
1

Scalable Network-layer Defense Against
Internet Bandwidth-Flooding Attacks

Katerina Argyraki and David R. Cheriton

Abstract—In a bandwidth-flooding attack, compromised
sources send high-volume traffic to the target with the purpose of
causing congestion in its tail circuit and disrupting its legitimate
communications. In this paper, we present Active Internet Traffic
Filtering (AITF), a network-layer defense mechanism against
such attacks. AITF enables a receiver to contact misbehaving
sources and ask them to stop sending it traffic; each source
that has been asked to stop is policed by its own Internet
service provider (ISP), which ensures its compliance. An ISP that
hosts misbehaving sources either supports AITF (and accepts
to police its misbehaving clients), or risks losing all access to
the complaining receiver—this is a strong incentive to cooperate,
especially when the receiver is a popular public-access site. We
show that AITF preserves a significant fraction of a receiver’s
bandwidth in the face of bandwidth flooding, and does so at a
per-client cost that is already affordable for today’s ISPs; this
per-client cost is not expected to increase, as long as botnet-
size growth does not outpace Moore’s law. We also show that
even the first two networks that deploy AITF can maintain their
connectivity to each other in the face of bandwidth flooding. We
conclude that the network-layer of the Internet can provide an
effective, scalable, and incrementally deployable solution against
bandwidth-flooding attacks.

I. I NTRODUCTION

In a distributed bandwidth-flooding attack, a large number
of compromised sources send high-volume traffic to the target
in order to create congestion and packet loss in its tail circuit;
as a result, the target’s communication to legitimate sources
deteriorates. It has been shown that such attacks can exploit
the behavior of legitimate TCP sources (which back off in the
face of packet loss) to dramatically reduce their throughput or,
in the case of long-lived flows, drive it to zero [1].

Real-life reports complement such analysis: The first well-
documented incident we are aware of is the 2001 attack against
the Gibson Research Corporation (GRC) web site. To block
the flood, GRC analyzed the undesired traffic, determined its
sources, and asked from their Internet service provider (ISP) to
manually install filters that blocked traffic from these sources;
in the meantime, their site was unreachable for more than
30 hours [2]. More recent attacks are less well documented
(the victims are increasingly unwilling to reveal the details),
but hint that botnet sizes have increased beyond thousands
of sources, while undesired traffic is harder to identify—an
article on a 2003 attack against an online betting site reports
that the undesired traffic came from more than20 000 sources,
its rate ranged from1.5 to 3 Gbps, and it was addressed at
routers, DNS servers, mail servers, and web sites [3]. Despite

Manuscript received December 25, 2007.
K. Argyraki is with the School of Computer and Communication Sciences

at EPFL, Switzerland (e-mail: see http://people.epfl.ch/katerina.argyraki).
D.R. Cheriton is with the Department of Computer Science at Stanford

University, CA, USA (e-mail: see http://www.stanford.edu/˜cheriton).

the magnitude of the problem and the indications that it is
getting worse, no effective solution has been deployed yet.

There are two basic steps in stopping a bandwidth-flooding
attack: (1) identifying undesired traffic and (2) blocking it;
this paper addresses the latter. To prevent undesired traffic
from causing legitimate-traffic loss, it must be blocked before
entering the target’s tail circuit, for example, inside thetarget’s
ISP. The first solution that comes to mind is to automate the
approach followed by GRC: one can imagine an ISP service,
in which a flooding target sendsfiltering requeststo its ISP,
and, in response, the ISP installs wire-speed filters (i.e.,filters
that do not affect packet-forwarding performance) in its routers
to satisfy these requests; each filtering request specifies traffic
from one undesired-traffic source to the target.

The problem with this approach is that it requires more
resources than ISPs can afford: Wire-speed filters in routers
are a scarce resource, and this is not expected to change in
the near future. Modern hardware routers forward packets
at high rates that allow only few lookups per forwarded
packet; to reduce the number of per-packet lookups, router
manufacturers store filters—as well as any state that must be
looked up per packet, e.g., the router’s forwarding table—in
TCAM (ternary content addressable memory), which allows
for parallel accesses. However, because of its special features,
TCAM is more expensive and consumes more space and
power [4] than conventional memory; as a result, a router
linecard or supervisor-engine card typically supports a single
TCAM chip with tens of thousands of entries. For example,
at the time of writing, the Catalyst4500, a mid-range switch,
provides a64 000-entry TCAM to be shared among all its
interfaces (from48 to 384 100-Mbps interfaces); Cisco12 000,
a high-end router used at the Internet core, provides20 000
entries that operate at line-speed per linecard (each linecard
has up to4 1-Gbps interfaces). So, depending on how an ISP
connects its clients to its network, each client can typically
claim from a few hundred to a few thousand filters—not
enough to block the attacks observed today and not nearly
enough to block the attacks expected in the near future [5].

One could argue that, if an ISP does not have enough filters
to block traffic from each undesired-traffic source to each
targeted client, it can aggregate filtering rules, i.e., useone
filter to block traffic from multiple sources. The problem is that
such filter aggregation can lead tocollateral damage: imagine
a scenario where1000 AOL clients flood a public-access site
and, in response, the target’s ISP blocks all traffic from AOLto
the target, including traffic from AOL’s legitimate clients; such
a measure that sacrifices a significant portion of the target’s
legitimate traffic can be more damaging to the target’s business
than the attack itself.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Infoscience - École polytechnique fédérale de Lausanne

https://core.ac.uk/display/147944768?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

2

If an ISP does not have enough filters to block undesired
traffic to its clients, it can appeal to other ISPs—a distributed
attack coming from hundreds of domains necessarily involves
hundreds of routers, which means that millions of filters are
available to help block undesired traffic. However, any filtering
mechanism that involves inter-ISP cooperation faces two major
challenges. The first one is securing the mechanism itself
against attacks: once an ISP starts accepting filtering requests
to block traffic against alleged flooding targets, a malicious
entity can pose as the ISP of a flooding target and send filtering
requests to disrupt communication between end hosts or even
ISPs. The second challenge is motivating other ISPs to help:
without an incentive, an ISP is unlikely to spend its resources
helping some flooding target located in a foreign domain.

In this paper, we present Active Internet Traffic Filtering
(AITF), a network-layer filtering mechanism that enables a
receiver to explicitly deny tail-circuit access to misbehaving
sources, while addressing these challenges. We show that:

• AITF enables a receiver to preserve on average more than
80% of its tail circuit in the face of a SYN-flooding attack
that exceeds the target’s tail-circuit capacity by a factor
of 10 (§V).

• AITF requires an amount of per-client resources afford-
able for today’s ISPs; the cost of these resources is not
expected to increase with time, as long as botnet-size
growth does not outpace Moore’s law (§VI).

• AITF does not require any pre-configured inter-ISP re-
lationships or any public-key infrastructure; it is incre-
mentally deployable, in the sense that even the first two
ISPs that deploy it can maintain their connectivity to each
other in the face of bandwidth flooding (§IV).

We conclude that the network layer of the Internet can provide
an effective, scalable, and incrementally deployable solution
against bandwidth-flooding attacks.

The rest of the paper is organized as follows: After stating
our assumptions (§II), we describe AITF in two steps: first the
core of the protocol (§III), then certain extensions that shield
it against non-cooperative or malicious behavior (§IV). Then
we evaluate AITF: we compute its effectiveness in protecting
receivers (§V) and the resources required by participating
providers (§VI), then demonstrate our results through simu-
lation (§VII). Finally, we discuss limitations and open issues
(§VIII), present related work (§IX), and conclude (§X).

II. A SSUMPTIONS

To block undesired traffic, we assume that receivers have
the capability to identify it, while routers have the capability
to filter it. We now justify these assumptions, some of which
already hold in the current Internet, while others can be
satisfied through existing research proposals.

1) Path Identification: We define thedomain-level path
of a received packet as the sequence of border routers that
forwarded the packet; aborder routeris a router that intercon-
nects different administrative domains. We assume that there
exists a (not necessarily globally deployed) path-identification
mechanism that enables participating domains to associatethe
packets they forward with some form of identity, such that

the receiver of a packet can combine these identities and
reconstruct part of the packet’s domain-level path. E.g., in an
early deployment scenario, as in Fig. 1, where onlySNET and
RNET have deployed path identification, the receiverR can
identify {Sgw Rgw } as part of the domain-level path.

Researchers have already proposed ways to provide path
identification viarecord route, i.e., by enabling routers to mark
forwarded packets, such that a packet’s path is specified inside
its headers: NIRA [6], WRAP [7], and the Points of Control
approach [8] all provide sufficient path identification for AITF.
Whatever the underlying record-route mechanism, we do not
assume that it is globally deployed; the only domains that have
to deploy it are the ones that also deploy AITF.

2) Undesired-traffic Identification:We define apacket flow
as a sequence of packets with a common source IP address,
domain-level path specification, and destination IP address;
we use notation {source domain_level_path destination} to
specify a flow. For instance, in Fig. 1, traffic with source
IP addressS, domain-level path specification {Sgw Rgw },
and destination IP addressR constitutes a flow, denoted by
{S Sgw Rgw R}. We assume that a receiver can run an
“undesired-flow identification system,” which takes as input
incoming traffic and outputs specifications of undesired flows;
a flow is classified asundesiredonce the receiver decides
it does not want to receive it for a certain amount of time.
We base this assumption on the fact that existing technology
already identifies undesired flows in terms of their source
and destination prefixes (and potentially other header fields in
use today) [9], [10]; once the domain-level path is specified
inside a packet’s headers, it should be possible to extend this
technology to take it into account.

3) Path-based Wire-speed Filtering:We assume that a
router that runs the AITF protocol (which, as we will see,
is necessarily a border router) can install a wire-speed filter
that blocks all traffic matching a certain flow specification.We
base this assumption on the fact that modern routers already
use wire-speed filters to block packets based on their IP and
transport-layer headers; once the domain-level path is specified
inside a packet’s headers, it should be possible to use the same
technology to filter the packet based on its domain-level path.

4) Provider-client Message Authentication:We assume that
a provider can verify the authenticity of messages sent from
its own clients, and a client can verify the authenticity of
messages sent from its own provider. This can be achieved
with message authentication codes or three-way handshakes.

5) Non-compromised Path:We assume that, in order for a
source-receiver pair to be able to communicate, the network
elements (typically routers) that are on the path between
them must not be compromised. Our rationale is that, once
a router gets compromised, all the communications served by
it are at its mercy: the router can drop their traffic or hijack
their TCP connections. Of course, if a source-receiver pair
can communicate over multiple paths, and at least one of
them is not compromised, they should be able to maintain
their communication—akin to how multi-path communication
between access points and clients increases attack resilience
in the Stateless Multipath Overlays approach [11]. Combining
multi-path with AITF is part of our future work.

3

Fig. 1. SourceS sends undesired traffic to receiverR through routers
Sgw (in S’s domain) andRgw (in R’s domain).SNET andRNET have
deployed AITF (and the underlying path-identification mechanism).
R identifies{S Sgw Rgw R} as an undesired flow.

III. T HE BASIC AITF PROTOCOL

We now describe the basic elements of the Active Internet
Traffic Filtering (AITF) protocol. For simplicity, we initially
assume all domains that deploy AITF to be honest and well
behaved, then relax these assumptions in §IV.

A. Players

AITF involves four players per undesired flow, illustrated
in Fig. 1:

• The receiverR is the target of the undesired flow.
• The sourceS is the node generating the undesired flow.
• The receiver’s gatewayRgw is a border router located

in R’s ISP, on the path fromS to R, before R’s tail
circuit. Note thatRgw is not significantly affected by
the attack; if it were (i.e., if its own tail circuit were
congested),Rgw itself would be the “receiver,” while the
role of the receiver’s gateway would be played by another
router upstream.

• Thesource gatewaySgw is a border router located inS’s
ISP, on the path fromS to R.

These four players communicate through AITF messages,
which include one or morefiltering requests. Each filtering
request includes the specification of an undesired flowF and
the amount of timeWf (called thefiltering window) for which
the requester does not want to receiveF .

For simplicity, we make three temporary assumptions that
we relax in §IV:

1) The source gatewaySgw cooperates with the receiver’s
gatewayRgw to help the receiver.

2) Filtering requests are not malicious, i.e., they indeed
originate from the specified undesired-traffic receiverR and
correspond to traffic indeed sent from the specified sourceS.

3) The receiver can trust the path specified inside each
received packet, i.e., it knows the true sourceS and the true
source gatewaySgw for each undesired flow.

B. Algorithm Overview

Once a receiverR identifies an undesired flowF , it contacts
the corresponding sourceS and asks it to stop sendingF for
an amount of timeWf . R’s request is propagated throughRgw

andSgw , which temporarily blockF to immediately protectR
until S complies. The parameters of the protocol are defined
in Table I.

More specifically,R sends a filtering request to its gateway
Rgw to blockF for Wf . In response,Rgw installs a temporary
filter that blocksF for time Tdr ≪ Wf and forwards the
request to the source gatewaySgw ; once Sgw satisfies the
request,Rgw removes its temporary filter. Similarly,Sgw

installs a temporary filter that blocksF for time Tds ≪ Wf ,
logs the request forWf , and forwards the request toS; once
S satisfies the request,Sgw removes its temporary filter.

If S does not cooperate (i.e., continues to sendF), Sgw

classifiesS as non-cooperatingand blocks allS-originated
traffic. If S “pretends” to cooperate (i.e., stops sendingF , but
resumes beforeWf has elapsed), the following takes place:R

sends a second filtering request againstS; upon receiving this
second request,Sgw checks its log, detects thatS has already
been told to stop sendingF , classifiesS as non-cooperating,
and blocks allS-originated traffic.

C. Details and Rationale

We now discuss and justify the three key elements of the
algorithm outlined above.

1) Temporary Filters: AITF-enabled routers install wire-
speed filters only temporarily, in order to allow for efficient
filter reuse: The receiver’s gateway installs a filter to selec-
tively block each undesired flow forTdr ≪ Wf ; once the
source gateway has taken over filtering this flow, the receiver’s
gateway can reuse its filter to satisfy another filtering request.
Similarly, the source gateway installs a filter to selectively
block each undesired flow forTds ≪ Wf ; once the source
stops sending the flow, the source gateway can reuse its
filter to satisfy another filtering request. Of course, the source
gateway must still keep a log on each filtering request for
Wf , in order to ensure that the corresponding source is
cooperating. However, keeping a log on a filtering request for
tens of minutes is significantly less expensive than filtering the
corresponding undesired flow for the same amount of time;
this is because filters are stored in TCAM, whereas logs can
be stored in conventional DRAM, accessed off the router’s
fast path. So, AITF does not reduce the amount of router state
necessary to block an undesired flow, but “moves” it off the
fast path, i.e., from an expensive, physically-limited state store
to a commoditized one.

2) Selective vs Aggregate Filtering:A source gateway uses
two different ways to block a source’s undesired traffic: first,
it uses multiple selective temporary filters to block each
undesired flow; second, if the source is classified as non-
cooperating, the source gateway by default uses a single
aggregate long-term filter to block all its traffic, until the
source’s owner fixes the vulnerability that caused it to send
undesired traffic and contacts her provider. Selective filtering
preserves the source’s legitimate traffic, but requires onefilter
per undesired flow; hence, it is reserved for well behaved
sources, which quickly cooperate, allowing the source gateway
to reuse its filters for other purposes. Aggregate filtering
requires a single filter, but sacrifices the source’s legitimate
traffic. We choose this, admittedly draconian, default policy
against non-cooperating sources, because it minimizes the
amount of filtering resources that a provider spends on mis-
behaving clients. However, a provider is free to implement

4

Parameter Meaning Example value
Outbound filtering request rate (REQout) Rgw honors this rate of filtering requests fromR. 1000 req/sec
Inbound filtering request rate (REQin) Sgw honors this rate of filtering requests againstS. 1000 req/sec
Filtering window (Wf) After Wf , S is allowed to sendF traffic again. 10 minutes
Rgw deadline (Tdr) Rgw expectsSgw to block F within Tdr from the moment it sends the filtering request to it.1 sec
Sgw deadline (Tds) Sgw expectsS to stopF within Tds from the moment it sends the filtering request to it. 10 msec

TABLE I
THE PARAMETERS OF THEAITF PROTOCOL

more lenient per-client policies, where it blocks progressively
larger aggregates from a non-cooperating client (rather than
immediately block all its traffic), as long as it can afford the
necessary resources (we discuss this in §VIII-B).

3) Filtering Window: Each filtering request includes a
filtering window Wf , i.e., the amount of time for which the
specified undesired-traffic source is asked to stop sending
traffic to the receiver, which is on the order of minutes.
Choosing a value forWf involves the following trade-off: The
largerWf is, the longer each source is forced to stop sending
traffic to the receiver—otherwise, it gets all its traffic blocked.
However, undesired-traffic sources are typically infectedhosts
that, once patched and brought back online, should be able to
send (legitimate) traffic to the receiver; the largerWf is, the
longer each former undesired-traffic source must wait before
being able to send legitimate traffic to the receiver once it has
been patched. We show howWf affects the effectiveness of
AITF in §V; we show how it affects its cost in §VI.

D. Controlling Resource Consumption

There are three knobs for controlling resource consumption:
1) The receiver’s gateway has the notion of a per-clientout-

bound filtering request rate(REQout), which is the maximum
rate of filtering requests from this client thatRgw honors; if the
client exceeds this rate, its requests get dropped. In this way,
a single undesired-traffic receiver cannot exhaust/monopolize
its provider’s resources.

2) The source gateway has the notion of amaximum filtering
window Wfmax : even if the filtering window specified in a
filtering request exceedsWfmax , the source gateway logs the
filtering request only forWfmax .

3) The source gateway also has the notion of a per-client
inbound filtering request rate(REQin), which is the maximum
rate of filtering requests against this client thatSgw honors;
requests against the client beyond this rate are dropped.

E. Legacy Traffic

When the traffic addressed to an AITF receiver exceeds a
pre-configured threshold, the receiver’s gateway gives priority
to packets carrying path information; in this way, undesired
legacy traffic can only affect other legacy traffic, but not the
traffic coming from other AITF-enabled domains.

IV. OPERATION IN NON-COOPERATIVEENVIRONMENTS

In a non-cooperative environment, the three assumptions
made in §III-A do not always hold, namely, source gateways
may not cooperate, filtering requests may be malicious, and
path specifications may be spoofed. We now remove these
assumptions and show how AITF operates in non-cooperative,
potentially malicious environments.

A. Non-cooperating Source Gateways

A source gateway may not cooperate for three reasons:
first, it may not have the resources to satisfy every filtering
request; second, it may be compromised and controlled by
the same attacker that controls the undesired-traffic source(s);
third, and most important, a provider has no incentive to block
traffic from (and potentially dissatisfy) its own clients, even if
they are misbehaving, in order to help some complaining host
located in a foreign administrative domain.

To deal with non-cooperating source gateways, AITF offers
the option ofescalation: a receiverR can ask its gateway to
block all traffic from a non-cooperating source gatewaySgw

to R. Hence, a source gateway either cooperates and blocks
undesired traffic from its misbehaving clients or risks losing
all connectivity to the complaining receiver.

In a full-deployment scenario,R escalates by sending out
a filtering request that specifies all traffic fromSgw as the
undesired flow and the next border router on the path fromSgw

to R as the source gateway—i.e., the non-cooperating source
gateway becomes an undesired-traffic source, while the roleof
the source gateway is now played by another border router. In
an early deployment scenario, where the only AITF-enabled
routers areSgw andRgw , this is not an option; in this case,R

sends out filtering requests againstSgw every Tdr , such that
all traffic from Sgw to R remains blocked atRgw .

Escalation is reminiscent of aggregate filtering of a misbe-
having source’s traffic: using multiple selective filters toblock
each undesired flow from a non-cooperating source gateway
would be too expensive; instead, the receiver’s gateway uses
a single aggregate filter to block all traffic from the source
gateway to the receiver. We choose this as the default policy
toward non-cooperating source gateways, because it minimizes
the amount of filtering resources that a receiver consumes
due to non-cooperating networks that refuse to deal with their
misbehaving clients. Of course, a receiver is free to implement
more lenient policies, as long as it can afford the necessary
resources (we discuss this in §VIII-B).

B. Malicious Filtering Requests

A filtering request has three possible outcomes: all traffic
from the sourceS to the receiverR is blocked; all traffic from
the sourceS is blocked; or, all traffic from the source gateway
Sgw to R is blocked (ifSgw does not cooperate). Hence, there
are three ways in which a malicious nodeM may try to abuse
filtering requests to disrupt legitimate communications:

• It may try to disconnect a sourceS from a receiverR:
pretend to beR’s gateway and ask fromS to stop sending
it traffic.

5

Fig. 2. AITF message exchange: The receiverR sends a filtering
request to its gatewayRgw , specifying an undesired flowF ; Rgw

propagates the request to the source gatewaySgw ; Sgw responds
with a proof request sent toR that includes the undesired-flow
specification and a cookieC; Rgw intercepts the proof request and
generates a proof response with the undesired-flow specification and
the same cookieC; Sgw receives the proof response, verifies that it
includes a valid cookie, and propagates the filtering request to the
undesired-traffic sourceS.

• It may try to disconnect a sourceS from its network:
send bogus filtering requests againstS, so that S is
misclassified as non-cooperating and blocked.

• It may try to disconnect a source gatewaySgw from
its receivers: send it lots of bogus filtering requests, so
thatSgw cannot respond to legitimate requests by honest
receivers and loses access to these receivers.

Next, we describe how AITF prevents each type of abuse.
1) Verifying the Origin of Filtering Requests:The source

and receiver’s gateways perform a three-way handshake, illus-
trated in Fig. 2: when receiver gatewayRgw sends a filtering
request to source gatewaySgw , the latter responds with aproof
request, addressed to the alleged receiverR; by intercepting
this proof request and sending it back (as aproof response) to
Sgw , Rgw proves that it is indeed on the path toR.

To prevent a malicious nodeM that is not on the path from
Rgw to Sgw from guessing the contents of the proof request,
Sgw includes in it acookie, which is computed as follows:

cookie = hashck (R)

where hash is a one-way keyed hash function,ck is a
periodically regenerated secret known only toSgw , and R

is the IP address of the alleged receiver. The cryptographic
properties of the hash function guarantee the following: first,
M cannot practically guess the cookie included in the request,
unless it knows the secretck ; second, a node thatis on the path
of a certain proof request and observes the included cookie
cannot practically compute from it the value of the secret
or of cookies that correspond to other receivers. Note that
this stateless-handshake approach protectsSgw from filtering-
request floods the same way TCP SYN cookies protect servers
from SYN floods [12].

2) Verifying Non-cooperation Claims:Before classifying a
sourceS as non-cooperating, its gatewaySgw first monitors
S’s traffic to verify that it is indeed misbehaving; by “monitor-
ing” we mean thatSgw keeps a record of the destinationsS has
sent traffic to within a certain period of timeWm (called the

monitoring window), which is on the order of a few seconds.
Whenever a new filtering request arrives againstS, Sgw checks
its record; if the request does not concern traffic sent byS

within the last monitoring window, it is dropped. As a result,
S is never misclassified and blocked due to a false claim.

To allow the source gateway to verify non-cooperation
claims in this manner, each receiver gives it two chances to co-
operate: Suppose receiverR has sent a filtering request against
undesired flowF generated by sourceS. If F reappears before
Wf has elapsed,R sends a second filtering request against it;
in response,Sgw starts monitoring traffic fromS. If F appears
for a third time,R sends a third filtering request against it;
now Sgw can check its monitoring log, verify thatS is not
cooperating, and block all its traffic. In the worst-case scenario,
Sgw does not cooperate andF appears for a fourth time; as a
result,R escalates and blocks all traffic fromSgw .

3) Taming Filtering-request Floods:The same technique is
used to prevent a set of compromised nodes from exhausting
a source gateway’s resources with bogus filtering requests (in-
cluding non-cooperation claims): whenever a source gateway
receives an unusually high rate of requests from an alleged
receiver’s gateway, it starts monitoring traffic to that gateway;
if it turns out that its requests are bogus (i.e., do not correspond
to traffic actually sent to it during the last monitoring window),
the receiver’s gateway is classified as “malfunctioning” and
all its filtering requests are dropped. An honest receiver’s
gateway can prevent its clients from causing it to be classified
as malfunctioning by regulating the rate of outbound filtering
requests per targeted source gateway.

C. Spoofed Addresses and Paths

The path specified inside a received packet may not corre-
spond to the actual path followed by the packet because of
source-address or path spoofing.

1) Source-address Spoofing:AITF does not detect source-
address spoofing nor handle it specially. If the source specified
in an undesired flow isS, the corresponding source gateway is
asked to block all traffic fromS to the receiver, even ifS is not
the true identity of the undesired-traffic source. A malicious
node can abuse this to disrupt communications between a
receiver and a source located behind the same gateway with
the malicious node. It is up to the provider of the malicious
node to detect this activity or prevent it by taking anti-spoofing
measures. I.e., if a provider hosts potential undesired-traffic
sources, it is in the provider’s best interest to prevent source-
address spoofing within its network, in order to protect its own
clients from each other.

2) Path Spoofing:Consider a partial deployment scenario,
where two AITF-enabled domains are interconnected through
legacy domains, as in Fig. 1. In this case, a malicious node
located in a legacy domain can generate packets that appear
to be coming fromSNET and are addressed toR. As a result,
SNET is asked to block traffic it does not generate; if it just
drops the request,R misclassifiesSNET as non-cooperating
and potentially blocks all its traffic.

We can prevent such abuse in the following way: Each
source gatewaySgw can (1) mark outgoing packets with a

6

stamp that depends on the packet’s destination domain and
(2) communicate that stamp to the corresponding receiver’s
gatewayRgw ; the latter can then drop all incoming traffic
that claims to be coming fromSgw but has an invalid stamp.
Such packet stamping can be initiated bySgw , in response to
filtering requests against traffic that it never sent; in thiscase,
Sgw piggy-backs the stamp on the corresponding three-way
handshake. Alternatively,Rgw can preventively ask for packet
stamping from all its source gateways, before any attack takes
place; in this case, it pays the cost of more incoming traffic
(because all packets are augmented with a stamp), but drops
all spoofed traffic, making it easier for its clients to identify
undesired flows.

To prevent a malicious nodeM that is not on the path from
Sgw to certain destination from guessing the corresponding
stamp1, Sgw computes stamps as follows:

stamp = hashsk (dst_prefix)

wherehash is a one-way keyed hash function,sk is a period-
ically regenerated secret known only toSgw , anddst_prefix

is the destination prefix of the packet. The cryptographic
properties of the hash function guarantee the following: First,
M cannot practically guess the stamp included in a packet,
unless it knows the secretsk . Second, a node thatis on the path
of a certain packet and observes the included stamp cannot
practically compute from it the value of the secret or of stamps
that correspond to other destination domains.

D. Summary

To deal with non-cooperating gateways, AITF offers the
option of escalation: ISPs that host attack sources either co-
operate and police their misbehaving clients, or risk losing all
access to the complaining receiver(s). The origin of a filtering
request is verified through a three-way handshake between the
two involved networks, while the claim of a filtering requestis
verified by monitoring the alleged source. Finally, to prevent
path spoofing, source networks mark outgoing packets with
hard-to-guess, destination-dependent stamps.

V. EFFECTIVENESS

In this section, we describe the different flooding strategies
that can be used against an AITF-enabled receiver, then
compute an upper bound on the damage each strategy can
inflict on the receiver’s tail circuit. We omit the straightforward
proofs and justify these bounds intuitively; for more details,
we refer the reader to [13].

A. Attack Model

Each attack consists of a certain number of undesired flows
Nuf ; each undesired flow corresponds to one source. Different
sources may send at different rates, but, for simplicity, we

1In [13] we compute the probability of an off-path attacker guessing the
stamp as a function of its size. As an example, in the current Internet, a
128-bit stamp could be guessed with probability1.3 · 10

−25, while it would
introduce roughly4% bandwidth overhead.

assume that each sourcei sends at one rateri .2 The highest
rate of undesired traffic arrives at the receiver’s tail circuit
when all sources send at the same time; we call this the
aggregate undesired-traffic rateand it is equal toRut = Σ∀iri ,
i ∈ [0,Nuf). This model corresponds to an attack in which the
botnet master turns different bots on and off, but does not vary
the rate at which each bot sends when it is on.

The receiver identifies undesired flowi after receivingbi
id

bits from it. Hence, the total number of unidentified bits
that the receiver gets before identifying all undesired flows
is Bid = Σ∀ib

i
id , i ∈ [0,Nuf); we call this theidentification

overhead. The receiver uses the same filtering windowWf

in all filtering requests it sends throughout the attack;Wf is
larger than the amount of time it takes to receiveBid bits.

A source S can inflict different types and amounts of
damage to the receiverR’s tail circuit depending on how it
behaves when asked to stop sending undesired flowF . Ideally,
S stops sendingF and never resumes—we do not discuss this
further, as it is the best case for our mechanism. We distinguish
three other cases:

• Deaf sources ignore filtering requests and are immedi-
ately identified and blocked.

• Lying sources stop sending undesired traffic when so
requested, but resume after the corresponding source
gateway has removed its temporary filter, beforeWf has
elapsed. As a result, they manage to send multiple rounds
of traffic before they are identified and blocked.

• On-off sources cooperate with filtering requests, but
resume sending undesired traffic after the requests have
expired. As a result, they avoid punishment, yet force the
receiver to re-detect their undesired traffic and send new
filtering requests against them every filtering window.

To describe the short- and long-term damage inflicted by
these flooding strategies, we use the following metrics:

• The initial overheadis the number of undesired bits re-
ceived until all undesired flows are identified and blocked
for the first time.

• The tail-circuit capacity lossis the fraction of the re-
ceiver’s tail circuit that is consumed by undesired traffic
throughout the attack, computed at the granularity of a
filtering window.

We express our results in terms of the AITF parameters defined
in Table I and the receiver and attack parameters defined in
Table II.

B. Result Summary

The initial overhead inflicted by deaf sources is bounded
according to Eq. 1; this gives the maximum number of un-
desired bits received until the receiver identifies all undesired
flows and sends a filtering request against each one, and until
these requests take effect.

Lying sources can inflict a bigger initial overhead, bounded
according to Eq. 2, at the cost of having all their traffic

2The model could be easily adjusted to capture the case where each source
sends at more than one rate, if we break the traffic sent by each source into
multiple flows in such a way that each flow has only one possible rate.

7

Metric Description Units
Tail-circuit capacity (Ctc) The capacity of the bottleneck link between the receiver andits gateway. bps
Tail-circuit RTT (RTTtc) The round-trip time between the receiver and its gateway. seconds
Aggregate undesired-traffic rate (Rut) The maximum rate at which undesired traffic arrives at the receiver’s tail circuit. bps
Average undesired-flow rate (r̄i) The average rate at which each undesired flow arrives at the receiver’s tail circuit. bps
Aggregate identification overhead (Bid) The total number of unidentified bits that the receiver must getbefore identifying all undesired flows. bits

Identification time (Tid) Tid =
Bid

Rut
seconds

A measure of the amount of time it takes to identify an undesired flow.
It corresponds to the average identification overhead divided by the average undesired flow rate.

Number of undesired flows (Nuf) The total number of different undesired flows sent to the receiver during the attack.
Each undesired flow corresponds to a single source.

Request time (Treq) Treq =
Nuf

REQout
The amount of time it takes to send filtering requests against all undesired flows. seconds

TABLE II
PARAMETERS USED TO QUANTIFYAITF EFFECTIVENESS

blocked. The factor of4 in Eq. 2 captures the fact that lying
sources force the receiver to send multiple (up to four) filtering
requests in order to block each undesired flow.

On-off sources inflict the same maximum initial overhead
with deaf sources. Moreover, they periodically resume their
attack and, hence, re-inflict up to the same overhead during
each filtering window; the resulting tail-circuit capacityloss
is bounded according to Eq. 4.

To give some concrete numbers, consider a receiver with
tail-circuit capacityCtc = 100 Mbps, RTTtc a few millisec-
onds, filtering windowWf = 10 minutes, and outbound fil-
tering request rateREQout = 1000 requests/second. Suppose
this site is under a SYN-flooding attack byNuf = 100 000 on-
off sources; each source sends10 Kbps, so undesired traffic
arrives at the site’s tail circuit at ten times its capacity,i.e.,
Rut = 1 Gbps. Suppose it takes10 Kbits to identify each
undesired flow (roughly20 SYN packets), soTid = 1 second.
Given these numbers,λ ≤ 0.19, which means that the target
preserves on average more than80% of its tail circuit in the
face of an attack that exceeds its capacity by a factor of ten.

C. Deaf and Lying Sources

Consider a hostR receivingNuf flows from deaf sources.
R incurs initial overhead

Bo ≤ Bid + CtcTreq + RutRTTtc (1)

The bound is derived by breaking down the impact of deaf
sources on the receiver’s tail circuit into three components:
The identification overhead(Bid) consists of undesired traffic
received before the corresponding flows are identified as un-
desired. Therequest overhead(CtcTreq) consists of identified
undesired traffic received beforeR sends filtering requests
against the corresponding flows: it takesTreq =

Nuf

REQout

seconds forR to send filtering requests against allNuf flows;
the maximum number of bits thatR can receive within
this interval isCtcTreq . The blocking overhead(RutRTTtc)
consists of identified undesired traffic received afterR has sent
filtering requests against the corresponding flows.

Now consider a hostR receiving Nuf flows from lying
sources.R incurs initial overhead

Bl ≤ Bid + 4(CtcTreq + RutRTTtc) (2)

The difference between deaf and lying sources is that the latter
manage to send undesired traffic up to four times before being

identified and blocked (see §IV-B2)—hence,R incurs up to
four times the maximum request and blocking overhead caused
by deaf sources.

Eq. 1 and 2 may overestimate initial overhead in two ways:
First, they assume that the receiverfirst identifies all flows
and then starts sending filtering requests against them; this
may not be the case, for instance, in a simple SYN-flooding
attack, where the receiver can identify flows and send filtering
requests in parallel. Second, the equations assume that the
receiver’s tail circuit is flooded until all undesired flows have
been blocked; this may not be the case, as there may not be
enough undesired flows to consume100% of the receiver’s
tail circuit. So, the upper bounds of the two equations are
reached only in sophisticated attacks, where (1) the receiver
must first process all undesired flows before identifying them
and (2) there are enough undesired flows to consume all of
the receiver’s tail circuit until they are all blocked.

D. On-off Sources

The maximum number of on-off sources that an AITF-
enabled receiver can keep blocked is

Nfmax = REQout · Wf (3)

The gist of the equation is that a receiver cannot block more
flows than can be blocked within a filtering windowWf :
onceWf elapses, previously blocked flows reappear, and the
receiver must spend its resources re-blocking these recurring
flows rather than block new ones. For instance, a receiver
with REQout = 1000 flows/second andWf = 10 min cannot
handle more than600 000 on-off sources.

Consider a hostR receivingNuf ≤ Nfmax flows from on-
off sources.R incurs initial overheadBo , bounded according
to Eq. 1, and tail-circuit capacity loss

λ ≤
Rut

Ctc

·
Tid + RTTtc

Wf

+
Treq

Wf

(4)

The bound is derived by assuming thatR receivesBo unde-
sired bits during every filtering windowWf .

The first term of Eq. 4 captures the identification and
blocking overhead, i.e., the fact that the receiver must identify
and block each undesired flow during every filtering window;
it depends on how the undesired-traffic rate (Rut) compares
to the receiver’s tail-circuit capacity (Ctc), and how the
amount of time for which each undesired flow is received

8

(Tid +RTTtc) compares to the amount of time for which it is
blocked (Wf). The second term captures the request overhead,
i.e., the fact that the receiver must send filtering requests
against all undesired flows during every filtering window; it
depends on how the amount of time it takes to send filtering
requests (Treq) compares to the amount of time for which
undesired flows are blocked (Wf).

E. Limits

When the aggregate undesired-traffic rateRut is so large
that the bound given by Eq. 4 exceeds1, then the receiver’s
tail circuit is flooded despite AITF. For instance, consider
again the example of Section V-B, where a receiver with
tail-circuit capacity Ctc = 100 Mbps is under attack by
Nuf = 100 000 on-off sources. We said that, ifRut = 1
Gbps, AITF enables this receiver to preserve more than80%
of its tail-circuit capacity. However, if the same receivercomes
under aRut = 50-Gbps attack, then its tail circuit is flooded
despite AITF.

On the other hand, if an attack is sending50 Gbps to
a certain site, it is most likely flooding not only the site’s
connection to its ISP, but also the ISP link that carries the
undesired traffic to the site—today, such an attack would
be enough to flood the Internet core. This means that the
“tail circuit” is not the site’s100 Mbps connection, but the
congested ISP link (which most likely has a capacity of
hundreds of Mbps), and the “receiver” of the undesired traffic
is not the site, but the ISP router at the end of the congested
ISP link. So it is now up to the affected router to identify
undesired flows and send filtering requests against them.

VI. D EPLOYMENT COST

In this section, we look at AITF deployment cost. For com-
pleteness, we first discuss what it takes to identify undesired
traffic today—we do not provide a complete solution, merely
give a rough sense of the kind of tools and the amount of time
it requires (§VI-A). Then, we compute the amount of resources
required to deploy AITF today (§VI-B) and examine how their
cost is expected to evolve as the Internet grows (§VI-C).

A. Undesired-traffic Identification

Accurate identification requires anti-spoofing measures, so
the first question is whether spoofing is still an issue today.
Beverly and Bauer’s Spoofer project currently shows that close
to a fifth of Internet addresses and a quarter of Autonomous
Systems allow the corresponding hosts to spoof [14]. So,
even though we do not know to what extent bandwidth-
flooding sources use spoofing (victims do not typically release
such information), we do know that many of them can still
do it. Hence, a provider that chooses to offer its clients
the capability of quick identification (and, hence, blocking)
of undesired traffic, must pay the cost of preventive packet
stamping (§IV-C).

Next, we look at how a receiver can identify (non-spoofed)
undesired flows. We first consider a simple SYN-flooding at-
tack, where100 000 sources flood the receiver’s100 Mbps tail

circuit with SYN packets—we choose these values, because,
at the time of writing, botnet sizes are reported to be on the
order of tens of thousands, while a Web search for “unmetered
servers” shows that100 Mbps is the state-of-the-art tail-circuit
capacity for online services. Suppose the receiver classifies
traffic from a source as an undesired flow, as soon as it has
received20 SYN packets (about10 Kbits) from the source.
In this case, the receiver needs1 Gbit of undesired traffic to
identify all undesired flows; assuming legitimate TCP flows
consume a small fraction of the tail circuit and quickly back
off in the face of the attack, it takes about10 seconds for the
receiver to identify all undesired flows.

An attacker can make things harder by emulating a flash
crowd, i.e., flood the receiver with legitimate-looking traffic,
such that the receiver cannot tell legitimate from undesired
flows. One way to deal with such an attack is to classify a flow
as undesired when it is not generated by a human user. Online
services already use reverse Turing tests to identify flows
that are not generated by humans; researchers have showed
how to use them to identify denial-of-service traffic: the
receiver responds to each SYN packet with a reverse-Turing
test challenge; traffic from sources that keep sending false
responses (or new SYN packets) is classified as undesired [15].
In this way, an attacker cannot use bots to emulate legitimate
behavior and can at best resort to a simple SYN-flooding attack
as described above.

B. A Sample Configuration and its Cost

Table III shows the number of per-client filters and the
amount of per-client memory that a provider needs to deploy
AITF as a function of its parameters. Note that the provider’s
routers act both as receiver’s and source gateways for its
clients, hence, the provider needs resources to satisfy both
outbound and inbound filtering requests.

To use the equations of Table III, we must first derive
a sample AITF configuration—if a provider deployed AITF
today, what would be reasonable values for the parameters of
Table I?

The receiver-gateway deadline(Tdr , the amount of time
for which the receiver’s gateway blocks each undesired flow
until the source gateway takes over) must be long enough to
accommodate the three-way handshake between the receiver’s
and the source gateway; given that, at the time of writing,
Internet round-trip times are on the order of hundreds of
milliseconds [16], a conservative value would be1 second.
Similarly, the source-gateway deadline(Tds) must be long
enough to accommodate a round-trip time between the source
gateway and the source; a conservative value for a modern
network would be10 milliseconds.

The maximumoutbound filtering-request rate (REQout)
that the receiver’s gateway accepts from a certain receiveris
bounded by the number of filtersFout that the provider can
devote to that receiver. In §I, we argued that, at the time of
writing, it is reasonable to assume from a few hundred to a few
thousand filters per client; for instance, ifFout = 1000 filters
andTdr = 1 second, the provider can acceptREQout = 1000
requests/second from the receiver (Table III). When source

9

Resource Amount Usage Explanation
Filters Fout = REQout · Tdr Block unwanted traffic to the client. The corresponding receiver’s gateway accepts request rateREQout

from the client and blocks each specified flow forTdr .
Fin = REQin · Tds Block unwanted traffic from the client. The corresponding source gateway accepts request rateREQin

against the client and blocks each specified flow forTds .
DRAM slots L = REQin · Wfmax Log filtering requests against the client. The corresponding source gateway accepts request rateREQin

against the client and logs each request forWfmax .

TABLE III
PER-CLIENT RESOURCES REQUIRED BY ANAITF-ENABLED PROVIDER

gateways cooperate, this rate is enough to block traffic from
up to600 000 sources (§V-D, Eq. 3). In the worst-case scenario
(none of the source gateways cooperate, and none of the
other border routers on the path support AITF), the receiver’s
gateway locally blocks traffic from each source gateway to the
receiver (§IV-A); in that case, a rate of1000 requests/second
is enough to block traffic from1000 source gateways.

When source gateways do not cooperate and the receiver
is not granted a large enoughREQout to have traffic from
each one of them blocked, it must somehow choose the
“worst” source gateways to block. Chen et al. recently ob-
served that compromised sources tend to be clustered—in their
DShield.org trace, about80% of the sources were concentrated
in the same20% of the IP address space [17]. At the time of
writing, assuming one domain per Autonomous System (AS),
a rate of6000 requests/second would be enough to block traffic
from about a fifth of Internet domains.

The maximum inbound filtering-request rate (REQin)
that the source gateway accepts against a certain source is
bounded by the number of filtersFin that the provider can
devote to this task; assumingFin = 10 filters andTds = 10
milliseconds, the provider can acceptREQin = 1000 re-
quests/second against the source (Table III).

Thefiltering window (Wf) must be long enough so that the
receiver has time to identify all the undesired flows and send
filtering requests against them before they start reappearing—
hence, the right value depends on the nature of the attack.
For instance, consider a SYN-flooding attack (like the one de-
scribed in §VI-A), where100 000 sources generate1 Gbps of
undesired traffic against the receiver’s100 Mbps tail circuit: it
takes about10 seconds for the receiver to identify all undesired
flows and, assumingREQout = 1000 requests/second, at most
another10 seconds to send filtering requests against them; in
this case, a filtering window ofWf = 10 minutes preserves
more than80% of the receiver’s tail circuit (§V-D, Eq. 4).

The filtering window determines the amount of memory
used at the source gateway to log incoming filtering requests;
assuming a maximum filtering window ofWfmax = 10
minutes andREQin = 1000 requests/second, a provider needs
enough memory to logL = 600 000 requests per client
(Table III); assuming about20 bytes per request (enough
to fit the receiver and receiver-gateway’s addresses and a
timestamp), this corresponds to12 MB of DRAM per client.

To summarize, our sample configuration requires a few
thousand filters and a few MB of DRAM per client; today, such
resources would be enough to protect a significant fraction of
each receiver’s tail circuit, even when undesired-traffic rate
exceeds its tail-circuit capacity by several factors.

C. Evolution of AITF Cost

AITF guarantees limited tail-circuit capacity loss in the face
of flooding attacks, as specified by Eq. 4, repeated here in an
equivalent form:

λ ≤
r̄i

Ctc

·
Nuf

Wf

· (Tid + RTTtc) +
Nuf

Wf

·
1

REQout

where all parameters are defined in Tables I and II. We now
examine what the receiver must do in order for this guarantee
to remain the same as the Internet grows.

Assuming Tid , RTTtc , and REQout remain stable, we
expect that: (1)r̄i (the average undesired-traffic rate per
source) will grow at the same rate with the average tail-circuit
capacity of Internet hosts; to keepλ stable, the receiver must
increaseCtc at the same rate with̄ri—i.e., the receiver’s tail-
circuit capacity must keep up with the average tail-circuit
capacity in the Internet. (2)Nuf (the number of undesired
flows per attack) will grow as botnet sizes increase; to keep
λ stable, the receiver must increaseWf at the same rate
with Nuf —i.e., as the number of undesired flows grows, each
individual flow must be blocked for a longer period of time.

According to Table III, if receivers increase their filtering
windows, the amount of per-client DRAM required to log fil-
tering requests will increase accordingly—the intuition isthat,
as filtering windows grow, a provider that hosts undesired-
traffic sources must be able to remember each undesired flow
for a longer period of time, which means that it needs more
memory for logging filtering requests. Hence, the amount of
per-client DRAM must increase at the same rate with the
number of bots attacking the receiver. This means that the
evolution of AITF cost depends on two factors: botnet growth
and the fall of DRAM price; as long as the former does not
outpace the latter, AITF cost is not expected to rise.

DRAM price has consistently been dropping to half every
18 months for the last30 years. Assuming it continues to
fall at this rate, AITF cost is not expected to increase, unless
botnet-size growth outpaces Moore’s law—i.e., in 15 years
from now, there are botnets consisting of tens of millions of
hosts. In this unfortunate situation, either the cost of AITF
will rise, or receivers will have to aggregate undesired traffic
more aggressively, at the cost of sacrificing a certain amount
of legitimate traffic.

VII. S IMULATIONS

In this section, we use simulation to analyze the effect of
undesired traffic on AITF-enabled receivers and illustratethe
effectiveness of AITF against bandwidth flooding.

10

A. Simulation Framework

The goal of our simulation was to illustrate not only the
tail-circuit capacity loss (which is computed at the granu-
larity of a filtering window), but also the burstiness of the
undesired trafficwithin each filtering window. To capture
the short-term dynamics of undesired traffic, we needed our
simulation to work at the granularity of individual sources
and bottleneck links. None of the existing network-simulation
packages allowed us to simulate attacks from tens to hundreds
of thousands of sources at such granularity, which led us to
create our own framework.

In the beginning of each simulation, we create a set of
interconnected (core and edge) border routers—to create a
realistic topology, we used BGP routing tables from Route
Views [18] and applied to them Gao’s algorithm for inferring
inter-AS relationships [19]. We also create a set of sources
randomly distributed behind edge routers and one receiver.
We interconnect neighbor domains through OC-48 and OC-
192 full-duplex links; we also connect each edge router
to its hosts, through Fast (100 Mbps) or Thin (10 Mbps)
Ethernet full-duplex links. End-to-end round-trip times average
200 milliseconds, while host-to-edge router round-trip times
average10 milliseconds.

For our simulation scenarios, we use the parameters of
Table IV unless otherwise noted. We assume that preventing
stamping is used to drop all spoofed traffic (§IV-C), while
source gateways cooperate and block misbehaving sources.

B. Initial Overhead

1) Deaf Sources:We first simulate a1-Gbps SYN-flooding
attack from100 000 deaf sources; the receiver identifies each
source after receiving one second’s worth of traffic from
it (about 20 SYN packets). Fig. 3 shows the outcome: all
undesired flows are blocked within100 seconds, at which point
the target has received about9.5 Gbits of initial overhead
(1 Gbit of identification overhead and8.5 Gbits of request
overhead). In this case, the initial overhead does not reach
the upper bound of Eq. 1 for the two reasons stated in §V-C:
first, the receiver identifies undesired flows and sends filtering
requests in parallel; second, about90 seconds after the start of
the attack, there aren’t enough undesired flows left unblocked
to flood the receiver’s tail circuit.

2) Lying Sources:Next, we simulate an attack with the
same parameters, but coming from lying sources. Fig. 4 shows
the outcome: each source sends three rounds of undesired
traffic—one round in the beginning of the attack, a second

Parameter Value
Tail-circuit capacity Ctc = 100 Mbps
Round-trip time across tail circuit RTTtc = 10 milliseconds
Outbound filtering request rate REQout = 1000 requests/second
Filtering window Wf = 10 minutes
Number of sources Nuf = 100 000 flows
Aggregate undesired-traffic rate Rut = 1 Gbps
Identification overhead Bid = 1 Gbit
Identification time Tid = 1 second

TABLE IV
DEFAULT SIMULATION PARAMETERS

round after the corresponding source gateway has removed
its temporary filter for the first time, and a third round after
the gateway has removed its temporary filter for the second
time. Once the source has violated the filtering request against
it twice, it is identified as lying and blocked by its gateway.
Until all sources are blocked, the target receives about29 bits
of initial overhead (1 Gbit of identification overhead and28
Gbits of request overhead). Note that each source sends three
rounds of undesired traffic (rather than four, as dictated by
Eq. 2); this is because the equation was derived assuming the
worst-case scenario, where source gateways do not cooperate,
whereas, in this case, the source gateways do cooperate and
block lying sources once these are exposed.

C. Tail-circuit Capacity Loss

1) Non-coordinated On-off Sources:Our next scenario is
an attack with the same parameters, but coming from on-
off sources. These sources are “non-coordinated”: they co-
operate with filtering requests, and each one resumes sending
undesired traffic as soon as the filtering request against it has
expired. The outcome is shown in Fig. 5: during the first fil-
tering window, the attack looks exactly the same with the one
from deaf sources; after that, undesired flows reappear every
filtering window and are re-blocked, wastingλ = 0.00167 of
the target’s tail-circuit capacity.

An interesting point is that the undesired traffic received
during the first filtering window is more than the undesired
traffic received during subsequent windows. The explanation
is the following: In the beginning of the attack, undesired
flows arrive at the receiver’s tail circuit in bursts; the receiver’s
filtering-request rate is not enough to block each undesired
flow as soon as it is identified—it takes100 seconds to
block all identified flows; in the meantime, the receiver incurs
significant request overhead. After the first filtering window,
however, sources resume as soon as the corresponding filtering
requests have expired, which means that undesired flows
reappear at the rate at which they were blocked; as a result,
the receiver does have enough filtering-request quota to block
each undesired flow as soon as it is identified; hence, it avoids
the request overhead and incurs only the identification and
(negligible) blocking overhead. In this way, the burstiness of
the attack is diluted after the first filtering window.

2) Number of Sources and Burstiness:Given a certain ag-
gregate undesired-traffic rate (Rut) and identification overhead
(Bid), the burstiness of an attack depends on how the undesired
traffic is distributed among different flows: the higher the
amount of per-flow traffic, the higher the burstiness of the
attack. To demonstrate this, we simulate a flooding attack of
the same rate and identification overhead as in the previous
scenario, but involving fewer (10 000) flows, each one sending
at a higher rate (100 Kbps). Fig. 6 shows the outcome: because
there are less flows, it takes less time (10 seconds) to have all
of them blocked; however, because each flow has a higher rate,
the target’s tail circuit is flooded in the beginning of every
filtering window. So, relative to the previous scenario, the
receiver incurs the same tail-circuit capacity loss (0.00167);
however, all the overhead occurs within10 seconds, making
this a burstier attack.

11

 0

 20

 40

 60

 80

 100

 120

 0 50 100 150 200 250 300

(M
b
p
s)

Time (sec)

Fig. 3. Flooding attack from deaf sources.Nuf = 100 000 flows;
Rut = 1 Gbps. The first10 000 flows arrive at the tail circuit at
t = 0; every time a flow is blocked, a new one takes its place, until
all flows are blocked. The target identifies each flow after receiving
it for 1 second, hence, it sends its first filtering requests att = 1

second. It takesTreq =
Nuf

REQout
= 100 seconds to send filtering

requests against all flows, hence, the attack is blocked att = 101

seconds. The total amount of undesired traffic received isB ≈ 9.5

Gbits, of which1 Gbit is identification overhead and8.5 Gbits are
request overhead; the blocking overhead is negligible.

 0

 20

 40

 60

 80

 100

 120

 0 50 100 150 200 250 300

(M
b
p
s)

Time (sec)

Fig. 4. Flooding attack from lying sources.Nuf = 100 000 flows;
Rut = 1 Gbps. As in Fig. 3, at timet = 101 seconds each undesired
flow has been blocked at least once. Each source resumes sending
twice—until it is classified as lying and blocked. Hence, the receiver
ends up sending3Nuf = 300 000 filtering requests, which takes300

seconds. The total amount of undesired traffic received isB ≈ 29

Gbits—1 Gbit of identification overhead and28 Gbits of request
overhead.

 0

 20

 40

 60

 80

 100

 120

 0 200 400 600 800 1000 1200 1400

(M
b
p
s)

Time (sec)

Fig. 5. Flooding attack from non-coordinated on-off sources.Nuf =

100 000 flows; Rut = 1 Gbps. As in Fig. 3, at timet = 101

seconds all undesired flows have been blocked for the first time.
Each source resumes exactlyWf = 10 minutes after it is blocked;
as a result, undesired flows reappear everyWf = 10 minutes at
rate REQout = 1000 flows/second, and get blocked at that same
rate. After the first filtering window, the receiver incurs only the1-
Gbit identification overhead everyWf = 10 minutes; the tail-circuit
capacity loss isλ = 0.00167.

 0

 20

 40

 60

 80

 100

 120

 0 200 400 600 800 1000 1200 1400
(M

b
p
s)

Time (sec)

Fig. 6. Burstier flooding attack from non-coordinated on-off sources.
Nuf = 10 000 flows; Rut = 1 Gbps. The target identifies each flow
after receiving it for10 seconds, hence, it sends its first filtering
requests att = 11 seconds. It takesTreq =

Nuf

REQout
= 10 seconds to

send filtering requests against all flows, hence, the attack is blocked
for the first time att = 21 seconds. After the first filtering window,
the receiver incurs the1-Gbit identification overhead everyWf = 10

minutes. Compared to Fig. 5, the recurring overhead is the same
(λ = 0.00167), but it is inflicted in10 (rather than100) seconds.

 0

 20

 40

 60

 80

 100

 120

 0 200 400 600 800 1000 1200 1400

(M
b
p
s)

Time (sec)

Fig. 7. Flooding attack from coordinated on-off sources.Nuf =

100 000 flows; Rut = 1 Gbps. As in Fig. 3 and 5, at timet =

101 seconds all undesired flows have been blocked for the first
time. The first10 000 sources resume as soon as the first10 000

filtering requests have expired, which happens10 seconds after the
first filtering request expires, i.e., att = 611 seconds; the rest of the
sources resume as early as they are allowed. As a result, undesired
flows recreate the initial attack pattern every611 minutes. The tail-
circuit capacity loss isλ = 0.17.

 0

 20

 40

 60

 80

 100

 120

 0 200 400 600 800 1000 1200 1400

(M
b
p
s)

Time (sec)

Fig. 8. Flooding attack from coordinated on-off sources with
distributed filtering window.Nuf = 100 000 flows; Rut = 1

Gbps. The filtering window is uniformly distributed from5 to 15

minutes. Sources resume in groups of10 000, as soon as enough
filtering requests have expired, i.e., every75 seconds. It takes
Treq =

Nuf

REQout
= 10 seconds to have10 000 flows blocked, hence,

each group periodically induces a10-second spike. Compared to
Fig. 7, the recurring overhead is the same (λ = 0.17), but it consists
of 10-second (rather than100-second) spikes.

3) Coordinated On-off Sources:We simulate, once again,
a 1-Gbps SYN-flooding attack from100 000 on-off sources.
These sources, however, are “coordinated”: they cooperate
with filtering requests, then resume their attackin groups,
such that each group can send enough to flood the receiver’s
tail circuit. As a result, they periodically re-inflict the initial
overhead (including the request overhead). Fig. 7 shows the
outcome: the sources recreate the initial attack burst every 610
seconds; tail-circuit capacity loss isλ = 0.17.

4) Varying Filtering Window:An intuitive conclusion from
the last simulation is that, if an attack can cause certain damage
to the receiver’s tail circuit once, it can inevitably do so
again, as long as the participating sources wait long enough
so they can attack with the same burstiness. This led us to
the following observation: during an attack from coordinated
on-off sources, what matters to the attacker is not how early
each individual flow can resume, but how early eachgroup of
flows can resume; if the receiver associates a different window

12

with each filtering request (so the average isWf), then the
participating sources must on average wait longer in order to
achieve the same level of burstiness.

To demonstrate this, we simulate an attack with the same
parameters as in the previous scenario, during which the
receiver uses a uniformly distributed filtering window with
an average ofWf = 10 minutes. Fig. 8 shows the outcome of
the attack when sources wait until they can resume in groups
of 10 000 (just enough to flood the target’s tail circuit): not
surprisingly, the tail-circuit capacity loss is the same asin the
previous scenario (λ = 0.17), but the overhead is distributed in
10-second spikes every75 seconds (rather than a100-second
outage every610 seconds).

We do not address the issue of determining the optimal
filtering-window distribution or the worst type of attack, but
we believe that it depends on the particular type of service
offered by the receiver. For example, a web server may handle
the 10-second spikes better: each spike consumes more than
80% of the tail circuit roughly for two seconds; TCP retrans-
mission may allow the short HTTP flows to recover from
losses incurred during these two seconds. On the contrary,
a server that expects its legitimate flows to exceed75 seconds
(e.g., a movie database), may handle the100-second outages
better: if it knows when to expect the next outage, it can refuse
to serve any requests expected to complete during or after the
outage and prompt its clients to retry a few minutes later.

VIII. D ISCUSSION

A. Request-channel Flooding

Any solution to bandwidth flooding that involves a “request
channel” faces the challenge of becoming itself a bandwidth-
flooding target. In our case, the request channel is the path
from the receiver to the source gateway; we now discuss to
what extent an attacker can flood this path and interfere with
AITF operation.

1) Upstream-channel Flooding:So far, we have considered
the scenario where an attacker floods receiverR’s downstream
connection, whileR still controls itsupstreamconnection and
can send filtering requests. However, if the attacker controls
a host located close toR (e.g., behind the same Ethernet
hub), it can also floodR’s upstream connection to its gateway,
preventingR from sending filtering requests (or any traffic).
This scenario is possible only if the attacker has access to
R’s upstream connection to its gateway—unlikely ifR is a
professional public-access site, but plausible if it is a server
residing in a home or campus network. To handle such “insider
attacks,” AITF would have to be adapted to work at the intra-
domain level: the router that controls the flooded bottleneck
link from R to Rgw should be able to detect the flood and
make the corresponding internal source stop.

2) Source-gateway Flooding:An attacker may try to flood
the tail circuit to source gatewaySgw , in an effort to prevent
it from receiving legitimate filtering requests, so that it gets
classified as non-cooperating, potentially losing its commu-
nications. This attack corresponds to bandwidth-flooding an
Internet border router, so it requires more resources from the
attacker’s side than flooding a simple receiver. In any case,

AITF handles this like any other bandwidth-flooding attack:
Sgw becomes the complaining receiver and sends (to its own
gateway) filtering requests, which are eventually propagated
to the undesired-traffic sources.

3) Receiver-gateway Flooding:Finally, an attacker may try
to flood the tail circuit to the receiver’s gatewayRgw , in an
effort to prevent it from completing any three-way handshakes
with source gateways. Indeed, if an attacker causes congestion
on Rgw ’s tail circuit, Rgw cannot operate correctly as a
receiver’s gateway. However, AITF is based on the principle
that thehighest upstream entity affected by the attack acts
as the “receiver”—so, ifRgw ’s tail circuit is flooded,Rgw

acts as the “receiver” and sends filtering requests to its own
“receiver’s gateway” upstream.

B. Filtering Costs Versus Collateral Damage

Filtering undesired traffic per source and destination address
in the long term (i.e., for the duration of the attack, which
may last hours or days) is not a sustainable solution: as
botnet sizes increase, each receiver may get undesired traffic
from hundreds of thousands, even millions of sources; and
as attacks become more sophisticated, each source may send
undesired traffic to equally large numbers of receivers. Hence,
whether the filtering is done at the receiver’s or the source’s
network, we expect long-term selective filtering to become
increasingly expensive—certainly beyond the capabilitiesof
current networks with a few thousand filters per client.

AITF avoids long-term selective filtering by blocking traffic
from non-cooperating entities (sources or networks) withag-
gregatefilters that block multiple undesired flows at a time; the
catch is that aggregate filters may affect the legitimate traffic
generated by the non-cooperating entities. This approach may
annoy users/administrators that will now lose part or all of
their network connectivity until they clean up their compro-
mised equipment; on the other hand, it provides a strong
incentive to them to keep their equipment clean or else risk
reduced network connectivity.

By default, AITF blocks all traffic from a non-cooperating
source with a single aggregate filter (this policy minimizes
the resources spent on misbehaving clients). However, each
provider can define its own policy, e.g., it can agree to filter
up to N aggregates from each non-cooperating client. A
harsh policy (a smallN) is likely to dissatisfy the owners of
compromised machines; a lenient policy (a largeN) is more
client-friendly, but also more expensive, as it commits multiple
filters to each non-cooperating client; finally, an “indifferent”
policy (i.e., ignoring filtering requests) is both client-friendly
and inexpensive, yet it bears the risk of losing connectivity
to the complaining receivers and dissatisfying the legitimate
clients that were communicating with them. Similar trade-offs
are involved when a receiver chooses a policy toward non-
cooperating source gateways.

We do not explore these trade-offs as part of this work,
but we believe that they should be resolved separately for
each receiver and/or provider, taking into account the type
of their business, potentially differentiating between more and
less important (business-wise) clients and/or domains.

13

IX. RELATED WORK

Bandwidth flooding belongs to the wider topic of denial of
service (DoS), which covers source-address spoofing, attack
detection, undesired-traffic identification, and application-level
attacks that target server resources like memory or CPU; even
though all that work is related to ours (in the sense that they
complement each other), we do not discuss it here, in favor of
a deeper comparison of AITF to more closely related work.

Overlay-based solutions protect a receiver from flooding by
restricting its communications to a set of authorized sources;
to prevent the authentication process from becoming itselfa
DoS target, it is outsourced to a set of access points connected
to the receiver through an overlay network [11], [20], [21].
In contrast, AITF addresses the more general problem of
protecting public-access sites—receivers that do not know in
advance which sources they want to receive traffic from, while
sources can become compromised at any point in time and start
sending undesired traffic. Moreover, AITF does not require
protected receivers to trust any entities other than the routers
that are already on the path of their communications.

Pushback enables a receiver to identify the last-hop routers
that forward to it high-rate traffic and ask them to rate-limit
all traffic addressed to it; this process is repeated recursively
at each router, so that rate-limiting of undesired-traffic is
eventually pushed closer to its sources [22]. Rate limiting
prevents congestion on the target’s tail circuit (and, hence,
protects traffic addressed to other receivers sharing the same
tail circuit), but does not protect the target’s legitimatetraffic
during distributed attacks: when the rate limiting happensat
interfaces receiving a mix of legitimate and undesired traffic
addressed to the target (as is expected to happen during
distributed attacks), legitimate traffic still ends up competing
with undesired traffic for the target’s tail-circuit capacity, even
if this “competition” is pushed outside the target’s tail circuit—
and we have already mentioned that legitimate TCP flows fare
poorly in such situations. To our knowledge, Pushback offers
the best result that can be achieved without assuming any anti-
spoofing or undesired-traffic identification mechanisms.

Similar to AITF, the Points of Control approach (developed
concurrently) selectively blocks undesired traffic beforethe
receiver’s tail circuit, at ISP boundaries [8]; its fundamental
difference from AITF is that traffic is blocked in the long term
by wire-speed filters (the issue of an ISP not having enough
filters is not addressed). In general, the Points of Control
proposal focuses more on the issues of providing a separate
address space for publicly addressable servers and performing
wire-speed encapsulation, whereas this paper focused on a
filtering protocol with well characterized scalability properties.

More recent, clean-slate proposals suggest that receivers
directly contact undesired-traffic sources and ask them to stop;
they rely on sources being enhanced with uncompromisable
functionality (e.g., running on NIC firmware) that verifies and
satisfies such requests [23], [24]. The Accountable Internet
Protocol, moreover, equips all packets with self-certifying,
unspoofable addresses [24], which enables elegant bandwidth-
flooding solutions—no need for extra measures against source-
address, path, or filtering-request spoofing. This reduced com-

plexity, however, relies on clean-slate elements (a new Internet
protocol, new NICs), whereas our proposal aims for incremen-
tal deployment on top of the current Internet.

Network capabilities enable a receiver to deny by default all
traffic and explicitly accept traffic from identified legitimate
sources [25]. The key feature of capability-based filtering,
introduced in the SIFF proposal [26], is that it isstateless
and, hence, obviates the need for wire-speed filters in routers
and inter-ISP filtering agreements (because no filtering state
is explicitly exchanged between ISPs). On the other hand,
capability-based solutions face a significant challenge: to pro-
tect the capability-setup channel itself from flooding [27]. This
challenge brings to mind public-key infrastructures, where the
greatest deployment issue has proved to be not the encryption
of the data, but the management and distribution of the keys.

One proposal for protecting the capability-setup channel is
to fair-queue capability requests per incoming router inter-
face [28]. This approach faces a similar challenge with Push-
back: when the fair queuing happens at interfaces receivinga
mix of legitimate and undesired capability requests, legitimate
requests end up competing with (and losing to) undesired ones,
even if this “competition” is pushed away from the target’s
tail circuit [27]. Another proposal is to combine capabilities
with stateful filtering, i.e., explicitly block capabilityrequests
from specific sources [29]; in contrast, AITF was designed to
introduce as few new mechanisms as possible—if capabilities
alone are not enough and we have to use stateful filtering
anyway, why not design a protocol that usesonly stateful
filtering? A third proposal is Portcullis, where capability
distribution is regulated through special “puzzles,” distributed
over the Domain Name Service (DNS). This approach relies
on the assumption that the DNS infrastructure is itself pro-
tected from flooding through over-provisioning and/or other
dedicated infrastructure [30]; in contrast, AITF consistsof
a single mechanism, suitable for protecting any bandwidth-
flooding target—including the DNS infrastructure.

At a higher level, network capabilities take the “connection-
oriented” approach, where the network only allows (or gives
priority to) traffic that belongs to explicitly establishedconnec-
tions. This approach has been showed to work in the context of
a single administrative domain (e.g., an enterprise or campus
network), where connection authorization can be performed
centrally, based on predefined access policies [31]. However,
in the Internet context, where receivers from one domain
are expected to authorize sources from another, an important
missing piece in evaluating the connection-oriented approach
is answering the following fundamental question: what is a
reasonable number of bytes and a reasonable amount of time to
allow an unknown source, which could become compromised
at any point in time? While it is worth investigating this
question, it is also worth considering the alternative, “data-
gram” approach, where a receiver explicitly denies undesired
traffic, while accepting, by default, all other traffic; to the best
of our knowledge, the work we presented here is the first
that proposes a datagram-based filtering solution that requires
a credible, bounded amount of resources from participating
ISPs and addresses the security issues that arise from filter
propagation across different administrative domains.

14

X. CONCLUSIONS

We have presented Active Internet Traffic Filtering, a
network-layer filtering mechanism that preserves a significant
fraction of a receiver’s tail circuit in the face of bandwidth
flooding, while requiring a reasonable amount of resources
from participating ISPs.

We have showed that: (1) AITF allows a receiver to preserve
on average80% of its tail circuit in the face of a SYN-
flooding attack that has ten times the rate of its capacity.
(2) Each participating ISP needs a few thousand filters and
a few megabytes of DRAM per client; the per-client cost is
not expected to increase, unless botnet-size growth outpaces
Moore’s law. (3) The first two AITF-enabled networks can
maintain their communication in the face of flooding attacks,
as long as the path between them is not compromised.

The feasibility of AITF shows that the network-layer of the
Internet can provide an effective, scalable, and incrementally
deployable solution to bandwidth-flooding attacks.

REFERENCES

[1] A. Kuzmanovic and E. Knightly, “Low-rate Targeted TCP Denial-of-
service Attacks (The Shrew vs. The Mice and Elephants),” inProceed-
ings of the ACM SIGCOMM Conference, Karlsruhe, Germany, August
2003.

[2] S. Gibson, “The Strange Tale of the Denial of Service Against
GRC.com,” http://www.grc.com/dos/grcdos.htm.

[3] S. Berinato, “Online Extortion,” http://www.csoonline.com/read/050105/
extortion.html.

[4] B. Agrawal and T. Sherwood, “Modeling TCAM Power for Next
Generation Network Devices,” inProceedings of the IEEE International
Symposium on Performance Analysis of Systems and Software (ISPASS),
Austin, TX, USA, March 2006.

[5] S. Staniford, V. Paxson, and N. Weaver, “How to 0wn the Internet in
Your Spare Time,” inProceedings of the USENIX Security Symposium,
San Francisco, CA, USA, August 2002.

[6] X. Yang, “NIRA: A New Internet Routing Architecture,” inProceedings
of the ACM SIGCOMM Workshop on Future Directions in Network
Architecture (FDNA), Karlsruhe, Germany, August 2003.

[7] K. Argyraki and D. R. Cheriton, “Loose Source Routing as aMechanism
for Traffic Policies,” inProceedings of the ACM SIGCOMM Workshop
on Future Directions in Network Architecture (FDNA), Portland, OR,
USA, August 2004.

[8] A. Greenhalgh, M. Handley, and F. Huici, “Using Routing and Tunneling
to Combat DDoS Attacks,” inProceedings of the USENIX Workshop
on Steps Towards Reducing Unwanted Traffic in the Internet (SRUTI),
Cambridge, MA, USA, July 2005.

[9] “Mazu Enforcer,” http://www.mazunetworks.com/products/
mazu-enforcer.php.

[10] “Peakflow X Data Sheet,” http://arbornetworks.com/downloads/Arbor_
Peakflow_X_Data_Sheet.pdf.

[11] A. Stavrou and A. Keromytis, “Countering DoS Attacks With State-
less Multipath Overlays,” inProceedings of the ACM Conference on
Computer and Communications Security (CCS), Alexandria, VA, USA,
November 2005.

[12] D. Bernstein, “SYN Cookies,” http://cr.yp.to/syncookies.html.
[13] K. Argyraki, “Scalable Defense Against Internet Bandwidth-Flooding

Attacks,” Ph.D. dissertation, Stanford University, December 2006.
[14] R. Beverly and S. Bauer, “The Spoofer Project: Inferring the Extent of

Source Address Filtering on the Internet,” inProceedings of the USENIX
Workshop on Steps Towards Reducing Unwanted Traffic in the Internet
(SRUTI), Cambridge, MA, USA, July 2005.

[15] S. Kandula, D. Katabi, M. Jacob, and A. Berger, “Botz4Sale: Surviving
Organized DDoS Attacks That Mimic Flash Crowds,” inProceedings of
the USENIX Conference on Networked Systems Design and Implemen-
tation (NSDI), Boston, MA, USA, May 2005.

[16] A. Markopoulou, F. Tobagi, and M. Karam, “Loss and Delay Mea-
surements of Internet Backbones,”Elsevier Computer Communications
(Special Issue on Measurements and Monitoring of IP Networks),
vol. 29, pp. 1590–1604, June 2006.

[17] Z. Chen, C. Ji, and P. Barford, “Spatial-Temporal Characteristics of
Internet Malicious Sources,” inProceedings of the IEEE INFOCOM
Mini-conference, Phoenix, AZ, USA, April 2008.

[18] “University of Oregon Route Views Archive Project David Meyer,” http:
//archive.routeviews.org/oix-route-views/.

[19] L. Gao, “On Inferring Autonomous System Relationships in the Inter-
net,” in Proceedings of the Global Internet Symposium, San Francisco,
CA, USA, November 2000.

[20] A. Keromytis, V. Misra, and D. Rubenstein, “SOS: Secure Overlay Ser-
vices,” in Proceedings of the ACM SIGCOMM Conference, Pittsburgh,
PA, USA, August 2002.

[21] D. G. Andersen, “Mayday: Distributed Filtering for Internet Services,”
in Proceedings of the USENIX Symposium on Internet Technologies and
Systems (USITS), Seattle, WA, USA, March 2003.

[22] R. Mahajan, S. Bellovin, S. Floyd, J. Ioannidis, V. Paxson, and
S. Schenker, “Controlling High Bandwidth Aggregates in theNetwork,”
ACM Computer Communications Review, vol. 32, no. 3, pp. 62–73, July
2002.

[23] M. Shaw, “Leveraging Good Intentions to Reduce Unwanted Internet
Traffic,” in Proceedings of the USENIX Workshop on Steps Towards
Reducing Unwanted Traffic in the Internet (SRUTI), San Jose, CA, USA,
July 2006.

[24] D. Andersen, H. Balakrishnan, N. Feamster, T. Koponen, D. Moon, and
S. Shenker, “Holding the Internet Accountable,” inProceedings of the
ACM Workshop on Hot Topics in Networking (HotNets), Atlanta, GA,
USA, November 2007.

[25] T. Anderson, T. Roscoe, and D. Wetherall, “Preventing Internet Denial-
of-Service with Capabilities,” inProceedings of the ACM Workshop on
Hot Topics in Networking (HotNets), Cambridge, MA, USA, November
2003.

[26] A. Yaar, A. Perrig, and D. Song, “SIFF: A Stateless Internet Flow
Filter to Mitigate DDoS Flooding Attacks,” inProceedings of the IEEE
Symposium on Security and Privacy, Oakland, CA, USA, May 2004.

[27] K. Argyraki and D. R. Cheriton, “Network Capabilities:The Good, the
Bad, and the Ugly,” inProceedings of the ACM Workshop on Hot Topics
in Networking (HotNets), College Park, MD, USA, November 2005.

[28] X. Yang, D. Wetherall, and T. Anderson, “A DoS-limiting Architecture,”
in Proceedings of the ACM SIGCOMM Conference, Philadelphia, PA,
USA, August 2005.

[29] M. Casado, A. Akella, P. Cao, N. Provos, and S. Shenker, “Cookies
Along Trust-Boundaries (CAT): Accurate and Deployable Flood Pro-
tection,” in Proceedings of the USENIX Workshop on Steps Towards
Reducing Unwanted Traffic in the Internet (SRUTI), San Jose, CA, USA,
August 2006.

[30] B. Parno, D. Wendlandt, E. Shi, A. Perrig, B. Maggs, and Y.-C.
Hu, “Portcullis: Protecting Connection Setup from Denial-of-Capability
Attacks,” in Proceedings of the ACM SIGCOMM Conference, Kyoto,
Japan, August 2007.

[31] M. Casado, M. J. Freedman, J. Pettit, J. Luo, N. McKeown, and
S. Shenker, “Ethane: Taking Control of the Enterprise,” inProceedings
of the ACM SIGCOMM Conference, Kyoto, Japan, August 2007.

Katerina Argyraki is a researcher with the Oper-
ating Systems group in the School of Computer and
Communication Sciences, EPFL, Switzerland. She
works on network architectures and protocols with
a focus on denial-of-service defenses and account-
ability. She received her undergraduate degree in
Electrical and Computer Engineering from the Aris-
totle University, Thessaloniki, Greece, in 1999, and
her Ph.D. in Electrical Engineering from Stanford
University, in 2007.

David R. Cheriton has been a Professor of Com-
puter Science and Electrical Engineering at Stan-
ford University since 1981. His research spans the
areas of distributed systems, object-oriented soft-
ware structuring, Internet architecture and protocols,
and hardware-software interaction, particularly at
the operating-system level. He was a co-founder
of Granite Systems (acquired by Cisco), Kealia
(acquired by Sun), and, most recently, Arastra, and a
technical advisor with Google, VMware, Cisco, Sun,
and a number of startup companies. He received his

Ph.D. in Computer Science from the University of Waterloo in 1978.

