentation, we introduce the following notation



52 CHAPTER 3. REFINED QUORUM SYSTEMS

and definitions.

Definition 5. Consider a set of elements S and an adversary for S, B. We
say that Q ⊆ S is a basic (resp., large) subset (of S), if Q is not a subset of
any element (resp., a union of any two elements) of an adversary structure, i.e.,
Q /∈B (resp., ∀B1, B2 ∈B: Q * (B1 ∪B2)).

We say that a base object responds to, or acks a wr〈ts, ∗, ∗, rnd〉 (resp., rd〈tsr, rnd〉)
message from client, if base object sends a wr_ack〈ts, rnd〉 (resp., rd_ack〈tsr, rnd, ∗〉)
to the client. We say that a benign base object si stores value c.val and times-
tamp c.ts (in round rnd), if, at some point in time, historyi[c.ts, rnd].tsval =
c = 〈c.ts, c.val〉 6= 〈ts0,⊥〉.
We first prove atomicity and then we proceed to wait-freedom and complexity.

To prove atomicity, we first prove few lemmas.

Lemma 1. Size of basic sets. In every execution of our storage algorithm,
any basic subset of base objects contains at least one benign base object.

Proof. The lemma follows directly from the definition of a basic subset (Defini-
tion 5).

Lemma 2. Size of large sets. In every execution of our storage algorithm, for
any large subset T2 of base objects, there is a basic subset T1 ⊆ T2 that contains
only benign base objects.

Proof. Let Bex an element of an adversary structure that contains all Byzantine
base objects in execution ex. By Definition 5, for any large subset T2, T2 \ Bex
is a basic subset. By our assumption on Bex, T2 \Bex contains only benign base
objects in ex. Hence the lemma.

Lemma 3. Values written by readers. If some reader r sends a wr〈ts, v, ∗, ∗〉
to base objects, then r executes line 35, Fig. 3.6, and assigns csel = 〈ts, v〉 (we
simply say r selects timestamp/value pair csel).

Proof. By our assumption that readers are benign and by trivial inspection of
the read pseudocode in Fig. 3.6.

Lemma 4. No-creation. If a read rd selects timestamp/value pair csel =
〈csel.ts, csel.val〉 in line 35, Fig. 3.6, then either csel.val was written by some
write, or csel.val is the initial value ⊥.

Proof. Suppose by contradiction that some read selects csel with timestamp csel.ts
that is neither ⊥, nor written by some write. In that case, let rd be the first read
(according to the global clock) to select such timestamp/value pair csel in line
35, Fig. 3.6, at time t. Therefore, up to time t, by Lemma 3, readers send only
wr messages containing written values or ⊥. Hence, no benign base object stores
a value not written by some write that is different from ⊥ by the time t.
Note that safe(csel) holds (line 33, Fig. 3.6), i.e., base objects from a basic

subset T have sent a read_ACK message containing csel in their history[csel.ts, 1]
or history[csel.ts, 2] variables. By Lemma 1 at least one benign base object si ∈ T
stored csel.val 6= ⊥ before t, such that csel.val was not written by some write. A
contradiction.



3.5. CORRECTNESS OF THE ATOMIC STORAGE ALGORITHM 53

Lemma 5. Stored values. Benign objects store only timestamp/value pairs
written by some write (or initial pair 〈ts0,⊥〉).

Proof. By Lemmas 3 and 4.

Lemma 6. No ambiguity. No two benign base objects ever store different values
with the same timestamp (i.e., for every two benign base objects si and sj, any
ts, and any ρi, ρj ∈ {1, 2, 3}, (historyi[ts, ρi].val 6= ⊥) ∧ (historyj [ts, ρj ].val 6=
⊥)⇒ historyi[ts, ρi] = historyj [ts, ρj ]).

Proof. By Lemma 5, the assumption that the writer is benign and the fact that
the writer never assigns different values to the same timestamp.

Lemma 7. Non-decreasing timestamps. For any ρ ∈ {1, 2, 3}, the highest
timestamp stored in round ρ by a benign base object si never decreases, (i.e., the
highest value ts for which historyi[ts, ρ] 6= 〈ts0,⊥〉 never decreases).

Proof. From base object code inspection (line 3, Fig. 3.5), once a timestamp/value
pair is stored in historyi[ts, ρ], it is never overwritten by a different times-
tamp/value pair. Hence the lemma.

The following lemma is crucial for proving atomicity. We make an extensive
use of this lemma in the rest of the proof.

Lemma 8. Locking the value. Assume that, for every quorum Q, by time t′,
at least one of the following three properties holds:

• (a) there is a basic subset TQ that contains only benign servers, such that
TQ ⊆ Q, such that, every element si ∈ TQ stores historyi[tsi, 1].tsval =
cQ = 〈tsi, vi〉 6= 〈ts0,⊥〉, where tsi ≥ ts′,

• (b) a benign server si ∈ Q stores historyi[tsi, 2].tsval = cQ = 〈tsi, vi〉 6=
〈ts0,⊥〉, where tsi ≥ ts′,

• (c) a benign server si ∈ Q stores historyi[tsi, 1].tsval = cQ = 〈tsi, vi〉 6=
〈ts0,⊥〉 and exists a class 2 quorum Q2 such that Q2 ∈ historyi[tsi, 1].sets
and P3b(Q2, Q) holds, where tsi ≥ ts′.

Then, a complete read rd invoked after t′ cannot return value c.val such that
c.ts < ts′.

Proof. We prove that highCand(c) cannot hold in rd. Denote by Q(t) the set of
quorums that responded to the reader during rd by time t, where t ≥ tinv(rd) > t′,
where tinv(rd) denotes the time rd is invoked. More precisely, we say that quorum
Q responds to the reader (during rd) if the reader received at least one rd_ack
message (during rd) from every server from Q. Notice that, by definition of Q(t),
t1 < t2 ⇒ Q(t1) ⊆Q(t2). Moreover, denote by c(t) timestamp/value pair c such
that there is Q ∈Q(t), such that c = cQ, and for all Q′ ∈Q(t), cQ.ts ≤ cQ′ .ts. In
other words, c(t) is timestamp/value pair cQ with the minimum timestamp over
all quorums Q that responded to the reader by time t. Notice here that, since
t1 < t2 ⇒ Q(t1) ⊆Q(t2), c(t).ts is monotonically decreasing. We show that, for
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any t ≥ tinv(rd) (in the following we assume only such times t), there is a server
si, such that read(c(t), i) and invalid(c(t)) does not hold. Since, by definitions
of c(t) and properties (a)–(c), c(t).ts > c.ts for any t, highCand(c) cannot hold.
Assume by contradiction that there is time t such that, at time t: (i) there is

no server si such that read(c(t), i), or (ii) invalid(c(t)). It is trivial to see that
(i) contradicts definitions of c(t) and Q(t); establishing a contradiction in case
(ii) is less obvious.
Let t1 be time such that invalid(c(t1)) holds. There are two possibilities (see

line 9, Fig. 3.6): (1) c(t1).ts > highest_ts, or (2) there is quorum Q′ ∈RQS such
that none of the predicates valid1(c(t1), Q′), valid2a(c(t1), Q′) and valid2b(c(t1), Q′)
holds.
Consider case (1). Denote by tfirst the time the first round of rd ends. By

definitions of c(t) and highest_ts (line 29, Fig. 3.6), c(tfirst).ts ≤ highest_ts.
Hence, c(t1).ts > highest_ts contradicts the fact that c(t) is a monotonically
decreasing function.
Consider now case (2). We distinguish three cases depending on which of the

properties (a)–(c) holds for Q′.

• First, assume property (a) holds for Q′. In this case, since valid1(c(t1), Q′)
does not hold, all servers from all basic subsets of Q′ respond in rd by
t1, such that, for every such a basic subset TQ′ there is a benign server
si ∈ TQ′ such that last[i, 1].ts < c(t1).ts. Notice here that, by Lemma 6, it
is not possible that last[i, 1].ts = c(t1).ts and last[i, 1].val 6= c(t1).val. As
a corollary of Lemma 7, timestamp last[i, 1].ts is monotonically increasing
(for any benign server, including si). Hence, by property (a) of Q′, we have
cQ′ .ts ≤ last[i, 1].ts. Finally, we have cQ′ .ts < c(t1).ts, which contradicts
the definition of c(t).

• Assume now property (b) holds for Q′. Since valid2a(c(t1), Q′) does not
hold, every benign server si ∈ Q′ responds to the reader in rd by t1 such
that last[i, 2].ts < c(t1).ts. Notice again that, by Lemma 6, it is not possible
that last[i, 2].ts = c(t1).ts and last[i, 2].val 6= c(t1).val. As a corollary of
Lemma 7, timestamp last[i, 2].ts is monotonically increasing (for any benign
server si). Hence, by property (b) of Q′, cQ′ .ts ≤ last[i, 2].ts. Finally, we
have cQ′ .ts < c(t1).ts, which contradicts the definition of c(t).

• Assume now property (c) holds for Q′. Since valid2b(c(t1), Q′) does not
hold, every benign server si ∈ Q′ responds to the reader in rd by t1 such
that, for every Q2 ∈QC2, lastset[i, Q2].ts < c(t1).ts. By Lemma 6 and
the definition of predicate lastset[i, Q], line 5, Fig. 3.6, it is not possible
that (for some Q2 ∈QC2) lastset[i, Q2].ts = c(t1).ts and lastset[i, Q2].val 6=
c(t1).val. Since, by Lemma 7, the highest value ts for which historyi[ts, 1] 6=
〈ts0,⊥〉 never decreases, and since, by server code (Fig. 3.5), no set is ever
removed from historyi[ts, 1].sets, timestamp lastset[i, Q2].ts is monoton-
ically increasing (for any benign server si and any class 2 quorum Q2).
Hence, by property (c) of Q′, there is a class 2 quorum Q2 such that
cQ′ .ts ≤ lastset[i, Q2].ts. Finally, we have cQ′ .ts < c(t1).ts, which con-
tradicts the definition of c(t).
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Now we prove atomicity of read operations.

Lemma 9. read/write atomicity. If a read rd is complete and it follows some
complete wr = write(v), then rd does not return a value older than v.

Proof. First, recall that timestamps monotonically increase at the writer. More-
over, by Lemma 3 and 4, all values that a reader may write to a base object
(and, all values reader may return) are written by the writer (or the value is
⊥). Therefore, timestamps associated by the writer to the written values, totally
order values that readers return. Now we show that rd does not return c′.val,
such that c′.ts < ts, where ts is associated to v in write(v) = wr.
First, suppose that wr completes in a single round trip. Then, a pair 〈ts, v〉 is

written to history∗[ts, 1].tsval variables of all benign base objects of some class
1 quorum Q1. By Property 2 of RQS, and Definition 5, for every quorum Q,
Q1 ∩ Q is a large subset, and every large subset is a superset of a basic subset
that contains only benign base objects (by Lemma 2). Therefore, for every quo-
rum Q there is a basic subset TQ that contains only benign base objects such that
TQ ⊆ Q and TQ ⊆ Q1. Hence, we can apply Lemma 8 (for all quorums property
(a) holds), and conclude that rd does not return a value with a timestamp smaller
than ts, i.e., a value older than v.

Now, suppose that wr completes in two or three round-trips. Then, a pair
〈ts, v〉 is written to history∗[ts, 2].tsval variables of all benign base objects of
some quorum Q′. Since any quorum intersects with any other quorum Q in a
basic subset (by Property 1 of RQS, and Definition 5), Q′ ∩ Q is a basic subset
that contains at least one benign base object (by Lemma 1). Therefore, for every
quorum Q there is a benign base object siQ such that siQ ∈ Q and siQ ∈ Q′.
Hence, we can apply Lemma 8 (for all quorums property (b) holds), and conclude
that rd does not return a value with a timestamp smaller than ts, i.e., older than
v.

Now we prove atomicity among read operations.

Lemma 10. read atomicity. If a read rd is complete and it follows some
complete read rd′ that returns v′, then rd does not return a value older than v′.

Proof. We show that rd does not return c.val, such that c.ts < ts′, where ts′
is associated to v′ by the write that wrote v′, (for brevity, we use c′ = 〈ts′, v′〉).
We consider three exhaustive cases, where : (1) rd′ completes in a single round,
(2) rd′ completes in exactly two rounds, and (c) rd′ completes in more than two
rounds.

1. If rd′ completes in a single round, then, at the end of the first round of
rd′, BCD(c′, 1, ∗) holds. We consider the following three exhaustive cases
where: (a)BCD(c′, 1, 1) holds, (b)BCD(c′, 1, 2) holds, and (c)BCD(c′, 1, 3)
holds.
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a) In this case there exist class 1 quorums Q1 and Q′1 (possibly Q1 = Q′1),
such that, at the end of round 1 of rd′, for all benign base objects
si ∈ Q1 ∩ Q′1 = X, historyi[ts′, 1].tsval = c′. Since, by Property 2 of
RQS and Definition 5 an intersection of a pair of class 1 quorums with
any quorum Q is a large subset. Hence, X ∩Q is a large subset, and
every large subset is a superset of a basic subset that contains only
benign base objects (by Lemma 2). Therefore, for every quorum Q
there is a basic subset TQ that contains only benign base objects such
that TQ ⊆ Q and TQ ⊆ X. Hence, we can apply Lemma 8 (for all
quorums property (a) holds), and conclude that rd does not return a
value with a timestamp smaller than ts′, i.e., older than v′.

b) In this case there exist a class 1 quorum Q1 and a class 2 quorum Q2,
such that, at the end of round 1 of rd′, for all benign base objects
si ∈ Q1 ∩ Q2 = X, historyi[ts′, 2] = 〈c′,QC′′2 〉 and Q2 ∈QC′′2 . Note
that there is at least one benign base object in X by Property 1 of RQS
(X is a basic subset as an intersection of two quorums) and Lemma 1.
Note also that, by writer and base object code, a benign object si
stores historyi[ts′, 2] = 〈c′,QC′′2 〉, where Q2 ∈QC′′2 only if all benign
base objects from Q2 have stored history∗[ts′, 1].tsval = c′. Moreover,
since Q2 is a class 2 quorum, for any quorum Q: (i) Q2 ∩Q is a large
subset (i.e., P3a(Q2, Q) holds), or (ii) X ∩ Q is a basic subset (i.e.,
P3b(Q2, Q) holds).

i. In this case, Q2 ∩Q is a large subset, and every large subset is a
superset of a basic subset that contains only benign base objects
(by Lemma 2). Therefore, there is a basic subset TQ that contains
only benign base objects such that TQ ⊆ Q and TQ ⊆ Q2. I.e., all
(benign) base objects in TQ store history∗[ts′, 1].tsval = c′, before
rd′ completes. Hence, for all quorums Q, for which P3a(Q2, Q)
holds, property (a) of Lemma 8 is also satisfied.

ii. X ∩ Q is a basic subset, and every basic subset contains at least
one benign base object (by Lemma 1). Therefore, there is a benign
base object siQ such that siQ ∈ Q and siQ ∈ X. Hence, siQ stores
historyiQ [ts′, 2].tsval = c′ before rd′ completes. Hence, for all
quorums Q, for which P3b(Q2, Q) holds, property (b) of Lemma 8
is also satisfied.

Hence, we can apply Lemma 8, and conclude that rd does not return
a value with a timestamp smaller than ts′, i.e., older than v′.

c) In this case there exist a class 1 quorum Q1 and a quorum Q, such that,
at the end of round 1 of rd′, for all benign base objects si ∈ Q1∩Q = X,
historyi[ts′, 3].tsval = c′. Since, by Property 1 of RQS, any quorum
intersection is a basic subset, by Lemma 1, X contains at least one
benign base object. Note also that, by base object code, a benign
base object stores historyi[ts′, 3].tsval = c′, only upon all benign base
objects from some quorum Q′ store historyi[ts′, 2].tsval = c′. By
Property 1 of RQS and Definition 5, Q′ ∩Q′′ is a basic subset for any
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quorum Q′′. Moreover, every basic subset contains at least one benign
base object (by Lemma 1). Therefore, for every quorum Q′′ there is a
benign base object siQ′′ such that siQ′′ ∈ Q

′′ and siQ′′ ∈ Q
′. Hence, we

can apply Lemma 8 (for all quorums property (b) holds), and conclude
that rd does not return a value with a timestamp smaller than ts′, i.e.,
older than v′.

2. If rd′ completes in exactly two rounds, then ∃i ∈ {1, 2, 3} : BCD(csel, 2, i) 6=
∅ (line 41, Fig. 3.6). We consider the following two exhaustive cases, where,
in rd′: (a) BCD(c′, 2, i) 6= ∅ holds for i = 2 or i = 3, and (b) BCD(c′, 2, i) 6=
∅ holds only for i = 1.

a) In this case, a client that invoked rd′ received acks for its wr〈c′.ts, c′.val, ∅, 2〉
message from at least a quorum Q′ of base objects (when executing the
writeback procedure in line 42). Hence, by the time rd′ completes, all
benign base objects from Q′ store historyi[ts′, 2].tsval = c′. By Prop-
erty 1 of RQS and Definition 5 for any quorum Q, Q′ ∩ Q is a basic
subset. Moreover, every basic subset contains at least one benign base
object (by Lemma 1). Therefore, for every quorum Q there is a benign
base object sQ such that sQ ∈ Q and sQ ∈ Q′. Hence, we can apply
Lemma 8 (for all quorums property (b) holds), and conclude that rd
does not return a value with a timestamp smaller than ts′, i.e., older
than v′.

b) In this case, sinceBCD(c′, 2, 1) 6= ∅, aQ2 is an element ofBCD(c′, 2, 1)
if: (I) Q2 is a class 2 quorum that responded in the first round of rd′,
and there is a class 1 quorum Q1, such that for all base objects from
X = Q1∩Q2 stored history∗[ts′, 1].tsval = c′. In the round 2 of rd′ the
reader sends the wr〈c′.ts = ts′, c′.val, BCD(c′, 2, 1), 1〉 to all base ob-
jects. Since rd′ completes in exactly two rounds, some (class 2) quorum
from BCD(csel, 2, 1) responds in the round 2 of rd′ as well. Denote
this quorum by Q′2. Since Q′2 is a class 2 quorums, for any quorum Q,
at least one of the following two properties hold: (i) P3a(Q′2, Q), i.e.,
Q′2 ∩Q is a large subset, or (ii) P3b(Q′2, Q) holds, i.e., X ∩Q is a basic
subset.

i. In this case, Q2 ∩ Q is a large subset, and every large subset
is a superset of a basic subset that contains only benign base
objects (by Lemma 2). Therefore, there is a basic subset TQ
that contains only benign base objects such that TQ ⊆ Q and
TQ ⊆ Q2. Recall that all benign base objects from Q2 have stored
history∗[ts′, 1].tsval = c′, before rd′ completes. Hence, for all quo-
rums Q, for which P3a(Q2, Q) holds, property (a) of Lemma 8 is
also satisfied.

ii. X ∩ Q is a basic subset, and every basic subset contains at least
one benign base object (by Lemma 1). Therefore, there is a benign
base object siQ such that siQ ∈ Q and siQ ∈ X. Hence, siQ stores
historyiQ [ts′, 1].tsval = c′ and Q′2 ∈ historyiQ [ts′, 1].sets before
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rd′ completes. Hence, for all quorums Q, for which P3b(Q2, Q)
holds, property (c) of Lemma 8 is also satisfied.

Hence, we can apply Lemma 8, and conclude that rd does not return
a value with a timestamp smaller than ts′, i.e., older than v′.

3. If rd′ completes in more than two rounds, then a client that invoked rd′

received acks for its wr〈c′.ts, c′.val, 2〉 message from at least a quorum Q′

of base objects (when executing the writeback procedure in line 47, or line
49). Hence, by the time rd′ completes, all benign base objects from Q′

store historyi[ts′, 2] = c′. By Property 1 of RQS and Definition 5, for any
quorum Q, Q′ ∩Q is a basic subset. Moreover, every basic subset contains
at least one benign base object (by Lemma 1). Therefore, for every quorum
Q there is a benign base object sQ such that ssQ ∈ Q and sQ ∈ Q′. Hence,
we can apply Lemma 8 (for all quorums property (b) holds), and conclude
that rd does not return a value with a timestamp smaller than ts′, i.e.,
older than v′.

Theorem 7. Atomicity. The algorithm in Figures 3.4, 3.5 and 3.6 is atomic.

Proof. By Lemmas 4, 9 and 10. More specifically:

• atomicity property (SWA1) (see Section 2.3.2) follows from Lemma 4,

• (SWA2) is equivalent to Lemma 9,

• (SWA3) follows from Lemmas 4 and 9, and

• (SWA4) is equivalent to Lemma 10.

We proceed to prove the wait-freedom property. First we prove the following
important lemma.

Lemma 11. Safety of 2-round read. Let Qc be a quorum that contains only
correct base objects. No base object si ∈ Qc stores historyi[c.ts, 2].tsval = c,
or stores Q2 ∈ historyi[c.ts, 1].sets, for some class 2 quorum Q2, such that
P3b(Q2, Qc), before there is a basic subset T ⊆ Qc such that all sj ∈ T stored
historyj [c.ts, 1].tsval = c.

Proof. First we prove the first part of the lemma (no si ∈ Qc stores historyi[c.ts, 2].tsval =
c).
By the algorithm’s pseudocode, before any client c sends a wr〈c.ts, c.val, ∗, 2〉

message to base objects, c has already received acks for its wr〈c.ts, c.val, ∗, 1〉
message from some quorum Q, except in case of a writeback in line 42. In all
other cases, Q∩Qc is a basic subset (by Property 1 of RQS and Definition 5) —
hence the lemma.
In the case of a writeback in line 42, assume, by contradiction, that there is

a read rd that issues a message wr〈c.ts, c.val, ∗, 2〉, such that no basic subset
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T ⊆ Qc previously stored historyj [c.ts, 1] = c. Moreover, let rd be the first such
read according to the global clock that executes the writeback procedure in line
42, at time t.
In this case, BCD(c, 2, 2) or BCD(c, 2, 3) hold in line 42 of rd. If BCD(c, 2, 2)

(resp., BCD(c, 2, 3)) holds, then there exist two class 2 quorum Q2 and Q′2 (resp.,
a class 2 quorum Q2 and a quorum Q) such that, for all benign base objects from
Q2∩Q′2 = X (resp., Q2∩Q = X), history∗[c.ts, 2] = c (resp., history∗[c.ts, 3] = c)
holds. By Property 1 of RQS, Definition 5 and Lemma 1, there is at least one
benign base object in X, i.e., by the end of round 1 of rd at least one benign base
object received wr〈c.ts, c.val, ∗, 2〉 (resp., wr〈c.ts, c.val, ∗, 3〉) from some client. By
algorithm pseudocode and by our assumption on rd, before time t, a client c sends
a message wr〈c.ts, c.val, ∗, 2〉 (resp., wr〈c.ts, c.val, true, 3〉) only upon c received
acks for its wr〈c.ts, c.val, ∗, 1〉 message from some quorum Q′ of base objects.
Note that Q′ ∩Qc = Tc is a desired basic subset. A contradiction.
Now we prove the first part of the lemma (no si ∈ Qc storesQ2 ∈ historyi[c.ts, 1].sets).
The only case to analyze is the writeback in line 44. Assume, by contradiction,

that there is a read rd that issues a message wr〈c.ts, c.val, SET, 1〉, where some
class 2 quorum Q2 ∈ SET , such that P3b(Q2, Qc), such that no basic subset
T ⊆ Qc previously stored historyj [c.ts, 1] = c. Moreover, let rd be the first such
read according to the global clock that executes the writeback procedure in line
44, at time t.
In this case, BCD(c, 2, 1) holds in line 41 of rd, and condition in line 42 is not

satisfied. If BCD(c, 2, 1) holds, then there exist a class 1 quorum Q1 such that
for all benign base objects from Q1 ∩ Q2 = X, history∗[c.ts, 1].tsval = c holds.
Since P3b(Q2, Q) holds, X ∩Qc = Tc is a desired basic subset, a contradiction.

Theorem 8. (Wait-freedom.) The algorithm in Figures 3.4, 3.5 and 3.6 is
wait-free.

Proof. The argument for the wait-freedom of a write operation is based on the
assumption that there is at least one quorum Qc containing only correct servers.
In every round of a write, the writer waits for acks from at least one quorum, so
the writer is guaranteed to receive the awaited acks eventually. The timer that
the writer awaits eventually expires and write eventually completes.
The argument for the wait-freedom of a read operation is more involved. We

show that any read operation invoked by a correct client does not block in line 34,
Fig. 3.6; the remainder of the proof is straightforward. We distinguish two cases:
(1) the case where there is an infinite (unbounded) number of write operations in
the execution, and (2) the case where the writer issues a finite number of write
operations in the execution. We denote by Qc the quorum that contains only
correct servers.

1. In this case, there is an infinite number of writes. Suppose, by contradiction,
that rd never completes. Let highest_ts = ts at the end of round 1 of rd.
Since the writer issues an unbounded number of writes, the writer will also
issue a write with timestamp ts, writing some value v. Since all benign
servers from some quorum Q store history∗[ts′, 1] = 〈ts′, v′〉 at time t and
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since by Property 1 of RQS Q ∩ Qc is a basic subset, after rd receives at
least one ack from every server from Qc sent after t, and, hence safe〈ts, v〉
will hold. Moreover, for all other timestamp/value pairs c with c.ts > ts,
c.ts > highest_ts will also hold and, hence, highCand〈ts, v〉 also eventually
holds. Hence 〈ts, v〉 is eventually in C and rd terminates. A contradiction.

2. In this case, there is a write operation with the highest timestamp. Let wr
denote the last complete write operation that writes v with timestamp ts
(or v = v0, ts = ⊥ if there is none). We denote with wr′ a possible later
(incomplete) write that writes v′ with ts′.
Assume, by contradiction, that read rd never returns a value. Note that
highest_ts denotes the highest timestamp that the reader received in the
first round of rd (line 29, Fig. 3.6). First consider the case, where ts <
highest_ts.
Then, rd invokes rounds on all correct servers, sending rdmessages infinitely
many times. We distinguish two cases: (a) no basic subset T such that T ⊆
Qc ever stores history∗[ts′, 1] = 〈ts′, v′〉, and (b) there is a time t at which
some basic subset T ⊆ Qc stores history∗[ts′, 1] = 〈ts′, v′〉. In case (a), let t
be the time at which the last correct server stores history∗[ts′, 1] = 〈ts′, v′〉.
Moreover, let t′ > t be the time at which rd receives at least one response
from every server from Qc sent after t (in both cases (a) and (b)).

a) Since wr completed, there is a quorum Q such that all benign servers
from Q have stored history∗[ts, 1] = 〈ts, v〉. By Property 1 of RQS,
Q∩Qc = Tv is a basic subset. Hence, from time t′ onward, rd received
at least one ack from all servers from Tv sent after wr completed
and, hence, 〈ts, v〉 is safe (by definition of the predicate safe, line 11,
Fig. 3.6).
Moreover, by Lemma 11 and assumption (a), no server from Qc ever
stores history∗[ts′′, 2] = 〈ts′′, v′〉, for any timestamp ts′′ > ts, nor
stores some Q2 ∈ history∗[ts′′, 1].sets such that P3b(Q2, Qc). There-
fore, for every timestamp-value pair c, such that 〈ts, v〉 ≺ c, valid2a(c,Qc)
and valid2b(c,Qc) do not hold. Finally, by our assumption (a) no
T ⊆ Qc stores history∗[ts′′, 1] = 〈ts′′, v′〉 for any ts′′ > ts. There-
fore, after time t′, for any value c, such that 〈ts, v〉 ≺ c, valid1(c,Qc)
does not hold. Hence, at the next iteration, highCand(〈ts, v〉) and
safe(〈ts, v〉) hold, 〈ts, v〉 ∈ C and rd returns, a contradiction.

b) In this case, after t′, 〈ts′, v′〉 there is a basic subset T for which
last[∗, 1] = 〈ts′, v′〉. Hence, safe(〈ts′, v′〉) holds after t′. It is not dif-
ficult to see, since no subsequent valid value is present in the system
(since wr′ is the last write invoked), that for every timestamp/value
pair c′′ such that c′′.ts > c′.ts∨ (c′′.ts = c′.ts∧ c′′.val 6= c′.val) none of
the predicates valid1(c′′, Qc), valid2a(c′′, Qc) or valid2b(c′′, Qc) holds,
i.e., invalid(c′′) holds. Hence, highCand(〈ts′, v′〉) also holds. Thus, in
the next iteration, 〈ts′, v′〉 ∈ C and read returns: a contradiction.

Consider now the case, where ts ≥ highest_ts. Since a write wr, with
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timestamp ts completed, then, a write with timestamp highest_ts also
completed. It is not difficult to see (along the lines of the proof of case (1))
that rd returns the value written with timestamp highest_ts.

Theorem 9. (Best-Case Latency.) The storage algorithm in Figures 3.4, 3.5
and 3.6 is (m,QCm)–fast for all m ∈ {1, 2, 3}.

Proof. For write operation, the proof is straightforward. For read, it is important
to show that whenever the read is synchronous and uncontended, lines 20-35 are
executed only once. This proof is given in the following. The rest of the proof is
straightforward, by using the output of BCD (lines 1-2, Fig. 3.6).
Since there is no contention, let wr writing timestamp value pair c = 〈ts, v〉 be

the last (complete) write that precedes read rd. Regardless of whether wr com-
pleted in 1, 2, or 3 rounds, wr wrote c = 〈ts, v〉 into some quorum of base objects
Q. Moreover, no benign base object stores any value with a higher timestamp
than ts by Lemma 5. Since rd is synchronous, a quorum Qc that contains only
correct base object will respond in the first round of rd. By Property 1 of RQS
and Definition 5 Qc ∩ Q = Tc is a basic subset that contains only correct base
objects, and, hence, safe(c) holds at the end of round 1 of rd. It is not difficult to
see that for any value c′.val with c′.ts > ts, none of the predicates valid1(c′, Qc),
valid2a(c′, Qc) and valid2b(c′, Qc) will hold. Hence, for any such timestamp/value
pair invalid(c′) holds. Hence, at the end of round 1 of rd, highCand(c) also holds
and hence c ∈ C in line 33, Fig. 3.6.



62 CHAPTER 3. REFINED QUORUM SYSTEMS

3.6 Correctness of the consensus algorithm

In this Section we prove the correctness of our consensus algorithm of Sec-
tion 3.4.1. First, we give few definitions.

Definition 6 (Value decided in a view). We say that value v is Decided-2,
Decided-3 or Decided-4 in view w, if there is benign process (acceptor or learner)
p that eventually decides a value by receiving (respectively):

• (Decided-2) update1〈v, w, ∗〉 messages from a class 1 quorum (line 51, Fig. 3.14).

• (Decided-3) update2〈v, w,Q2〉 messages from a class 2 quorum Q2 (line 52,
Fig. 3.14).

• (Decided-4) update3〈v, w, ∗〉 messages from some quorum (line 53, Fig. 3.14).

We also say that value v is decided in view w, if some benign process p Decided-
m v in view w (where m ∈ {2, 3, 4}).

Definition 7 (Prepares). We say that an acceptor ai prepares value v in view
w, if it eventually receives prepare〈v, w, ∗, ∗〉 and executes lines 31-33, Fig. 3.14.

Definition 8 (Updates). We say that a benign acceptor ai updates value v in
view w, if it eventually receives updatestep〈v, w, ∗〉 for some step ∈ {1, 2} and
executes lines 34-39, Fig. 3.14. More precisely, we say ai 1-updates (resp., 2-
updates) v in w if step = 1 (resp., step = 2).

Definition 9 (Accepts). We say that a benign acceptor ai accepts value v in
view w, if it prepares or updates v in view w.

We also make use of the Definition 5 of Section 3.5 (definition of basic and
large subsets).

Lemma 12. Size of basic sets. In every execution of our consensus algorithm,
any basic subset contains at least one benign acceptor.

Proof. The lemma follows directly from the definition of a basic subset (Defini-
tion 5).

Lemma 13. Size of large sets. In every execution of our consensus algorithm.
for any large subset T2, there is a basic subset T1 ⊆ T2 that contains only benign
acceptors.

Proof. Let Bex be an element of an adversary structure that contains all Byzan-
tine acceptors in execution ex. By Definition 5, for any large subset T2, T2 \Bex
is a basic subset. By our assumption on Bex, T2 \ Bex contains only benign
acceptors. Hence the lemma.

We first prove Validity.
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Lemma 14. Validity of the choose function. If choose(v, vProof,Q) (where
vProof consists of valid new_view_ack messages) returns v such that v is a
candidate with view w, then at least one benign acceptor ai prepared v in w.

Proof. Assume Cand2(v, w) holds (line 2, Fig. 3.12). In this case, every acceptor
aj from the set X = (Q1 ∩Q) \B (where B is an element of adversary B and Q1
is a class 1 quorum) reported that it prepared v in w. Note that, by Property 2
of RQS, Q1 ∩Q is a large subset. Hence, X is a basic subset. By Lemma 12, X
contains at least one benign acceptor.

Assume now Cand3(v, w, ∗). From line 3, Fig. 3.12, it follows that all accep-
tors from the set X = (Q2 ∩ Q) \ B, (where B is an element of adversary B
and Q2 is a class 2 quorum) reported that they updated v in w (i.e., ∀aj ∈ X :
vProof [aj ].Update[1] = v and w ∈ vProof [aj ].Updateview[1]). Note that, by
Property 1 of RQS, Q2 ∩Q is a basic subset. Hence, by Definition 5, X is a non-
empty set. In this case, vProof [aj ].Updateproof [1, w] contains at least a basic
subset of signed update1〈v, w, ∗〉 messages. By Lemma 12 at least one of these
signed messages comes from a benign acceptor ai that indeed prepared v in view
w.

The argument for the case where Cand4(v, w) holds (line 4, Fig. 3.12) is very
similar to the case where Cand3(v, w, ∗) holds.

Theorem 10. (Validity) If a benign learner learns value v and all proposers
are benign, then some proposer proposed v.

Proof. A benign learner learns value v by receiving (1) update∗ messages (lines
51-53 and 60, Fig. 3.14), or (2) by receiving a basic subset of decision messages
(line 101, Fig. 3.14). In case (b), by Lemma 12 and line 40, Fig. 3.14 at least one
benign acceptor decided v before the learner learned v.
Hence, in both cases, if a learner learns v, then v was accepted in some view

w (prepared or updated) by benign acceptors from some quorum of acceptors.
Since any quorum is a basic subset, there is at least one such benign acceptor aj
(by Property 1 of RQS, and Lemma 12). Note that aj updates v in w only upon
aj prepares v in w. We prove the following statement using induction on view
numbers: if a benign acceptor prepares v in view w, then some proposer proposed
v.
Base Step: (w = initV iew)
Benign acceptors prepare value v in initV iew only if they receive a

prepare〈v, initV iew, ∗, ∗〉 message from some proposer. Since all proposers are
benign, no proposer sends a prepare message containing v unless it proposes v.
Hence, if some benign acceptor accepts v, v was indeed proposed by some pro-
poser.

Inductive Hypothesis (IH): For every view w,w′ > w ≥ initV iew, if a benign
acceptor accepts v in w, then some proposer proposed v.
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Inductive Step: We prove the statement is true for view w′. In view w′, an accep-
tor accepts only values returned by choose(∗, vProof,Q), where vProof contains
valid new_view_ack messages. If choose(∗, vProof,Q) returns a candidate value
v, by Lemma 14, some benign acceptor prepared v in view w,w < w′, and by IH,
v was proposed by some proposer.
Finally, if choose() returns value v in line 19, Figure 3.12, then either (a) v is

the initial proposal value of the leader of w′, proposer pw′ , or (b) some previous
invocation of choose() by pw′ , in some view w < w′, returned v as a candidate
value. In case (a), v was obviously proposed was by pw′ . In case (b), by Lemma 14,
some benign acceptor prepared v in view w, and by IH, v was proposed by some
proposer.

Now we prove Agreement.

Lemma 15. After sending a new_view_ack message for view w, a benign accep-
tor cannot accept value v with view number w′ < w.

Proof. By the upon condition on lines 31-33, Fig. 3.14, a benign acceptor cannot
prepare a value with w′ < w. Moreover, a benign acceptor ai updates value v in
some view w′′ only after aj prepares v in w′′. Hence the lemma.

Lemma 16. If two values v and v′ are decided in view w, then v = v′.

Proof. Suppose v 6= v′. From Def. 6, all acceptors from some quorumQ (resp., Q′)
sent updatem〈v, w〉 (resp., updatem′〈v′, w〉) message, for some m,m′ ∈ {1, 2, 3}.
Hence, all benign acceptors from Q (resp., Q′) prepare v (resp., v′) in w. By
Property 1 of RQS and Definition 5, Q ∩ Q′ is a basic subset, which contains
at least one benign acceptor ai (by Lemma 12). That is, there exists a benign
acceptor that prepared different values in the same view. A contradiction.

Lemma 17. Unique Cand2(v,w). For any vProof that consists of a quorum
of valid new_view_ack messages, there are no two different values v and v′ such
that, in choose(∗, vProof,Q), both Cand2(v′, w) and Cand2(v, w) hold, for the
same w.

Proof. Assume by contradiction that such values v and v′ exist. By definition
of the predicate Cand2() (line 2, Fig. 3.12), there exist sets X = (Q1 ∩ Q) \ B
and X ′ = (Q′1 ∩ Q) \ B′, such that (1) B,B′ ∈B, (2) Q1 and Q′1 are class 1
quorums, and (3) all acceptors from set X (resp., X ′) prepared v (resp., v′) in
w. By Property 2 of RQS, Q1 ∩Q′1 ∩Q is a large subset. Applying Definition 5,
we conclude that X ∩X ′ is a non-empty set. Hence, there is an acceptor aj ∈ Q
such that vProof [aj ].P rep = v and vProof [aj ].P rep = v′. Hence, v = v′, or
vProof is not a set of valid (signed) new_view_ack messages. A contradiction.

Lemma 18. Cand3(v,w,‘a‘)/Cand4(v,w). Let vProof be a set of valid
new_view_ack messages from a quorum Q. Then, if for some value v Cand3(v, w, ‘a‘)
or Cand4(v, w) hold in choose(∗, vProof,Q), then all benign acceptors from some
quorum Q′ prepared v in w.
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Proof. Assume first Cand3(v, w, ‘a‘) holds. Then there is a set X = (Q2∩Q)\B′
such that (i) B′ ∈B, (ii) Q2 is a class 2 quorum and (iii) P3a(Q2, Q) holds. By
Property 3a of RQS, Q2 ∩Q is a large subset, and, by Definition 5, X is a basic
subset. By Lemma 12 there is at least one benign acceptor in X that updated
v in w. Therefore, by lines 34-39 in Fig. 3.14, all benign acceptors from some
quorum Q′ prepared v′ in w.
Assume now Cand4(v, w) holds. Then there exists an acceptor aj ∈ Q such

that:

• vProof [aj ].Update[2] = v′,

• w ∈ vProof [aj ].Updateview[2], and

• vProof [aj ].Updateproof [2, w] contains a basic subset of signatures of update2〈v, w, ∗〉
messages including at least one from a benign acceptor ab.

Hence a benign acceptor ab updated v′ in w. Therefore, all benign acceptors
from some quorum Q′ prepared v′ in w.

Lemma 19. If w is the lowest view number in which some value v is Decided-2,
then no benign acceptor ai prepares any value v′, v′ 6= v in any view higher than
w.

Proof. We prove this lemma by induction on view numbers.
Base Step: First, we prove that no benign acceptor ai can prepare any value
different from v in view w + 1. A benign acceptor ai prepares value v′ in w + 1
only if the choose() function on the valid vProof in view w + 1 returns v′,
without setting the abort flag. Therefore, it is sufficient to prove that for any
valid vProof , choose(∗, vProof,Q) returns v, or abort flag is set.
By Definitions 6 and 7, all benign acceptors from a class 1 quorum Q1 prepared

v in w. Since no basic subset of acceptors is Byzantine, there is a set B ∈B,
such that B contains all Byzantine acceptors. Since the valid vProof for view
w + 1 consists of new_view_ack messages from a quorum Q, there is a set X =
(Q1 ∩Q) \B that contains only benign acceptors. By Lemma 15, every acceptor
ai ∈ X prepared v in w, before replying with the new_view_ack message to
the leader of view w + 1. In the meantime, no acceptor aj ∈ X prepared any
other value, as this would mean that aj would be in the higher view then w + 1
when replying with new_view_ack for view w+1, which is impossible. Therefore,
Cand2(v, w) (line 2, Fig. 3.12) holds in choose(∗, vProof,Q), for any Q.
By Lemma 14, it is not difficult to see that there is no value v′ such that

Cand2(v′, w′), Cand3(v′, w′, ∗) or Cand4(v′, w′) holds for some w′ > w.
By Lemma 17, there is no other value v′ 6= v such that Cand2(v′, w) holds.
We show now that there is no value v′ such that Cand3(v′, w′, ‘a‘) or Cand4(v′, w′)

hold and v′ 6= v and w′ = w. Assume, by contradiction, that such value v′ exists.
Then, by Lemma 18, all benign acceptors from some quorum Q′ prepared v′ in
w. By Property 2 of RQS, Y = Q1 ∩Q′ is a large subset that contains at least a
basic subset of benign acceptors. Therefore some benign acceptor in Y prepared
both v and v′ in w. A contradiction.
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By inspection of choose() pseudocode, choose() returns v or abort flag is set
(if there is a v′ 6= v such that Cand3(v′, w, ‘b‘) holds).

Inductive Hypothesis (IH): Assume that no benign acceptor ai prepares any value
different from v in any view from w + 1 to w + k. We prove that no benign ac-
ceptor ai can prepare any value different from v in view w + k + 1.

Inductive Step: It is sufficient to prove that for any valid vProof , choose(∗, vProof,Q)
returns v, or abort flag is set.
By Definitions 6 and 7, all benign acceptors from a class 1 quorum Q1 prepared

v in w. By IH, all benign acceptors from Q1 can prepare only v in views w + 1
to w + k. Moreover, there is a set B ∈B, such that B contains all Byzantine
acceptors. Since the valid vProof of view w + k + 1 consists of new_view_ack
messages from a quorum Q, there is a set X = (Q1 ∩Q) \ B that contains only
benign acceptors. By Lemma 15, no acceptor ai ∈ X prepares a value in a
higher view than w + k before sending a new_view_ack message to the leader of
view w+ k + 1. Hence, by definition of predicate Cand2(), Cand2(v, w) holds in
choose(∗, vProof,Q), for any Q.
By Lemma 17, there is no other value v′ 6= v such that Cand2(v′, w) holds.
By Lemma 14 and IH, it is not difficult to see that there is no value v′ 6= v

such that Cand2(v′, w′), Cand3(v′, w′, ∗) or Cand4(v′, w′) holds for some w′ > w.
We show now that there is no value v′ such that Cand3(v′, w′, ‘a‘) or Cand4(v′, w′)

hold and v′ 6= v and w′ = w. Assume, by contradiction, that such value v′ exists.
Then, by Lemma 18, all benign acceptors from some quorum Q′ prepared v′ in
w. By Property 2 of RQS, Y = Q1 ∩Q′ is a large subset that contains at least a
basic subset of benign acceptors. Therefore some benign acceptor in Y prepared
both v and v′ in w. A contradiction.
By inspection of choose() pseudocode, choose() returns v or abort flag is set

(in case there is value v′, v′ 6= v, such that Cand3(v′, w, ‘b‘) holds).

Similarly to Lemma 19, we prove the following two lemmas using the properties
of RQS and induction on view numbers.

Lemma 20. If w is the lowest view number in which some value v is Decided-3,
then no benign acceptor ai prepares any value v′, v′ 6= v in any view higher than
w.

Proof. We prove this lemma by induction on view numbers.
Base Step: First, we prove that no benign acceptor ai can prepare any value
different from v in view w+ 1. It is sufficient to prove that for any valid vProof ,
choose(∗, vProof,Q) returns v, or abort flag is set.
By Definitions 6 and 8, all benign acceptors from a class 2 quorum Q2 updated-

1 (and prepared) v in w. Moreover, there is a set B ∈B, such that B con-
tains all Byzantine acceptors. Since the valid vProof of view w + 1 consists of
new_view_ack messages from a quorum Q, there is a set X = (Q2 ∩Q) \B that
contains only benign acceptors. By Lemma 15, every acceptor ai ∈ X prepared
v in w, before replying with the new_view_ack message to the leader of view
w + 1. In the meantime, no acceptor aj ∈ X prepared any other value, as this
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would mean that aj would be in the higher view then w + 1 when replying with
new_view_ack for view w+1, which is impossible. Therefore, Cand3(v, w, ∗) (line
3, Fig. 3.12) holds in choose(∗, vProof,Q), for any Q.
By Lemma 14, it is not difficult to see that there is no value v′ such that

Cand2(v′, w′), Cand3(v′, w′, ∗) or Cand4(v′, w′) holds for some w′ > w.
We show now that there is no value v′ such that Cand3(v′, w′, ‘a‘) or Cand4(v′, w′)

hold and v′ 6= v and w′ = w. Assume, by contradiction, that such value v′ exists.
Then, by Lemma 18, all benign acceptors from some quorum Q′ prepared v′ in
w. By Property 1 of RQS, Y = Q2 ∩ Q′ is a basic subset that contains at least
one benign acceptor. Therefore some benign acceptor in Y prepared both v and
v′ in w. A contradiction.
We distinguish two cases: (a) Cand3(v′, w′, ‘a‘), and (b) Cand3(v′, w′, ‘b‘) holds.

In case (a) by inspection of choose() pseudocode, choose() returns v. In case (b)
either choose() returns v or abort flag is set (if there is a v′ 6= v such that
Cand3(v′, w, ‘b‘) or Cand2(v′, w) hold).

Inductive Hypothesis (IH): Assume that no benign acceptor ai prepares any value
different from v in any view from w + 1 to w + k. We prove that no benign ac-
ceptor ai can prepare any value different from v in view w + k + 1.

Inductive Step: It is sufficient to prove that for any valid vProof , choose(∗, v,Q)
returns v, or abort flag is set.
By Definitions 6 and 8, all benign acceptors from a class 2 quorum Q2 update-2

v in w. By IH, all benign acceptors from Q2 can update-2 only v in views w + 1
to w + k. Moreover, there is a set B ∈B, such that B contains all Byzantine
acceptors. Since the valid vProof of view w + k + 1 consists of new_view_ack
messages from a quorum Q, there is a set X = (Q2 ∩Q) \ B that contains only
benign acceptors. By Lemma 15, no acceptor ai ∈ X prepares (nor 1-updates)
a value in a higher view than w + k before sending a new_view_ack message to
the leader of view w + k + 1. Hence, for every ai ∈ X vProof [ai].Update[1] = v
and w ∈ vProof [ai].Updateview[1]. Hence, by definition of predicate Cand3(),
Cand3(v, w) holds in choose(∗, vProof,Q), for any Q.
By Lemma 17, there is no other value v′ 6= v such that Cand2(v′, w) holds.
By Lemma 14 and IH, it is not difficult to see that there is no value v′ 6= v

such that Cand2(v′, w′), Cand3(v′, w′, ∗) or Cand4(v′, w′) holds for some w′ > w.
We show now that there is no value v′ such that Cand3(v′, w′, ‘a‘) or Cand4(v′, w′)

hold and v′ 6= v and w′ = w. Assume, by contradiction, that such value v′ exists.
Then, by Lemma 18, all benign acceptors from some quorum Q′ prepared v′ in
w. By Property 1 of RQS, Y = Q2 ∩ Q′ is a basic subset that contains at least
one benign acceptor. Therefore some benign acceptor in Y prepared both v and
v′ in w. A contradiction.
We distinguish two cases: (a) Cand3(v′, w′, ‘a‘), and (b) Cand3(v′, w′, ‘b‘) holds.

In case (a) by inspection of choose() pseudocode, choose() returns v. In case (b)
either choose() returns v or abort flag is set (if there is a v′ 6= v such that
Cand3(v′, w, ‘b‘) or Cand2(v′, w) hold).
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Lemma 21. If w is the lowest view number in which some value v is Decided-4,
then no benign acceptor ai prepares any value v′, v′ 6= v in any view higher than
w.

Proof. We prove this lemma by induction on view numbers.
Base Step: First, we prove that no benign acceptor ai can prepare any value
different from v in view w+ 1. It is sufficient to prove that for any valid vProof ,
choose(∗, vProof,Q) returns v.
By Definitions 6 and 8, all benign acceptors from some quorum Q3 updated-2

v in w. Moreover, there is a set B ∈B, such that B contains all Byzantine
acceptors. Since the valid vProof of view w + 1 consists of new_view_ack mes-
sages from a quorum Q, by Property 1 of RQS X = Q3 ∩ Q is a basic subset
that contains at least one benign acceptor ai (by Lemma 12). By Lemma 15, ai
updated-2 v in w, before replying with the new_view_ack message to the leader of
view w+ 1. In the meantime, aj did not prepare (nor update-2) any other value,
as this would mean that aj would be in the higher view then w+1 when replying
with new_view_ack for view w + 1, which is impossible. Therefore, Cand4(v, w)
(line 4, Fig. 3.12) holds in choose(∗, vProof,Q), for any Q.
By Lemma 14, it is not difficult to see that there is no value v′ such that

Cand2(v′, w′), Cand3(v′, w′, ∗) or Cand4(v′, w′) holds for some w′ > w.
We show now that there is no value v′ such that Cand3(v′, w′, ‘a‘) or Cand4(v′, w′)

hold and v′ 6= v and w′ = w. Assume, by contradiction, that such value v′ exists.
Then, by Lemma 18, all benign acceptors from some quorum Q′ prepared v′ in
w. By Property 1 of RQS, Y = Q3 ∩ Q′ is a basic subset that contains at least
one benign acceptor. Therefore some benign acceptor in Y prepared both v and
v′ in w. A contradiction.
By inspection of choose() pseudocode, choose() returns v.

Inductive Hypothesis (IH): Assume that no benign acceptor ai prepares any value
different from v in any view from w + 1 to w + k. We prove that no benign ac-
ceptor ai can prepare any value different from v in view w + k + 1.

Inductive Step: It is sufficient to prove that for any valid vProof , choose(∗, vProof,Q)
returns v, or abort flag is set.
By Definitions 6 and 8, all benign acceptors from some quorum Q3 updated-2

v in w. By IH, all benign acceptors from Q2 can prepare (and, hence, update-2)
only v in views w+1 to w+k. Since the valid vProof of view w+k+1 consists of
new_view_ackmessages from a quorum Q, there is a setX = Q3∩Q that contains
at least one benign acceptor aj (by Property 1 of RQS and Lemma 12). Hence,
by definition of predicate Cand4(), Cand4(v, w′) holds in choose(∗, vProof,Q),
for any Q, for some w′, w + k ≥ w′ ≥ w.
By Lemma 14 and IH, it is not difficult to see that there is no value v′ 6= v such

that Cand2(v′, w′′), Cand3(v′, w′′, ∗) or Cand4(v′, w′′) holds for some w′′ > w.
We show now that there is no value v′ such that Cand3(v′, w, ‘a‘) or Cand4(v′, w)

hold and v′ 6= v. Assume, by contradiction, that such value v′ exists. Then, by
Lemma 18, all benign acceptors from some quorum Q′ prepared v′ in w. By
Property 1 of RQS, Y = Q3 ∩ Q′ is a basic subset that contains at least one
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benign acceptor. Therefore some benign acceptor in Y prepared both v and v′ in
w. A contradiction.
By inspection of choose() pseudocode, choose() returns v.

Theorem 11. (Agreement) No two benign learners learn different values.

Proof. If a benign learner learns a value then a value was decided in some view
(by some benign process). Indeed, a benign learner learns value v by receiving
(1) update∗ messages (lines 51-53 and 60, Fig. 3.14), or (2) by receiving a basic
subset of decision messages (line 101, Fig. 3.14). In case (b), by Lemma 12 at
least one benign acceptor decided v before the learner learned v.
It is not difficult to see that, if some value v′ is decided in view w, then some

benign acceptor prepared v′ in w. The theorem follows from Lemmas 16, 19, 20
and 21.

It is straightforward to show that our algorithm is (m,QCm)–fast, for m ∈
{1, 2, 3}.

The following two lemmas are critical for ensuring Termination property.
The first lemma proves that our algorithm does not block in lines 3-8, Fig. 3.14,

in case some quorum contains only correct acceptors.

Lemma 22. If a valid vProof consists only of new_view_ack messages sent by
a quorum Q that contains only benign acceptors, the abort flag is never set in
choose(∗, vProof,Q).

Proof. It is sufficient to prove that if choose(∗, vProof,Q) sets abort flag, then
Q contains at least one Byzantine acceptor. We consider two exhaustive cases.

Case (a): choose() aborts in line 15, as there are two values v and v′ 6= v such
that both Cand2(v, w) and Cand3(v′, w, ‘b‘) hold (for w = viewmax). In this case,
by definition of predicate Cand3() (line 3, Fig. 3.12) there is an acceptor aj ∈ Q
and a class 2 quorum Q2 such that: (1) P3b(Q2, Q), and (2) aj claims that all
(benign) acceptors from Q2 prepared v′ in w. Moreover, by definition of predicate
Cand2() (line 2, Fig. 3.12), all acceptors from some set X = (Q1∩Q)\B) (where
Q1 is a class 1 quorum and B ∈B) claim that they prepared v in w. By Property
3b of RQS, Q1 ∩Q∩Q2 is a basic subset. Hence, Q2 ∩X is non-empty. Let ai be
in Q2 ∩X. Then aj claims that ai prepared v′ in w, while ai claims that it pre-
pared v 6= v′ in w. Hence, at least one acceptor from the set {aj , ai} ⊂ Q is faulty.

Case (b): choose() aborts in line 17, as there are two values v and v′ 6= v such
that both Cand3(v, w, ‘b‘) and Cand3(v′, w, ‘b‘) hold (for w = viewmax). In this
case, by definition of predicate Cand3() (line 3, Fig. 3.12) there are acceptors
ai, aj ∈ Q and class 2 quorums Q2 and Q′2 such that: (1) P3b(Q2, Q), (2) ai
claims that all (benign) acceptors from Q2 prepared v in w, (3) P3b(Q′2, Q), (2)
aj claims that all (benign) acceptors from Q′2 prepared v′ in w. By Property 1 of
RQS Q2 ∩ Q′2 is a basic subset, that by Lemma 12 contains at least one benign
acceptor ax. Hence, ai claims that a benign acceptor ax prepared v in w, while
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aj claims that ax prepared v′ 6= v in w. Hence, at least one acceptor from the set
{aj , ai} ⊂ Q is faulty.

The second lemma proves that our algorithm does not block in lines 23-27,
Fig. 3.14, in case some quorum contains only correct acceptors. In the following
proof, we explicitly make use of the assumption of an eventually synchronous
system, i.e., of an existence of a global stabilization time GST after which the
system is synchronous.

Lemma 23. (Availability of signatures.) If a correct acceptor aj issues a
sign_req〈Update[step], w, step〉 message (line 24, Fig. 3.14) after GST, then aj
eventually receives signed updatestep〈Update[step], w, ∗〉 messages from some ba-
sic subset of acceptors.

Proof. A correct acceptor aj issues a sign_req〈Update[step], w, step〉, only if (at
aj) w ∈ Updateview[step], i.e., only if aj updated value v = Update[step] in w.
In other words, before issuing a sign_req message, aj received updatestep〈v, w, ∗〉
messages from some quorum Q and executed lines 34-38, Fig. 3.14. In par-
ticular aj adds the identifier of the quorum Q to the UpdateQRM [step, w] set
(line 37, Fig. 3.14). Without loss of generality, we can assume that aj sent a
sign_req〈v, w, step〉 message to acceptors from quorum Q.
Let Qc be the quorum that contains only correct acceptor. By Property 1 of

RQS, T = Q ∩ Qc is a basic subset. Since T ⊆ Qc, T contains only correct
acceptors. Since after GST the system is synchronous, aj eventually receives the
desired set of signatures.

We also need the following two simple lemmas. In the remainder of the Chapter,
we denote by Qc the quorum that contains only correct acceptors.

Lemma 24. If some process receives decision messages with the same value v
from some quorum of acceptors Q, then every correct learner learns a value.

Proof. Suppose, by contradiction, that some correct learner lk never learns a
value.
By Property 1 of RQS and assumption on Qc, T = Qc ∪ Q is a basic subset

of correct acceptors that decided value v. Denote by t the time after which all
acceptors from T have decided v. By lines 102-103, Fig. 3.14, and our assump-
tion that lk never learns the value, lk sends an infinite number of decision_pull
messages to all acceptors. Those messages sent after max(t, GST ) are received
by all acceptors from T who send decision messages to lk. These messages are
received by lk and, by line 101 Fig. 3.14, lk learns v — a contradiction.

Lemma 25. Every message m sent by a correct process p1 at time t ≥ GST to
another correct process p2 is received by p2 at latest by t + ∆. Moreover, if p2
sends some messages in the same step upon receiving m, it will do so also by
t+ ∆.

Proof. Since we assume that the system is synchronous after GST and that, when
the system is synchronous every message sent between two correct processes is
received in at most one message delay ∆, p2 receives m by t′ = t+ ∆. Moreover,
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since we assume that taking a step takes negligible time when the system is
synchronous, if p2 sends messages upon reception of m it will do so at latest by
t+ ∆.

Towards proving Termination, we first show that our algorithm (or, more pre-
cisely, its Locking module) satisfies a weaker property we call Eventual Obstruction-
Free Termination (EOFT), defined as follows.

Definition 10. (Eventual Obstruction-Free Termination.) Assume a cor-
rect proposer pk proposes a value at time tp, after GST (tp > GST ) with view
number viewhigh such that: (a) pk is the leader of viewhigh, (b) pk has a valid
viewProof for viewhigh, (c) no value with a view number higher than viewhigh is
proposed up to time t, and (d) no proposer proposes a value (with valid viewProof)
for the view higher than viewhigh by tp + DOF , where DOF = 7∆. Then, every
correct learner eventually learns a value.

Lemma 26. (EOFT.) The Locking module of our consensus algorithm satisfies
Eventual Obstruction-Free Termination property.

Proof. By our assumption of an eventually synchronous system, all acceptors
from Qc receive the new_view message for viewhigh sent by pk. Moreover, by
assumptions (a)-(d) of Definition 10 we conclude that the condition in line 21
(Fig. 3.14) is satisfied for every acceptor from Qc, which then proceeds to ex-
ecute lines 22-28. By Lemma 23, this part of the code is non-blocking. In
case some acceptor from Qc sends some sign_req message (line 24), it will do
so by tp + ∆ (by Lemma 25, and similarly send sign_ack messages (line 29) by
tp + 2∆. Hence, all acceptors from Qc execute line 28 of Fig. 3.14 and send the
new_view_ack messages to pk by tp + 3∆ (Lemma 25). Denote the set of these
new_view_ack messages sent by quorum Qc (and received by proposer pk) by
vProof . By Lemma 22, the choose(∗, vProof,Qc) does not abort, but rather
returns some value v. Therefore, at latest by tp + 4∆ (Lemma 25), pk sends the
prepare〈v, viewhigh, vProof,Qc〉 message to all acceptors — hence, all acceptors
from Qc receive this message. By assumptions (a) and (d) of Definition 10 and
Lemma 25, we conclude that the condition in line 31, Fig. 3.14 is satisfied and that
all acceptors from Qc prepare v in viewhigh and send the update1〈v, viewhigh, ∅〉
message to all acceptors (and learners) by tp + 5∆. By assumption (d) of Defini-
tion 10 and Lemma 25, given that all acceptors from Qc prepare v in viewhigh, we
conclude that all acceptors from Qc send an update2〈v, viewhigh, Qc〉 (by tp+6∆),
and, later, an update3〈v, viewhigh, Qc〉 (by tp + 7∆ = tp + DOF ) to every accep-
tor and learner. As soon as a correct learner receives a update3〈v, viewhigh, Qc〉
message from every acceptor of Qc it learns a value (lines 53 and 101, fig. 3.14),
unless it already learned a value.

We are now ready to prove Termination. Basically, what is left to show is that,
in every execution in which a correct proposer proposes a value, eventually, the
Election module ensures that the assumptions of Definition 10 eventually hold.

Theorem 12. (Termination) If a correct proposer proposes a value, then even-
tually, every correct learner learns a value.
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Proof. Suppose, by contradiction, that some correct learner lk never learns a
value even if some correct proposer, say pk, proposes a value.
Note that, if pk proposes a value, by (1) lines 0 and 101-103, Fig. 3.13 and

(2) the assumption of an eventually synchronous system, either (a) all correct
acceptors eventually trigger their suspectT imeout (line 0, Fig. 3.13), or (b) pk
receives a decision message from some quorum Q of acceptors and halts (line 104,
Fig. 3.13). In the latter case (i.e., case (b)), by Lemma 24, every correct learner
eventually learns a value — a contradiction.
We now focus on the case (a), where all correct acceptors eventually trigger

suspectT imeout (line 0, Fig. 3.13) – we denote this time by ttrigger. Let GST ′ =
max(GST, ttrigger).
We distinguish two sub-cases: (i) when no correct acceptor stops its timer

suspectT imeout permanently (i.e., no correct acceptor executes the line 7, Fig. 3.13),
and (ii) when some correct acceptor stops its suspectT imeout permanently.
We first consider case (i). We define functions (t representing time):

• viewmin(t) = min{nextV iewai |ai ∈ Qc}, and

• viewmax(t) = max{nextV iewai |ai ∈ Qc}.

It is not difficult to see (lines 1-5, Fig. 3.13), that, in case (i), at every correct
acceptor aj , variable nextV iewaj is: (1) monotonically increasing, (2) unbounded,
and (3) non-skipping (it always increments by one). Hence, every correct acceptor
sends an infinite number of view_change messages, for every view number from
1 (i.e., initV iew + 1) to ∞. Moreover, functions viewmin(t) and viewmax(t) are
also monotonically increasing and unbounded.
Let viewGST ′ = viewmax(GST ′). Hence, every correct proposer receives all

view_change messages sent by acceptors from Qc for view numbers viewGST ′+1
and higher. Therefore, every correct proposer pk proposes a value in every view
wk ≥ viewGST ′ + 1, such that k = (wk mod |proposers|).
Note that a correct acceptor ai, on sending a view_change message with view

number w, at some time tw, triggers a timer equal to initT imeout∗2w (lines 1-5,
Fig. 3.13). After expiration of this timeout, ai sends the subsequent view_change
message. Hence, the time between ai sends the view_change messages for view
numbers w and w + 1 is at most initT imeout ∗ 2w.
Let t be any point time in time after GST ′. Let view(t) be the first view in

which pk proposes a value, such that view(t) > viewmax(t) + 1. Note that no
acceptor from Qc sends a view_change message for a view higher than view(t)
before TOF (t) = t+initT imeout∗2view(t). By Property 1 of RQS and the proposer
code of an Election module, we conclude that no proposer can propose a value
with valid viewProof and the view number higher than view(t) before TOF (t).
On the other hand, all acceptors from the quorum Qc will send the view_change

message for the view(t) at latest by Tvc(t) = t + InitT imeout ∗ (2viewmin(t) +
2viewmin(t)+1 + . . .+ 2view(t)−1). These will be received by pk, which will propose
a value with view number view(t) at latest by Tprop(t) = Tvc(t) + ∆ (Lemma 25).
Therefore, pk proposes a value with view(t) at Tprop(t) > GST , and (a) pk

is the leader of view(t), (b) pk has a valid viewProof for view(t) (view_change
messages from Qc), (c) no value with a view number higher than view(t) is



3.6. CORRECTNESS OF THE CONSENSUS ALGORITHM 73

proposed up to time Tprop(t), and (d) no proposer proposes a value (with a valid
viewProof) for the view higher than view(t) by TOF (t). Hence, in order to apply
Lemma 26 and reach contradiction, we need to show that there exist t′, such that
TOF (t′)− Tprop(t′) > DOF (where DOF = 7∆).
Since TOF (t′)−Tprop(t′) = initT imeout∗(2view(t′)−(2viewmin(t′)+2viewmin(t′)+1+

. . . + 2view(t′)−1)) − (∆), TOF (t′) − Tprop(t′) > DOF ⇔ 2viewmin(t′)−1 > (DOF +
∆)/initT imeout = c, where c is a constant. Since viewmin(t) is monotonically
increasing and unbounded, such t′ exists.

In case (ii) the contradiction follows directly from Lemma 24.
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4
Optimizing Worst Case Latency Using High-Resolution

Timestamps

4.1 Introduction

In Chapter 3 we discussed the best case optimal time complexity of asynchronous
Byzantine fault-tolerant (BFT) storage and consensus algorithms. To complete
the picture, it is natural to ask what is the worst-case time complexity of such
BFT algorithms. As we already mentioned, the famous result of Fischer, Lynch
and Patterson [FLP85] established the impossibility of fault-tolerant asynchronous
consensus even if failures are benign. Therefore, we focus on worst-case time com-
plexity of (wait-free) BFT distributed storage.
In fact, the complexity1 of writing into distributed storage has actually been

carefully studied. Consider distributed storage implemented over a set of S base
objects out of which t of might fail, and b (b > 0) of these failures may be
Byzantine (i.e., we consider here a threshold adversary as defined in Chapter 3).
Then, the tight lower bound on the worst-case complexity of the write operation
was shown to be 2 rounds when at most 2t+ 2b of these objects are used; if more
than 2t+ 2b base objects are available, then a single round suffices [ACKM06]2.
This lower bound is general, since it was established for any safe storage. In fact,
it was also shown in [ACKM06] that this bound is tight, even for stronger, regular
storage.
On the other hand, no such general picture for a read operation exists. Actually,

the complexity of reading was studied, but only in some specific cases. For
instance, it was shown that, for any safe storage, when readers do not modify the
state of the base objects, the optimal read complexity with less than 2t+ 2b base
objects is b+ 1 rounds [ACKM06].
But what is the general complexity of a read operation? In this and the follow-

ing chapter we take on this issue and address this fundamental question. In this
chapter, we focus on optimally resilient storage implementations (i.e., that toler-

1In this chapter, unless explicitly stated otherwise, under the notion of complexity we refer to
the worst-case time complexity.

2 [ACKM06] does not distinguish between crash and Byzantine failures, i.e., assumes b = t.
Still, it is not difficult to extend its results to the general b 6= t case.
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ate as many base object failures as possible). In the following chapter, we allow
for sub-optimally resilient implementations. More specifically, in this chapter:

• We prove a 2-round lower bound for reading from safe storage that uses at
most 2t + 2b base objects, independently of the number or rounds needed
by the writer.

• We then prove the lower bound tight even for regular storage that is opti-
mally resilient and uses 2t+ b+ 1 base objects (this bound can trivially be
obtained from [MAD02a], which proves the bound for b = t). Our storage
algorithm combines these desirable goals by relying on a novel timestamp-
ing mechanism we call high resolution timestamps. Moreover, our regular
storage algorithm (as well as our lower bound) assumes the unauthenti-
cated Byzantine failure model. It is worth noting that, in the authenti-
cated model, (SWMR) regular storage can be implemented fairly simply,
while achieving both optimal resilience and fast (i.e., single round-trip)
reads/writes [MR98].

• Using the transformation from regular to atomic storage [GR06] and our
results for regular storage, we narrow down the possible range for a lower
bound on reading from optimally resilient atomic storage in the unauthenti-
cated model to between 2 and 4 rounds (inclusive of two boundary values).
The exact minimum complexity of atomic storage remains an open problem.

In this chapter, we proceed through three major steps.

1. We first prove in Section 4.2 that S = 2t + 2b base objects are insufficient
for a safe SWSR wait-free storage implementation in the unauthenticated
Byzantine failure model (see Chapter 2 for details) in which every read is
fast (i.e., completes in a single round-trip). Our proof applies to the unau-
thenticated model in which any client may fail by crashing. Roughly, our
proof derives a contradiction from three executions that are indistinguish-
able to the reader. In the first execution, a read is concurrent with the
write and all base objects are correct; in the second one, the write precedes
the read but Byzantine base objects forge their state to simulate the con-
currency of the first execution; finally, in the third execution, Byzantine
base objects forge their state to simulate the above mentioned concurrency,
although the write is never invoked. As the read must return the same value
in all three executions, without invoking additional communication round-
trips, safety is violated in either the second, or the third execution. In our
proof, we do not make any assumption on the time complexity of the write
operation.

2. We then describe in Section 4.3 an optimally resilient SWMR safe storage
algorithm that features optimal (worst-case) time complexity for both read
and write operations: 2 rounds. This algorithm is interesting in its own
right as it contradicts the conjecture of [ACKM06] suggesting that b + 1
rounds are needed in order to read from safe storage. The algorithm uses
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novel techniques to combine optimal resilience with optimal time complex-
ity. Roughly, unlike in traditional safe storages we know of, in both of their
communication rounds, readers both change the state of base objects and
read their current state. The writer does the same in its first round, along
with simply writing in the second round. Basically, by allowing readers to
change the state of the base objects, twice in a row, we allow the readers
to carefully filter the responses from Byzantine base objects that may be
trying to mislead the reader.

In fact, in our safe storage algorithm every reader writes its own local times-
tamps to base objects. These timestamps are then combined by the writer
into what we call a high resolution timestamp HRts, a matrix of read-
ers’s local timestamps (in which rows correspond to base objects, columns
correspond to readers and where HRts[i][j] reflects the latest copy of the
reader rj ’s local timestamp that the base object si reported to the writer).
High resolution timestamps are ultimately used by readers in detecting and
filtering out the responses from Byzantine base objects.

High resolution timestamps can be seen as a variation of matrix clocks
[WB84, RS96]; the differences are in that base objects do not maintain
their own local timestamps/clocks and in that a reader needs not to keep
track of any other timestamp except its own — as a result, high-resolution
timestamp is a rectangular, rather than a square matrix. While vector
[Fid91,Mat89] and matrix clocks have been previously used to cope with
Byzantine failures (see e.g., [MS02,CSS07]), to our knowledge, no variation
of matrix clocks has been used in achieving optimally resilient or latency
optimal Byzantine fault tolerant algorithms prior to this work.

Our safe storage implementation (and our regular storage implementation
as well) assumes an unauthenticated model and tolerates writer’s crash
failure and any number of Byzantine failures of readers (this is to be con-
trasted with our lower bound of Section 4.2, which assumes that readers
are crash-prone, not Byzantine).

3. Finally, we show in Section 4.4 how to modify our safe implementation
and obtain a regular one without sacrificing neither optimal resilience nor
optimal time complexity. Our regular implementation relies however on the
fact that base objects keep all the values they receive from the writer (which
is not the case with our safe implementation). Although some very practical
storage systems rely on the same assumption [GWGR04], this might raise
issues of storage exhaustion and needs careful garbage collection. A recent
comparable regular wait-free storage implementation that does not rely on
this assumption [ACKM07] is not optimally resilient.

To conclude the chapter, we make use of the above three steps and discuss
the possible range of the worst-case time complexity of optimally resilient atomic
wait-free storage (Section 4.5), as well as the applicability of our results to the
server-centric model in which base objects may communicate among themselves
(Section 4.6).
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4.2 Lower Bound
We prove in this section that there is no safe storage implementation with at
most 2t + 2b objects in which every read is fast. In our proof, we assume that a
set of readers is a singleton, thus broadening the scope of our lower bound.

Proposition 1. There is no fast read implementation I of a single reader (SWSR)
safe storage that makes use of less than 2t+ 2b+ 1 objects.

Preliminaries. Recall first that w denotes the writer, r1 the reader, and si for
1 ≤ i ≤ S denote the objects. Suppose, by contradiction, that there is a safe
storage implementation I that uses at most 2t + 2b objects, such that, in every
(partial) execution of I every read operation completes in a single round (i.e.,
every read is fast).
Notice that, in our model (Chapter 2), for a fast read implementation, we can

say without ambiguity that the messages sent by a reader, on invoking a read, are
of type read, and the messages sent by a base object to the reader, on receiving
a read message, of type readack.
We partition the set of objects into four distinct subsets (which we call blocks),

denoted by T1 and T2, each of size exactly t, and B1 and B2 of size at least
1 and at most b. Note that we assume S ≥ 2t + 2, without loss of generality
since the number of objects for any implementation I must conform with the
optimal resilience lower bound of S ≥ 2t+b+1 [MAD02a] (recall that we assume
b > 0). Therefore, without loss of generality, we can assume that each of the
blocks T1, T2, B1 and B2 contains at least one object. We refer to the initial state
of every correct object as σ0.
We say that a message m of a round rnd of an incomplete operation op skips

a set of blocks BS in a partial execution (where BS ⊆ {T1, T2, B1, B2}), if (1)
no object in any block BL ∈ BS receives m in round rnd of op in that partial
execution, (2) all other objects receive m in round rnd of op and reply to that
message, and (3) all these reply messages are in transit. We say that a complete
operation op skips a set of blocks BS in a partial execution, if (1) no object in
any block BL ∈ BS receives any message in any round of op in that partial
execution, (2) all objects that are not in any block BL ∈ BS receive the message
from the invoking client in every round of op and reply to such message, and (3)
the invoking client receives all these reply messages and, finally, returns from the
invocation.

We illustrate the idea behind the proof in Figure 4.1. We depict a round rnd of
an operation op through a set of rectangles, arranged in a single column. In the
column corresponding to some round rnd of an operation op, we draw a rectangle
in the particular row, if all objects in the corresponding block BL have received
the message from the client in round rnd of op and have sent reply messages, i.e.,
we draw a rectangle in the row corresponding to BL if round rnd of op does not
skip BL.

Proof. To exhibit a contradiction, we construct a partial execution of the safe
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Figure 4.1: Illustration of the executions used in the proof of Proposition 1

implementation I that violates safety. More specifically, we exhibit a partial
execution in which some read returns a value that was never written.

• Let ex1 be the partial execution in which all objects are correct except
T1 that crashes at the beginning of ex1. Furthermore, let rd1 be the read
operation by the reader (r1) and no other operation is invoked in ex1. In
ex1, r1 crashes and rd1 skips B2, T1 and T2. After B1 sends readack to
r1, ex1 ends. We refer to the state of object B1, at the end of ex1 as to σ1.

• Let ex2 extend ex1 by appending write wr1 invoked by the correct writer
to write value v1 6= ⊥ in the storage. Since I is wait-free, wr1 completes in
ex2, say at time t1 after invoking a finite number (k) of rounds. Therefore,
wr1 skips T1, and completes (at latest) after the writer receives the replies
in round k from correct objects (B1, B2, and T2). We refer to the state of
the correct object B2 at time t1 as to σ2.

• Let ex′2 be the partial execution that ends at t1, such that ex′2 is identical
to ex2 up to time t1, except that in ex′2 object T1 does not crash, but, due
to asynchrony, all messages sent by the writer to T1 during wr1 remain in
transit. Since the writer cannot distinguish ex2 from ex′2, wr1 skips T1 and
completes in ex′2 at t1.

• Let ex′′2 be the partial execution identical to ex′2 up to time t1, except that,
in ex′′2, (1) the reader does not crash in ex′′2, but, due to asynchrony, all
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messages that were in transit in ex′2 are delayed in ex′′2 until after t1, and
(2) object T2 crashes at t1. By our assumption on the wait-freedom of I,
rd1 completes in ex′′2 at t2 after receiving readack messages from correct
objects (B1, B2 and T1) and returns some value vR, skipping T2.

• Let ex3 be the partial execution identical to ex′′2, except that, in ex3, T2
does not crash, but, due to asynchrony, all messages exchanged between r1
and T2 during rd1 are delayed until after t2. Since r1 cannot distinguish
ex3 from ex′′2, rd1 completes in ex3 at t2 and returns vR. Note that in ex3
all objects are correct.

• Let ex4 be the partial execution similar to ex3, except that, in ex4: (1)
rd1 is invoked only after wr1 completes (after t1) (2) B1 is Byzantine and
forges it state to σ1 at the beginning of the execution (as if it received a
round 1 message of rd1 from the reader, as in ex3), before wr1 is invoked,
(3) after t1, a read rd1 is invoked and (4) at t1, B1, before replying to rd1,
forges its state to σ0, the initial state of correct objects. Other messages
are delivered as in ex3, in particular, messages exchanged between r1 and
T1 are transit in ex4. Note that wr1 cannot distinguish ex4 from ex3 and
hence, wr1 completes in ex4 at t1. Note also that, rd1 is invoked after wr1
completes, so safety implies that rd1 must return v1. However, note that
in ex3 and ex4 the reader receives in rd1 the identical messages and, since
the processes do not have access to global clock, r1 (as well as the correct
objects B2, T1 and T2) cannot distinguish ex4 from ex3. Therefore, in ex3
and ex4 rd1 returns the same value, i.e., vR, that, by safety, must equal v1.

• Finally, consider the partial execution ex5 in which wr1 is never invoked, but
B2 is Byzantine and forges its state to σ2 at the beginning of the execution.
Read rd1 is invoked in ex5 as in ex4. Since, upon receiving readack
messages from B1, B2 and T1, the reader receives identical information as
in ex4, the reader cannot distinguish ex4 from ex5 (neither can correct
objects B1, T1 and T2), and rd1 completes in ex5 and returns a vR = v1.
However, by safety, in ex5, rd1 must return ⊥. Since v1 6= ⊥, safety is
violated in ex5.

4.3 Safe Implementation

Our algorithm uses S = 2t + b + 1 objects (optimal resilience) to implement a
SWMR safe storage. Besides its optimal resilience, our implementation features
optimal (worst-case) time complexity for both read and write operations, i.e., two
communication round-trips. In fact, the existence of our algorithm proves the
following proposition:

Proposition 2. There is an optimally resilient implementation I of a SWMR
safe storage such that, in every partial execution of I, every (read/write) opera-
tion completes in at most two communication round-trips.
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Finally, our safe storage implementation tolerates Byzantine failures of any
number of readers and crash-failures of the writer.
In the following, we first give a detailed description of our algorithm, and then

proceed by proving its correctness.

4.3.1 Overview

In our algorithm, both read and write operations take at most two rounds. In
each round, the client (reader or writer) sends a message to all objects. A round
terminates at the latest when the client receives the responses from S − t correct
objects. In the first round, the writer, in addition to writing data, reads control
data from the objects. Readers write control data and read data written by the
writer in both rounds.
Base objects maintain the following variables (we call fields) pw, w and the

array tsr[1, ..., R] (where R is the number of readers). Fields pw and w are
written by the writer, whereas each field tsr[j] is written by reader rj .
In each of the two rounds of the read, the reader rj : (1) increases its local

timestamp tsr′j and stores it in the objects’ tsr[j] field3 and (2) reads the objects’
fields pw and w.
In the first round of the write (denoted by PW , for “pre-write”), the writer,

writing the value v: (1) increases its local timestamp ts, (2) assigns the timestamp-
value pair 〈ts, v〉 to its variable pw′, (3) writes pw′ to the objects’ pw fields and
the last copy of its variable w′ (which is modified only in the second round of
write) to the objects’ w fields, (4) reads the values of objects’ fields tsr[∗] that
are written by readers and (5) combines the read arrays tsr[∗] into, what we call,
a high-resolution timestamp (HRts). In effect, a high resolution timestamp is
an array of arrays of readers’ local timestamps, provided to the writer by base
objects, that plays the crucial role in achieving the optimal worst-case time com-
plexity of read operation (high-resolution timestamps are depicted in Figure 4.2).
Finally, upon receiving S − t responses from different objects in round PW , the
writer proceeds to the second round.
In the second round of the write (denoted by W ), the writer: (1) assigns w′ :=
〈pw′, HRts〉 and (2) writes pw′ to objects’ pw fields and w′ to objects’ w fields.
Effectively, the writer combines its traditional local timestamp ts with a high
resolution timestamp HRts and writes them along with the corresponding value
into base objects’ w field. Upon receiving S − t responses from different objects
in round W , the write completes. As in many previous storage implementations
based on timestamps, a base object changes the values of tsr[∗], pw, and w only
if it receives a newer copy than the one already stored (Figure 4.4).
The write implementation is given in Figure 4.3. In the following, we detail the

read implementation, which is somewhat more involved.

3Notice that, in array tsr, base objects simply store the latest timestamps received from readers,
without maintaining their own timestamp, which is to be contrasted with vector clocks
[Fid91,Mat89].



82
CHAPTER 4. OPTIMIZING WORST CASE LATENCY USING

HIGH-RESOLUTION TIMESTAMPS

r
5

r
4

r
3

r
1

r
2

s
1

s
4

s
3

s
2

1 1202

5 6066

0 4002

1 4300

(a) In each access to a server, a reader stores to server a copy of its lo-
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(d) In the second round, the writer writes ts, v and HRts to a (possibly
different) set of S−t base objects. High resolution timestamps are ultimately
used by readers to detect Byzantine base objects.

Figure 4.2: High Resolution Timestamps: an example with 4 base objects (t =
b = 1) and 5 readers
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Initialization:
1: initHRts[i][j] := nil, 1 ≤ i ≤ S, 1 ≤ j ≤ R
2: pw := 〈0,⊥〉; ts := 0; w := 〈pw, initHRts〉

write(v) is {
3: inc(ts); HRts := initHRts
4: pw := 〈ts, v〉
5: send PW〈ts, pw,w〉 to all objects
6: wait for PW_ACK〈ts, tsr〉 from S − t different objects
7: w := 〈pw,HRts〉
8: send W〈ts, pw,w〉 message to all objects
9: wait for W_ACK〈ts〉 from S − t different objects
10: return(OK)

upon reception of PW_ACK〈ts, tsr〉 from si
11: HRts[i] := tsr
}

Figure 4.3: SWMR safe storage: write implementation - code of the writer

Initialization:
1: ts := 0; initHRts[i][j] := nil, 1 ≤ i ≤ S, 1 ≤ j ≤ R
2: pw := 〈0,⊥〉; w := 〈pw, initHRts〉; tsr[j] := 0, 1 ≤ j ≤ R

3: upon reception of PW〈ts′, pw′, w′〉 message from the writer do
4: if ts′ > ts then
5: ts := ts′; pw := pw′; w := w′

6: send PW_ACK〈ts, tsr〉 to the writer
7: endif

8: upon reception of W〈ts′, pw′, w′〉 message from the writer do
9: if ts′ ≥ ts then
10: ts := ts′; pw := pw′; w := w′

11: send W_ACK〈ts〉 to the writer
12: endif

13: upon reception of READk〈tsr′〉 mess. from rj (k ∈ {1, 2}) do
14: if tsr′ > tsr[j] then
15: tsr[j] := tsr′

16: send READk_ACK〈tsr[j], pw,w〉 to the reader rj
17: endif

Figure 4.4: SWMR safe storage: code of object si
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4.3.2 Read implementation

The full read implementation is given in Figure 4.5. In the following, unless
explicitly stated otherwise, we refer to Figure 4.5.
As we previously mentioned, in both rounds of the read, the reader: (1) in-

creases its local timestamp tsr′j (lines 9 and 12), and stores it in the objects’
tsr[j] fields using READ1 (in the first round), or READ2 (in the second round)
messages (lines 10 and 13) and (2) reads the objects’ fields pw and w by receiving
READ1_ACK, or READ2_ACK messages (lines 11, 14 and 21-26).
When the reader receives a timestamp-value pair pw′ from the pw field of object

si (we say si reports pw′), the reader adds i, the index of object si, to the set
RPW (pw′) that is initially empty. Similarly, if si reports tuple w′ in its w field,
the reader adds i to the set RW (w′). If this occurs in the first round of the read,
the reader also adds i to FirstRW (w′). (lines 22, 23 and 26)
Every tuple c reported by some object in its w field in the first round of the

read, is added by the reader to the set of candidate values, the set C (line 24).
A candidate value c is automatically removed from C if at least t+ b+ 1 objects
respond (in any round of the read) without c in their w field (lines 2 and 27-28).
In the first round, reader rj awaits responses from a set that contains at least

S−t = t+b+1 objects such that there is no conflict between any 2 objects si and
sk that belong to this set (set Resp1OK, line 11). A conflict between two objects
is detected using high-resolution timestamps. A conflict arises when one object,
say sk, reports in its w field a candidate value c, such that c.HRts[i][j] > tsrFR
(line 4), where tsrFR is the timestamp of reader rj in the first round of read
(line 9). In other words, object sk claims that the object si reported to the writer
a timestamp of reader rj higher than any timestamp that rj has issued so far.
Intuitively, in this case, at least one of the objects sk or si is Byzantine. Hence,
in a set that contains only correct objects, there is no conflict between any two
objects. As there are at least S − t correct objects, hence the intuition on why
the first round of read eventually completes (i.e., why the condition in line 11
eventually holds).
At the beginning of the second round of the read, reader rj increments its local

timestamp tsr′j once more (line 12) and sends READ2〈tsr′j〉 to all objects (line
13). Then the reader waits for the responses from objects until there is a candidate
value c with the highest (traditional) timestamp in C (i.e., highCand(c) holds,
line 4), such that safe(c) holds or until C is empty (this can occur only if the read
is concurrent with some write). Predicate safe(c) holds if at least b+ 1 different
objects have responded either in their w (or pw) fields with c (or c.tsval for pw),
or with a value with a higher timestamp (line 3).
Our implementation guarantees that the condition in line 14 is eventually sat-

isfied in every read. In the following, we give a rough intuition behind this
guarantee. This is followed by the detailed proof of algorithm correctness (Sec-
tion 4.3.3).
Assume, by contradiction, that there is read rd by some reader rj (in execution

ex) such that rd never completes, i.e., there is candidate value c in rd, such that
c is never eliminated from C and c is never safe. Consider the following three
cases.
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Definitions:
1: conflict(i, k) ::= ∃c ∈ C : ((k ∈ FirstRW (c)) ∧ (c.HRts[i][j] > tsrFR))
2: RespondedWO(c) := {i : ∃c′ 6= c, i ∈ RW (c′)}
3: safe(c) ::= |RW (c) ∪RPW (c.tsval)

⋃
c′.tsval.ts>c.tsval.ts

(RW (c′) ∪RPW (c′.tsval))| ≥ b+ 1
4: highCand(c) ::= (c ∈ C) ∧ (¬∃c′ ∈ C : c′.tsval.ts > c.tsval.ts)
5: Resp1 ::= {i : RespF irst[i] = true}

Initialization:
6: tsr′j := 0

read() is {
7: C := FirstRW := RW := RPW := ∅
8: RespF irst[i] := false, 1 ≤ i ≤ S
9: inc(tsr′j); tsrFR := tsr′j
10: send READ1〈tsr′j〉 to all objects
11: wait for READ1_ACK messages until

∃Resp1OK ⊆ Resp1 : (|Resp1OK| ≥ S − t) ∧ (∀i, k ∈ Resp1OK : ¬conflict(i, k))
12: inc(tsr′j)
13: send READ2〈tsr′j〉 to all objects
14: wait for READ2_ACK messages until

∃cret ∈ C : ((safe(cret) ∧ highCand(cret)) ∨ (C = ∅))
15: if C = ∅ then
16: return(v0)
17: else
18: cret := c : ((c ∈ C) ∧ (safe(c)) ∧ (highCand(c)))
19: return(cret.tsval.v)
20: endif

21: upon reception of READ1_ACK〈tsr′j , pw
′, w′〉 from si do

22: FirstRW (w′) := FirstRW (w′) ∪ {i}
23: RW (w′) := RW (w′) ∪ {i}; RPW (pw′) := RPW (pw′) ∪ {i}
24: C := C ∪ {w′}; RespF irst[i] := true

25: upon reception of READ2_ACK〈tsr′j , pw
′, w′〉 from si do

26: RW (w′) := RW (w′) ∪ {i}; RPW (pw′) := RPW (pw′) ∪ {i};

27: upon (c ∈ C) and (|RespondedWO(c)| ≥ t+ b+ 1)
28: C := C\{c}
}

Figure 4.5: SWMR safe storage: read implementation - code of reader rj



86
CHAPTER 4. OPTIMIZING WORST CASE LATENCY USING

HIGH-RESOLUTION TIMESTAMPS

• Candidate value c was reported by at least one correct base object in the
first round of the read rd. In this case, at least b + 1 correct objects have
already set their pw fields to c.tsval before the second round of rd is invoked
and these objects reply in the second round with c.tsval or a later value in
their pw fields. Hence, safe(c) eventually holds.

• Consider now the second case, in which no correct object ever reports c in
its w field to rj . Eventually all correct objects, at least S − t = t + b + 1
of them respond with some value different from c in their w fields and c is
excluded from C (lines 27-28).

• Finally, consider the third case in which: (1) no correct object reports c
in its w field in the first round of read rd and (2) at least one correct
object reports c in its w field in the second round of rd. In this case, some
Byzantine objects have forged c, but c was indeed later written concurrently
with read rd. Note that the content of the high resolution timestamp,
c.HRts, is crucial in this case. It contains values of tsr[j] fields of at
least S − t − t = b + 1 correct objects that those objects reported to the
writer during write wr (concurrent with rd) that actually wrote c. Denote
by tsrFR the timestamp of reader rj in the first round of rd. Note that a
correct object si sets tsr[j] to a value higher than tsrFR (i.e., to tsrFR+1,
since by our assumption, rd never completes and, therefore, rj never sets
its timestamp to a value higher than tsrFR + 1) only upon si receives a
second round message of rd.
For every such correct object si, if c.HRts[i][j] ≤ tsrFR, si responds to the
second round of rd with c.tsval in its pw field or with a later value (otherwise
c.HRts[i][j] > tsrFR in the PW round of wr). On the other hand, if
c.HRts[i][j] > tsrFR at the end of the first round of rd, every (Byzantine)
object that reported c in its w field in the first round of the read will be in
conflict with si. Therefore, (1) at the end of the first round of read, si is
not in Resp1OK and (2) si responds without c (and c.tsval) in the second
round of the read. Roughly, in our algorithm, below a certain threshold of
correct objects si for which c.HRts[i][j] > tsrFR, safe(c) will eventually
hold. If the number of correct objects si such that c.HRts[i][j] > tsrFR
crosses this threshold, then, the number of objects that responded without
c in their w fields eventually becomes larger than t + b, i.e., c is removed
from C.

In other words, in any execution ex of our algorithm, for any c ∈ C, safe(c)
eventually holds in ex, or c is eventually removed from C (in ex).

4.3.3 Correctness
We first prove safety.

Theorem 13. (Safety) The algorithm in figures 4.3, 4.4 and 4.5 is safe.

Proof. We consider the case in which read rd by reader rj is not concurrent with
any write. Let ck = 〈〈k, valk〉, HRtsk〉 = 〈tsvalk, HRtsk〉 be the tuple written in
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the W round of the latest write wrk (that writes value valk) that precedes rd (or
c0 = 〈〈0,⊥〉, initHRts〉 if there is no such a write). We show that rd does not
return a value other than valk (where val0 = ⊥).
By write implementation, timestamp/value pair ck.tsval = tsvalk (resp., tuple

c) has been written in the pw (resp., w) fields of at least S− t = t+ b+ 1 objects
before write completes, including at least t + 1 non-Byzantine objects (or, to all
of the 2t + 1 non-Byzantine objects, in case ck = c0). Therefore, throughout
the duration of rd: (1) at least t + 1 non-Byzantine objects have tsvalk in their
pw, and ck in their w fields and (2) at most t + b objects have in their w field
a tuple different than ck. By the read code, responses from at least t + b + 1
objects are awaited in the first round of rd (line 11, Fig. 4.5). Hence, at least
one of non-Byzantine objects will respond with ck in its w field in the first round
of rd. Hence, by the end of the first round of rd, ck ∈ C. Moreover, since at
most t+ b objects have in their w fields a tuple different than ck throughout rd,
ck is never excluded from C in lines 27-28, Fig. 4.5. Hence, C does not return
a default value v0 (lines 15 and 16, Fig. 4.5). Moreover, note that no tuple c
with c.tsval.ts > k can be returned, as no such a tuple (candidate value) c can
be safe(c). Indeed, note that throughout rd no non-Byzantine object, out of at
least S − b = 2t + 1 of them, will reply in its pw or w field with a value with
ts′ > k, or ts′ = k ∧ v′ 6= valk, i.e., at most b objects may respond with such a
value. Hence, no value other than valk is returned in line 19, Fig. 4.5.

We now proceed to proving wait-freedom. First we prove a couple of important
lemmas. In the remainder of this section, we prove properties for read operations
invoked by correct readers.

Lemma 27. (No conflict between correct objects) At any point in time dur-
ing the first round of any read operation, for every pair of correct objects si, sk,
conflict(i, k) = false.

Proof. Assume, by contradiction, that there is read operation rd by rj in which
conflict(i, k) = true during the first round of rd (i.e., before rj executes the code
in line 12 in Figure 4.5) and objects si and sk are correct. Let the timestamp of
rj in the first round of rd be tsrFR = tsr′j . Since conflict(i, k) = true, a correct
object sk reported, in the first round of rd, in its w field, a candidate value
c = 〈〈ts, v〉, HRts〉, such that HRts[i][j] > tsrFR. Since, by our assumption, sk
is correct, it only changes its w field upon sk receives a PW or W message from
the writer. Since the writer is not Byzantine, a timestamp value pair 〈ts, v〉 was
indeed written, say by write wrts, and PW round of wrts has completed before
sk changed its w field to c (this occurs upon sk receives a W message in write
wrts or a PW message in write wrts+1, the write that immediately follows wrts).
Hence, the writer received tsr[j] > tsrFR from si and set HRts[i][j] = tsr[j],
before sending a W message in wrts (or a PW message in wrts+1), i.e., before
sk replied to the reader in the first round of rd and before the reader received
this reply during the first round of rd. Hence, object si has set its tsr[j] field to
tsr[j] > tsrFR before the reader has changed its timestamp to a value higher
than tsrFR. According to the object code, no correct object can have the reader
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rj ’s timestamp (tsr[j]) higher than rj itself (tsr′j) at any point in time. Therefore,
si is not correct, a contradiction.

Lemma 28. (First round of read terminates) The read operation implementation
never remains indefinitely blocked at line 11, Fig. 4.5.

Proof. In our model, there are at least t + b + 1 correct objects that will all
eventually respond to the first round of every read (if the condition in line 11 is
not satisfied earlier). Denote this set as X, X ⊆ Resp1. By Lemma 27, for no
two i, k ∈ X conflict(i, k) = true. Finally, as |X| ≥ t+ b+ 1, the until condition
in line 11 is satisfied in every read.

Lemma 29. (Second round of read terminates) The read operation implementa-
tion never remains indefinitely blocked at line 14, Fig. 4.5.

Proof. Suppose, by contradiction, that there is read rd by rj that remains indef-
initely blocked at line 14. It is not difficult to see that, in this case, there exists
a candidate value/tuple c = 〈tsval,HRts〉 such that c ∈ C (i.e., C 6= ∅) forever,
but safe(c) never holds. We consider two cases: (1) c has been reported in the
w field of some correct object si in the first round of rd and (2) no correct object
si reported c in its w field in the first round of rd.

1. Consider first the case in which some correct object si has reported in its w
field a tuple c = 〈tsval,HRts〉 (where tsval = 〈ts, val〉) in the first round
of rd. Since correct objects set their w fields upon reception of the W
message from the writer in wrts, or upon reception of the PW message
from the writer in wrts+1 and since the writer sends those messages only
when at least b+ 1 correct objects respond to its PW message in wrts, we
conclude that, by the time si sends its response in the first round of rd, at
least b + 1 correct objects have set their pw fields to tsval and before the
second round of rd is invoked. These correct objects eventually respond in
the second round of rd with tsval or with a higher timestamp in their pw
fields. Hence, eventually safe(c) holds. A contradiction.

2. Consider now the case in which no correct object si has reported in its
w field a tuple c = 〈tsval,HRts〉 in the first round of rd (i.e., in this
case, FirstRW (c) contains only Byzantine objects). We distinguish two
subcases:

a) no correct object reports c in its w field in the second round of rd. In
this case, c is excluded from C as soon as all correct objects respond
to the second round of rd (lines 27-28, Fig. 4.5). A contradiction.

b) there is a correct object sk that reports c in its w field in the second
round of rd. In this case, let tsrFR be the timestamp of rj during
the first round of rd. Since c = 〈tsval,HRts〉 is reported by a correct
object sk in its w field in the second round of rd, c is indeed written
by the writer at some point, concurrently with rd. Therefore, exactly
t + b + 1 coordinates of HRts[∗][j] have non-nil values, out of which
at least b+ 1 correspond to correct objects. Denote this set of correct
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objects by Xcorrect (actually, the set of object indices). Denote by
Xfake the set Xcorrect ∩ {i : HRts[i][j] > tsrFR}.
Denote by Resp1OKc the set which satisfies the condition in line 11,
at the end of the first round of rd. Note that such a set exists, and it
contains (an index of) at least 1 Byzantine object sm that reported c
in its w field in the first round of rd (i.e., m ∈ FirstRW (c)); indeed
if all objects in Resp1OKc were correct (or none of them reported
c in its w field), c would be removed from set C, since no correct
object responds in the first round of rd with c in its w field. Note
also that Xfake ∩Resp1OKc = ∅, since for every i ∈ Xfake and every
m ∈ FirstRW (c), conflict(i,m) = true.
Furthermore, let |FirstRW (c)| = f ≥ 1 (recall that FirstRW (c)
contains only Byzantine objects) and |Xfake| = f ′ ≥ 0. At the end
of the first round of rd, |Resp1OKc\FirstRW (c)| ≥ t + b + 1 − f
(counting all those objects from Resp1OKc that did not respond with
c in their w fields), i.e., by the end of the first round of rd at least
t+ b+1−f objects responded without c in their w field, and this does
not include any of the objects from Xfake.
Since c is indeed written (say by write wr) concurrently with rd, correct
objects from Xfake must have responded to PW message of wr with
the timestamp of reader rj tsr[j] = tsrFR + 1, after they respond to
the second round of rd, when they set their tsr[j] fields to tsrFR+ 1.
By our assumption on rd, the second round of rd does not complete
and rj never sets its timestamp tsr′j to a value higher than tsrFR +
1. Hence, for any si ∈ Xfake, tsr[j] is not higher than tsrFR + 1.
Therefore, by the time rd receives the second round responses from all
correct objects, all objects from Xfake respond without c in their w
fields and the number of objects that have responded during rd without
c in their w fields, |RespondedWO(c)|, is at least t+ b+ 1− f + f ′.
On the other hand, all of at least b + 1 − f ′ correct objects from
Xcorrect\Xfake respond to the PW round of wr before they reply to
the second round of rd. Therefore, these at least b + 1 − f ′ objects
reply to the second round of rd with c.tsval or the value with a higher
timestamp in their pw field. Hence, by the time rd receives the second
round responses from all correct objects, the number of objects that
have responded with c in their w field, or c.tsval in their pw fields, or
with a later value, is at least f + b+ 1− f ′.
By our assumption: (i) safe(c) never holds during rd and (ii) c is
never excluded from C during rd. These conditions can be written as:

(i) f + b+ 1− f ′ < b+ 1
(ii) t+ b+ 1− f + f ′ < t+ b+ 1

However, it is not difficult to see that, for any values of f and f ′, at
least one of these inequalities is false. Indeed, rewriting (i) and (ii)
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yields:

(i) f < f ′

(ii) f ′ < f

apparently, at least one of the last two inequalities must be false.
Therefore, we conclude that, eventually (at latest upon rd receives
second round responses from all correct objects), either safe(c) holds,
or c is eliminated from C. A contradiction.

Theorem 14. (Wait-Freedom) The algorithm in figures 4.3, 4.4 and 4.5 is wait-
free.

Proof. The proof of wait-freedom of the write implementation is straightforward.
The wait-freedom of the read implementation follows from Lemmas 28 and 29.

4.4 Regular Implementation
Our tight lower bound on the time complexity of read operations extends to
stronger storage semantics: optimally resilient regular storage. In this section,
we show how to transform our safe implementation (Section 4.3) to provide reg-
ular semantics while retaining optimal resilience and optimal time complexity of
read and write operations (i.e., rounds). The proof of correctness of our regular
implementation is given in Section 4.4.2.)
The main difference between our regular implementation and our safe imple-

mentation, is that objects keep track of all values they receive from the writer
throughout the entire execution (for simplicity we say that objects store the en-
tire history). For presentation simplicity, we will assume in the following that
in every read round, objects send all the values received from the writer (i.e.,
the entire history) to the reader. However, later, in Section 4.4.1, we show how
to simply optimize our implementation in order to drastically decrease the size
of messages exchanged between objects and readers in our algorithm (as well as
memory requirements and computational complexity at readers).
The communication pattern of our regular implementation is the same as that

of our safe implementation of Section 4.3. Moreover, the principle of choosing
the value to return in the reader code is essentially the same, only the set of
candidate values to choose from becomes bigger than in our safe implementation.
The write implementation remains unchanged, i.e., we can reuse the implemen-

tation given in Figure 4.3, Section 4.3.
However, object si, on reception of PW〈ts′, pw′, w′〉 from the writer, with

ts′ > ts, where ts is the timestamp of the latest PW or W message received
by si from the writer, updates ts and assigns historyi[ts′] := 〈pw′, nil〉 and
historyi[ts′ − 1] := 〈w′.tsval, w′〉 (lines 5-7, Figure 4.6). Similarly, on recep-
tion of W〈ts′, pw′, w′〉 from the writer, with ts′ ≥ ts, si updates ts and assigns
historyi[ts′] := 〈pw′, w′〉 (lines 11-12, Figure 4.6).



4.4. REGULAR IMPLEMENTATION 91

Initialization:
1: ts := 0; pw0 := 〈0,⊥〉; historyi[0] := 〈pw0, 〈pw0, initHRts〉〉
2: initHRts[i][j] := nil, 1 ≤ i ≤ S, 1 ≤ j ≤ R
3: tsr[j] := 0, 1 ≤ j ≤ R

4: upon reception of PW〈ts′, pw′, w′〉 message from the writer do
5: if ts′ > ts then
6: historyi[ts] := 〈pw′, nil〉; historyi[ts− 1] := 〈w′.tsval, w′〉
7: ts := ts′

8: send PW_ACK〈ts, tsr〉 to the writer
9: endif

10: upon reception of W〈ts′, pw′, w′〉 message from the writer do
11: if ts′ ≥ ts then
12: ts := ts′; historyi[ts] := 〈pw′, w′〉
13: send W_ACK〈ts〉 to the writer
14: endif

15: upon reception of READk〈tsr′〉 mess. from rj (k ∈ {1, 2}) do
16: if tsr′ > tsr[j] then
17: tsr[j] := tsr′

18: send READk_ACK〈tsr[j], historyi〉 to reader rj
19: endif

Figure 4.6: SWMR regular storage: code of object si

Moreover, on reception of the READk message from the reader with a times-
tamp tsr′, the object si replies with the message READk_ACK〈tsr′, historyi〉,
where k denotes the round (k∈ {1, 2}). (We later show, in Section 4.4.1, how
the size of READk_ACK messages can be drastically decreased). The entire
modified object code is given in Figure 4.6.
We give the modified reader code in Figure 4.7. Reader rj , on receiving

READk_ACK〈tsr′, historyi〉 message from object si in round k of read rd,
assigns history[k][i] := historyi (line 19 and 24, Fig. 4.7). If, for some ts′ the
entry historyi[ts′] does not exist, rj considers history[k][i][ts′] = historyi[ts′] =
〈nil, nil〉. The reader adds (non-nil) values of tuples history[1][i][∗].w, i.e., the
values objects report in their historyi[∗].w fields, into the set of candidate values
C throughout the first round of rd (line 20, Fig. 4.7)
Similarly to our safe implementation, in the first round of rd, reader rj awaits

responses from a set that contains at least S − t objects such that there is no
conflict between any 2 objects si and sk that belong to this set (line 11, Fig. 4.7).
We again detect conflicts using high-resolution timestamps; a conflict between
two objects arises when one object, say sk reports (in the first round of read) in
one of its historyk[∗].w fields a candidate value c, such that c.HRts[i][j] > tsrFR,
where tsrFR is the timestamp of reader rj in the first round of the read. As in
our safe implementations, there can be no conflict between two correct objects si
and sk.
We define two key predicates for candidate values c ∈ C, safe(c) and invalid(c)

as follows:

• safe(c). A candidate value c is safe if at least b+1 objects si have responded
with either c.tsval or c in pw or w field (respectively) of historyi[c.tsval.ts]
in either the first, or the second round of the read. (line 3, Fig.4.7). In other
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Definitions:
1: conflict(i, k) ::= ∃c ∈ C,∃ts′ : (history[1][k][ts′].w = c) ∧ (c.HRts[i][j] > tsrFR))
2: invalid(c) ::= |{i : ∃rnd ∈ {1, 2} :

(history[rnd][i][c.tsval.ts].w = nil)∨
∨(history[rnd][i][c.tsval.ts].pw 6= c.tsval)∨
∨(history[rnd][i][c.tsval.ts].w 6= c)}| ≥ t+ b+ 1

3: safe(c) ::= |{i : ∃rnd ∈ {1, 2} :
(history[rnd][i][c.tsval.ts].pw = c.tsval)∨
∨(history[rnd][i][c.tsval.ts].w = c)}| ≥ b+ 1

4: highCand(c) ::= (c ∈ C) ∧ (¬∃c′ ∈ C : c′.tsval.ts > c.tsval.ts)
5: Resp1 ::= {i : RespF irst[i] = true}

Initialization:
6: tsr′j := 0

read() is {
7: history[1..2][1..S] := init
8: tsr[i] := 0; RespF irst[i] := false, 1 ≤ i ≤ S
9: inc(tsr′j); tsrFR := tsr′j
10: send READ1〈tsr′j〉 to all objects
11: wait for READ1_ACK messages until

∃Resp1OK ⊆ Resp1 : (|Resp1OK| ≥ S − t) ∧ (∀i, k ∈ Resp1OK : ¬conflict(i, k)))
12: inc(tsr′j)
13: send READ2〈tsr′j〉 to all objects
14: wait for READ2_ACK messages until

∃cret ∈ C : ((safe(cret) ∧ (highCand(cret))))
15: cret := c : (c ∈ C) ∧ safe(c) ∧ (highCand(c))
16: return(cret.tsval.v)

17: upon reception of READ1_ACK〈tsr′j , historyi〉 from si do
18: if (tsr′j > tsr[i]) then
19: tsr[i] := tsr′j ; history[1][i] := historyi
20: C := C ∪ {historyi[∗].w′}; RespF irst[i] := true
21: endif

22: upon reception of READ2_ACK〈tsr′j , pw
′, w′〉 from si do

23: if (tsr′j > tsr[i]) then
24: tsr[i] := tsr′j ; history[2][i] := historyi
25: endif

26: upon (c ∈ C) and (invalid(c))
27: C := C\{c}
}

Figure 4.7: SWMR regular storage: read implementation - code of reader rj
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words, c if safe if at least b + 1 objects confirm that the timestamp-value
pair c.tsval has been written by the writer in a write with a timestamp
c.tsval.ts.

• invalid(c). A candidate value c is deemed invalid if at least t+b+1 objects si
are missing the entry historyi[c.tsval.ts].w (i.e., if historyi[c.tsval.ts].w =
nil), or reply with a value different than c.tsval (resp., c) in the pw (resp.,
w) field of their historyi[c.tsval.ts], in either the first, or the second round
of read. (line 2, Fig.4.7). In other words, c if invalid if at least t + b + 1
objects did not receive c with a timestamp c.tsval.ts from the writer.

As soon as the predicate invalid(c) holds, c is removed from the set C (lines
26 and 27, Fig. 4.7).
The reader receives READ2_ACK messages (in the second round of read)

until there is a candidate value c such that safe(c) holds and there is no other
candidate value with a higher timestamp. This is guaranteed to occur at latest
after the reader receives the responses from all correct objects in the second
round of read. Roughly, the principle behind this fact, is the same as in our safe
implementation.

4.4.1 Performance optimization

It is relatively easy to see how we can simply modify our regular implementa-
tion such that objects do not send their entire histories to readers within the
READk_ACK messages. Consider read rd by rj . It is sufficient that reader
rj stores (caches) the value cachej .val it returned in its last read that preceded
rd along with the timestamp associated with cachej .val, cachej .ts. Then, in the
first round of rd, rj includes cachej .ts in its READ1 message, and the object
si send in READk_ACK messages in rd only the portion of the historyi from
historyi[cachej .ts] onwards. It may occur in this case that, after two rounds of
read, the set C is empty. In this case, rj simply returns cachej .val. The rest of
the algorithm can be reused as such.

4.4.2 Correctness

First we prove regularity.

Theorem 15. (Regularity) The algorithm in figures 4.3, 4.6 and 4.7 is regular.

Proof. Consider read rd by reader rj , such that the last value written by some
complete write (wrk) that precedes rd is valk (with a timestamp k), or val0 = ⊥
if there is no such write.
We show that no value older than valk is returned by rd. Moreover, we show

that if vall is returned by rd then there is a wrl that writes vall.
Let ck = 〈〈k, valk〉, HRtsk〉 = 〈tsvalk, HRtsk〉 be the tuple written in round W

of the latest complete write wrk that precedes rd (or ck = c0 = 〈〈0,⊥〉, initHRts〉
if there is no such a write). We show that rd does not return a value older than
valk.
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By write implementation, a timestamp value pair valk (resp, a tuple ck) has
been written in history∗[k].pw (resp., history∗[k].w) fields of at least S − t −
b = t+ 1 non-Byzantine objects before write completes (or, to all non-Byzantine
objects, in case tsval0 = 〈0,⊥〉). Therefore, throughout the duration of rd the
following conditions hold:

• Condition (1). At least t + 1 non-Byzantine objects have tsvalk in their
history∗[k].pw, and ck in their history∗[k].w fields.

• Condition (2). At most t+b objects have in their history∗[k].w (or history∗[k].pw)
fields a tuple different than ck (resp., tsvalk), or they do not have an entry
for history∗[k].

By the read code, responses from at least S − t = t+ b+ 1 objects are awaited
in the first round of read (line 11, Fig. 4.7). Therefore, by condition (1), wk ∈ C.
Moreover, by condition (2), wk is never excluded from C in lines 26-27, Fig. 4.7).
Therefore, rd never returns a value older than ck.tsval.val = valk.
Moreover, note that no tuple c such that c.tsval.val has never been writ-

ten by the writer can be returned, since no such a tuple (candidate value) c
can be safe(c). Indeed, since c.tsval.val has never been written by writer, no
non-Byzantine object, out of at least S − b = 2t + 1 of them, will ever store
history∗[c.tsval.ts].pw = c.tsval, or history∗[c.tsval.ts].w = c, i.e., at most b
objects may respond with such values in their history∗[c.tsval.ts] fields.

Performance optimization. Now we prove that our performance optimization
described in Section 4.4.1 preserves regularity.
Again, consider read rd by reader rj , such that the last value written by some

complete write (wrk) that precedes rd is valk (with a timestamp k), or val0 if
there is no such write. Denote by cachej .val the value returned by the last read
invoked by rj that immediately precedes rd (or ⊥ if there is no such a value) and
by cachej .ts the timestamp associated by the writer to that value in wrts, (or
cachej .ts = 0 if there was no such a write). We distinguish two cases:

• (ts < k). In this case, entries history∗[k] will be sent by all (non-Byzantine)
objects in both rounds of rd, so the argument we used above for the non-
optimized version can be reused.

• (ts ≥ k). In this case, rd returns a valts or a newer value. Regularity is
preserved.

We now proceed to proving wait-freedom. We revisit the lemmas used in
Section 4.3.3 in the proof of correctness of our safe storage implementation.

Lemma 30. (No conflict between correct objects) At any point in time dur-
ing the first round of any read operation, for every pair of correct objects si, sk,
conflict(i, k) = false.
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Proof. Suppose, by contradiction, that there is read operation rd by rj in which
conflict(i, k) = true during the first round of rd (i.e., before rj executes the code
in line 12) and objects si and sk are correct. Suppose that the timestamp of
rj in the first round of rd is tsrFR = tsr′j . Since conflict(i, k) = true, correct
object sk reported candidate value c = 〈〈ts, v〉, HRts〉 in the first round of rd,
in its historyk[ts].w field (for some ts), such that HRts[i][j] > tsrFR. By the
assumptio that, sk is correct, sk only changes its w field to c upon it receives a
W message in wrts from the writer. Since, the writer is not Byzantine, the writer
has received tsr[j] > tsrFR from si and set HRts[i][j] = tsr[j] in the first round
of wrts, before sending a W message in wr, i.e., before sk replied to the reader
in the first round of rd and before the reader received this reply during the first
round of rd. Hence, object si has sent to the writer a timestamp of a reader rj
tsr[j] > tsrFR before reader rj has changed its timestamp to a value higher than
tsrFR. According to the object code, no correct object can have a reader rj ’s
timestamp higher than rj itself at any point of time. Therefore, si is not correct,
a contradiction.

Lemma 31. (First round of read terminates) The read operation implementation
never remains indefinitely blocked at line 11, Fig. 4.7.

Proof. The proof is an analogue of that of Lemma 28, Section 4.3.3.

Lemma 32. (Second round of read terminates) The read operation implementa-
tion never remains indefinitely blocked at line 14, Fig. 4.7.

Proof. Suppose, by contradiction, that there is read rd by rj that remains indef-
initely blocked at line 14.
It is not difficult to see that, in case of our original non-optimized implementa-

tion, the set C is never empty, since the initial tuple c0 = 〈pw0 = 〈0,⊥〉, initHRts〉
appears in C and is never excluded since all 2t + 1 non-Byzantine objects have
history∗[0] = 〈pw0, c0〉. On the other hand, in our optimized version, if C is
empty then rd returns a cachej .val value and, hence, the second round of rd
terminates and rd completes.
Therefore, there exists a candidate value/tuple c = 〈tsval,HRts〉 6= c0 such

that c ∈ C (i.e., C 6= ∅) forever, but safe(c) never holds. We consider two
cases: (1) c has been reported in the historyi[tsval.ts].w field in the first round
of rd by some correct object si, and (2) no correct object si reported c in its
historyi[tsval.ts].w field in the first round of rd.

1. Consider first case in which some correct object si reports tuple c = 〈tsval,HRts〉
(where tsval = 〈ts, val〉) in its historyi[tsval.ts].w field, in the first round
of rd. Since correct objects can set their historyi[tsval.ts].w fields to c
only upon reception of a W message from the writer in wrts and since the
writer sends this message only after at least b + 1 correct objects respond
to its PW message in wrts, we conclude that, by the time si sends its re-
sponse in the first round of rd, at least b+ 1 correct objects have set their
historyi[c.tsval.ts].pw fields to tsval before the second round of rd is in-
voked. These correct objects eventually respond in the second round of rd
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with historyi[c.tsval.ts].pw = tsval, and, hence, eventually safe(c) holds.
A contradiction.

2. Consider now case in which no correct object si has reported in its field
historyi[c.tsval.ts].w a tuple c = 〈tsval,HRts〉 in the first round of rd. We
distinguish two cases: (

a) no correct object reports c in its historyi[c.tsval.ts].w fields in the
second round of rd. It is not difficult to see that c is deemed invalid
and excluded from C, as soon as all correct objects (at least t+ b+ 1
of them) respond to the second round of rd. A contradiction.

b) there is correct object sk that reports c in its historyi[c.tsval.ts].w
fields in the second round of rd. Let tsrFR be the timestamp of rj
during the first round of rd. Since c is reported by correct object sk
in its historyi[c.tsval.ts].w field in the second round of rd, c is indeed
written by the writer at some point, during rd. Therefore, exactly
t + b + 1 coordinates of HRts[∗][j] have non-nil values, out of which
at least b+ 1 correspond to correct objects. Denote this set of correct
objects asXcorrect (actually the set of object indices). Denote byXfake

the set Xcorrect ∩ {i : HRts[i][j] > tsrFR}.
Denote by Resp1OKc the set which satisfies the condition in line 11,
at the end of the first round of rd. Note that such a set exists, and
it contains (an index of) at least 1 Byzantine object sm that reported
c in its historyi[c.tsval.ts].w field in the first round of rd; indeed if
all objects in Resp1OKc were correct (or none of them reported c in
its historyi[c.tsval.ts].w field), c would be removed from set C (i.e.,
invalid(c) would hold), since no correct object responds in the first
round of rd with c in its historyi[c.tsval.ts].w fields. Note also that
Xfake ∩ Resp1OKc = ∅, since for every i ∈ Xfake and every m ∈
FirstRW (c), conflict(i,m) = true.
Furthermore, denote by f the cardinality of set M of (Byzantine)
objects that have reported c in the first round of rd (f ≥ 1) in
their historyi[c.tsval.ts].w fields and |Xfake| = f ′ ≥ 0. At the end
of the first round of rd, |Resp1OKc\M | ≥ t + b + 1 − f (count-
ing all those objects from Resp1OKc that did not respond with c in
their historyi[c.tsval.ts].w fields), i.e., by the end of the first round
of rd at least t + b + 1 − f objects responded without c in their
historyi[c.tsval.ts].w fields, and this does not include any of the ob-
jects from Xfake.
Since c is indeed written (by wrts) concurrently with rd, correct ob-
jects from Xfake must have responded to PW message of wr with the
timestamp of reader rj tsr[j] = tsrFR + 1, after they respond to the
second round of rd. Therefore, all objects from Xfake eventually re-
spond to the second round of rd with no entry for historyi[c.tsval.ts].
Hence, by the time rd receives the second round responses from all cor-
rect objects, the object count for invalid(c) (line 2, Fig. 4.7) predicate
is at least t+ b+ 1− f + f ′.
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On the other hand, all of at least b + 1 − f ′ correct objects from
Xcorrect\Xfake respond to the PW round of wrts before they reply to
the second round of rd. Therefore, these at least b + 1 − f ′ objects
reply to the second round of rd with historyi[c.tsval.ts].pw = c.tsval .
Hence, by the time rd receives the second round responses from all cor-
rect objects, the number of objects that have responded with c in their
historyi[c.tsval.ts].w field, or c.tsval in their historyi[c.tsval.ts].pw
fields, is at least f + b+ 1− f ′.

By our assumption: (i) safe(c) never holds during rd and (ii) invalid(c)
never holds during rd. These conditions can be written as:

(i) f + b+ 1− f ′ < b+ 1⇐⇒ f < f ′

(ii) t+ b+ 1− f + f ′ < t+ b+ 1⇐⇒ f ′ < f

apparently, at least one of the last two inequalities must be false.
Therefore, we conclude that, eventually (at latest upon rd receives
second round responses from all correct objects), either safe(c) holds,
or c is eliminated from C. A contradiction.

Finally, Lemma 28 and 29 prove the following theorem, since the wait-freedom
of write is straightforward.

Theorem 16. (Wait-Freedom) The algorithm in figures 4.3, 4.6 and 4.7 is wait-
free.

4.5 Atomic storage

Using the simple transformation from SWMR regular register to SWMR atomic
register [GR06], and our regular algorithm shown in Section 4.4, we can narrow
down the possible range for the optimal latency of read operation in optimally
resilient Byzantine fault tolerant atomic storage. Namely [GR06], by using R+ 1
(where R is the number of readers) SWMR regular registers implemented over
the same set of base objects, such that each of the R registers is written by some
(atomic) reader and read by all other readers, as well as a write-back technique
based on timestamps (in the vein of [ABD95]), we can very simply implement a
SWMR atomic register in which the complexity of read is 4 rounds, Notice that
such an algorithm is optimally resilient with respect to base object Byzantine
failures but assumes non-Byzantine clients.
Hence, we can conclude that the optimal complexity for optimally resilient

BFT atomic storage is between 2 and 4 rounds. The exact complexity remains
an open problem.
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4.6 Server-Centric Model
Here, we consider the extension of our storage model of Chapter 2 to a server-
centric model, by assuming point-to-point channels among base objects (servers)
and removing the restriction that base objects can send messages only in response
to clients. In other words, in the server-centric model, base objects are first class
active processes (servers) that can exchange messages with other servers and even
send unsolicited messages to clients (i.e., push messages). As a consequence, the
range of communication patterns is very broad and not bound by the pattern of
a communication round-trip.
For example, clients in a server-centric model may send only one message to

(a subset of) servers and wait for the reception of pushed messages, until they
receive sufficient amount of information for returning a value. It is not difficult to
see that, in an asynchronous system, clients need only to send this first message
m to a subset of servers and to receive one message that causally depends [BJ95]
on m, in order to return a meaningful value. Intuitively, the fastest possible
operation in this model is similar to that of our model of Chapter 2; i.e., a 2
message delay operation op in which: (a) the client c sends messages to (a subset
of) servers, (b) servers, on receiving such a message, reply to c, without waiting
for the reception of any other message from any other server or client and (c)
upon c receiving a sufficient number of these replies op completes.
Hence, the complexity of 2 message delays remains the lower bound on the

(worst case) time complexity of storage implementations even in the server-centric
model, i.e., our lower bound (Proposition 1 of Section 4.2) holds in this model
as well. In other words, even in the server-centric model, if at most 2t + 2b
servers are used, then it is impossible to construct a SWSR safe storage in which
the complexity of read is at most 2 message delays. Devising a tight bound
algorithm for a server-centric model is, however, out of the scope of this thesis.
Intuitively, one can expect to obtain a 3 message delay regular storage algorithm
by exploiting the all-to-all communication among servers and by using the idea
behind our high-resolution timestamps.



5
Fast BFT Atomic Storage

In the previous Chapter, we have established a new tight lower bound on worst-
case time complexity of reading from optimally resilient BFT storage. Namely,
we showed that, in the unauthenticated model, reading from any (safe) storage
implemented over at most 2t + 2b base objects (where t and b are, respectively,
thresholds on the total number of failures and the number of Byzantine failures)
requires at least 2 round-trips, i.e., no fast read implementation is possible in
this case. The analog result for fast write implementations was established in
[ACKM06].
Given these results, it is somehow natural to ask whether it is possible to

achieve fast implementations by trading in the number of base objects, i.e., by
giving away optimal resilience. The question is particularly interesting in the case
of the atomic storage. The answer to this question in the crash-only model, given
in [DGLC04], may give a good intuition to what can we expect when allowing for
Byzantine failures. Namely, it was shown in [DGLC04] that a tight lower bound
on the number of base objects S required for a fast atomic storage implementation
(i.e., an atomic storage implementation in which all reads and writes complete
in at most one round-trip) is S ≥ (R + 2)t + 1, where R is the total number
of readers in the system. In other words, fast atomic implementations impose
an inherent limitation with respect to the number of readers they can support.
Naturally, a BFT fast atomic storage must require at least as many base objects.
Still, is this number sufficient?
In this Chapter, we show a new tight lower bound on the number of base

objects required for any BFT fast atomic storage implementation. Namely, we
show that such an implementation requires S ≥ (R + 2)t + (R + 1)b + 1 base
objects, i.e., that such an implementation can support up to R < S+b

t+b −2 readers.
Interestingly, we show that this lower bound applies even in the authenticated
model, where the space of allowable Byzantine behavior is considerably smaller
than in the unauthenticated model (see Chapter 2 for details). In this chapter,
as in Chapter 3, we assume that clients are not Byzantine (only base objects can
be Byzantine; however, any number of clients may fail by crashing).
It is worth noting that this limitation on the number of readers that a fast

BFT storage implementation can support comes directly from the requirement
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that we require storage to be atomic. Namely, in the case of weaker, regular
storage, fast BFT implementations in the authenticated model are almost trivial
to achieve [MR98].

In the remainder of the Chapter, we first show a fast BFT atomic storage
implementation (in the authenticated model) that makes use of S ≥ (R + 2)t +
(R + 1)b + 1 base objects. Then, we prove our implementation optimal with
respect to the number of required base objects. Both algorithm and lower bound
proof are, we believe, interesting in their own rights.

Our fast BFT atomic storage implementation, exploits the idea introduced by
its predecessor in the crash failure model [DGLC04], the idea of traces left by
readers in the base objects they access. These traces are then used to determine
which value to return while preserving atomicity. In a sense, our implementation
exploits base objects’ read-modify-write capabilities, just like our algorithms of
Chapter 4 (it would not be possible to directly port our algorithms to read/write
shared memory model).

On the other hand, to get an intuition of our lower bound, consider S base
objects, t among which can be faulty, out of which b can be Byzantine. Our
lower bound proves by contradiction that there is no fast implementation with
R ≥ S+b

t+b −2. Notice that our lower bound imposes the “price” of t+b base objects
on average for each additional reader. To see why, consider a partial execution
which contains a write(1) that misses t base objects. Since a writer may fail, one
cannot expect the remaining base objects to receive the written value and all the
subsequent reads must return 1. Now append to the partial execution a read by
reader r1 that misses t other base objects, whereas, at the same time b Byzantine
base objects (we denote this set of base objects by B1) that witnessed both
operations (a read and write(1)) fail by “losing memory” (this attack is perfectly
possible even in the authenticated model). By atomicity, even in this case read
must return 1. Then, before we append another read by reader r2, we obtain a
new partial execution by deleting all the steps in the partial execution that are
not “visible” to the reader r1 (basically, the steps of the t base objects that the
read by r1 missed) as well as all steps performed on the Byzantine base objects
from the set B1 that are correct in the new execution. By indistinguishability, the
read returns 1 in the resulting partial execution. However, we deleted all the steps
performed on t+ b base objects. Hence the intuition behind the average cost per
reader in our lower bound. Notice that, since we require a fast implementation,
readers “do not have time” to writeback the information about the value they
read in the first round, which prohibits classical writeback techniques used in
atomic storage implementations [ABD95].

Finally, we note that the results that we present in this Chapter directly extend
to server-centric storage. Namely, and as we argued in Section 4.6, the notion
of fast storage, as storage with the lowest possible read/write latency, extends to
the server-centric storage model as well.



5.1. A FAST BFT ATOMIC STORAGE IMPLEMENTATION 101

5.1 A Fast BFT Atomic Storage Implementation

5.1.1 Preliminaries

For simplicity of presentation, we first present our algorithm assuming that the
writer writes timestamps, and the readers read back timestamps. More precisely,
we assume that in every (partial) execution of our algorithm, the writer writes a
timestamp k in the kth invocation of write(k), where k ≥ 1. In this section, we
refer to such a write as wrk. Moreover, reading an initial timestamp 0 corresponds
to reading the initial storage value ⊥. In other words, at first we ignore the values
associated with the timestamps greater than 0. Later we explain how to trivially
generalize our algorithm such that the writer and the readers associate some value
with a timestamp.
With this simplification our definition of atomicity of a (partial) execution in

our single-writer setting (properties (SWA1)-(SWA4) of Section 2.3.2, Chapter 2)
is also simplified. Namely, to show that an execution is atomic we need to show
the following:

1. If a read returns, it returns a non-negative integer.

2. If a read rd is complete and it follows some write wrk, then rd returns l
such that l ≥ k.

3. If a read rd returns k (k ≥ 1), then wrk either precedes rd or is concurrent
to rd.

4. If some read rd1 returns k (k ≥ 0) and a read rd2 that follows rd1 returns
l, then l ≥ k.

5.1.2 Algorithm

The pseudo code of our fast implementation is given in Figure 5.1. Since our
implementation has fast reads, we denote without ambiguity the messages sent by
a reader, on invoking a read, by read, and the messages sent by a base object to a
reader, on receiving a read message, by readack. Similarly, we denote messages
sent in our fast write operation by write and writeack messages. For better
readability, pseudo code, the writer process w is denoted by 0, whereas a reader
ri (i ∈ 1 . . . R) is denoted by i.
The write procedure is similar to that of [ABD95]. On invoking a write, the

writer increments its timestamp (initialized to 0) and sends a write message
with the signed timestamp to all base objects in line 4 (in the remainder of
this Section, we refer to Figure 5.1). Upon receiving the message, base objects
store the timestamp (lines 25-26), along with the copy of the timestamp that
contains the digital signature of the writer, and send writeack messages back
to the writer (lines 30-33). The writer returns ok once it has received writeack
messages from S − t base objects (lines 5-7).
Implementing a fast read is more involved. Our read procedure collects times-

tamps (signed by the writer) from S− t base objects (by sending read messages
and receiving readack messages from the base objects), and selects the highest
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0: at the writer w = 0:
1: procedure initialization:
2: ts := 1, rCounter := 0
3: procedure write(v)
4: send (write, ts, σw(ts), rCounter) to all base objects
5: wait until receive (writeack, ts, σw(ts), ∗, rCounter) from S − t base objects
6: ts := ts+ 1
7: return(ok)

at each reader ri = i (i ∈ 1 . . . R):
8: admissible(TS,Msg, a) ≡ ∃µ ⊆ Msg,∀m ∈ µ :

(m.ts = TS) ∧ (|µ| ≥ S − at− (a− 1)b) ∧ (|
⋂
m′∈µ

m′.updated| ≥ a)

9: procedure initialization:
10: ts := 0; rCounter := 0; maxTS := 0; sig := ⊥
11: procedure read()
12: rCounter := rCounter + 1
13: send(read, maxTS, sig, rCounter) to all base objects
14: wait until receive (readack, ts′, σw(ts′), updated′, rCounter) from S− t base objects, such

that: σw(ts′) is valid, ts′ ≥ ts and ri ∈ updated′
15: rcvMsg := {m|ri received (readack, ∗, ∗, ∗, rCounter) in line 14 }
16: maxTS := Max{ts′| (readack, ts′, σw(ts′), ∗, rCounter) ∈ rcvMsg}
17: sig := σw(maxTS)
18: if there is a ∈ [1, R+ 1]: admissible(maxTS, rcvMsg, a) then
19: return(maxTS)
20: else
21: return(maxTS − 1)

at each base object si:
22: procedure initialization:
23: ts := 0; updated := ∅; sig := ⊥; counter[0 . . . R] := [0 . . . 0]
24: upon receive (msgType, ts′, σw(ts′), rCounter′) from q ∈ {w, r1, ..., rR} and (rCounter′ >

counter[q] or q = w) do
25: if ts′ > ts then
26: ts := ts′; sig := σw(ts′); updated := {q}
27: else
28: updated := updated ∪ {q}
29: counter[q] := rCounter′

30: if msgType = read then
31: send(readack, ts, sig, updated, rCounter′) to q
32: else
33: send(writeack, ts, sig, updated, rCounter′) to q

Figure 5.1: Fast atomic storage implementation with S ≥ (R+ 2)t+ (R+ 1)b+ 1
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timestamp maxTS (line 16). Moreover, the reader stores the writer’s signature
σw(maxTS) into reader’s variable sig (line 17). The pair (maxTS, sig) selected
by the reader will be written back by the reader in its next read invocation (lines
14 and 24-26). However, notice that in our fast implementation, base object si,
besides storing the highest received timestamp ts and its copy containing the
writer’s signature sig, maintains also the set updated that contains all clients to
which si has sent ts. Basically, the set updated contains all clients to which si
has sent an update (in the form of a readack or a writeack message) about
its highest timestamp. This information is read in our read procedure along with
the signed timestamps. Hence, a reader collects timestamps and sets updated
from S − t base objects using read and readack messages (lines 13-14).
As we described above, in every read invocation the reader sends the timestamp

that it returned in its last preceding read, along with the respective writer’s
signature (using field ts of the read message, line 13). The only exception to
this is, obviously, the first read invocation by the reader, in which the reader
issues a read message with the default timestamp 0 (see lines 10 and 23), which
is also the initial timestamp at base objects. We assume that this initial value
is known by all readers (and hence, does not need to be digitally signed by the
writer) and treated by readers as valid.
Upon receiving S− t readack messages (collected in set rcvMsg, line 15), the

read is precluded from waiting for more messages (the remaining t base objects
may be faulty). Moreover, in order to have a fast implementation, the read
may only perform some local computations and then it must return the value.
In our fast implementation, the essence of this local computation is captured
by predicate admissible (line 8) which relies on sets updated (received by the
reader from base objects) to evaluate whether the highest received timestamp
maxTS may be returned. Namely, if there is integer a (1 ≤ a ≤ R + 1), such
that admissible(maxTS, rcvMsg, a) holds in line 18 (we simply say that maxTS
is admissible (with degree a)), a read returns maxTS (line 19). Otherwise, if
maxTS is not admissible, a read returnsmaxTS−1 (line 21). In any case,maxTS
is cached locally and is written back by the reader in its following invocation of
read using the ts field of a read message as described previously (line 14).
In the following, we give an intuition behind the predicate admissible() which is

the heart of our fast implementation. The predicate is designed to guarantee that:

(a) maxTS = k is admissible in read rd whenever wrk precedes rd — this is vital
for ensuring Property (2) of Section 5.1.1, and

(b) if maxTS = k is admissible in read rd, then no rd′ that follows rd returns a
timestamp smaller than k— this is vital for ensuring Property (4) of Section 5.1.1.

First, we explain how our predicate guarantees (a). Consider the following
partial execution, pr1. In pr1, write wrk (k ≥ 1) completes by writing k to all
base objects from some set Σ1 containing S − t base objects. There are no writes
in pr1 that follow wrk. Moreover, read rd (by some reader ri), that follows wrk,
reads from set Σ2 (of S − t base objects) that overlaps at S − 2t base objects
with Σ1, i.e., misses t base objects in Σ1. Moreover, in pr1, b base objects from
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Σ1 ∩ Σ2 are Byzantine and respond to the reader with the timestamp k − 1.
By atomicity, rd must return k in pr1, and it must do so without waiting for
messages from base objects from Σ2 or the writer, since these may be faulty;
the reader cannot actually tell Byzantine objects since these might as well be
correct and not yet received write message in write wrk. In this case: (i) in
line 16 of rd, maxTS = k, and (ii) for any message m received by ri in rd
from base objects from Σ1 ∩Σ2 ∩ΣNB (where ΣNB denotes the set of benign, or
non-Byzantine, base objects), we have m.ts = maxTS and {w, ri} ⊆ m.updated.
Since |Σ1∩Σ2∩ΣNB| ≥ S−2t− b, maxTS is admissible in rd with degree a = 2.
On the other hand, the key to guaranteeing (b) is the following invariant (here-

after, maxTSop denotes maxTS computed in line 16 of the read operation op):

Lemma 33. Let rd′ be a complete read (by reader rj) that follows a complete
read rd (by ri). If maxTSrd is admissible with degree ard ≤ R+ 1, then:

• maxTSrd′ > maxTSrd, or

• maxTSrd′ = maxTSrd and maxTSrd′ is admissible with degree 1 or degree
ard + 1 in rd′.

Here, we sketch the proof of Lemma 33 (full correctness proof of our imple-
mentation can be found in Section 5.1.3).

Proof. By the definition of predicate admissible (line 8), there is a set of readack
messages µrd, sent by base objects from the set Σrd, such that, for every message
m in µrd, m.ts = maxTSrd, |Σrd| = |µrd| ≥ S−ardt− (ard− 1)b and |Πrd| ≥ ard,
where Πrd =

⋂
m∈µrdm.updated. Since (1) rd′ follows rd, (2) |Σrd| ≥ t + b + 1

and (3) rd′ reads from S − t base objects, rd′ receives a readack from at least
1 benign base object from Σrd. Hence, maxTSrd′ ≥ maxTSrd.
If maxTSrd′ = maxTSrd = k, we distinguish two cases:

Case (i), rj /∈ Πrd (note that this case is possible only if ard ≤ R). It is not difficult
to see that k is admissible in rd′ with degree ard+1. Indeed, rd′ will miss at most
t+b benign base objects from Σrd, receiving at least S−(ard+1)t−ardb readack
messages containing timestamp k, and the updated fields of these messages will
be a superset of Πrd ∪ {rj}, hence each containing at least ard + 1 clients.
Case (ii), rj ∈ Πrd (which indicates that rd′ is not the first read by rj). In this
case, all benign base objects from Σrd, at least t+1 of them, have sent a readack
message to rj containing the timestamp k before rd′ is invoked. At least one of
those must have been received by rj in read rd′′ that immediately precedes rd′.
Hence, maxTSrd′′ = k, and ts = k in line 12 of rd′. Finally, eventually S− t base
objects send readack to rd′ with the timestamp equal to k and set updated that
contains {rj} (see lines 25-28), i.e., k is admissible with degree 1 in rd′.

Finally, to help distinguish read and readack messages from different reads
of the same reader, we use the variable rCounter that counts the number of reads
of each particular reader. At the writer, the variable rCounter is always 0; the
messages from different writes are distinguished by their respective timestamps
(rCounter is kept here to simplify the base object code).
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This completes the description of our fast storage implementation. We now
describe how to modify the algorithm so as to associate values with timestamps.
In the modified algorithm, in each write, the writer attaches two tags with the
timestamp, containing the current value to be written and the value of the imme-
diately preceding write. If the reader returns maxTS in the original algorithm,
then it returns the current value attached to maxTS in the modified algorithm.
If the reader returns maxTS − 1 in the original algorithm, it returns the other
tag attached to maxTS in the modified algorithm.

5.1.3 Correctness of the Fast Implementation
Having in mind that we assume at least S−t correct base objects, it is straightfor-
ward to show that read and write procedures complete in one round-trip. To show
atomicity, we rely on Properties (1)-(4) of Section 5.1.1. The proof of Property
(1) is trivial and it is not difficult to see that Property (3) holds, having in mind
the unforgeability property of the writer’s digital signatures and our assumption
on benign writer. Below, we prove properties (2) and (4). In the proof, we use
the following notation:

• rcvMsgop denotes the set of received readack messages the reader collects
in read operation op in lines 14-15;

• Σop denotes the set of base objects from which the reader received readack
messages in rcvMsgop (in case op is a read), or the set of base objects from
which the writer received writeack messages in line 5 of op (in case op is
a write). Notice that, for every complete operation op, |Σop| = S − t;

• maxTSop denotes maxTS computed by the reader in line 16, in read op
(i.e., the highest timestamp in messages in rcvMsgop);

• µop,a denotes, in case maxTSop is admissible with degree a in op, the
subset of rcvMsgop, such that: (a) |µop,a| ≥ S − at − (a − 1)b, (b) for
all m ∈ µop,a, m.ts = maxTSop and m.sig = σw(maxTSop) and (c)
|
⋂
m∈µop,a

m.updated| ≥ a (see line 8, definition of predicate admissible);

• Σµop,a denotes the set of base objects that sent messages in µop,a; and

• Finally, ΣNB denotes the set of all benign (non-Byzantine) base objects.
Notice that |ΣNB| ≥ S − b.

Lemma 34. If benign object s sets ts to x at time T , then s never sets ts to a
value that is lower than x after time T .

Proof. By trivial base object code inspection.

Lemma 35. A read operation rd may only return either maxTSrd or maxTSrd−
1.

Proof. By lines 18-21 and the definition of maxTSrd.

Lemma 36. If a read sends read messages with ts = x, then the read does not
return a value smaller than x.
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Proof. Suppose read rd by ri sends a read message with ts = x. By lines 25-26,
every readack message received by ri in rd from some benign base object sj is
with tsj ≥ x. Since S > t + b, ΣNB ∩ Σrd 6= ∅. Hence, maxTSrd ≥ x. There
are the following two cases to consider. (1) If maxTSrd > x, by Lemma 35, the
return value is not smaller than x. (2) If maxTSrd = x, then every readack
message m in rcvMsgrd has m.ts = x and has ri ∈ m.updated (possibly different
readack messages (sent by Byzantine base objects) are discarded in line 14).
Hence, predicate admissible holds for maxTSrd with degree a = 1 and rd returns
maxTSrd = x.

The following Lemma proves Property 2 of Section 5.1.1.

Lemma 37. (Property 2) If read rd is complete and follows the write wrk, then
rd returns l such that l ≥ k.

Proof. Suppose that wrk precedes read rd (by reader ri). Let Σ′ = ΣNB ∩Σwrk ∩
Σrd. Notice that Σ′ contains only benign base objects. Since |ΣNB| = S − b,
|Σwrk | = S − t and |Σrd| = S − t, we have |Σ′| ≥ S − 2t− b.
When a benign object si in Σwrk (and, hence, in Σ′) replies to a write message

from wrk, its tsi is at least k (the timestamp is not smaller than k due to the
condition in line 25). Since wrk precedes rd, by Lemma 34, benign base objects
in Σ′ reply with ts∗ ≥ k to rd. Hence, maxTSrd ≥ k. There are the following
two cases to consider:

1. maxTSrd > k
By Lemma 35, rd does not return a timestamp lower than k.

2. maxTSrd = k
Let µ′ be the set of readack messages sent by base objects in Σ′ to rd.
By definition of Σrd and since Σ′ ⊆ Σrd, we have µ′ ⊆ rcvMsgrd. Since
(a) every (benign) base object sj ∈ Σ′ replies to rd with tsj ≥ k, (b)
µ′ ⊆ rcvMsgrd and (c) maxTSrd = k, we have that every (benign) base
object sj ∈ Σ′ replies with tsj = k to rd (and rj receives these replies).
Moreover, since every (benign) object sj ∈ Σ′ replies ts∗ = k to wrk (since
Σ′ ⊆ Σwrk) before sending ts = k to rd (since wrk precedes rd), for every
messagem in µ′, w ∈ m.updated. Furthermore, since sj replies with tsj = k
to rd, by line 28, ri ∈ m.updated. Thus, {w, ri} ⊆ ∩m∈µ′m.updated. Since,
|Σ′| ≥ S − 2t− b, maxTS is admissible in rd with degree a = 2. Hence, rd
returns maxTSrd = k.

The following auxiliary lemmas help prove Property 4 of Section 5.1.1.

Lemma 38. Assume that maxTSrd is admissible with degree a ∈ [1, R + 1] in
some read rd and that a complete read rd′ follows rd. Then, Σµrd,a∩Σrd′ contains
at least S − (a+ 1)t− ab ≥ 1 benign base objects.

Proof. Since |Σµrd,a | = |µrd,a| ≥ S−at−(a−1)b, |ΣNB| = S−b and |Σrd′ | = S−t,
it follows that |ΣNB∩Σrd′∩Σµrd,a | ≥ S−(a+1)t−ab. Moreover, since a ∈ [1, R+1]
and S > (R+ 2)t+ (R+ 1)b, we have S − (a+ 1)t− ab ≥ 1.
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Lemma 39. Assume that:

1. maxTSrd is admissible with degree a ∈ [1, R+ 1] in some read rd,

2. a complete read rd′ by reader rj follows rd,

3. there is a set X ⊆ Σµrd,a of at least t+ 1 benign base objects, such that for
all si ∈ X, si sends message mi ∈ µrd,a with rj ∈ mi.updated.

Then, rd′ does not return a value smaller than maxTSrd.

Proof. Since the messages in µrd,a are sent before the completion of rd (and hence,
before the invocation of rd′) and since there is a benign base object si that sends
mi ∈ µrd,a with rj ∈ mi.updated, ri has invoked at least one read before rd′.
Let rd′′ be the last read by reader rj which precedes rd′. Since |X| ≥ t + 1 and
|Σrd′′ | = S − t, there is at least one benign base object sk in X ∩Σrd′′ , such that
the readack message m sent by sk is received by rj in rd′′. In the following
paragraph, we show that m.ts ≥ maxTSrd.
By contradiction, assume m.ts < maxTSrd. Since sk is benign, it checks

counter[j] before replying to rj : once m is sent by si (in reply to read rd′′),
counter[j] at sk is set such that sk can only reply to those read messages of rj
which are sent during reads by rj that follow rd′′ (lines 24 and 29). Hence there
is a read rdα by rj , such that rdα follows rd′′ and sk sends a readack message
mα to rdα, before sk sends mk ∈ µrd,a, i.e., before rd′ is invoked. Hence, rd′′ is
not the last read by reader rj which precedes rd′. A contradiction.
Since m.ts ≥ maxTSrd and m ∈ rcvMsgrd′′ , we have maxTSrd′′ ≥ maxTSrd.

Since rd′ follows rd′′, it follows that rj in rd′ sends read messages with ts ≥
maxTSrd. By Lemma 36, rd′ returns a timestamp greater than or equal to
maxTSrd.

The following Lemma proves Property 4 of Section 5.1.1.

Lemma 40. (Property 4) If some read rd1 returns retrd1 (retrd1 ≥ 0) and a
read rd2 that follows rd1 returns retrd2, then retrd2 ≥ retrd1.

Proof. Suppose that read rd1 by reader r1 returns retrd1, read rd2 by reader r2
returns retrd2, and rd1 precedes rd2. Suppose first r1 = r2. Then, in the read
immediately after rd1, r1 sends a read message with ts ≥ retrd1, and hence,
by Lemma 36, the read returns a value greater than or equal to retrd1. Using
Lemma 36 and simple induction, we can conclude that any read by r1 which
follows rd1 (including rd2) returns ts ≥ retrd1. Hence, in the rest of the proof
we assume that r1 6= r2. We distinguish the following two cases:

〈1〉.1 maxTSrd1 is not admissible in rd1.
It follows that retrd1 = maxTSrd1−1. Since rd1 does not returnmaxTSrd1,
and by the unforgeability of signatures, write wrretrd1+1 started before rd1
completed, i.e., write wrretrd1 completed before rd1 completed. Since rd1
precedes rd2, it follows that wrretrd1 precedes rd2. By Lemma 37, rd2
returns retrd2 ≥ retrd1.
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〈1〉.2 maxTSrd1 is admissible in rd1.

It follows that retrd1 = maxTSrd1 and there is some a ∈ [1, R + 1] such
that retrd1 is admissible in rd1 with degree a. By Lemma 38, there is a
benign base object si ∈ Σµrd1,a ∩ Σrd2. Furthermore, since rd1 precedes
rd2, si first replies with tsi = retrd1 to rd1 before si replies to rd2. Fi-
nally, by Lemma 34, it follows that si replies to rd2 with tsi ≥ retrd1, i.e.,
maxTSrd2 ≥ retrd1.

We distinguish the following three exhaustive cases:

〈2〉.1 maxTSrd2 > retrd1

By Lemma 35, we have retrd2 ≥ retrd1.

〈2〉.2 maxTSrd2 = retrd1 and maxTSrd2 is admissible in rd2

By lines 18-19, retrd2 = maxTSrd2 = retrd1.

〈2〉.3 maxTSrd2 = retrd1 and maxTSrd2 is not admissible in rd2

In this case, by lines 18-21, retrd2 = maxTSrd2 − 1 = retrd1 − 1 =
maxTSrd1−1. By Lemma 38, there is at least one benign base object
in Σµrd1,a ∩ Σrd2. Since rd1 precedes rd2 and benign base objects in
Σµrd1,a reply with ts∗ = retrd1 to rd1, by Lemma 34, benign base
objects in Σµrd1,a ∩Σrd2 reply to rd2 with ts∗ ≥ retrd1. Since retrd2 +
1 = retrd1 = maxTSrd2, every benign base object in Σrd2 ∩ Σµrd1,a

replies to rd2 with ts = retrd1 = retrd2 + 1. There are the following
two cases to consider:

〈3〉.1 a ≤ R

In this case, by Lemma 38, |Σµrd1,a ∩ Σrd2 ∩ ΣNB| ≥ S − (a +
1)t − ab > t + b. Let µ1 be the set of readack messages sent
by objects in Σµrd1,a ∩ Σrd2 ∩ ΣNB (i.e., by benign objects in
Σµrd1,a ∩ Σrd2) to rd1. There are two cases to consider:

〈4〉.1 r2 /∈
⋂
m∈µ1

m.updated

Notice that, by definitions of µ1 and µrd1,a, µ1 ⊆ µrd1,a.
Hence, we have

⋂
m∈µ1

m.updated ⊇
⋂
m∈µrd1,a

m.updated.
Thus, |

⋂
m∈µ1

m.updated| ≥ a.

Let µ2 be the set of messages received by rd2 from base
objects in Σµrd1,a∩Σrd2∩ΣNB (i.e., from benign objects in
Σµrd1,a ∩Σrd2). For any benign object si ∈ Σµrd1,a ∩Σrd2,
let m1 and m2 be the messages sent by si in µ1 and µ2 re-
spectively. Since we know that m1.tsi = m2.tsi = retrd1
and since m1 is sent before m2, we have m1.updated ⊆
m2.updated. Hence,

⋂
m∈µ1

m.updated ⊆
⋂
m∈µ2

m.updated.
Since every benign base object which replies to r2 in
rd2, adds r2 to its updated set before replying to r2,
r2 ∈

⋂
m∈µ2

m.updated.
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Since r2 /∈
⋂
m∈µ1

m.updated, we have |
⋂
m∈µ2

m.updated| ≥
|
⋂
m∈µ1

m.updated| + 1 ≥ a + 1. Since |Σµrd1,a ∩ Σrd2 ∩
ΣNB| ≥ S − (a + 1)t − ab, the number of messages in
µ2 is at least S − (a + 1)t − ab. Finally, since a + 1 ≤
R + 1, retrd1 = retrd2 + 1 is admissible in rd2 with de-
gree a + 1. Hence, the timestamp returned by rd2 is
retrd1 = retrd2 + 1, a contradiction (with the assumption
that rd2 returns retrd2).

〈4〉.2 r2 ∈
⋂
m∈µ1

m.updated

Denote by X the set Σµrd1,a ∩ Σrd2 ∩ ΣNB and notice
that all base objects in X are benign. By definition of µ1,
messages in µ1 are sent by processes in X. By Lemma 38,
|X| = |Σµrd1,a ∩Σrd2| ≥ S− (a+ 1)t− ab. Since a ≤ R, it
follows that |X| > t + b. Hence, by Lemma 39, retrd2 ≥
maxTSrd1. A contradiction with retrd2 = maxTSrd1− 1.

〈3〉.2 a = R+ 1
Since |{w, r1, ..., rR}| = R + 1 and |

⋂
m∈µrd1,a

m.updated| ≥
a = R + 1, we have r2 ∈

⋂
m∈µrd1,a

m.updated. Observe that
|Σµrd1,a | ≥ S − at− (a− 1)b > t+ b. Hence, |Σµrd1,a ∩ΣNB| > t

Replacing X with Σµrd1,a ∩ ΣNB in Lemma 39, it follows that
retrd2 ≥ maxTSrd1. A contradiction with retrd2 = maxTSrd1−
1.

5.2 Lower Bound
The following proposition states that the resilience required by our fast imple-
mentation is indeed necessary.

Proposition 41. Let t ≥ 1, b ≥ 0 and R ≥ 2. If (R + 2)t+ (R + 1)b ≥ S, then
there is no fast atomic storage implementation.

Preliminaries.
In our proof, we suppose by contradiction that (R + 2)t + (R + 1)b ≥ S and

that there is a fast implementation I of an atomic storage in the authenticated
model. We construct a partial execution of I that violates atomicity: a partial
execution in which some read returns 1 and a subsequent read returns an older
value, namely, the initial storage value, ⊥.
Recall first that w denotes the writer, ri for 1 ≤ i ≤ R denote the readers,

and si for 1 ≤ i ≤ S denote the base objects. Recall also, that we assume the
authenticated model, i.e., that the writer writes digitally signed information to
base objects, and that Byzantine base objects cannot forge the writers signature.
Suppose by contradiction that (R + 2)t + (R + 1)b ≥ S and that there is fast
implementation I of atomic storage. Given that (R + 2)t + (R + 1)b ≥ S, we
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can partition the set of base objects into 2R + 3 subsets (which we call blocks),
denoted by Ti (1 ≤ i ≤ R + 2) and Bj (1 ≤ j ≤ R + 1), such that each of the
blocks Ti (resp., Bj) is of size less than or equal to t (resp., b).
Notice that our model does not require that a message sent by a faulty process

is received by the receiver. Hence, in any (partial) execution, it is possible any
message sent by a faulty process remains in transit (i.e., that such a message is
never received by the receiver. In our proof we construct (partial) executions in
which, unless explicitly stated otherwise, all messages sent by faulty processes
are in transit.
Similarly as in Chapter 4, we say that an incomplete invocation inv skips a set

of blocks BS in a partial execution, where BS ⊆ {T1, . . . , TR+2, B1, . . . BR+1}, if
(1) no base object in any block BLi ∈ BS receives any read or write message
from inv in that partial execution, (2) all other base objects receive the read or
the write message from inv and reply to that message, and (3) all these reply
messages are in transit. We also say that a complete invocation inv skips a block
BLi in a partial execution, if (1) no base object in BLi receives any read or
write message from inv in that partial execution, (2) all base objects that are
not in BLi receive the read or write message from inv and reply to that mes-
sage, and (3) the invoking process receives all these reply messages and returns
from the invocation.

To depict our proof, we use block diagrams similar to those used in previous
chapters. We depict an invocation inv in a given partial execution through a
set of rectangles arranged in a single column, where each row is attributed to a
unique block of base objects. In the column corresponding to some invocation
inv, we draw a rectangle in the respective row, if all base objects in block BLi
have received the read or write message from inv and have sent reply messages,
i.e., we draw a rectangle in the respective row if inv does not skip BLi. In partial
execution pri, we denote a Byzantine failure of BLi by “@”.
We illustrate a particular instance of the proof in Figure 5.2 and Figure 5.3,

where R = 3 and the set of base objects are partitioned into nine blocks, T1 to
T5 and B1 to B4.

Proof. Partial writes. Consider a partial execution wr in which w completes
write(1). The invocation skips TR+2. We define a series of partial executions
each of which can be extended to wr. Let wrR+2 be the partial execution in
which w has invoked the write and has sent the write message to all processes,
and all write messages are in transit. For 1 ≤ i ≤ R + 1, we define wri as
the partial execution which contains an incomplete invocation write(1) that skips
{TR+2} ∪ {Tj |1 ≤ j ≤ i− 1} ∪ {Bj |1 ≤ j ≤ i− 1}. We make the following simple
observations: (1) for 1 ≤ i ≤ R, wri and wri+1 differ only at base objects in
Ti ∪ Bi, (2) wr is an extension of wr1, such that, in wr, w receives the replies
(that are in transit in wr1) and returns from the write invocation, and hence,
(3) wr and wr1 differ only at w.

Appending reads. Partial execution pr1 extends wr by having block B1 failing
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Figure 5.2: Partial executions pri and 4pri
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non−Byzantine block that replies to the first read of r1, but r1 does not receive replies

Byzantine block that replies to the first read of r1 and r1 receives the replies
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(f) Legend

Figure 5.3: Partial executions: prA, prB , prC and prD
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upon completion of write(1) and appending a complete read by r1 that skips block
T1 (Fig. 5.2(a)). B1 fails in such a way that it behaves as if it never received any
write message (i.e., a message from invocation write(1)). We say that B1 fails
and loses its memory. Observe that r1 cannot distinguish pr1 from some partial
execution 4pr1, that extends wr2 by appending a complete read by r1 that skips
T1. To see why, notice that (a) wr and wr2 differ at w and at blocks T1 and B1,
(b) r1 does not receive any message from writer w and block T1 in both executions
and (c) r1 received the same message from block B1 in both executions. By wait-
freedom property and since w can fail by crashing, r1’s read in 4pr1 must return
some value x, since it cannot wait for the completion of the writer’s invocation,
nor a message from w. Since r1 cannot distinguish 4pr1 from pr1, r1 returns the
same value x in pr1 as well, and by atomicity, in pr1, x must equal 1. Therefore,
in 4pr1, r1 also returns 1.
Starting from 4pr1, we iteratively define the following partial executions for

2 ≤ i ≤ R. Partial execution pri extends 4pri−1 by: (1) block Bi failing in
such a way that it behaves as if it never received any message (loses memory)
and (2) appending a complete read by ri that skips Ti. Partial execution 4pri is
constructed by deleting from pri all steps of the base objects in block Ti and all
steps of base objects in block Bi up to the instant in which Bi lost its memory
(including that particular step). Since the last read in pri by reader ri skips
block Ti, ri cannot distinguish pri from 4pri, as in both executions ri receives
the same messages from Bi. More precisely, partial execution4pri extends wri+1
by appending the following i reads one after the other: for 1 ≤ h ≤ i− 1, rh does
a read that skips {Tj |h ≤ j ≤ i} ∪ {Bj |h + 1 ≤ j ≤ i} and ri does a (complete)
read that skips Ti. Here, the first i − 1 appended reads are incomplete whereas
the last one is complete. Figure 5.2 depicts block diagrams of pri and 4pri with
R = 3. (The deletion of steps to obtain 4pri from pri is shown by crossing out
the rectangles corresponding to the deleted steps.)
Reader r1’s read in 4pr1 returns 1. By wait-freedom, in 4pr2 r2 must return

some value, say x2. However, since r2 cannot distinguish pr2 from 4pr2, r2 must
return a value x2 in pr2 as well. Since pr2 extends 4pr1, by atomicity, r2’s read
in pr2 must return x2 = 1. Therefore, r2’s read in 4pr2 returns 1. In general,
since pri extends 4pri−1, and ri cannot distinguish pri from 4pri (for all i such
that 2 ≤ i ≤ R), in which it must return a value, it follows by trivial induction
that ri’s read in 4pri returns 1. In particular, rR reads 1 in 4prR. Moreover,
note that in 4prR no object is faulty.

Partial execution prA. Consider again partial execution 4prR, i.e., partial
execution wrR+1 extended by appendingR reads by each reader rh (1 ≤ h ≤ R−1)
such that rh’s read skips {Tj |h ≤ j ≤ R− 1} ∪ {Bj |h+ 1 ≤ j ≤ R− 1}, whereas
a read by reader rR skips TR only. The read by r1 is incomplete in 4prR: only
base objects in B1, TR+1, BR+1 and TR+2 send replies to r1, and those reply
messages are in transit. Observe that, in 4prR, only base objects in TR+1 and
BR+1 receive the write message from write(1). Consider the following partial
execution prA which differs from 4prR in the following:

1. Upon reception of message from write(1) invocation, BR+1 fails arbitrarily
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in such a way that, from that point on, it sends replies to all processes but
r1 as if it was not faulty, and to r1 as if it never received a write(1) message.
Moreover, after completion of read by rR,

2. r1 receives the readack messages from TR+2 and B1 (that were in transit
in 4prR) and BR+1 (i.e., from the Byzantine faulty objects),

3. base objects in T1 to TR and B2 to BR receive the read message from r1
(that were in transit in 4prR) and reply to r1, and

4. reader r1 receives these replies from base objects in T1 to TR and B2 to BR,
and then r1 returns from the read invocation.

Notice that r1 received replies from all blocks but TR+1, and so, must return
from the read; however, r1 does not receive the replies from base objects in TR+1,
i.e., from the only benign base objects whose state was modified by write(1).

Partial execution prB. Consider another partial execution prB with the same
communication pattern as prA, except that write(1) is not invoked at all and
block BR+1 is not faulty. Hence, base objects in TR+1 do not receive any write
message (Figure 5.3). Clearly, only base objects in TR+1, BR+1, the writer, and
the readers r2 to rR can distinguish prA from prB. Reader r1 cannot distinguish
the two partial executions because it does not receive any message from the base
objects in TR+1, the writer, or other readers and it receives the same message
from the base objects in BR+1 in both executions. By atomicity, r1’s read returns
(the initial storage value) ⊥ in prB because there is no write(∗) invocation in prB,
and hence, r1’s read returns ⊥ in prA as well.

Partial executions prC and prD. Notice that, in prA, even though r1’s read
returns ⊥ after rR’s read returns 1, prA does not violate atomicity, because the
two reads are concurrent. We construct two more partial executions: (1) prC is
constructed by extending prA with another complete read by r1, which skips TR+1
(as in prA, in prC BR+1 always replies to r1 as if it never received any write
message), and (2) prD is constructed by extending prB with another complete
read by r1, which skips TR+1 (Figure 5.3). Since r1 cannot distinguish prA from
prB, and r1’s second read skips TR+1 (i.e., base objects which can distinguish prA
from prB), it follows that r1 cannot distinguish prC from prD as well. Since there
is no write(∗) invocation in prD, r1’s second read returns ⊥ in prD, and hence,
r1’s second read in prC returns ⊥. Since prC is an extension of prA, rR’s read
in prC returns 1. Thus, in prC , r1’s second read returns ⊥ and follows rR’s read
which returns 1. Clearly, partial execution prC violates atomicity.



6
ABsTRACT

6.1 Introduction

6.1.1 Motivation

In this chapter, we focus on the most general replication technique - state machine
replication (SMR). SMR is a software technique for making any critical service
(be it storage, consensus, or any other service) fault-tolerant, in which the critical
service is modeled by a state machine. Several, possibly different, copies of the
state machine are then placed on different nodes. Clients of the service access the
replicas through a replication protocol which ensures that, despite concurrency
and failures, replicas perform client requests in the same order.
Two objectives underly the design and implementation of a SMR algorithm:

robustness and performance. Robustness conveys the ability to ensure availability
(liveness) and one-copy semantics (safety) despite failures and asynchrony. The
most robust SMR algorithms are those that tolerate (a) arbitrarily large periods
of asynchrony, during which communication delays and process relative speeds
are unbounded, (b) Byzantine failures of any client and (c) as many Byzan-
tine replica failures as possible (optimal resilience). These are called Byzantine
fault-tolerant state machine replication algorithms, or simply BFT-SMR algo-
rithms.1 The ultimate goal of a system designer is to build BFT-SMR algo-
rithms that exhibit comparable performance to a non replicated server under
“normal” circumstances that are considered the most frequent in practice. The
notion of “normal” circumstance might depend on the application and under-
lying network but it usually means network synchrony, rare failures, and some-
times also the absence of contention among concurrent clients’ requests. Ex-
amples of such BFT-SMR algorithms include PBFT, HQ, Q/U and Zyzyyva
[AGG+05,CL99,CML+06,KAD+07].
Not surprisingly, even under the same notion of “normal” case, there is no “one

size that fits all” BFT-SMR algorithm. Our experience reveals that the perfor-
1Frequently, these algorithms are simply referred to as BFT algorithms/protocols. In this
thesis, we prefer to use the term BFT-SMR algorithms, to prevent confusion with other, more
specialized, Byzantine fault tolerant algorithms, including consensus and storage algorithms
given earlier in this thesis.
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mance differences between BFT-SMR algorithms can be heavily impacted by the
actual network, the size of the messages, the very nature of the “normal” case
(e.g, contention or not); the actual number of clients, the total number of repli-
cas as well the cost of the cryptographic libraries being used. This echoes some
of the observations of [SDM+08]: “For instance, PBFT offers more predictable
performance and scales better with payload size compared to Zyzzyva; in contrast,
Zyzzyva offers greater absolute throughput in wider-area, lossy networks”. So de-
termining the best existing algorithm seems clearly impossible. In fact, besides
all BFT-SMR algorithms mentioned above, there are good reasons to believe that
new algorithms could be designed that outperform all others under specific cir-
cumstances. As a matter of fact, in this Chapter, we do indeed present examples
of such algorithms.
On the one hand, we might be tempted to devise a new BFT-SMR algorithm, or

to modify an existing one, for each and every situation in order to achieve the best
performance. But this can turn into a nightmare. All algorithm implementations
we looked at involve around 20.000 lines of (non-trivial) C++ code, e.g., PBFT
and Zyzzyva. Any change to an algorithm, although algorithmically intuitive,
is extremely painful. In some cases, the changes of the algorithm needed to
optimize for the "normal" case have strong impacts on the part of the algorithm
used in other cases [KAD+07]. In other words, developing new and maintaining
[ISO06] existing BFT-SMR algorithms is a very complex. Clearly, the size of
BFT-SMR algorithms and the impossibility of exhaustive testing in distributed
computing [CGR07] would rather plead for never changing an algorithm that
revealed to be stable so far, e.g., PBFT.

6.1.2 Contributions
We propose in this thesis a way to have the cake and eat a big chunk of it.
We present ABsTRACT — Abortable Byzantine faulT-toleRant stAte maChine
replicaTion (simply written Abstract). As we already mentioned in the intro-
duction in Chapter 1, Abstract significantly reduces the development cost of
BFT-SMR algorithms and makes it significantly easier to develop efficient ones.
Abstract looks like state machine replication and it can be used to make any
shared service fault-tolerant, with one exception: it may sometimes abort a client
request. The (non-triviality) condition under which Abstract cannot abort is a
generic parameter. From this perspective, Abstract can be viewed as a virtual
type; each specification of the non-triviality parameter defines a concrete type. 2

Different instances of Abstract may be composed together; we expect many of
such compositions to lead to interesting flexible BFT-SMR algorithms. Abstract
instances are composed by using unforgeable histories; when a particular instance
of Abstract aborts a client request, Abstract returns an unforgeable request history
that can be used by the client to “recover” using another instance of Abstract.
To illustrate this composability, we present Modular BFT-SMR: a BFT-SMR

algorithm built using two Abstract instances: (i) the first, which we denote any
Abstract, would typically be an Abstract with a weak non-triviality condition that

2These genericity ideas date back to the seminal paper of Landin: The Next 700 Programming
Languages (CACM, March 1966).
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can be implemented very efficiently, whereas (ii) the second is a stronger Abstract
(called Backup) with a non-triviality property that guarantees to commit a certain
number of requests k; this can easily be implemented on top of any BFT-SMR
algorithm (e.g., [CL99,AGG+05,CML+06,KAD+07]). Such a modular approach
allows for “black-box” code reuse and can significantly reduce the development
cost of new BFT-SMR algorithms, as well as maintenance of the existing ones
(used as the basis for Backup).
We illustrate this concretely by exhibiting three specific Abstract instances with

weak non-triviality and use them in Modular BFT in place of the any Abstract
instance: (1) a “quorum”-based algorithm, (2) a “chain”-based algorithm, and
(3) a “primary”-based algorithm that mimics Zyzzyva [KAD+07] in synchronous
and failure-free executions. When implemented in C++, these algorithms require
6000, 4000 and 5000 lines of C++ code (respectively), which is, in average, less
than 25% of the size of state of the art BFT-SMR algorithms like PBFT [CL99]
or Zyzzyva.
While the third, Zyzzyva-like algorithm (called AZyzzyva), illustrates how our

approach can help modularly derive algorithms that mimic existing ones, the
first two algorithms are interesting in their own right. Namely, our “quorum”-
based algorithm (called Decentralized Abstract, or simply, DEC )3 outperforms
all algorithms we know of in terms of time complexity (latency) when there is
no concurrency, asynchrony or failures. Its C++ implementation improves the
latency of Q/U [AGG+05] and Zyzzyva up to more than 33%. It implements the
message exchange pattern used in optimistic executions of Q/U with two very
important differences:

• First, our DEC algorithm requires only 3t+1 servers to tolerate t Byzantine
replica failures (optimal resilience), whereas Q/U requires 5t + 1 servers
to ensure a correct execution. To achieve this lower number of servers,
we leverage our experience with refined quorum systems (see Chapter 3),
which allows us to make use of class 1 quorums even with as few as 3t+ 1
servers. In addition, we combine this with the idea of speculative execution
of requests [KAD+07]. Intuitively, the smaller number of servers DEC uses
(in comparison to Q/U) brings itself a latency improvement in practice,
since, in Q/U, it takes longer to wait for a roundtrip from a larger number
of servers.

• Second, clients and replicas do not need to piggyback replica histories to re-
quests and replies. Rather, they send Zyzzyva-style history digests, which
significantly reduces the amount of data to be sent, as well as the num-
ber of message authentication codes (MAC) operations that are performed
by clients and servers. Note that this latter improvement was intuited
in [SDM+08].

3Decentralized algorithms, in which clients directly access servers implementing a particular
service, are in literature often referred to as quorum algorithms (e.g., [CML+06,SDM+08]).
This practice is somewhat misleading since quorums (as sets with particular intersection
properties) are much wider a concept and underly all robust replication algorithms we know
of.
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On the other hand, our “chain”-based algorithm (called simply Chain) out-
performs all algorithms we know of in terms of peak throughput in synchronous
and failure-free executions. Its C++ implementation improves the performance
of Zyzzyva and PBFT by up to 375%. It is the first BFT-SMR “chain”-based
algorithm we know of. It implements a pipelining pattern for broadcasting client
requests that is very similar to the one implemented in [vRS04]. Nevertheless,
unlike in [vRS04], Chain tolerates the Byzantine failure of up to one third of the
servers. This is realized using chain authenticators that prevent bypassing any
process in the chain, using a fraction of message authentication codes (MACs) re-
quired by the MAC authenticators used in state of the art BFT-SMR algorithms.
In short, a process in the chain uses a chain authenticator to authenticate the
message (using MACs) for the next t+ 1 processes in the chain.
Finally, besides facilitating the design of new BFT-SMR algorithms, our Ab-

stract framework significantly simplifies their correctness proofs, thanks to the
composability of Abstracts. We were able for instance to implement our Modu-
lar BFT-SMR in +CAL [Lam06a], and to model check its correctness (in small
configurations).

6.1.3 Roadmap

The rest of the Chapter is organized as follows. First, in Section 6.2 we overview
the related work. Then, after augmenting the system model of Chapter 2 in
Section 6.3, we define Abstract and present our Modular BFT-SMR algorithm
in Section 6.4. In Section 6.5 we give the implementations of the four Abstract
instances: DEC, Chain, AZyzzyva and Backup. The proofs of correctness of our
new Abstract implementations can be found is Section 6.6.
Finally, in Section 6.7, we evaluate the performance of two different Modu-

lar BFT-SMR C++ implementations obtained by substituting every instance of
aAbstract in Modular BFT-SMR with DEC (resp., Chain) and by using Backup
implemented over the PBFT algorithm [CL99].4

6.2 Related Work

Several BFT-SMR algorithms have been proposed during the last ten years:
PBFT [CL99] was the first to propose the use of vectors of MACs rather than
signature, which significantly improves performance. Then, Q/ U [AGG+05]
proposed a decentralized algorithm only requiring one-phase in the fault and
contention-free case. Q/U requires 5t + 1 servers to tolerate t Byzantine server
failures, whereas other BFT-SMR algorithms surveyed in this paragraph requires
3t + 1 servers. HQ [CML+06] is another decentralized algorithm which, unlike
Q/U, requires multiple rounds to complete a request (2 rounds in the best-case).
Zyzzyva [KAD+07] used speculation to improve performance: replicas optimisti-
cally execute requests according to an order that is given by a primary server.
Clients are in charge of detecting inconsistencies and helping servers converge

4The author is very grateful to Vivien Quéma, who wrote C++ implementations, ran the
evaluation experiments and helped in interpreting evaluation results presented in Section 6.7.
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to a correct state. Essentially, in Zyzzyva’s speculative approach only clients are
viewed as consensus learners; this is in contrast to previous BFT-SMR algorithms
in which servers play all three consensus roles (i.e., in which servers are proposers,
acceptors, as well as learners). As a result, Zyzzyva significantly improved the
latency and throughput of all previous algorithms.
Several examples of composing an optimistic algorithm with a backup one

was discussed in the survey of Pedone [Ped01]. In [PS98], for instance, an op-
timistic total order (atomic) broadcast algorithm is described: if messages are
spontaneously totally ordered by the network, then they are delivered in one
phase. Else, a consensus algorithm is used as a backup. The similar approach
was pursued in [KS05], where the optimistic part of the atomic broadcast al-
gorithm consists of Bracha broadcast [Bra84, BT85] (used implicitly in [CL99]
as well) and where the backup algorithm relies on the (probabilistic) consensus
algorithm. Unlike in this thesis, the optimistic parts in these algorithms are not
modular and cannot easily be replaced with a different optimistic algorithm. The
idea was also implicitly used in the context of Byzantine state machine replication
in HQ [CML+06] and Zyzzyva [KAD+07]. In both of these cases, the algorithm
consists of an optimistic phase and then the invocation of a second, recovery
phase. Unlike in this thesis, the recovery phase is not encapsulated within a first
class state machine replication abstraction; furthermore, the optimistic part is
not encapsulated either. In Zyzzyva [KAD+07] for instance, speculation had a
profound impact on the view-change (recovery) mechanism and this seemed to
indicate that one could not fully decouple optimism from recovery.
The idea of aborting if “something goes wrong” is an old one in distributed

computing. It underlies for instance the seminal two-phase commit algorithm
[Gra78]: abort can be decided if there is a failure or some database server votes
"no". The idea was also explored in the context of mutual exclusion: a process
in the entry section can abort if it cannot enter the critical section [Jay03].
The idea of an abortable abstraction was proposed in the context of consensus

in [Che07] and [BDFG03]. In the first case a process can abort if a majority
of processes cannot be reached whereas, in the second, a process can abort if
there is contention. The latter idea was generalized for arbitrary shared objects
in [AGK05] and then [AFH+07]. In particular, in [AFH+07], a process can abort
and then query the object to seek whether the last query of the process was
performed. This query can however abort if there is contention.
Our notion of abortable state machine replication is different in two senses.

First, the condition under which Abstract can abort is a generic parameter: it
can express for instance contention, synchrony or failures. Second, in case of
abort, Abstract returns (without any further query) what is needed for recovery
in a Byzantine context; namely, an unforgeable history. This, in turn, can then
be used to invoke another, possibly stronger, Abstract. This ability is key to the
composability of Abstract.
Furthermore, non-abortable abstractions for deconstruction and modulariza-

tion of BFT consensus and BFT-SMR algorithms have been proposed. For ex-
ample, in the BFT-SMR modularization proposed in [Dou00], a BFT-SMR algo-
rithm is viewed as a series of consensus instances, each reduced to the problem
called weak-interactive consistency which is itself implemented using the abstrac-
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tion of muteness failure detectors [DS97]. The ideas presented in [Dou00] are
orthogonal to Abstract; muteness failure detectors could be for example used to
implement Abstract instances with the strong non-triviality. On the other hand,
and unlike Abstract, the framework of [Dou00] neither facilitates the design nor
supports the composability of optimistic BFT-SMR algorithms. A similar con-
clusion can be drawn when our work is compared to that of [CKPS01], where an
atomic broadcast algorithm is built modularly using the underlying abstraction
of multi-valued Byzantine agreement with external validity.
Another related abstraction is optimistically terminating consensus (OTC)

framework proposed in [Zie05, Zie06]. An OTC instance captures the notion
of a round of communication and allows for deconstruction and reconstruction
of (single-instance) BFT consensus algorithm. Unlike Abstract, OTC framework
does not target specifically SMR algorithms which include multiple consensus in-
stances. Moreover, this framework is latency-only oriented and reconstruction of
the algorithm in OTC means matching the latency and the number of processes
of the reconstructed algorithm. This is in contrast with our generic Abstract
abstractions that is oblivious with respect to any particular complexity metric;
indeed, in this thesis we propose both latency-efficient and throughout-efficient
BFT-SMR algorithms based on Abstract.

6.3 System Model

In this Chapter, we assume the eventually synchronous, authenticated model, as
defined in Chapter 2, complemented as follows.
We assume a distributed system with a fully connected network among pro-

cesses: clients and servers (also called replicas). The links among processes are
unreliable (before GST): messages may be delayed, dropped or duplicated (we
speak of network, or link failures). However, we assume fair-loss channels, i.e., a
message sent an infinite number of times between two correct processes is even-
tually received by the receiver (in other words, communication between 2 correct
processes can de delayed only for finite periods of time). Moreover, we assume
that any number of clients and less then one third of the servers can be Byzantine
(i.e., our algorithms tolerate t server failures, using 3t+ 1 servers).
Furthermore, a process p can use vectors of MACs (called authenticators [CL99])

to authenticate the message m for multiple recipients belonging to the set S in a
single physical message; we denote such a message, which contains a message m
and the corresponding MAC for every process q ∈ S, by 〈m〉αp,S . Moreover, we
explicitly denote a message m sent by process p to process authenticated using
a MAC by 〈m〉µp,q). We say that a MAC is valid if q can successfully verify a
MAC and authenticate a message.
Finally, we assume ideal collision-resistant hash functions used to compute

message digests. The digest function D maps a bit string to a short, unique
representation; its invocation takes a bit string m as parameter and returns a
value d = D(m).
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6.4 Abstract
We give in this section the specification of Abstract and describe how several
Abstract instances can be combined in a modular way to implement an effective
full-fledged BFT system. We give the Abstract specification both informally in
plain English (for convenience) as well as a set of TLA+ [Lam02] predicates (for
rigorousness). Similarly, we give both an informal explanation of our Modular
BFT-SMR algorithm as well as its +CAL code.
For presentation simplicity, we first assume (in Sections 6.4.1– 6.4.3) that clients

cannot be Byzantine (but can fail by crashing). We proceed through the follow-
ing steps: (a) we first describe an Abstract specification that does not account
for explicit initialization: we assume Abstract to be already initialized with an
empty history (Sec. 6.4.1), (b) we then explain how to dynamically initialize an
Abstract instance to enable composition (Sec. 6.4.2), (c) then, we give (one pos-
sible) implementation of a full-fledged BFT-SMR out of different Abstract boxes:
we call the result of the composition Modular BFT-SMR.
In Section 6.4.4, we will explain the additional guarantees that Abstract must

provide assuming clients can be Byzantine. These are mainly related to the
unforgeability guarantees for certain messages returned by Abstract and are or-
thogonal to the Abstract properties we present beforehand. All our algorithms
(presented in Section 6.5 and afterwards) provide these additional Abstract prop-
erties and tolerate Byzantine clients.
Still to simplify our specifications, we assume that the state of the replicated

object is modeled by a history of requests. Such a history is also returned to the
client by the replicas after a request, and can be used by the client to compute
a reply. Of course, this can be in practice implemented by having the replicas
compute themselves the reply and return it to the clients.

6.4.1 Abstract specification

Abstract (without initialization) is defined as follows:

Definition 11. (Abstract)
Abstract exports one operation:

• Invoke(m) — we say the client invokes the request m.

Abstract returns two indications:

• Commit(m,h), and

• Abort(m,h).

We say the client commits (resp., aborts) the request m with history h, where
h is a sequence of requests that the client can use to compute a reply (resp., to
recover). If the client commits (resp., aborts) m with history h, we refer to h as
the commit history (resp., abort history).

Abstract ensures the following properties.
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1. (Termination) If a correct client invokes a request m, it eventually commits
or aborts m with h, and h contains m.

2. (Commit Ordering) Let h and h′ be any two commit histories: either h is
a prefix of h′ or vice versa.

3. (Abort Ordering) Every commit history is a prefix of every abort history.

4. (Validity) In every commit/abort history h, no request appears twice and
every request was invoked by some client.

5. (Non-Triviality) If a correct client invokes a request m and some predicate
NT is satisfied, the client commits m.

The Non-Triviality property is generic; the undefined predicate NT may vary
depending on the design goals and the environment in which a particular Abstract
implementation is to be deployed.
The property that defines the behavior of Abstract in the case of abort is Abort

Ordering. Intuitively, Abstract returns histories that represent the ordering of
the clients requests. In case of a commit, this ordering is definitive and the reply
of the implemented object is uniquely determined by the order of the requests in
the history. This is not the case with the abort history. As specified by Abort
Ordering, every abort history contains every commit history as its (non-strict)
prefix; i.e., Abort Ordering prevents any new request, invoked after some request
is aborted, from being committed.

6.4.2 Abstract initialization and composition
An instance of Abstract could be used on its own. However, a particular Abstract
becomes practically useless after aborting even a single request, since it must also
abort every subsequent request. Therefore, an Abstract instance is much more
interesting when composed with other Abstract instances.
Hereafter, we consider multiple Abstract instances, combined to work for a

“common good”, with the ultimate goal of producing a flexible full-fledged BFT-
SMR algorithm that can benefit from good performance under different scenarios.
We assume a fixed, predetermined, ordering among Abstract instances, known by
all processes in the system. This ordering is used by clients to know which
Abstract instance I ′ to invoke after aborting from a specific Abstract instance I;
we talk about a client switching from Abstract instance I to I ′. We call I the
preceding Abstract for I ′ (resp., I ′ is the succeeding Abstract for I).
Clients use abort histories received from the preceding Abstract to invoke a

special INIT request, used to initialize a specific instance of Abstract (Fig. 6.1).
INIT request invocations have the form Invoke(m,hI), where m is the request
aborted by the preceding Abstract I, and where hI is the corresponding abort
history; in the context of the INIT request invocation, hI is called init history.
We enhance Abstract properties of Definition 11 to account for INIT requests by:

(a) slightly modifying the notion of an invoked request in the Validity property to
include any request contained in an init history hI of any INIT request invocation
Invoke(m,hI), and (b) by adding the following property:
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Figure 6.1: Composition of Abstract instances: an abort history of the preceding
Abstract is used as an init history for a subsequent Abstract.

6. (Init Ordering) Any common prefix of init histories of all invoked INIT
requests is a prefix of any commit or abort history.

Moreover, client invocations must be well-formed, meaning that before invoking
a “non-INIT” request, correct client c must invoke an INIT request (recall that we
discuss Byzantine clients in Section 6.4.4). Notice that an INIT request may be
committed or aborted (according to the specification of a particular Abstract),
just like any other request.

6.4.3 Building BFT-SMR using Abstract(s)
In the following, we describe a possible BFT-SMR implementation using multiple
Abstract boxes called Modular BFT-SMR. Modular BFT-SMR algorithm uses:

1. any Abstract (simply referred to as aAbstract). Typically, aAbstract would
be an Abstract with weak Non-Triviality, that can be implemented very ef-
ficiently; we refer to such an Abstract as the weak Abstract. Roughly, weak
Non-Triviality means here that the notion of “something going wrong” ap-
plies to many executions; the strongest Non-Triviality property would be
the one in which “nothing ever goes wrong” (such an Abstract is precisely
BFT-SMR). We will come back to efficient implementations of weak Ab-
stract in Section 6.5.

2. an Abstract (called Backup) with a strong Non-Triviality property that
guarantees that at least k ≥ 1 requests will be committed by any instance
of Backup (where k is generic). Backup can be implemented over any BFT-
SMR algorithm, as explained in Section 6.5.4. In this sense, Modular BFT-
SMR can be seen as a BFT-SMR self-implementation (i.e., Modular BFT-
SMR is a BFT-SMR algorithm implemented using some (any) other BFT-
SMR algorithm).

Modular BFT-SMR uses multiple instances of both aAbstract and Backup,
switching between them alternatively. Namely, according to a deterministic order
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of Abstract instances, every odd (resp., even) instance is that of aAbstract (resp.,
Backup).5 The result of the composition is a full-fledged BFT-SMR algorithm
with the important feature that Backup is never invoked as long as the Non-
Triviality conditions of aAbstract are satisfied.
On invoking Modular BFT-SMR, clients first invoke an instance of aAbstract.

The first instance of aAbstract does not need to be initialized with special INIT
requests. If the client obtains a commit indication from aAbstract then it returns
the reply to the BFT-SMR client with the commit history it obtained from aAb-
stract (see Fig. 6.2(a)). Else, if the client’s request aborts (in the ith instance of
aAbstract), the client switches to the ith instance of Backup using the obtained
abort history (from the ith instance of aAbstract) as the init history. It is impor-
tant to notice here that, as long as the conditions of the aAbstract Non-Triviality
are satisfied, Backup is never invoked.
In Modular BFT-SMR, the ith instance of Backup is configured to commit

exactly k = SP (i) requests, where SP () is a switching policy function that maps
the set of natural numbers into the set of natural numbers (including ∞). The
switching policy can be tuned to allow reuse of aAbstract (Fig. 6.2(c)). Intuitively,
if SP (1) = ∞ then all requests aborted by aAbstract will be committed by the
first instance of Backup. However, in case some transient bad conditions caused
aAbstract to abort it would be desirable to switch-back to aAbstract, in order to
benefit from its performance. To this end, SP () function can be tuned to reflect
different switching policies.
Finally, in Modular BFT-SMR a client always invokes the instance of aAbstract

or Backup that committed client’s last request. In a sense, a client does not need
to invoke all the time the entire sequence of Abstract instances to find a “working”
one.

Model checking Modular BFT-SMR

We argue for the correctness of our Modular BFT-SMR construction by specify-
ing it in +CAL/TLA+ and by model-checking it using the TLC model checker
[Lam02].
The +CAL pseudocode of our Modular BFT-SMR algorithm along with the

TLA+ predicates that specify Abstract is given in Figures 6.3 and 6.4. The TLA+
predicates (Fig. 6.3) consist of Abstract safety predicates (lines 12–21,Fig. 6.3),
as well as some auxiliary predicates used either in Abstract safety predicates or
in the main +CAL code given in Figure 6.4.
To simplify the distinction among clients request, our +CAL code of Figure 6.4

uses the centralized counter UniqueReqID; in practical Abstract implementa-
tions, this distinction is made using local timestamps at clients and their IDs
(see Section 6.5). Moreover, to reduce the number of +CAL labels and generated
states in the TLC model checker, the switching policy function for Backup is
slightly different; the ith instance of Backup commits exactly SP (i)− SP (i− 1)
requests (where SP (0) = 0), instead of SP (i) requests as described previously.
These simplifications do not impact the correctness of our Modular BFT-SMR.

5It is important to notice that different instances of aAbstract and Backup can be implemented
over the same set of processes.
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(a) If aAbstract Non-Triviality conditions are satisfied, clients access only the
aAbstract module, which (in this case) behaves like a full-fledged SMR.
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(b) If aAbstract aborts, clients use the abort history as init history to switch
to Backup. Backup is a powerful Abstract that guarantees to commit a certain
number of requests.
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(c) After a certain number of requests is committed within Backup, a client
may be switched-back to try again (some) aAbstract.

Figure 6.2: Modular BFT-SMR.
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In the configuration with 2 clients, 2 requests per client, each instance of Backup
committing 1 request, TLC v2.0 finds 14107516 distinct states with the depth
of the complete state graph search of 61. It takes 1h 8min 1s to model check
the algorithm and verify its correctness on a 4xdual core Opteron 8216 with 8
GB RAM. The absence of deadlock during the model check asserts BFT-SMR
Termination property in a given configuration. BFT-SMR Termination in any
configuration is satisfied with any switching policy function SP () in case we
consider only executions with an arbitrarily large, yet finite number of requests;
in the worst-case, all requests will be committed by (some instance of) Backup.
In case the number of requests can be infinite, Termination can be guaranteed by
configuring the N th instance of Backup to commit an infinite number of requests,
for an arbitrary natural number N .

001: ——————————————— MODULE ModularBFTSMR ——————————————–
002: EXTENDS Integers, TLC, FiniteSets, Sequences
003: CONSTANT aAbstract, Backup, Client, TotReq, MaxReq, SP(_), NoOfInst

004: Fresh , [req : TotReq]
005: getFreshReq(m) , IF m ∈ Fresh THEN m ELSE getFreshReq(m.req)

006: prefix(m,h) , (Len(m) ≤ Len(h)) ∧ (∀i ∈ 1 . . . Len(m) : m[i] = h[i])
007: SetPermutations(len, S) , {f ∈ [1..len→ S] : ∀v, w ∈ 1..len : v = w ∨ f [w] 6= f [v]}
008: Set2Sequence(len, S) , IF len = 0 THEN {}

ELSE SetPermutations(len, S) ∪ Set2Sequence(len− 1, S)
009: InitHistories(inv) , IF ∀mm ∈ inv : mm ∈ Fresh ∨mm.type 6= ”INIT” THEN {}

ELSE LET init , CHOOSE m ∈ inv : m /∈ Fresh ∧m.type = ”INIT”
IN {init.history} ∪ InitHistories(inv \ {init})

010: Tails(inv) , IF inv = {} THEN {}
ELSE LET h , CHOOSE m ∈ inv : m ∈ inv IN {Tail(h)} ∪ Tails(inv \ {h})

011: LCPrefix(inv) , IF inv = {} THEN 〈〉
ELSE LET hist , CHOOSE m ∈ inv : ∀mm ∈ inv : Len(m) ≤ Len(mm)

IN IF (hist = 〈〉) ∨ (∃m1 ∈ inv : Head(hist) 6= Head(m1)) THEN 〈〉
ELSE 〈Head(hist)〉 ◦ LCPrefix(Tails(inv))

012: CommitOrdering(h, ex) ,
∀m ∈ ex : m.type = ”COMMIT”⇒ prefix(m.history, h) ∨ prefix(h,m.history)

013: AbortOrdering(h, ex) , ∀m ∈ ex : m.type = ”COMMIT”⇒ prefix(m.history, h)
014: AbortOK(h, ex) , ∀m ∈ ex : m.type = ”ABORT”⇒ prefix(h,m.history)
015: InitOrdering(h, inv) , prefix(LCPrefix(InitHistories(inv)), h)
016: V alidHistory(inv) , Set2Sequence(Cardinality(inv), inv)
017: V alidity(h, inv) , ∀i ∈ 1..Len(h) : ∃j ∈ inv : h[i] = j ∧ (∀k ∈ i+ 1..Len(h) : h[i] 6= h[k])
018: Exists(req, h) , ∃i ∈ 1..Len(h) : h[i] = req

019: Reqs(inv) , {req ∈ Fresh : ∃mm ∈ inv :
(getFreshReq(mm) = req) ∨ (mm /∈ Fresh ∧mm.type = ”INIT” ∧ Exists(req,mm.history))}

020: validCommitHistories(newReq, inv, ex) , {h ∈ V alidHistory(Reqs(inv)) :∧
Exists(getFreshReq(newReq), h) ∧ CommitOrdering(h, ex)∧
AbortOK(h, ex) ∧ InitOrdering(h, inv)}

021: validAbortHistories(newReq, inv, ex) , {h ∈ V alidHistory(Reqs(inv)) :
Exists(getFreshReq(newReq), h) ∧AbortOrdering(h, ex) ∧ InitOrdering(h, inv)}

022:NewReq(inv, ex) , {m ∈ inv : (∀mm ∈ ex : m 6= mm.req)}
023:Response(m, ex) , {mm ∈ ex : m = mm.req}

Figure 6.3: Modular BFT-SMR: TLA+ predicates
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024: (* - -algorithm ModularBFTSMR {
025: variables
026: Inv = [i ∈ {aAbstract, Backup} 7→ [j ∈ 1..NoOfInst 7→ {}]];
027: Exec = [i ∈ {aAbstract, Backup} 7→ [j ∈ 1..NoOfInst 7→ {}]];
028: finished = [i ∈ Client 7→ FALSE];
029: InvBFT = {}; ExecBFT = {}; UniqueReqID = {};

030: macro Invoke(box, inst,m){
031: Inv[box][inst] := Inv[box][inst] ∪ {m}}
032: macro Return(box, inst,m){
033: Exec[box][inst] := Exec[box][inst] ∪ {m}}
034: macro next(box, inst){
035: if (box = aAbstract) box := Backup
036: else {box := aAbstract; inst := inst+ 1}}

037: process (clnt ∈ Client)
038: variables curReq; absReq; localts = 0; lastbox = aAbstract;
039: lastInst = 1;
040: {C: while (localts < MaxReq){
041: localts := localts+ 1;
042: UniqueReqID := UniqueReqID + 1;
043: curReq := [req 7→ UniqueReqID];
044: absReq := curReq;
045: InvBFT := InvBFT ∪ {curReq};
046:cloop: while (Response(curReq,ExecBFT ) = {}){
047: Invoke(lastbox, lastInst, absReq);
048:Return: with (m ∈ Response(absReq,Exec[lastbox][lastInst]))
049: if (m.type = ”COMMIT”){
050: ExecBFT := ExecBFT ∪ {[type 7→ ”COMMIT”,
051: req 7→ curReq,
052: history 7→ m.history]};
053: assert(

∧
V alidity(m.history, InvBFT )

054:
∧
Exists(curReq,m.history)

055:
∧
CommitOrdering(m.history, ExecBFT ))}

056: else {next(lastbox, lastInst);
057: absReq := [type 7→ ”INIT”, req 7→ m.req, history 7→ m.history]}}};
058: finished[self ] := TRUE}

059: process (abs ∈ {aAbstract, Backup})
060: variables cnt = 0; \* used only by Backup
061: {A: while (∃c ∈ Client : finished[c] = FALSE){
062: with (inst ∈ 1..NoOfInst;
063: newReq ∈ NewReq(Inv[self ][inst], Exec[self ][inst]))
064: either {when (

∨
(self = aAbstract);

065:
∨

(cnt < SP (inst) ∧ self = Backup));
066: with (hist ∈ validCommitHistories(newReq,
067: Inv[self ][inst],
068: Exec[self ][inst]))
069: Return(self, inst, [type 7→ ”COMMIT”,
070: req 7→ newReq,
071: history 7→ hist]);
072: cnt := cnt+ 1}
073: or {when (

∨
(self = aAbstract);

074:
∨

(cnt ≥ SP (inst) ∧ self = Backup));
075: with (hist ∈ validAbortHistories(newReq,
076: Inv[self ][inst],
077: Exec[self ][inst]))
078: Return(self, inst, [type 7→ ”ABORT”,
079: req 7→ newReq,
080: history 7→ hist])}}}}∗)

Figure 6.4: Modular BFT-SMR: +CAL code
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6.4.4 Byzantine clients

So far, we presented Abstract and Modular BFT-SMR assuming that no client is
Byzantine. In a real environment, where clients can be Byzantine, we need to
enforce Abstract with some additional properties.
Abstract composability (like in Modular BFT-SMR) depends on clients using

abort histories generated by the preceding Abstract to initialize the particular
instance of Abstract. This can be ignored by Byzantine clients, who may generate
their own INIT request with forged init histories to corrupt the service. We thus
assume that Abstract can produce unforgeable abort histories (an unforgeable
abort history cannot be generated by an adversary) and require all Abstract abort
histories to be unforgeable. In practice (see Section 6.5), the Abstract abort
histories are implemented using digital signatures, as well as message digests.
Moreover, we assume every Abstract to be able to verify the integrity of an

abort history returned by the preceding Abstract. An init history of an Abstract
INIT request is said to be valid if it is indeed an unforgeable abort history of the
preceding Abstract.
Finally, Byzantine clients’ invocations might not be well-formed, i.e., Byzantine

clients cannot be expected to first invoke an INIT request on a given Abstract.
Despite this, a Byzantine-fault tolerant Abstract must provide correct service to
correct clients. However, we formally require Abstract Validity to hold only in the
case in which no client is Byzantine, since it is difficult to establish the meaning
of an “invoked request” when the invoking client is Byzantine.

6.5 Abstract implementations
We gave in the last section the specification of Abstract and explained how, using
different Abstract instances, one can implement a full-fledged BFT-SMR. In this
section, we first show how to efficiently implement Abstract instances with weak
Non-Triviality by describing two novel implementations DEC and Chain, as well
as AZyzzyva, an Abstract implementation that mimics Zyzzyva [KAD+07] when
the system is synchronous and there are no failures. Then, we show how to
implement Backup using (any) BFT-SMR.
Our efficient Abstract implementations, DEC and Chain are interesting in their

own right. DEC has the lowest latency among all BFT-SMR algorithms we know
of, when the system is synchronous and there are no server failures or contention.
In short, (no) contention means that (no) two requests are concurrently pending
(i.e., invoked but not committed/aborted). On the other hand, Chain has the
highest peak throughput when the system is synchronous and there are no server
failures. BothDEC and Chain are Abstract implementations over a set of n = 3t+
1 servers (denoted hereafter by Σ), out of which t can be Byzantine (i.e., controlled
by an adversary). Finally, a very important feature of DEC and Chain is that
they do not use signatures (which introduce large overhead) for authentication,
but rather MAC authenticators, as long as there are no failures and the system
is synchronous (and, in the case of DEC, when there is no contention).
In the rest of this section, we present first DEC in Section 6.5.1 and then Chain

in Section 6.5.2 (for pedagogical reasons, since DEC is simpler of the two). We
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present both DEC and Chain in the vein of Zyzzyva [KAD+07], by following a
client’s request throughout the algorithm. This is followed by the presentation
of AZyzzyva (Sec. 6.5.3) which we obtain by modifying Chain. Then, in Sec-
tion 6.5.4, we show how to simply implement Backup using any BFT-SMR. For
better readability, the correctness proofs of DEC and Chain (correctness of our
Backup implementation using any BFT-SMR is straightforward) are postponed
to Section 6.6.

6.5.1 Decentralized Abstract (DEC)
As we mentioned earlier, DEC is an Abstract implementation over a subset of
3t + 1 servers. DEC uses a simple refined quorum system (Section 3), in which
the set that contains all servers is a class 1 quorum, whereas all sets that contain
2t + 1 servers are ordinary quorums. Strictly speaking, in this case, quorums
that contain 2t + 1 servers are class 2 quorums (see Example 6, Section 3.2.2);
however, to keep DEC simple, we are not interested in graceful degradation in
time complexity when a class 1 quorum cannot be accessed. We require DEC to
achieve best possible latency when a class 1 quorum is available.
DEC is an implementation of Abstract with the following Non-Triviality prop-

erty:

(DEC Non-Triviality) If (a) a correct client c invokes request m, (b) there are no
server failures, (c) the system is synchronous and (d) there is no contention, then
client c commits m.

DEC is very simple; it consists of only two round-trips of message exchange
between a client and servers. Importantly, in case the conditions in the DEC
Non-Triviality property are satisfied, only the first round-trip is executed. If
these conditions are not satisfied, the second round-trip might be executed; in
the second round-trip the client is provided with an abort history necessary for
recovery using some stronger Abstract.

tc - local timestamp at client c
o - operation invoked by the client
c/si - client (resp., server) ID
LHi - a local history at server si
tsi[c] - the highest tc seen by server si

Figure 6.5: DEC message fields and process local variables.

As in related algorithms (e.g., [CL99, KAD+07]), to help distinguish clients’
requests for the same operations, we assume that client c, on requesting an execu-
tion of operation o, invokes DEC 6 by executing Invoke(req), where req = 〈o, tc, c〉
and where tc is a unique, monotonically increasing client’s timestamp (the mes-
sage fields and process local variables we use are explained in Fig. 6.5). In the

6We extend this assumption to Chain and AZyzzyva as well.
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following description, the algorithmic part marked with Handling INIT Requests
is relevant only if a particular DEC needs to be initialized.

1. Client sends a request to all servers.

Client c, on invoking req = 〈o, tc, c〉, sends message 〈REQ, req〉µc,si to every
server si. Upon sending REQ messages, the client triggers a timer TDEC (set to
2∆). We assume that correct client c does not invoke another request before it
commits/aborts req.
Handling INIT Requests. The first message sent by the client must also contain

an INIT tag and a valid init history IH (recall that a valid init history is an
unforgeable abort history from the preceding Abstract).

2. Server receives the request, appends it to its local history (i.e., executes it
speculatively) and sends the resulting history to the client.

Server si on receiving 〈REQ, req〉µc,si , if req.tc is higher than tsi[c], (i) up-
dates tsi[c] to req.tc, (ii) appends req to its local history LHi and (iii) sends
〈ACK, LHi, req.tc, si〉µsi,c to c.
In fact, and in order to improve performance, only one designated server (say

s1) sends its full local history to the client; other servers send an ACK message
containing a digest of of their local history LHi, D(LHi).
Handling INIT Requests. If the local history of si is empty, si may only execute

the INIT request with a valid init history IH. More precisely, si executes the entire
IH, by appending the entire IH (instead only req) to its (empty) history LHi

(we say si initializes its local history). All (non-INIT) requests received before
are discarded. If LHi is not empty, si neglects IH and executes only req.

3. Client gathers matching server responses.

Client c gathers matching server responses, until the timer TDEC (set in Step
1) expires, or until c collects 3t+1 matching responses from different servers (i.e.,
until c collects matching responses from a class 1 quorum). A matching response
for req is an ACK message (with a valid MAC) containing req.tc.

3a. Client receives 3t+ 1 matching responses (i.e., from a class 1 quorum) with
identical histories and commits.

If client c receives 3t + 1 〈ACK, LH, req.tc, ∗〉 messages from different servers,
with identical history LH (in fact, with the identical history digests equal to
D(LH)), then the client commits the request by returning Commit(req, LH),
i.e., LH is the DEC commit history for request req.

3b. Client does not receive 3t + 1 matching responses with identical histories
and panics.

If client c does not receive 3t+ 1 matching responses by the expiration of the
timer TDEC), the client panics, i.e., it sends a 〈PANIC, req〉µc,si to every server si.
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Notice that, since a PANIC message may be lost, we assume that the client
periodically re-sends the PANIC message to servers, until it commits or aborts
the request.

3b.1. Server receives a panic message, stops accepting new requests and sends
an abort message containing a signed local history to the client.

Server si, on receiving a 〈PANIC, req〉µc,si message, stops accepting new REQ
messages (i.e., stops executing Step 2) and sends 〈ABORT, LHi, req.tc, si〉σsi mes-
sage to c.
Handling INIT Requests. If the history LHi of server si is empty, si acts in this

step only on a PANIC message for an INIT request (with a valid init history IH).
In this case, upon receiving the first such PANIC message, si, before sending an
ABORT message sets LHi to IH (i.e., si initializes its local history). The following
PANIC messages for INIT requests are treated as described above, neglecting init
histories.

3b.2. Client receives 2t+1 matching ABORT messages (i.e., from any quorum),
extracts the abort history and aborts the request.

A matching ABORT message for a 〈PANIC, req〉 is any ABORT message con-
taining req.tc. When the client receives a matching ABORT message from 2t+ 1
different servers, the client extracts the abort history AH in the following way:

• (i) the client generates the history AH1 such that AH1[j] equals the value
that appears at position j ≥ 1 of t + 1 different histories LHi received in
ABORT messages. If such a value does not exists for a position k then AH1
does not contain a value at position k or higher,

• (ii) the longest prefix AH2 of AH1 is selected such that no request appears
in AH2 twice,

• (iii) if req = 〈o, tc, c〉 does not exists in AH2, it is appended to AH2. The
resulting sequence of requests is an abort history AH.

Then, c aborts req by returning Abort(req,AH). AH must always be ac-
companied with the set of 2t + 1 ABORT messages signed by the servers (these
signatured make AH unforgeable).

Notice that a Byzantine client could always force DEC to abort all requests
by sending PANIC messages prematurely. However, a Byzantine client cannot
be prevented from constantly sending perfectly regular requests (hence creating
contention and forcing DEC to abort). Therefore, it is reasonable to assume that
the existence of Byzantine client(s) implies contention. Hence, for simplicity, we
choose not to include the solution to premature panicking in the description of
DEC, since DEC is not required to commit requests under contention; we however
include this solution in Chain (that should commit requests despite contention).
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001: —————————————————- MODULE DEC —————————————————
002: EXTENDS Integers, TLC, FiniteSets, Sequences
003: CONSTANT Server, Client, Operation, Req, MaxReq

004: Reqs , [type : {”REQ”}, c : Client, tc : Req, o : Operation]

005: validReq(m, ts) , (m.type = ”REQ”) ∧ (m.c ∈ Client) ∧ (m.tc > ts[m.c])
006: validPanic(m, ts, sent, srv) ,

∧
(m.type = ”PANIC” ∧m.c ∈ Client ∧m.tc ≥ ts[m.c])∧
¬(∃m1 ∈ sent : (

∧
m1.type = ”ABORT”∧
m1.server = srv∧
m1.tc = m.tc∧
m1.c = m.c))

007: Clean(pos,MM) , {m ∈MM : Len(m.history) ≥ pos}
008: getAbortHistory(pos,MM) ,

IF (∃req ∈ Reqs :Cardinality({m ∈ Clean(pos,MM) : m.history[pos] = req}) >
Cardinality(Server)÷ 3)

THEN LET req1 , CHOOSE req ∈ Reqs :
Cardinality({m ∈ Clean(pos,MM) : m.history[pos] = req}) >
Cardinality(Server)÷ 3

IN 〈req1〉 ◦ getAbortHistory(pos+ 1,MM)
ELSE 〈〉

009: V alid(h) , ∀i ∈ 1..Len(h) : ∀k ∈ i+ 1..Len(h) : h[i] 6= h[k]
010: SetHist(h) , IF h = 〈〉 THEN {h} ELSE {h} ∪ SetHist(SubSeq(h, 1, Len(h)− 1))
011: LV P (h) , CHOOSE m ∈ SetHist(h) :

∧
V alid(m)∧
(∀n ∈ SetHist(h) : V alid(n)⇒ Len(m) ≥ Len(n))

Figure 6.6: DEC +CAL code: TLA+ predicates
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012: (* - -algorithm DEC {
013: variables msgs = {}; stop = FALSE;: Invoked = {}; Returned = {}; finished = [i ∈ Client 7→ FALSE];
014: macro Send(m) {msgs := msgs ∪ {m}}

015: process (clnt ∈ Client)
016: variables localts = 0; invokedOp = 0; panic = FALSE;{
017:C: while (localts < MaxReq) {
018: localts := localts+ 1;
019: with (op ∈ Operation) {
020: Send([type 7→ ”REQ”, c 7→ self, tc 7→ localts, o 7→ op]);
021: Invoked := Invoked ∪ {[type 7→ ”REQ”, c 7→ self, tc 7→ localts, o 7→ op]};
022: invokedOp := op}
023:cl: while (invokedOp 6= 0) {
024: either {with (M = {m ∈ msgs : (m.type = ”ACK”) ∧ (m.c = self) ∧ (m.tc = localts)};
025: mmsg = {m ∈M : ∀m2 ∈M : (m.history = m2.history)};
026: A = {m.server : m ∈ mmsg};
027: m1 ∈ mmsg) {
028: when A = Server;
029: Returned := Returned ∪ {[type 7→ ”COMMIT”,

req 7→ [type 7→ ”REQ”,
c 7→ self,
tc 7→ localts,
o 7→ invokedOp],

history 7→ m1.history]};
030: invokedOp := 0;
031: panic := FALSE}}
032: or {when panic = FALSE;
033: panic := TRUE;
034: Send([type 7→ ”PANIC”, c 7→ self, tc 7→ localts, o 7→ invokedOp])}
035: or {with (MM = {m ∈ msgs : (m.type = ”ABORT”) ∧ (m.c = self) ∧ (m.tc = localts)}) {
036: when (Cardinality(MM) > (2 ∗ Cardinality(Server))÷ 3);
037: Returned := Returned ∪ {[type 7→ ”ABORT”,

req 7→ [type 7→ ”REQ”, c 7→ self, tc 7→ localts, o 7→ invokedOp],
history 7→ LV P (getAbortHistory(1,MM))]};

038: invokedOp := 0;
039: panic := FALSE}}}};
040: finished[self ] := TRUE}

041: process (serv ∈ Server)
042: variables stoplocal = FALSE; ts = [i ∈ Client 7→ 0]; LH = 〈〉;{
043:S: while (∃c ∈ Client : finished[c] = FALSE) {
044: either {when (stoplocal = FALSE);
045: with (m1 ∈ {m ∈ msgs : validReq(m, ts)}) {
046: ts[m1.c] := m1.tc;
047: LH := LH ◦ 〈m1〉;
048: Send([type 7→ ”ACK”, history 7→ LH, c 7→ m1.c, tc 7→ m1.tc, server 7→ self ])}}
049: or {with (m1 ∈ {m ∈ msgs : validPanic(m, ts,msgs, self)}) {
050: stoplocal := TRUE;
051: Send([type 7→ ”ABORT”, history 7→ LH, c 7→ m1.c, tc 7→ m1.tc, server 7→ self ])}}}}} *)

Figure 6.7: DEC client/server +CAL code
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DEC +CAL code

Since DEC is a very simple algorithm (in particular when compared to full-
fledged BFT-SMR algorithms), we were able to implement it in +CAL and to
partially verify its correctness using the TLC model checker. Here, the partial
verification means that we model check DEC only in executions in which no
server (or client) fails. However, our machine verification using TLC, verifies DEC
correctness in all (failure-free) executions, including those that exhibit asynchrony
and contention. To our knowledge, this is the first +CAL implementation of a
(portion of a) BFT-SMR algorithm and we feel it represents a (perhaps modest)
pioneer step in machine verification of BFT-SMR algorithms. Naturally, in order
to fully prove DEC correct, we give a traditional, “hand-written”, proof of DEC
correctness in Section 6.6.1.
The DEC +CAL code is given in Figures 6.6 and 6.7. For simplicity and better

readability, the case of a DEC that does not need to be initialized is shown; it is
not difficult to add the details on handling INIT requests along the lines of DEC
description in Section 6.5.1. Predicates in lines 7-8 (resp., 9-11), in Figure 6.6,
serve for computing Step 3b.2.(i) (resp., 3b.2.(ii)) of the algorithm. The (trivial)
Step 3b.2.(iii) is not shown for better readability of the code. Finally, and still
to simplify our +CAL code, we assume that all servers (in addition to server s1)
send their full local histories in Step 2 (rather than history digests).
The code shown in Figures 6.6 and 6.7, when ran in TLC v2.0 in the model

check mode, generates 69729 distinct states with the depth of the state graph
search of 31 in the configuration with 4 servers, 2 clients, 2 different SMR op-
erations and 1 request per client (MaxReq = 1), by having TLC make use of
symmetry in sets Server, Client and Operation. It takes only 48 seconds to
model check the algorithm and verify its correctness in this configuration on a
4xdual core Opteron 8216 with 8 GB RAM. In a similar configuration, with 2
requests per client (MaxReq = 2), TLC generates 56613741 distinct states with
the depth of the state graph search of 46. However, this model check takes as
much as 22h 32mins (on the above mentioned machine). This depicts the ex-
ponential growth of verification complexity (with a rather large exponent) when
increasing the size of a verified configuration.

6.5.2 Chain Abstract

Chain is an implementation of Abstract with the following Non-Triviality prop-
erty:

(Chain Non-Triviality) If (a) a correct client c invokes a request m, (b) there
are no server failures and (c) the set of servers (Σ) is synchronous, then client c
commits m.

Notice two differences between DEC and Chain Non-Triviality: (1) DEC Non-
Triviality does not allow for contention, and (2) DEC Non-Triviality requires the
system (i.e., both clients and servers) to be synchronous whereas Chain Non-
Triviality requires only the set of servers to be synchronous. Roughly speaking,
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Chain shares with DEC the ideas of committing requests when receiving identical
histories, panicking, extracting abort histories and handling of INIT requests.
However, Chain employs a radically different message pattern (in the best-case,
before a client panics), as explained below.
Every instance of Chain has two particular servers designated as the head and

the tail and the fixed ordering of server IDs (called chain order), known to all
processes such that the head precedes all servers in the chain order, whereas the
tail is preceded by all servers; without loss of generality we assume that the head
(resp., tail) is server s1 (resp., s3t+1).7
In Chain, a client on invoking a request sends the request req to the head,

who is responsible for assigning sequence numbers to requests. Then, each server
passes the request (possibly after adding some data) to its successor, i.e., server si
sends a message to si+1, whereas the tail sends the message (reply) to the client
(Fig. 6.8). Similarly, a server in Chain accepts a CHAIN message only if sent by
its predecessor (defined dually to successor), or from the client in case the server
is the head.

Figure 6.8: Chain authenticators (t = 1).

To ensure safety in presence of Byzantine clients and servers, Chain relies on
chain authenticators (CA). Roughly speaking, CAs are lightweight MAC authen-
ticators that guarantee that, if a client’s request req commits, (1) no server in
chain is bypassed, and (2) a correct server receives req and not some other request.

7The head, the tail and chain order do not have to be the same in every instance of Chain.
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Chain authenticators are depicted in Figure 6.8 (for the case t = 1). Server
si uses a chain authenticator to authenticate a message for all servers in its
successor set, denoted by −→si (i.e., in our notation defined in Section 6.3, si uses
authenticator αsi,−→si ). A successor set for server si depends on the position i of
the server in the chain order: (a) for the first 2t servers (i.e., when i ≤ 2t), a
successor set contains the next t + 1 servers, i.e, −→si = {si+1 . . . si+t+1}, whereas
(b) for other servers (i.e., when i > 2t), a successor set contains all subsequent
servers, i.e., −→si = {si+1, . . . s3t+1}.

tc - local timestamp at client c
o - operation invoked by the client
c/si - client (resp., server) ID
LHi - a local history at server si
sni - request sequence number at server si
lastreqi[c] - the last request req invoked by client c executed by server si
lastsni[c] - the sequence number associated to lastreqi[c]
lasthisti[c] - copy of the state of LHi upon si executes lastreqi[c]
CASET - the set of chain authenticators (used only in Chain)
MACSET - the set of MACs destined to a client of a chain (used only in Chain)

Figure 6.9: Chain and AZyzzyva message fields and process local variables.

Dually, when a server in Chain receives a message m it verifies m, i.e., it checks
whether m is correctly authenticated by the preceding servers as described above.
Namely, server si must be able to verify the MACs issued by: (a) if i ≤ t+ 1, all
servers from the set ←−si = {s1 . . . si−1}, and (b) if i > t + 1, all servers from the
set ←−si = {si−(t+1), . . . si−1}. We refer to set ←−si as the preceding set for si.
We give Chain pseudocode in Figure 6.10 (client code) and Figure 6.11 (server

code). For simplicity and better readability, these pseudocodes do not contain the
part of the algorithm related to INIT messages; this is fairly straightforward to
do following the description of Chain we give below. In the following we describe
Chain while following a client’s request throughout the algorithm (the message
fields and process local variables we use in Chain, as well as in AZyzzyva are
explained in Fig. 6.9).

1. Client sends a request to head.

On invoking request req = 〈o, tc, c〉 (lines 3-4, Fig. 6.10) client c sends a CHAIN
message to the head (line 7, Fig. 6.10). All CHAIN messages in Chain consist
of the following fields: (1) client’s request req, (2) request sequence number sn,
(3) a set of chain authenticators CASET ; roughly, these are destined to servers
and used to authenticate req and sn and (4) a set of MACs MACSET ; these
are destined to the client and authenticate the servers’ response. For uniformity
(and cleaner pseudocode), all of the above 4 fields are included in every CHAIN
message. However, a client, on sending a request to the head in line 7, Fig. 6.10,
populates only fields req and CASET . The sequence number sn is populated by
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1: procedure initialization:
2: tc := 0; TChain := (3t+ 3)∆

3: procedure INVOKE(o)
4: tc := tc + 1; req := 〈o, tc, self〉
5: for i = 1 to t+ 1 do
6: CA[i] := MAC(self, si, req)
7: send 〈CHAIN, req, nil, {CA}, ∅〉 to the head (s1)
8: trigger(TChain)

9: upon received 〈〈CHAIN, req, ∗, ∗,MACSET 〉, LH〉 from the tail (s3t+1) and
∀i : (2t < i ≤ 3t+ 1)⇒ (MAC(si, self, 〈req,D(LH)〉) ∈MACSET ) do

10: trigger(COMMIT(req, LH)); return

11: upon TChain expires do
12: send 〈PANIC, reqσc〉 to (any) 2t+ 1 servers

13: upon received 〈GET-A-GRIP, h, req〉µsi,self from t+ 1 diff. servers si with the same h do
14: trigger(COMMIT(req, h)); return

15: upon received 〈ABORT, AHiσsi , tc, si〉µsi,self from 2t+ 1 different servers si do
16: AH ′ := 〈〉; j := 1; hist :=

⋃
i
AHi

17: while ∃req′, ∃AHj ⊂ hist : (|AHj | ≥ t+ 1) ∧ (∀h, h′ ∈ AHj : h[j] = h′[j] = req′) do
18: AH ′ := AH ′ ◦ 〈req′〉
19: j := j + 1
20: abortH := choose AH ′′ : isPrefix(AH ′′, AH ′) ∧ (∀req1, req2 ∈ AH ′′ : req1 6= req2)
21: if req /∈ abortH then
22: abortH := abortH ◦ 〈req〉
23: trigger(ABORT(req, abortH)); return

Figure 6.10: Chain: client pseudocode
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1: procedure initialization:
2: LH := 〈〉; stopChain := FALSE; TOBR∗ := (3t+ 3)∆; sn := 0; OBRPending := ∅
3: ∀c ∈ Clients : (lastreq[c] := nil; lastsn[c] := nil; lasthist[c] := nil)

4: function updateCAs(CASET, req, sn)
5: myCASET := ∅; myCA := nil
6: for all CA ∈ CASET do
7: CA′ := CA; CA′[i] := nil; myCASET := myCASET ∪ CA′
8: if i ≤ 2t then end := i+ t+ 1 else end := 3t+ 1
9: for j = i+ 1 to end do

10: myCA[j] := MAC(self, sj , 〈req, sn〉)
11: myCASET := myCASET ∪ {myCA}; return myCASET

12: function updateMACs(MACSET, req, c, LH)
13: myMACSET := MACSET ;
14: if i > 2t then myMACSET := myMACSET ∪MAC(self, c, 〈req,D(LH)〉)
15: return myMACSET

16: procedure execute(req)
17: if i = 1 then sn := sn+ 1 else sn := sn′

18: LH := LH ◦ 〈req〉; lastreq[req.c] := req; lastsn[req.c] := sn; lasthist[req.c] := LH
19: for all req′ ∈ OBRPending ∧ req′.c = req.c do
20: if req′.tc < lastreq[req.c].tc] then OBRPending := OBRPending \ {req′}; stop(TOBRreq′ )

21: upon received 〈CHAIN, req, sn′, CASET,MACSET 〉 from si−1 (or a client, if i = 1) do
22: if

∧
i ≤ t+ 1⇒ ∃CA ∈ CASET : CA[i] = MAC(req.c, self, req)∧
∀sj ∈

←−−
self : ∃CA ∈ CASET : CA[i] = MAC(sj , self, 〈req, sn′〉)∧

req.tc > lastreq[req.c].tc ∧ ¬stopChain ∧ (i > 1⇒ sn′ = sn+ 1) then
23: execute(req)
24: if i = 3t+ 1 then
25: send 〈〈CHAIN, req, nil, ∅, updateMACs(MACSET, req, req.c, LH)〉, LH〉 to req.c
26: else
27: send 〈CHAIN, req, sn, updateCAs(CASET, req, sn)

updateMACs(MACSET, req, req.c, LH)〉 to si+1

28: upon received valid 〈PANIC, reqσc 〉 from client req.c such that req.tc ≥ lastreq[req.c].tc do
29: OBRPending := OBRPending ∪ {req}
30: send 〈OBR, self, reqσc , nil, ∅, ∅〉µself,s1

to the head s1
31: trigger(TOBRreq )

32: upon received 〈OBR, sj , reqσreq.c , sn′, CASET,MACSET 〉µsk,self from sk = si−1
(or from sk = sj , if i = 1) do

33: if
∧
¬stopChain ∧ req.tc ≥ lastreq[req.c].tc ∧ reqσreq.c is valid∧
∀sj ∈

←−−
self : ∃CA ∈ CASET : CA[i] = MAC(sj , self, 〈req, sn′〉) then

34: if req=lastreq[req.c] then
35: snOBR := lastsn[req.c]; LHOBR := lasthist[req.c]
36: else
37: if ¬(req.tc > lastreq[req.c].tc ∧ (i > 1⇒ sn′ = sn+ 1)) then break upon
38: execute(req)
39: snOBR := sn; LHOBR := LH
40: if i = 3t+ 1 then
41: send 〈〈OBR, sj , reqσreq.c , nil, ∅, updateMACs(MACSET, req, sj , LHOBR)〉, LHOBR〉 to sj
42: else
43: send 〈OBR, sj , reqσreq.c , snOBR, updateCAs(CASET, req, snOBR),

updateMACs(MACSET, req, sj , LHOBR)〉µsi,si+1
to si+1

44: upon received 〈〈OBR, self, reqσreq.c , ∗, ∗,MACSET 〉, h〉 from the tail (s3t+1) and
∀i : (2t < i ≤ 3t+ 1)⇒ (MAC(si, self,D(h)) ∈MACSET ) do

45: send 〈GET-A-GRIP, h, req〉µself,req.c to req.c
46: stop(TOBRreq′ )

47: upon TOBRreq expires for some req or received 〈STOP, req〉µsj,self from some sj do
48: if ¬stopChain then stopChain := TRUE;
49: send 〈ABORT, LHσsi , req.tc, self〉µself,req.c to req.c
50: send 〈STOP, req〉µself,sj to every server sj

Figure 6.11: Chain: server si pseudocode



6.5. ABSTRACT IMPLEMENTATIONS 139

the head, whereas MACSET is populated by the last t+ 1 servers in the chain
order.
CASET sent by the client in line 7, Fig. 6.10, contains a MAC authenticating

req for the first t+ 1 servers in the chain order (lines 5-6, Fig. 6.10). In our pseu-
docode MAC(p, q,msg) (see, e.g., line 6, Fig. 6.10) represents a MAC generated
by process q and destined to process q that authenticates msg.
Upon sending a CHAINmessage to the head, the client triggers the timer TChain

(set to more than (3t + 3)∆). We assume that correct client c does not invoke
another request before it commits/aborts req.
Handling INIT Requests. The first message sent by the client must contain

also the INIT tag and a valid init history IH (recall that a valid init history is an
unforgeable abort history from the preceding Abstract).

2. A server in chain receives a CHAIN message, updates the message fields and
forwards it to its successor.

Server si, on receiving a 〈CHAIN, req, sn′, CASET,MACSET 〉 message from
its predecessor (or from the client in case si is the head, i.e., in case si = s1),
first checks whether it can successfully authenticate and accept the message. This
check consists of several conditions, captured by the predicate in line 22, Fig. 6.11.
Namely:

1. The first t + 1 servers check whether some chain authenticator (CA) in
CASET contains a valid MAC issued by the client that authenticates req,

2. every server si checks whether CASET contains a CA with a valid MAC
for every server sj from its preceding set, ←−si authenticating req and sn′

(notice that the preceding set for the head s1, ←−s1 = ∅),

3. every server accepts a CHAIN message only if the client’s timestamp of
the request req, req.tc is higher than lastreqi[req.c].tc, i.e., only if req.tc is
higher than the timestamp of the last request invoked by the same client
and executed by si (as described below).

4. finally, every server but the head accepts a CHAIN message only if the
sequence number of the message, sn′, exactly equals sni + 1.

If this check succeeds (we assume, for the time being, that the boolean stopChain
is false at every correct server), then si executes req (line 23, Fig. 6.11), by invok-
ing the procedure given in lines 16-20, Figure 6.11 and explained in the following.
First, if si is the head (i.e., if si = s1), it increments its local sequence number
sn1. On the other hand, if si is not the head, it stores sn′ into its local variable
sni (line 17, Fig. 6.11). Moreover, every server si (line 18, Fig. 6.11): (1) appends
req to its local history LHi and (2) updates the data that reflects the last request
by the client req.c by storing req, sni and LHi respectively into lastreqi[req.c].tc,
lastsni[req.c] and lasthisti[req.c].
Upon executing req, si is ready to forward the CHAIN message. Server si sends

a CHAIN message containing req and sni, as well as updated sets CASET and
MACSET . These sets are updated using (respectively) the functions updateCAs()
(lines 4-11, Fig. 6.11) and updateMACs() (line 12-15, Fig. 6.11).
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• Every server si executes updateCAs(). First, si removes from the CASET
(received in the CHAIN message) all the MACs destined to itself from all
CAs in CASET (lines 6-7, Fig. 6.11); this is done only as a performance
optimization and can safely be omitted. Then, si adds a CA authenticat-
ing the pair 〈req, sni〉 for every server in its successor set, −→si (lines 8-11,
Fig. 6.11).

• On the other hand, updateMACs is effectively executed only by the last t+1
servers in the chain order. These servers authenticate the pair 〈req,D(LHi)〉
with a MAC destined to the client req.c (lines 13-15, Fig. 6.11). Here,
D(LHi) denotes a digest of the server’s local history.

Finally, every server sends a CHAIN message containing req, sni, as well as sets
CASET and MACSET as described above, to its successor in the chain order
(line 27, Fig. 6.11). The only exception is the tail (i.e., si = s3t+1), that sends
a CHAIN message as described above to the client req.c. In addition, the tail
appends to the CHAIN message its full local history LHi (line 25, Fig. 6.11).
CHAIN message verification failure. If a verification of the received CHAIN mes-

sage in line 17, Fig. 6.11 fails, server si may safely discard the received message,
except in one case. This case, is the one where all the predicates in line 17 are
satisfied except the first one, i.e., if si is one of the first t+ 1 servers in the chain
order and it cannot find a MAC issued by the client in CASET that successfully
authenticates request req.
More precisely, this is only the case if si is not the head (i.e., if si ∈ {s2 . . . st+1}).

Obviously, if si is the head and this case occurs, then the client is Byzantine and
the head may safely discard the CHAIN message.
On the other hand, if si ∈ {s2 . . . st+1}, a client or some server in←−si is Byzantine

(a Byzantine client may not have included a correct MAC, or this may have been
corrupted or removed by some preceding Byzantine server). The Verification
Failure Recovery (VFR) subprotocol that guarantees algorithm correctness in
this case is presented in details separately, later in this section (VFR subprotocol
is based on a solution to a similar problem described in [KAD+]).
Handling INIT Requests. The first message that the head can assign a sequence

number to must contain the INIT tag and a valid init history IH. Moreover, if
the local history LHi of si is empty, si may only execute the INIT request with a
valid init history IH. More precisely, si executes the entire IH, by appending the
entire IH (instead only req) to its (empty) history LHi. All (non-INIT) requests
received before are discarded. If LHi is not empty, si neglects IH and executes
only req, as described above.

3a. Client receives the CHAIN message from the tail that it can successfully
verify before the expiration of the timer and commits the request.

If client c receives 〈〈CHAIN, req, ∗, ∗,MACSET 〉, LH〉 from the tail s3t+1, that
can be successfully verified, then c commits request req with Chain commit his-
tory LH (lines 9-10, Fig. 6.10). Successful verification means here that the set
MACSET contains valid MACs from the last t+1 servers in chain order destined
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to c, that authenticate the pair 〈req, d〉 and if d = D(LH).

3b. Client does not receive the CHAIN message from the tail that it can verify
before the expiration of the timer and panics.

If the client does not the receive the message from the tail as described in Step
3a before TChain expires, the client panics, i.e., it sends a 〈PANIC, reqσc〉 to (any)
2t + 1 servers si (lines 11-12, Fig. 6.10). Notice here that, in a PANIC message,
req is digitally signed by the client.
Moreover, as in Step 3b of DEC, the client periodically re-sends the PANIC

message to servers, until it commits or aborts the request.

3b.1. Server receives a PANIC message, and retries Chain on behalf of the client.

Server si, on receiving a 〈PANIC, reqσreq.c〉 message (with a valid signature on
req), tries to commit the client’s requests by invoking Steps 1-3a on behalf of the
client (lines 28-31, Fig. 6.11). Namely, si acts as a client (as well as a server) and
sends the 〈OBR, si, reqσreq.c , snOBR = nil, CASETOBR = ∅,MACSETOBR =
∅〉µsi,s1 message to the head (line 30, Fig. 6.11) and triggers the OBR timer for
req, TOBRreq (line 31, Fig. 6.11).
As can be seen from its format, an OBR message is very similar to a CHAIN

message, with some differences:
• besides the fields req, sn, CASET and MACSET , an OBR message con-

tains an additional field which the server si (that invokes an on-behalf
request OBR) populates with its own ID,

• in an OBR message, CASET is initially empty (unlike when a client sends
a CHAIN message to the head). Intuitively, given that the client’s signature
on req is included in an OBR message, additional MACs are not needed
(notice that this also prevents the verification failure issue in the case of an
OBR, described for the case of a CHAIN message in Step 2).

Finally, we note that a correct server si sends an OBR request to the head,
only if the req.tc of the PANIC message is greater or equal than lastreqi[req.c].tc
(line 28, Fig. 6.11). Moreover, if in any point in time tsi(c) becomes greater
than req.tc (suggesting that c committed req and invoked another request), si
abandons waiting for the CHAIN message from the tail, cancels its timer and does
not send anything to the client (see execute procedure, lines 19-20, Fig. 6.11).

3b.2. A server in chain receives an OBR message and processes it in a similar
way as the CHAIN message (Step 2).

On the server side, an OBR request is treated in the same way as a CHAIN
request coming from the client in Step 1, except that (lines 30-45, Fig. 6.11):
• it may happen that the same request req has already been executed by
server si and stored into lastreqi[req.c] (earlier requests from this client
may be safely ignored by the server). In this case, the changes with respect
to Step 2 are the following (lines 35-36, Fig. 6.11):
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– the server does not execute a request, but simply repeats the sequence
number it used for request req, lastsni[req.c],

– moreover, if si is one of the last t+ 1 servers (i.e., if si should authen-
ticate D(LHi)), sj replaces LHi with lasthisti[req.c] (see also 41 and
43, Fig. 6.11).

• client c (i.e., req.c) does not receive any message; a message sent by the
tail, normally destined to c, is sent to si (i.e., the server that invoked an
on-behalf request). Analog holds for MACs placed in the field MACSET
that are destined in Step 2 to the client (lines 40-43, Fig. 6.11).

3b.2a. Server commits the request on behalf of the client and forwards the
commit history to the client.

If si receives an OBR message from the tail containing MACs for the pair
〈req,D(h)〉 from the last t + 1 servers in MACSET , as well as the full history
h, then si sends 〈GET-A-GRIP, h, req〉µsi,req.c to req.c (lines 44-46, Fig. 6.11). For
simplicity of presentation, when server si takes this step, we say (with slight
abuse of the language) that si commits the OBR for req with history h.
Again, to counter possible message losses, if a server receives a repeated PANIC

message for req after committing an OBR for req (and if the flag stopChain is
false), the server replies to PANIC by re-sending the GET-A-GRIP message to the
client.

3b.2a.1. Client receives t+ 1 GET-A-GRIP messages with the same history and
commits the request.

If the client received t+1 〈GET-A-GRIP, h, req〉 messages from different servers,
with the same history h, the client commits the request by returning Commit(req, h)
(lines 13-14, Fig. 6.10).

3b.2b. Server does not commit the request on behalf of the client, stops pro-
cessing new requests and sends a signed history to the client.

If a server does not receive a commit history from its OBR request before the
expiration of the timer, it acts similarly as the server receiving PANIC in Step 3b.1
of DEC. More specifically, (a) si stops accepting new CHAIN and OBR messages
(i.e., stops executing Steps 2 and 3b.2), by setting the flag stopChain to true
(line 48, Fig. 6.11) and (b) sends a signed local history to the client using an
〈ABORT, LHiσsi

, req.tc, si〉µsi,req.c message to client req.c (line 49, Fig. 6.11).
In addition, si sends 〈STOP, req〉µsi,sj to every server sj (line 50, Fig. 6.11). To

counter possible message losses, we assume here that si periodically retransmits
the STOP message.
Handling INIT Requests. If the history LHi of server si is empty, si acts in this

step only on a PANIC message for an INIT request (that contains correctly authen-
ticated init history IH from preceding Abstract). In this case, upon receiving
the first such PANIC message, si, before sending an ABORT message sets LHi
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to IH. The following PANIC messages for INIT requests are treated as described
above, neglecting the init histories.

3b.2b.1 Server receives a STOP message from some other server, stops processing
new requests and sends a signed history to the client.

Server sj , upon receiving the STOP message, acts in exactly the same way as
in Step 3b.1b (lines 44-46, Fig. 6.11).

3b.2b.2. Client receives 2t + 1 matching ABORT messages, extracts the abort
history and aborts the request.

This step is identical to Step 3b.2 of DEC and is depicted in lines 15-23,
Fig. 6.10.

Verification failure recovery subprotocol

In Chain, in the case described in Step 2, si ∈ {s2 . . . st+1} initiates the Verifica-
tion Failure Recovery (VFR) subprotocol8 if si cannot find a MAC authenticating
request req in the CASET field of a CHAIN message. Basically, VFR is a variant
of consensus ran among servers in the case of a verification failure to reach the
agreement on whether req should appear in servers’ local histories (e.g., in case
req was committed), or should a special request noop appear in servers’ local
histories instead of req. Of course, VFR needs to ensure agreement only in case
no server is faulty and the set of servers is synchronous; otherwise, VFR must
only ensure that a correct server detects asynchrony or failure. Below, we explain
VFR subprotocol in details; in short, VFR proceeds in following steps: (1) si re-
quests the head to resolve this conflict, (2) the head asks all servers whether they
have appended the request in question (req) to their local histories, (3) servers
sign their answer and refuse to accept req until the issue is resolved, (4) the head
collects all signatures and distributes them to servers and (5) if there are t + 1
servers that appended the request, a server appends the request and proceeds
normally; otherwise, the request is erased from servers’ local histories (i.e., it is
replaced by noop) and client is asked to retransmit the request. In the latter
case, all future request of client c are required to be signed, which prevents this
conflict.

VFR1. A server requests verification failure recovery (VFR) from the head.

Upon a verification failure (described in Step 2 of our Chain description) occurs
at correct server si, si sends a 〈VFR_REQ, req, sn〉µsi,h message to the head.
Here, req equals the req field of the CHAIN message that caused verification
failure.
Moreover, the server triggers the timer TV FR (set to more than 5∆). Finally,

the server si stops executing any new requests and suspends all OBR request
8Our VFR subprotocol is a variation of Fill Hole subprotocol of [KAD+] used if signatures are
replaced with authenticators.
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timers TOBR∗ until VFR completes (or TV FR expires).

VFR2. The head receives the VFR request and asks all servers for the proof on
whether they appended req.

On reception of a 〈VFR_REQ, req, sn〉µsi,h message, the head sends a 〈VFR_ASK,
req, sn〉µh,si to every server si.

VFR3. A server receives a VFR_ASK message from the head and replies with a
signed answer on whether it appended req or not, and (if not) refuses to append
req until VFR subprotocol completes.

Upon reception of 〈VFR_ASK, req, sn〉µh,si , from the head, if si already ap-
pended req with sequence number sn to its local history, si replies to the head
with 〈VFR_REP, Y ES, req, sn〉σsi . Otherwise, si: (1) replies with 〈VFR_REP, NO,
req, sn〉σsi to the head, (2)triggers the timer T ′V FR (set to more than 3∆) and
(3) refuses to execute new requests and suspends all OBR request timers TOBR∗
until VFR subprotocol completes, or until T ′V FR expires.

VFR4. The head receives all VFR_REP messages, generates the proof and sends
the proof to all servers .

Upon the head receives a VFR_REP from all servers, it forms either (a) the P
proof by selecting t + 1 signed VFR_REP messages containing Y ES, or (b) the
N proof by selecting signed VFR_REP 2t + 1 messages that contain NO. Then
the head sends 〈VFR_PROOF, P/N, req, sn〉µh,si to every server si.

VFR5. A server receives a VFR_PROOF message m from the server and sends
the MAC for m to every other server.

Every server si, on receiving m = 〈VFR_PROOF, P/N, req, sn〉µh,si (for the
first time), sends the MAC for m to every other server . This prevents the Byzan-
tine head to make two different correct servers act on different VFR_PROOF
messages. A server may execute this step only if it already executed Step VFR3.

VFR6a. A server si receives the VFR proof from the head and the matching
MACs from all other servers, before the expiration of any timer.

If the server si receives VFR_PROOF message m from the head, as well as
MACs authenticating m from every other server, if m contains the P proof, si
proceeds normally, as described in Section 6.5.2 (in particular, the server sj that
initiated VFR completes Step 3 by executing req). On the other hand, if the mes-
sage m contains the N proof, then si inserts a special noop request in place with
sequence number sn (possibly overwriting some request) and proceeds normally.
Such noop requests are simply treated as non-existing in every operation on server
histories described in Section 6.5.2. Moreover, si resumes all OBR request timers
TOBR∗ suspended in Step VFR1 or Step VFR3.
Upon successful completion of the VFR subprotocol, the head, in case it sends
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the N proof, informs the client c (that invoked req) to repeat the request using
a signature (and a new client timestamp) and to authenticate all his future re-
quests using signatures (which help avoid verification failure issue). Such a signed
request within a CHAIN message is treated similarly to the signed request in an
OBR message.

VFR6b. A server does not receive the VFR proof from the head and/or the
matching MACs from all other servers before the expiration of a timer and stops
processing CHAIN and VFR messages.

If a server sj triggered a timer in Step VFR1 or Step VFR3 and did not
receive a proof from the head before expiration of the timer, or sj did not receive
the corresponding MACs from all other servers as described in Step VFR6a, sj
stops processing any further CHAIN or VFR messages and expires all the timers
suspended in Step VFR1 or Step VFR3.

6.5.3 Zyzzyva-like Abstract (AZyzzyva)

AZyzzyva is an Abstract implementation with the same Non-Triviality property
as Chain. It mimics Zyzzyva [KAD+07] in case there are no server failures and
the system is synchronous. It shares with Chain the panicking mechanism, on
behalf requests (OBRs), handling INIT requests and extracting abort histories.
Here, we skip all these details and highlight only the differences with respect to
Chain, i.e., the messages exchanged in the best-case.
Every instance of AZyzzyva has one server designated as the primary (without

loss of generality we assume that the primary is server s1). The primary does
not need to be the same in every instance of AZyzzyva.

1. Client sends a request to the primary.

A client c, on invoking AZyzzyva with req = 〈o, tc, c〉, sends the message m′ =
〈REQ, req〉αc,Σ (notice thatm′ uses an authenticator with an entry for each server)
to the primary s1 and triggers the timer T set to 3∆.

2. The primary receives a request, assigns it a sequence number and forwards it
to other server(s).

The primary s1 on receiving m′ = 〈REQ, req〉αc,Σ , if tc is higher than ts1(c),
updates ts1(c) to tc and assigns a (monotonically increasing) sequence number
timestamp sn to req. Then, s1 sends 〈ORDER, req,REQµc,si , sn〉µs1,si to every
server si, where REQµc,si is the MAC entry of the authenticator of message m′
for server si.

3. A server receives a forwarded request, appends it to its local history (i.e.,
executes it speculatively) and sends the reply to the client.

A server si, on receiving the 〈ORDER, req,REQµc,si , sn
′〉µs1,si from the primary

s1, that si can verify (as described below), with timestamp sn′ = sni + 1 (where
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sni is the largest primary timestamp received by si), updates sni to sn and
ts[req.c] to req.tc, appends req = 〈o, tc, c〉 to its local history LHi, and sends
〈ACK, LHi, req.tc, si〉µsi,c to c.
Server si can verify the ORDER message if MAC REQµc,si matches the req

field. If the case of verification failure, si initiates the VFR subprotocol (the
same as in Step 2 of Chain), described in Section 6.5.2.

4. Client gathers matching server responses.

Client c gathers matching server responses, until the timer T (set in Step 1)
expires, or until c collects 3t + 1 matching responses from different servers. A
matching response for req is an ACK message (with a valid MAC) containing
req.tc.

4a. Client receives 3t+1 matching responses with identical histories and commits.

If client c receives 3t + 1 〈ACK, LH, req.tc, ∗〉 messages from different servers,
with identical history LH, then the client commits the request by returning
Commit(req, LH).
The rest of AZyzzyva is the same as Chain: if client c does not execute Step 4a

before the expiration of the timer, c panics and sends 〈PANIC, req,REQ〉 to 2t+1
servers, where REQ is its original request as in Step 1; REQ is then forwarded by
the servers to the primary using an on behalf request (OBR). OBR requests are
treated as regular requests with the difference highlighted in Step 3b.2 of Chain.

6.5.4 Implementing Backup using any BFT-SMR

We present now another implementation of Abstract we call Backup with Non-
Triviality property that guarantees at least k ≥ 1 requests to be committed where
k is a generic parameter. Backup is used in Modular BFT-SMR to resolve request
aborts from optimistic Abstracts (e.g., DEC and Chain). The +CAL code of this
implementation using (any) BFT-SMR is shown in Figure 6.12. BFT-SMR in
the code is implicit; the power of BFT-SMR reflects in the fact that the Backup
can atomically and sequentially treat invoked requests. The simple code shown
in Figure 6.12 can be directly plugged in the +CAL code of Modular BFT-SMR
of Figure 6.4, Section 6.4.3. For the purpose of model checking, we defined the
predicate V alidInitHistory(h) to always evaluate to TRUE; in practice, this
predicate evaluates whether the particular init history is indeed an unforgeable
abort history of the preceding Abstract. Recall here that the ordering among
Abstracts is global and hence the definition of a preceding Abstract is also global
(Sec. 6.4.2).
In implementing Backup using BFT-SMR, we exploit the fact that any BFT-

SMR can totally order requests submitted to it and implement any functionality
on top of this total order. In our case, Backup is precisely this functionality.
First, Backup ignores all the requests delivered by BFT-SMR until it encounters
the INIT request invocation Invoke(m′, hI) with the valid init history hI . Here,
a valid init history is an unforgeable abort history for request m′ generated by
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01: process (bkp ∈ {Backup})
02: variables cnt = 0; commit = FALSE; discard = FALSE;localHistory =<<>>;
03: {B: while (∃c ∈ Client : finished[c] = FALSE){
04: with (inst ∈ 1..NoOfInst;
05: newReq ∈ NewReq(Inv[self ][inst], Exec[self ][inst]))
06: if (cnt = SP (inst− 1)) {
07: if (newReq /∈ Fresh ∧ V alidInitHistory(newReq.history)) {
08: commit := TRUE; discard := FALSE; localHistory := newReq.history; cnt := cnt+ 1}
09: else discard := TRUE}
10: else {
11: if (cnt < SP (inst)) {
12: commit := TRUE; discard := FALSE; cnt := cnt+ 1;
13: if (¬Exists(getFreshReq(newReq), localHistory))
14: localHistory := Append(localHistory, getFreshReq(newReq))}
15: else {commit := FALSE; discard := FALSE}};
16: if (discard = FALSE)
17: if (commit = TRUE)
18: Return(self, inst, [type 7→ ”COMMIT”, req 7→ newReq, history 7→ localHistory]);
19: else Return(self, inst, [type 7→ ”ABORT”, req 7→ newReq, history 7→ localHistory]);}}

Figure 6.12: Implementing Backup using BFT-SMR: +CAL code

the preceding Abstract. At this point, Backup sets its history Hbkp to hI . Then,
Backup simply appends the following k − 1 invoked requests, ordered by BFT-
SMR immediately after m′, neglecting possible init histories and commits these
requests (unless a particular request m is already in Hbkp when appending m one
more time is avoided, and m is simply committed with (the prefix of) history
Hbkp). Denoting by H(k)

bkp the Backup history after committing the kth request,
Backup aborts all subsequent requests with the (signed) abort history H(k)

bkp.
In the C++ implementations of your algorithms (evaluated in Sec. 6.7), Backup

is implemented over PBFT [CL99]. Specifically, Backup signing of abort histories
is implemented by having every PBFT replica digitally sign its reply (containing
H

(k)
bkp) to the client.

6.6 Implementation correctness

In this Section, we give the correctness proofs of DEC, and Chain.

6.6.1 DEC

In this Section, we prove thatDEC implementsAbstract withDEC Non-Triviality.
Validity. For any request req to appear in a commit or abort history, at least

t+ 1 servers must have reported a history containing req to the client (see Step
3a. for commit histories, and Step 3b.2.(i) for abort histories). Hence, at least
one correct server appended req to its local history. By Step 2, the correct server
si appends req to its local history only if si receives a REQ message from a client
with a valid MAC, i.e., only if some client invoked req, or if req is contained in
some valid init history.
Moreover, by Step 2, no server executes the same request twice. Hence, no

request appears twice in any local history of a correct process, and consequently,
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no request appears twice in any commit history. In the case of abort histories,
no request appears twice by construction (see Step 3b.2.(ii) Sec. 6.5.1).
To prove Commit and Abort Ordering we first prove the following Lemma.

Lemma 42. Denote the value of local history of correct server si upon appending
request req to LHi as LHreq

i . Then, for any ACK or ABORT message m sent by
si upon appending req to LHi with history LHm

i , LHreq
i is a prefix of LHm

i .

Proof. A correct server si modifies its local history LHi only in Step 2 by se-
quentially appending requests to LHi. Hence, LHreq

i remains a prefix of LHi

forever.

Commit Ordering. Assume, by contradiction, that there are two committed
request req (by benign client c) and req′ 6= req (by benign client c′) with different
commit histories hreq and hreq′ such that neither is the prefix of the other. Since
a benign client commits requests in DEC only if it receives in Step 3a identical
histories (more precisely, identical history digests) from all servers, there must
be a correct server si that sent hreq to c and hreq′ to c′ such that h(req) is not a
prefix of hreq′ nor vice versa. A contradiction with Lemma 42.
Abort Ordering. Let t be the time when the first correct server si executes

Step 3b.1 and stops appending new requests to its local history LHi and sends
its first ABORT message m with abort history LHm

i . By Lemma 42 and since a
correct client needs to receive identical histories (history digests) from all servers
to commit a request, no request req′ that is not in LHm

i can be committed.
Moreover, let req be a committed request with history hreq, such that si appended
req to its local history before time t. Again, by Lemma 42 and since a correct
client needs to receive identical histories from all servers to commit a request, hreq
is a prefix of every history LHm

j sent in any ABORT message m by any correct
server sj . Hence, for every committed request req with the commit history hreq
and any ABORT message m sent by a correct server sj containing local history
LHm

j , hreq is a prefix of LHm
j .

By Step 3b.2., a client that aborts a request waits for 2t+ 1 ABORT messages
including at least t + 1 from correct servers. Since any commit history hreq
is a prefix of every history sent by any correct server, at least t + 1 received
histories will contain hreq as a prefix, for any committed request req. Hence, by
construction of abort histories (Step 3b.2.(i) Sec. 6.5.1) every commit history hreq
is a prefix of every abort history.
Termination. By assumption of a quorum of 2t+ 1 correct servers and fair-loss

channels: (1) correct servers eventually receive the PANICmessage sent by correct
client c and (2) c eventually receives 2t+ 1 abort messages from correct servers.
Hence, if correct client panics c, it eventually aborts invoked request req, in case
c does not commit req beforehand.
Now we show that req is in any commit or abort history for req. This is

immediate for abort histories (see Step 3b.2.(iii) Sec. 6.5.1). In the case of a
commit history, by Step 2, a correct server si send ACK message with timestamp
req.ts and local history LHi only upon appending req to LHi. Moreover, by Step
3a., a client needs to receive the same history from all servers in order to commit
req. Hence, if a client commits req with commit history h then req is in h.
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DEC Non-Triviality. Non-Triviality relies on the fact that client’s timers are
set such that they do not expire in case the system is synchronous. Assuming
that the message processing at processes takes negligible time it is sufficient to
set TDEC not to expire before 2∆. Since there is no contention and all servers are
correct, all servers order all requests in the same way and send identical histories
to the clients.
Init Ordering. By Step 2 and Step 3b.1., every correct process must initialize

its local history (with some valid init history) before sending any ACK or ABORT
message. Since any common prefix CP of all valid init histories is a prefix of
any particular init history I, CP is a prefix of every local history sent by a
correct process in an ACK or ABORT message. Init Ordering for commit histories
immediately follows. In the case of abort histories, notice that at least out of 2t+1
ABORT messages received by a client on aborting a request in Step 3b.2 at least
t+ 1 are sent by correct processes and contain local histories that have CP as a
prefix. By Step 3b.2.(i), CP is a prefix of any abort history.

6.6.2 Chain
In this Section, we prove that Chain implements Abstract with Chain Non-
Triviality. We denote by Σlast the set of the last t + 1 servers in the chain
order, i.e., Σlast = {si ∈ Σ : i > 2t}. In addition, we say that correct server si
executes req at position pos if the length of the LHi upon appending req in line
18, Fig 6.11 is pos.9
Before proving Abstract properties, we first prove the following three lemmas.

Lemma 43. If correct server si executes req 6= noop (at position sn, at time t1),
then all correct servers sj, 1 ≤ j < i execute req (at position sn, before t1).

Proof. By contradiction, assume the lemma does not hold and fix si to be the
first correct server that executes req (at position sn), such that there is a correct
server sj (j < i) that never executes req (at position sn); we say si is the first
server for which req skips. Since CHAIN messages are authenticated using CAs,
si executes req at position sn only if all servers from ←−si authenticate (using a
MAC) pair 〈req, sn〉, i.e., only after all correct servers from ←−si execute req at
position sn. Notice here that sequence number sn associated by the head to req
is indeed equivalent to the position at which a executes req, since (1) if the server
is the head, sn is always incremented by one and (2) if server is not the head,
server si only accepts a CHAIN message with sn′ if sn′ = sn + 1 (Steps 2 and
3b.2). If sj ∈ ←−si , sj must have executed req at position sn— a contradiction. On
the other hand, if sj /∈ ←−si , then si is not the first server for which req skips, since
req skips for any correct server (at least one) from ←−si — a contradiction.

Lemma 44. If a correct server si ∈ Σlast executes req, then no correct server
inserts noop instead of req in the VFR subprotocol (Section 6.5.2).

9Here, for simplicity of presentation, init histories are treated as single requests, i.e, the entire
init history IH which is possibly appended to an empty local history is said to be executed at
position 1. Otherwise, for a Chain instance that needs to be initialized, we would speak of a
request executed at position pos when the corresponding length of LHi is pos+Length(IH)−
1.
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Proof. By contradiction, assume that some correct server inserts noop in place of
req, and fix sj to be the first such server; moreover, denote by V FR′ the instance
of the VFR subprotocol in which this occurs. Then, in V FR′, sj receives a
V FR_PROOF message m from the head containing the N proof, as well as
MACs that authenticate m from all other servers, including si. We consider two
cases:

1. si executes req before sending VFR_REP message in V FR′ at time t1. At
time t1, no correct server inserted noop in place of req (by our assump-
tion that sj is the first server to do so and only after time t1.) Hence, by
Lemma 43, at most t (Byzantine) servers and at most t servers with ID
higher than i (i.e., a total of at most 2t servers) may send VFR_REP con-
taining NO in V FR′. Hence, sj cannot receive a V FR_PROOF message
m from the head containing a valid N proof, a contradiction.

2. si executes req after sending VFR_REP message in V FR′ at time t. By Step
VFR3 of VFR subprotocol (Section 6.5.2) si does not execute req before
V FR′ is resolved. Notice that si may execute req only if its proceeds nor-
mally after V FR′ i.e., if it receives VFR_PROOF message m from the head
containing the P proof, as well as MACs authenticating m from all servers.
This contradicts the assumption that sj receives in V FR′ a VFR_PROOF
message m′ from the head containing the N proof, with MACs authenti-
cating m′ from all servers, since no correct server will authenticate both m
and m′.

Lemma 45. If benign client (resp., server) c commits req (resp., the OBR for
req) with history h (at time t1), then all correct servers in Σlast execute req (after
t1) and the state of their local history upon executing req is h.

Proof. To prove this Lemma, notice that correct server si ∈ Σlast generates a
MAC for a pair 〈req,D(h′)〉 for some history h′: (1) only after si executes req
and (2) only if the state of LHi upon execution of req equals h′. Moreover,
by Steps 2 and 3b.2, no correct server executes the same request twice. From
Steps 3a, 3b.2a and 3b.2a.1. it is immediate that a benign client (resp., server)
cannot commit req (resp., the OBR for req) with h unless it receives a MAC for
〈req,D(h)〉 from every correct server in Σlast. Hence the lemma.

Validity. For any request req to appear in a commit or abort history, at least
t+1 servers must have: (a) reported a history containing req to the client, or (b)
generated a MAC for a pair that consists of req and a digest of a (commit) history
(see Step 3a and Step 3b.2a.1 for commit histories, and Step 3b.2b.2 (i.e., DEC
Step 3b.2.(i)) for abort histories). Hence, at least one correct server executed
req.
Now, we show that all correct servers execute only requests invoked by clients

(with possible exception of a noop request which is treated as non-existent, per
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Step VFR6a, Section 6.5.2). By contradiction, assume that some correct server
executed a request not invoked by any client and let si be the first correct server
to execute such a request req′ 6= noop. We distinguish three exhaustive cases:

1. We first show that it is not possible that si executes req′ in the VFR sub-
protocol (Section 6.5.2). By Step VFR4 and Step VFR6a, a correct server
executes a request in VFR subprotocol only if it receives a VFR_PROOF
message with the P proof containing the VFR_REP message from t + 1
servers, including at least one correct server sj , asserting that sj already
executed req′ to its local history — a contradiction.

2. Now, we show that it is not possible that si executes req′ in Step 2 of Chain.
In case i < t+ 1, si executes req′ only if si receives a CHAIN message with
a MAC from the client, i.e., only if some client invoked req, or if req is
contained in some valid init history. On the other hand, if i > t + 1,
Lemma 43 yields a contradiction with our assumption that si is the first
correct server to execute req′.

3. Finally, a correct server may execute request req′ 6= noop, in Step 3b.2,
when processing an OBR message. In this case, before executing req′, cor-
rect server si verifies the signature of client req′.c on req′, which asserts
that req′.c indeed invoked req′.

Moreover, by Steps 2 and 3b.2, no server executes the same request twice.
Hence, no request appears twice in any local history of a correct process, and
consequently, no request appears twice in any commit history. In the case of abort
histories, no request appears twice by construction (see Step 3b.2.(ii) Sec. 6.5.1).

Commit Ordering. Assume, by contradiction, that there are two committed
request req (by benign client c) and req′ 6= req (by benign client c′) with different
commit histories hreq and hreq′ such that neither is the prefix of the other. By
Lemma 45, there is correct server si ∈ Σlast that executed req and req′ such that
the state of LHi upon executing these requests is hreq and hreq′ , respectively. By
Lemma 44, si does not ever overwrite any of the requests in its local history with
a noop, and by Steps 2 and 3b.2, si otherwise always simply appends the requests
to LHi. Hence it is not possible that neither the hreq is the prefix of hreq′ nor
vice versa. A contradiction.
Abort Ordering. Assume, by contradiction, that there is committed request

reqC (by some benign client) with commit history hreqC and aborted request
reqA (by some benign client) with commit history hreqA , such that hreqC is not
a prefix of hreqA . By Lemma 45 and the assumption of at most t faulty servers,
all correct servers (at least one) from Σlast execute reqC and their state upon
executing reqC is hreqC . Let si ∈ Σlast be a correct server with the highest
index i among all servers in Σlast. By Lemma 43, all correct servers execute
all the requests in hreqC at the same positions these requests have in hreqC . In
addition, a correct server executes all the requests from hreqC before sending any
ABORT message; indeed, before sending any ABORT message, a correct server
must set the flag stopChain to true which prevents further execution of requests.
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Therefore, for every local history LHi that a correct server sends in an ABORT
message, hreqC is a prefix of LHi.
Finally, by Step 3b.2b.2 (Step 3b.2 of DEC ), a client that aborts a request

waits for 2t + 1 ABORT messages including at least t + 1 from correct servers.
By construction of abort histories (Step 3b.2.(i) Sec. 6.5.1) every commit history,
including hreqC is a prefix of every abort history, including hreqA , a contradiction.

Termination. A correct client that invokes req panics if it does not commit req.
On panicking, the client sends a PANIC message to 2t + 1 servers including at
least t+ 1 correct which eventually receive a PANIC message. Denote this set of
t+ 1 correct servers by ΣP . We distinguish two cases:

• All servers from ΣP commit their on-behalf request for req in Step 3b.2a.
Then, by Lemma 45, assumption of at most t server failures, and the fact
that no server executes the same request twice, we conclude that all servers
from ΣP send the same history h to req.c in a GET-A-GRIP message. By
assumption of fair-loss channel and periodic retransmission of PANIC and,
consequently, GET-A-GRIP messages (Steps 3b and 3b.2a) the client even-
tually commits req in Step 3b.2a.1.

• If some server si ∈ ΣP does not commit its OBR request for req, then
its OBR timer for req eventually expires. This may not be evident in
the case when some clients are Byzantine, since a chain verification failure
may cause correct servers to suspend their OBR timers (Steps VFR1 and
VFR3). However, these are eventually resumed or expired in Steps VFR6a
and VFR6b. It is not possible that any (finite) number of Byzantine clients
keep OBR timers suspended forever by repeatedly creating chain verifica-
tion failures, since only one verification failure per client is possible; upon
the first conflict, all subsequent requests by the conflicting client must be
digitally signed (Step VFR6a).
Hence, the OBR timer for req at si eventually expires and si periodically
sends STOP message to all other servers (Step 3b.2b.1); hence, all correct
servers periodically send ABORT to the client. In this case, by assumption
of (1) 2t+1 correct servers and (2) fair-loss channels, a correct client aborts
the invoked request req.

Now we show that req is in any commit or abort history for req. This is
immediate for abort histories (see Step 3b.2b.2, i.e., Step 3b.2.(iii) Sec. 6.5.1). In
the case of a commit history, the proof follows from Lemma 45.
Chain Non-Triviality. Non-Triviality relies on the fact that the OBR timers set

by servers do not expire when the Σ is correct and synchronous. We distinguish
two cases:

• In the first case, no client is Byzantine. In this case, since Σ is correct, all
servers execute requests in the same order in which the head receives the
requests and no chain verification failure occurs. Assume, by contradiction
that some correct client invokes and aborts req. By Step 3b.2b.1, if some
correct client aborts a request, a timer set by some server for the OBR for
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req, TChainreq must had expired. Denote, the earliest time at which this
timer expires at some correct server si by texp. Notice that a client cannot
abort req before texp. Denote the time at which si triggers TChainreq by
ttrig < texp− (3t+3)∆. Since the client req.c is correct and does not invoke
a subsequent request before req aborts, no server stores in lastreqi[req.c] a
request with a higher timestamp than req.tc before texp. Hence, all servers
process the OBR for req invoked by si (with the same sequence number
and the same corresponding local histories). Since the set of servers is
synchronous, after 3t+ 3 time units ∆ si commits its OBR request for req
before texp, i.e., TOBRreq never expires at si. A contradiction.

• in the case there some client is Byzantine, a chain verification failure may oc-
cur and a VFR subprotocol may be invoked in which a server may temporar-
ily block the execution of new requests (invoked by, e.g., correct clients). To
this end, servers suspend all the OBR timers upon blocking the execution of
new requests at Steps VFR1 and VFR3. Upon the server receives a decision
in VFR it resumes the suspended OBR timers (Step VFR6a). Notice that
the server cannot execute Step VFR6b, by assumption on Σ being correct
and synchronous and since timers triggered in VFR are chosen not to expire
in this case. Moreover, VFR guarantees a unique decision on whether to
overwrite a conflicting request or to execute it, which guarantees that all
servers execute all the requests in the same order, as in the first case when
no client is Byzantine. Hence, no OBR timer can expire at any server, and
the client cannot abort the request. By Termination, the client commits
the request.

Init Ordering. The proof is analog to the proof of DEC Init Ordering.

6.7 Evaluation
This section evaluates the performance characteristics of Abstract. We first com-
pare the performance of DEC and Chain to that of PBFT [CL99], Q/U [AGG+05]
and Zyzzyva [KAD+07]. We then assess the cost of the switching mechanism. As
stated in [SDM+08], the motivations for comparing against PBFT and Zyzzyva
are the following: PBFT is considered the “baseline” for practical BFT-SMR
implementations, whereas Zyzzyva is considered state-of-the-art, and is known
to outperform existing algorithms under most conditions. Finally, we bench-
mark Q/U as it is known to provide better latency than Zyzzyva under certain
condition. Note that Q/U requires 5t + 1 servers, whereas other algorithms we
benchmark only require 3t+ 1 servers.
PBFT and Zyzzyva define two similar optimizations: (1) the batching optimiza-

tion, in which servers can batch requests and (2) the client broadcast optimization,
in which clients broadcast requests directly to all the servers (the primary thus
just needs to send ordering messages). All measurements on PBFT are done with
batching enabled, since this systematically improves performance. This is not the
case with the batching mechanism implemented in Zyzzyva. Therefore, we assess
Zyzzyva with and/or without batching depending on the experiment. Concerning
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the client broadcast optimization, we show results for both configurations every
time we observe an interesting behavior.
Note that all evaluations of Chain and DEC use several optimizations: (1)

servers do not send local histories but computed replies, (2) In DEC, only one
server sends the complete reply (corresponding to the complete local history),
whereas the others send only the digest of the reply, and (3) to truncate histories
we use lightweight checkpoint protocol triggered every 128 messages (as in PBFT
and Zyzzyva [CL99,KAD+07]), explained in Section 6.7.6.
Zyzzyva, DEC, and Chain are built on the PBFT C++ code base. All algo-

rithms are evaluated using UMAC [BHK+99] for MACs and MD5 [Riv85] for
message digests (RSA digital signatures [RSA78] are used for signing messages
where applicable). To ensure that the comparison is fair, we use for Q/U a simple
best-case implementation realized with the same code base. This implementation
of Q/U is similar to that described in [KAD+07]: (1) a client simply generates
and sends 4t+1 MACs with a request, (2) each replica verifies 4t+1 MACs (1 to
authenticate the client and 4t to validate the object history state (OHS)), each
replica generates and sends (3) 4t+ 1 MACs (1 to authenticate the reply to the
client and 4t to authenticate OHS) with a reply to the client and (4) the client
verifies 4t+ 1 MACs.
We ran all our experiments on a cluster of 17 identical machines, each equipped

with a 1.66GHz bi-processor and 2GB of RAM. Machines run the Linux 2.6.18
kernel and are connected using a Gigabit ethernet switch.
Finally, we use the microbenchmarks of [CL99]: in the x/y microbenchmark,

a client sends a xKB request and receives a yKB reply.

6.7.1 Latency

Figure 6.13 shows the latencies of DEC, Chain, Q/U, PBFT, and Zyzzyva for the
0/0 microbenchmarks as a function of the number of tolerated failures t (ranging
from 1 to 3). The results show that DEC outperforms all other algorithms. Q/U
also achieves a good latency with t = 1 due to the fact that it uses the same
communication pattern as DEC. Nevertheless, when t increases, its performance
significantly decreases. This is explained by the fact that Q/U requires 5t + 1
replicas and both clients and servers perform additional MAC computations with
respect to DEC. Moreover the significant improvement of DEC over Zyzzyva (-
31% at t = 1) can easily be explained by the fact that Zyzzyva uses an optimistic
agreement algorithm requiring 3 message delays, whereas DEC only requires 2
message delays.
The results depicted in Figure 6.13 are slightly different from those published

in [KAD+07]. Namely, the improvement of Zyzzyva over PBFT is slightly lower
(+34 % at t = 1 vs. +50% in [KAD+07]); moreover, absolute values of measured
latencies are higher (the published latency for Zyzzyva at t = 1 is 0.26ms against
0,51ms in our cluster). These differences can be explained by the fact that a ping
between two machines on our cluster takes 0.288ms, which is already higher than
the measured latency for Zyzzyva in [KAD+07].
Finally, in Figure 6.13 we can see that the latency of Chain is significantly

higher than that of other algorithms, and linearly increases with the number of
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tolerated faults. This can be explained by the fact that the Chain latency (in
the best case) is equal to 2 + (3t+ 1). The second observation is that the latency
of DEC, PBFT and Zyzzyva at t = 3 is lower than that at t = 2. We do not
have any explanation for this phenomenon. It was consistently observed in all
the experiments we ran.
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Figure 6.13: Latency of the various protocols for the 0/0 benchmark.

The latency results for all microbenchmarks (0/0, 0/4 and 4/0) are summarized
in table 6.1. This table presents the latency improvement of DEC over Q/U,
Chain, PBFT, and Zyzzyva. Our results show that DEC consistently outperforms
other algorithms.

0/0 benchmark 4/0 benchmark 0/4 benchmark
t=1 t=2 t=3 t=1 t=2 t=3 t=1 t=2 t=3

Q/U 8 % 14,9% 33,1% 6,5 % 13,6% 22,3% 4,7% 20,2% 26%
Zyzzyva 31,6 % 31,2% 34,5% 27,7 % 26,7% 15,6% 24,3% 26% 15,6%
PBFT 49,1% 48,8% 44,5% 36,6 % 38,4 % 26% 37,6% 38,2% 29%
Chain 61,8% 74,4% 83% 64,2% 76,4% 82,7% 61,6% 75,6% 79,5%

Table 6.1: Latency improvement of DEC over the various algorithms for the 0/0,
4/0, and 0/4 benchmarks.

6.7.2 Throughput
In this section, we present results obtained running the 0/0, 4/0 and 0/4 mi-
crobenchmarks. We do not present results for the Q/U and DEC algorithms since
both algorithms are decentralized and thus perform poorly under contention.
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Overall, our results show that Chain consistently and significantly outperforms
other algorithms starting from a certain number of clients that varies for differ-
ent benchmarks. Below this threshold, Zyzzyva achieves higher throughput than
other algorithms.

0/0 benchmark

Figure 6.14 shows the throughput achieved by various algorithms in the 0/0
benchmark and when t = 1. We ran Zyzzyva with and without batching. In
contrast to PBFT, which batches as many messages as possible, the size of a
batch in Zyzzyva is bounded by a configuration parameter. We evaluated various
batch sizes (from 2 to 10). The results we obtained show that there is no ideal
batch size, which confirms the findings of [KAD+07]. Therefore, the “Zyzzyva
with batching” curve is obtained by taking, independently for every number of
clients, the best performance we obtained varying the batch size between 2 and
10.
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Figure 6.14: Throughput of the various protocols for the 0/0 benchmark (t = 1).

The results presented in Figure 6.14 are consistent with the ones published
in [KAD+07,SDM+08]: batching in Zyzzyva improves performance and the per-
formance of PBFT (with batching) are better than that of Zyzzyva without batch-
ing from a certain number of clients. Absolute values are nevertheless lower and
the gain brought by batching requests in Zyzzyva is not as significant. As for
the latency experiments, we attribute this lower performance to the fact that we
used different hardware.
Moreover, Figure 6.14 shows that with up to 40 clients, Zyzzyva achieves the

best throughput. With more than 40 clients, Chain starts to outperform Zyzzyva.
The peak throughput achieved by Chain is 21% higher than that of Zyzzyva with
batching. We explain this result as follows: the advantage of Chain over other
algorithms resides in the pipelining pattern it uses for broadcasting requests and
replying to clients. Thanks to this pipelining pattern, servers in Chain send
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(resp., receive) messages to (resp., from) one server, which results in a better
network usage and a significant decrease of packet losses.
Nevertheless, for Chain to be efficient, the pipeline must be fed, i.e. the link

between any server and its successor in the chain must be saturated10. There
are two ways to feed the pipeline: using large messages (see next section), or a
large number of small messages; in the case of 0/0 benchmark, the latter applies.
Moreover, as the microbenchmarks we are using implement closed-loop load in-
jection (meaning that a client only issues one request when it gets a reply to
its previous request), it is necessary to have a large number of clients to issue a
large number of requests. This explains why Chain starts outperforming Zyzzyva
when there are more than 40 clients.

0/4 benchmark

Figure 6.15 shows the throughput of the various algorithms for the 0/4 mi-
crobenchmark when t = 1. PBFT and Zyzzyva are using the client broadcast
optimization. We observe that with up to 15 clients, Zyzzyva outperforms other
algorithms. Starting from 20 clients, Chain outperforms PBFT and Zyzzyva.
Nevertheless, the gain in peak throughput (+7,7% over PBFT and 9,8% over
Zyzzyva) is lower than the gain we had with the 0/0 microbenchmark. This
can be explained by the fact that the dominating cost is now sending replies
to clients, partly masking the effect of request processing and request/sequence
number forwarding. In all algorithms, there is only one server sending a full reply
to the client (other servers send only a digest of the reply). We were expecting
PBFT and Zyzzyva to outperform Chain, since the server that sends a full reply
in PBFT and Zyzzyva changes on a per-request basis. Nevertheless, this is not
the case. We again attribute this result to the fact that Chain uses a pipelin-
ing pattern: the last server in the chain (i.e., the tail) replies to clients at the
throughput of about 391MB/sec.

4/0 benchmark

Figure 6.16 shows the results of Chain, PBFT and Zyzzyva for the 4/0 mi-
crobenchmark when t = 1. Note that we use a logarithmic scale for the X
axis to better observe the behavior of the various algorithms with small numbers
of clients. We only plot a curve for Zyzzyva with the client broadcast optimiza-
tion enabled (explanation follows), whereas we plot two curves for PBFT (with
and without client broadcast optimizations). The graph shows that with up to
3 clients, Zyzzyva outperforms other algorithms. With more than 3 clients, the
Chain algorithm significantly outperforms other algorithms. Its peak through-
put is about 375% higher than that of Zyzzyva. The reason why Chain is very
efficient with large requests is explained in previous paragraphs.
10Saturation is reached when a server is sending the maximum number of bytes it can send

provided it must also process requests (i.e. perform cryptographic operations and execute
requests). Note that in the microbenchmarks we are using, this maximum outgoing number
of bytes increases when the request size increases as the ratio processing time/sending time
decreases.
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Figure 6.15: Throughput of the various protocols for the 0/4 benchmark (t = 1).
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An interesting observation that can be made about Figure 6.16 is that the per-
formance of both Zyzzyva and PBFT drops when the client broadcast optimiza-
tion is used. In contrast, the performance of PBFT when the primary forwards
requests remains almost constant after the peak throughput has been reached.
This result may seem surprising given that [KAD+07,CL99] recommend to use
the client broadcast optimizations when requests are large, in order to avoid to the
primary the costly operation of forwarding requests. Nevertheless, while surpris-
ing at first, this result can be explained by the fact that simultaneous broadcast
of large messages by different clients result in collisions and buffer overflows11
(since there is no flow control in UDP which is used as a transport layer in the
PBFT code base and, consequently, in all implementations evaluated here). This
explains why enabling the clients to concurrently broadcast messages drastically
reduces performance. On the contrary, when the primary forwards messages,
there are fewer collisions, which explains the better performance we observe. We
do not present results for Zyzzyva disabling the client broadcast optimizations as
there is a bug in the current Zyzzyva implementation that prevented us from run-
ning experiments. We could have presented performance results obtained with
our implementation of AZyzzyva; its throughput peak is of about 1,8kops/sec.
However, in the case of message losses, clients in our AZyzzyva implementation
simply re-issue requests. This results in a significant increase of the traffic and
is probably not as efficient as the mechanism implemented in Zyzzyva to drive
servers to a coherent state when messages are lost.

Impact of the request size

In this section we study how algorithms are impacted by the size of requests.
Figure 6.17 shows the peak throughput of Chain, PBFT and Zyzzyva as a function
of the request size for one tolerated fault. To obtain the peak throughput of PBFT
and Zyzzyva, we benchmarked both algorithms with and without client broadcast
optimizations and with different batching sizes for Zyzzyva. Interestingly, the
behavior we observe is similar to that observed using simulations in [SDM+08]:
payload increase diminishes differences between PBFT and Zyzzyva. Indeed,
starting from 128B payloads, both algorithms have almost identical performance.
Figure 6.17 also shows that Chain sustains high peak throughput with all message
sizes.

6.7.3 Fault scalability

One important characteristic of BFT-SMR algorithms is their behavior when
the number of tolerated faults increases. Figure 6.18 depicts the performance of
Chain for the 4/0 benchmark when the number of faults varies between 1 and

11Note that similar performance drops with large UDP packets have already been observed in
the context of broadcast algorithms [ACL04,Ban07]. For instance, a recent study made by
the authors of the JGroups toolkit [Ban07] showed that with 5K messages, their TCP stack
achieves up to 5 times the throughput of their UDP stack, even if the latter includes some
flow control mechanisms.
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Figure 6.17: Peak throughput of the various protocols as a function of request
size (t = 1).

3.12 We do not present results for PBFT and Zyzzyva as it has been shown
in [KAD+07] that their peak throughput suffers only a slight impact with the
increase of t. Figure 6.18 shows that this is also the case for Chain. The peak
throughput at t = 3 is only 3,5% lower than that achieved at t = 1. We also
observe that when the number of tolerated faults increases, Chain requires more
clients to reach its peak throughput. This can be explained by the fact that
the chain length increases when f increases. Hence, more clients are needed to
feed the Chain, which is necessary for Chain to reach its peak throughput, as
explained in Section 6.7.2.

6.7.4 Impact of slow clients

In this section we examine the impact of having clients connected to servers
through slow links. The motivation for performing this experiment is that it is
sometimes the case that interserver communication is fast (e.g. when servers
are organized in a cluster), whereas clients-to-servers communication is slow (e.g.
when clients are remote). For that purpose, we connected all clients to a Fast
Ethernet switch, which was itself connected to the Gigabit Ethernet switch in-
terconnecting servers. Using this topology, all requests and replies are going
through the same link and every client can only send and receive messages at a
throughput of 100Mb/sec. Results presented in this section show that Chain still
achieves higher peak throughput than PBFT and Zyzzyva. These results also
show that PBFT and Zyzzyva exhibit better performance with 4k requests than
with 0k requests. This result is explained by the fact that the biggest cost with
0k requests is that of replying to clients, which penalizes PBFT and Zyzzyva in

12The curve for t = 1 is the same as the one given in Figure 6.16, but without a logarithmic
scale.
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Figure 6.18: Impact of the number of tolerated faults on the throughput of the
chain protocol.

which all replicas reply to clients. With 4k requests, the biggest cost is that of
sending/receiving requests, masking the fact that all replicas send replies.

0/0 benchmark

Figure 6.19 shows the throughput of the various algorithms as a function of the
number of clients for the 0/0 benchmark when one server failure is tolerated
(t = 1). Interestingly, we see that the performance of Chain with up to 50 clients
is very similar to that obtained with clients connected to the Gigabit switch
(Figure 6.14). With more than 50 clients the performance is slightly worse (the
peak throughput is 7,4% lower). We explain this by the fact that, for each
request, Chain only requires two messages to be exchanged between a client and
servers. In the case of 0KB requests (for which only a header is sent), slow clients
can sustain the same sending rate as the one that they sustain when they are
connected on the Gigabit switch. Indeed, the bottleneck in this case is not created
by clients sending requests, but by servers needing to receive/forward messages
and perform cryptographic computations on these requests.
Another observation we can make about Figure 6.19 is that Zyzzyva and PBFT

are much more impacted by the presence of slow clients than Chain (the same
observation holds when the client broadcast optimization is not used). For in-
stance, the peak throughput of Zyzzyva is 55% lower than the one obtained with
clients connected to the Gigabit switch. We explain this result by the fact that
both Zyzzyva and PBFT require all servers to send a reply to the client. In the
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considered microbenchmark (0/0), all servers send a reply with the same size13.
These replies all transit the same slow network link, which explains the observed
throughput decrease for PBFT and Zyzzyva. Moreover, we observe that PBFT
and Zyzzyva achieve almost the same peak throughput. The reason for this
is that the maximum throughput they can achieve is that of the slow network
link interconnecting the clients and the servers. With a sufficiently large num-
ber of clients, both PBFT and Zyzzyva are able to saturate this link. Finally,
we observe that batching in Zyzzyva (not shown in Fig. 6.19) does not improve
its performance. This is due to the fact that the cost of communicating with
clients dominates other costs (in particular request processing by servers and
inter-servers communication).
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Figure 6.19: Throughput of the various protocols for the 0/0 benchmark with
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4/0 benchmark

Figure 6.20 shows the throughput of various algorithms as a function of the num-
ber of clients, for the 4/0 benchmark and when one failure is tolerated (t = 1).
The results are quite different from those obtained when clients are connected
using the Gigabit switch. First of all, Zyzzyva (with client broadcast enabled)
and Chain obtain the same peak throughput. This peak throughput (89Mb/sec)
is very close to the link bandwidth (100Mb/sec). The good throughput achieved
by Chain is again a consequence of the pipelining pattern Chain uses to broad-
cast messages. More interesting is the good throughput achieved by Zyzzyva.
This shows that Zyzzyva achieves good performance when there is no contention
on servers (i.e. when clients issue requests at a lower rate than that at which
servers can handle them). This also confirms our interpretation that the bad
throughput Zyzzyva achieved when clients were connected through a Gigabit
13The optimization that consists in having all servers but one only sending a digest of the reply

does not improve performance as the payload of replies is 0KB.
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switch (Figure 6.16) is probably due to packet losses in the UDP stack due to
network congestion. Finally, we see that PBFT with the client broadcast opti-
mization enabled suffers a significant performance drop when there are more than
8 clients. We have no explanation for this behavior.
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Figure 6.20: Throughput of the various protocols for the 4/0 benchmark with
slow clients (t = 1).

6.7.5 Switching cost
This section assesses the cost of switching. This cost obviously depends on the
two Abstract instances involved in the switching processes. Nevertheless, both
instances do not contribute equally to this cost. Indeed, the cost of panick-
ing/aborting can be considered identical for the various Abstract implementa-
tions. This is not the case with the Abstract initialization cost, as this requires
the new Abstract instance to execute all requests contained in the init history.
We decided to evaluate the cost of switching from DEC to Backup implemented
over PBFT (denoted by Backup-PBFT ).
To evaluate the switching cost, we perform the following experiments: we feed

the local history of DEC servers with r requests of size s. We then issue 100
successive requests (requests are not concurrent). For every request, we force a
DEC client to panic (without waiting for a timeout). Consequently, DEC servers
generate, for each request, the same abort histories containing r requests of size
s. Moreover, we reset the state of Backup-PBFT after every request to force it
to process all abort histories identically. We evaluate the time it takes for the
100 successive requests to be processed and reproduce the experiment until the
variance becomes negligible.
Figure 6.21 shows the switching cost (in sec) as a function of the history size.

We run experiments with fast and slow clients (we use the corresponding network
topology described previously) and with two request sizes: 0k and 4k. We perform
checkpointing in DEC every 128 requests. To account for requests that might be
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Figure 6.21: Switching time as a function of the history size (t = 1).

received by servers while they are performing a checkpoint, we consider that the
history size can grow up to 256 requests. Not surprisingly, we observe that the
switching cost is linear with respect to the history size in the 4 considered cases.
Moreover, we observe that slow clients do not have a big impact on the switching
cost. We attribute this to the fact that the biggest factor in the switching cost is
the time it takes for Backup-PBFT to execute all requests in the abort histories.
Our experiments (see Section 6.7.2 and 6.7.4) show that this time is very similar
with slow and fast clients (for instance, with 0k requests, Backup-PBFT achieves
a throughput of 1456req/s with one fast client against 1373req/s with one slow
client).
Figure 6.22 shows the impact of the number of tolerated faults t on the switch-

ing cost with 0k requests for history sizes ranging from 1 to 256. Note that we
use a logarithmic scale on both axis. We observe that the switching cost is pro-
portional to t. This makes sense since increasing t also increases the number of
servers, and thus also the number of abort histories that need to be sent and pro-
cessed. Moreover, we observe that increasing f from 1 to 2 has a higher impact
than increasing f from 2 to 3. We explain this by the fact that, as remarked
in Section 6.7.1, PBFT achieves a better latency with t = 3 than with t = 2.
Backup-PBFT can thus handle abort histories at a higher throughput (with one
client sending 0k requests, Backup-PBFT achieves a throughput of 1353 req/s at
t = 2 against 1586 req/s at t = 3).
Finally, we would like to comment on the absolute value of the switching cost.

Figure 6.21 shows that when one fault is tolerated, this cost ranges from 42ms to
3,5s. This cost might seem high. Nevertheless, we don’t believe this is an issue for
the following reasons. First of all, we did not try to optimize the switching cost.
All messages transfers between DEC and Backup-PBFT pass through the client.
A possible way to optimize this would, for instance, be to facilitate Abstract to
have servers directly communicate. Perhaps even better optimization would be to
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Figure 6.22: Switching time as a function of history size (t = 1, t = 2, and t = 3).

have servers of the two Abstract instances share a request history, thus avoiding
most message exchanges. Moreover, there are two cases where switching should
be used: to ensure progress when the first Abstract instance aborted, or to improve
performance by switching to an Abstract instance achieving better performance.
The former case should be very rare. Indeed, if failures were to be frequent, this
would mean that only Abstract instances tolerating faults should be used. In the
latter case, two remarks hold: (1) switching can be triggered when the history size
is small, thus significantly decreasing its cost, and (2) it makes sense to spend up
to 3s switching if the new Abstract instances improves performance significantly.
For instance, our performance evaluation shows that it is worth switching from
PBFT to DEC when there is no contention or from Zyzzyva to Chain when big
requests are sent or many clients are simultaneously issuing requests.

6.7.6 Lightweight checkpointing subprotocol

In the above, we evaluated DEC and Abstract optimized with a lightweight check-
point subprotocol (LCS) to truncate histories every CHK requests (where, in
Section 6.7, CHK = 128). Here, we explain our simple LCS and its impact on
our Abstract implementations presented in Section 6.5.
LCS consists in the following:

1. every server si increments the checkpoint counter cc and sends it along with
the digest of its local state to every other server (using simple point-to-point
MACs), when its (non-checkpointed suffix of) local history reaches CHK
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requests. Then, si triggers a checkpoint timer.

2. if the timer expires and there is no checkpoint, the server aborts all future
requests.

3. If server si receives the digest of the same state st with the same check-
point counter number cc greater than lastcc (initially lastcc = 0) from all
servers, si: (a) truncates its local history and checkpoints its state to st
and (b) stores cc to variable lastcc. Such a checkpointed state (referred to
as stcc) becomes a prefix of servers’ local histories to which new requests
are appended and is treated as such in all operations on local histories in
our algorithms. Moreover, every abort or commit history of length at most
cc ∗ CHK is considered to be a prefix of stcc.

LCS has no impact on DEC and Chain as described in Sections 6.5.1 and 6.5.2,
with a single exception, related to client extraction of abort histories from the
received ABORTmessages (see Step 3b.2, Sec. 6.5.1). Namely, if the client receives
a history from some server si consisting of a checkpointed state followed by CHK
requests, the client will first collapse all such histories into the single checkpointed
state (i.e., the client will perform the checkpoint on behalf of the server). Only
in case the client cannot retrieve t+1 confirmations of (some) checkpointed state
when executing DEC Step 3b.2. (equivalent to Step 3b.2b.2 of Chain) in this way,
the client will repeat the procedure described in this step with server histories as
received from servers, i.e., precisely as described in Step 3b.2., Section 6.5.1.
It is not difficult to extend our proofs of Section 6.6 to account for LCS.



7
Concluding Remarks

This thesis proposed reusable abstractions for asynchronous distributed algo-
rithms that tolerate malicious (Byzantine) failures (BFT algorithms). A number
of read/write storage, consensus and state machine replication algorithms that
use these abstractions and provide optimal resilience to malicious failures and/or
optimal complexity were presented. We now briefly summarize our contributions
and outline a few open issues and directions for future investigation.

Refined Quorum Systems. This thesis introduced the notion of refined quorum
systems (RQS) and argued that this is a useful notion to reason about opti-
mally resilient and best-case latency efficient distributed object implementations
assuming general adversary structures. Refined quorum systems were shown to
be necessary and sufficient (or, in a sense, minimal) for implementing an im-
portant class of atomic objects, namely single-writer multi-reader atomic storage
and consensus. This minimality holds when we indeed require atomicity and do
not rely on authentication primitives to cope with Byzantine failures in best-case
executions.
Roughly speaking, denoting the best possible latency of an object implemen-

tation by l1 (this can be measured by the best possible latency in synchronous,
uncontended and failure-free situations), i.e., 1 round in the case of storage, or 2
message delays in the case of (Byzantine and indulgent) consensus, and by l2 and
l3, incrementally, the next best possible latencies according to the correspond-
ing metric, we proposed two RQS-based object implementations that achieve a
latency of li whenever a quorum of class i is available and best-case conditions
(namely, synchrony and no-contention) are met. Since Property 1 of RQS (de-
fined on class 3 quorums) is anyway necessary for any resilient implementation of
distributed storage and consensus in an asynchronous environment, there is no
need for refining quorums further.
It might be important to notice here that the very notion of a refined quorum

system helps highlight the information structure of optimally resilient and best-
case efficient atomic object implementations (at least those implementing the
abstractions of atomic storage or consensus). Basically, these implementations
go through at most three “rounds” in best-case conditions and fall into a backup
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subprotocol in case of asynchrony or contention. A novel algorithmic scheme
we used in both algorithms consists of appending the ids of (class 2) quorums,
to written/proposed values. This is key to combining graceful degradation (i.e.,
achieving both latencies l1 and l2) with optimal resilience.
Our study opens several research directions. For example, it is intriguing to

determine:

• the load and availability of RQS [NW94],

• how RQS can be optimally placed in the network [GGM+06],

• the extension of RQS with respect to asymmetric read and write quorums
[MAD02b], and

• how to devise algorithms that cope with unknown RQS/adversary struc-
tures.

High Resolution Timestamps. The second notion introduced in this thesis is
that of high resolution timestamps, a timestamping mechanism based on ma-
trix clocks. In a typical read/write storage implementation only timestamps of
writer(s) are associated to a written value. A high resolution timestamp is used
in conjunction with such classical timestamps, to allow detection and filtering
of malicious processes. Our high resolution timestamping mechanism requires
reader’s to write (meta-data in the form of readers’ local timestamps). Moreover,
the thesis presented safe and regular Byzantine fault-tolerant storage algorithms
based on high resolution timestamps; these algorithms are the first to combine
optimal resilience with the worst-case time complexity of two communication
round-trips, which we prove (in the combination with the results of [ACKM06])
optimal.
Using our results and the transformation from regular to atomic storage [GR06],

we were able to narrow down the range for the optimal worst-case complexity of
optimally resilient BFT atomic storage to between 2 and 4 communication round-
trips. The exact complexity remains a challenging open problem.
To complement these results, we also analyzed the resilience/performance trade-

off in BFT atomic storage, by establishing a tight bound on fast single-writer
multi-reader BFT atomic storage algorithms, i.e., the algorithms in which read
and write operations always complete in a single communication round-trip. We
show that this tradeoff depends on the number of readers R in the system (which
is in line with the analog result in the crash-failure model [DGLC04]), even in
the authenticated Byzantine failure model, in which processes can rely on digital
signatures.
It should be emphasized again that the scope of this thesis covers single-writer

multi-reader storage implementations (SWMR), typically used in construction
of agreement algorithms (e.g., [GL03,ACKM06]). Whereas our optimal SWMR
algorithms based on refined quorums and high resolution timestamps can be
used as a building block in classical algorithms [AW98,GR06] to construct multi-
writer multi-reader (MWMR) storage algorithms, this would yield only near-
optimal solutions in terms of optimal latency (albeit while preserving optimal
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resilience). While, for example, our algorithms given in the context of BFT state
machine replication (see below) suggest that our abstractions (in this case refined
quorums) can be successfully used even in the presence of multiple writers (that
can be mapped to multiple state machine replication clients) to obtain algorithms
with optimal latency, more research needs to be conducted in order to obtain the
exact characterization of the optimal best-case and worst-case latency in the
context of MWMR storage.

ABsTRACT. Finally, we introduced Abstract, a generic abstraction that sim-
plifies the development and maintenance of BFT state machine replication al-
gorithms. Abstract resembles state machine replication with one exception: it
may sometimes abort a client request, depending on the generic Abstract Non-
Triviality property. Abstract instances are composable; this allows many new
BFT state machine replication algorithms to be built as a composition of inde-
pendent instances of Abstract. To this end, we provide a well-defined interface
to interconnect Abstract instances, which allows any ordering among Abstract in-
stances. This permits, for example, to first try to replicate the request using an
optimistic Abstract that can be implemented very efficiently and that optimizes
performance under some best-case conditions, and then fall back to a slower and
more faithful Abstract. Typically, an implementation of such an optimistic Ab-
stract is significantly simpler then developing a full fledged BFT state machine
replication algorithm.
To illustrate this approach, two new optimally resilient BFT state machine

replication algorithms are described in this thesis. These algorithms use a novel
generic BFT-SMR algorithm to compose different Abstract instances called Mod-
ular BFT-SMR. The first algorithm (called DEC ), that makes use of the notion of
refined quorums introduced earlier in this thesis, has the lowest time complexity
among all BFT state machine replication algorithms we know of, in synchronous
periods that are free from contention and failures. The second algorithm (called
Chain) has the highest peak throughput in failure-free and synchronous periods.
Several directions can be interesting to explore with Abstract in mind. It would

be interesting to devise Abstract implementations for other meaningful definitions
of the non-triviality property. There is also room for optimizing the switching
mechanism between Abstract instances. The switching mechanism could for in-
stance be improved by facilitating inter-replica communication, rather than hav-
ing all communication going through the client. Finally, we believe that a very
interesting research challenge is to define and evaluate heuristics for dynamic es-
tablishment of the switching order among Abstract instances in order to improve
performance.
Finally, we believe that machine verification of BFT algorithms (and BFT state

machine replication algorithms, in particular) is a very challenging and interesting
topic. While this thesis contains some basic steps in this direction (e.g., model
checking Modular BFT-SMR and DEC ), much work lies ahead.
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