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Abstract

In this paper, we present a generative model based ap-
proach to solve the multi-view stereo problem. The input
images are considered to be generated by either one of two
processes: (i) an inlier process, which generates the pixels
which are visible from the reference camera and which obey
the constant brightness assumption, and (ii) an outlier pro-
cess which generates all other pixels. Depth and visibility
are jointly modelled as a hidden Markov Random Field, and
the spatial correlations of both are explicitly accounted for.
Inference is made tractable by an EM-algorithm, which al-
ternates between estimation of visibility and depth, and op-
timisation of model parameters. We describe and compare
two implementations of the E-step of the algorithm, which
correspond to the Mean Field and Bethe approximations of
the free energy. The approach is validated by experiments
on challenging real-world scenes, of which two are contam-
inated by independently moving objects.

1. Introduction

Computing depth from stereo images remains a difficult
problem to solve because of several reasons. First of all,
the stereo problem is ill-posed and has inherent ambigui-
ties. Secondly, image noise, as well as the complexity of
3D scenes, make it difficult to develop algorithms which
produce good results over a large variety of input images.
Finally, occlusions further complicate or even render im-
possible the extraction of depth.

To deal with the ill-posedness of the stereo problem,
most algorithms incorporate some form of regularisation. In
global approaches, such as Markov Random Field (MRF)
formulations, regularisation is implemented by defining a
suitable Gibbs prior which favours spatially smooth field
configurations. In local methods, such as Partial Differ-
ential Equation (PDE) formulations, regularisation is per-
formed by introducing a regularisation term in the matching
energy. Often, however, the need for regularisation leads to
an excess of parameters, which have to be carefully tuned to

Figure 1. Semper statue scene: combined
depth and outlier estimation. Left: input im-
ages, the middle is choosen as the reference
view. Right: depth and outlier estimates.

obtain the desired performance. The formulation of a multi-
view stereo algorithm in a Bayesian framework alleviates
this problem to some extent. For example, deviations from
model assumptions are typically captured by a noise term,
and the optimal noise level can be estimated by maximum-
likelihood (ML) estimation from the data itself.

The occlusion problem is often viewed from a geomet-
ric perspective only. However, it can be more generally
described as an outlier problem. Outliers can be devided
into three types, examples of each of which are present in
fig.(1): (i) geometrical occlusions, which have their origin
in the 3D-structure of the scene, (ii) objects like pedestrians
or cars, whose relative location in the scene changes while
the images are captured, and (iii) violations of the constant
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brightness assumption, like specular reflections or discreti-
sation errors. In what follows, we will jointly refer to outlier
pixels as ‘invisible’ pixels.

Previous work on dealing with outliers in multi-view
stereo can be divided into three categories. The first cate-
gory consists of algorithms which perform explicit geomet-
rical computations, by tracing the lines of sight from the
current depth solution to the input images and verifying if
there exist crossings with this solution. Examples are meth-
ods using MRF’s [12], level-sets [3, 11, 17] or voxel color-
ing [14]. In the second category we find algorithms which
rely on consistency checks to detect outliers. Depth is com-
puted w.r.t. each input image, and outliers are identified by
inconsistencies in the extracted depth maps [6, 8, 10, 7].
The third category consists of algorithms which use photo-
metric cues. For example, robust kernel methods [9] use
a matching kernel which diminishes the influence of out-
lier pixels. Often, pixel matches which fall below a certain
threshold [22, 13] are ignored all together. Such a threshold
disappears in generative model based formulations as pro-
posed in our previous work [19]. An extension of this also
incorporates geometric cues [7]. Wheras the first category
focusses on geometric occlusions, the second and third cat-
egory can in principle handle all types of outliers.

Most of the above algorithms separate the computation
of depth and visibility. However, this separation introduces
a notorious ‘chicken and egg’ problem: knowledge of depth
is needed to compute outliers, and outliers must be identi-
fied to compute a reliable depth. Many algorithms there-
fore estimate both in turn, which is a reasonable approach if
the amount of occlusions or outliers is small. For example,
in Kang et al. [12], the starting point is the estimation of
depth under the assumption that everything is visible. Next,
visibilities are estimated and depth is re-computed, keeping
the best-matching depths from the previous solution fixed.
This procedure is iterated and progressively more points are
added to the solution.

By contrast, we propose to jointly model depth and visi-
bility and try to identify the most likely joint configuration,
given the input images. We define a generative model, in
which the input images are assumed to be generated by ei-
ther an inlier process or an outlier process [19, 4]. The inlier
process is responsible for the generation of pixels for which
stereo correspondence can be established, i.e. which are vis-
ible from the reference camera and which obey the constant
brightness assumption. The outlier process, on the other
hand, is responsible for the generation of pixels for which
no correspondence can be established. Depth and visibility
are jointly modelled as a hidden Markov Random Field, and
the spatial correlations of both are explicitly accounted for
by defining a suitable Gibbs prior distribution.

The ML-estimates of the statistics of the inlier and out-
lier processes are obtained by an Expectation-Maximisation

(EM) algorithm [2]. This algorithm keeps track of which
points of the scene are visible in which images, and ac-
counts for all likely visibility configurations. Therefore, it
can deal with scenes which are contaminated by indepen-
dently moving objects, such as pedestrians or cars whose
relative location in the scene changes while the images are
captured. This is a rare feature, which often proves useful,
especially when dealing with outdoor-scenes. We experi-
ment with two implementations of the E-step of the algo-
rithm, corresponding to the Mean Field and Bethe approx-
imations of the free energy. The impact of this choice is
validated on groundtruth data.

2. Probabilistic Model

2.1. Problem Statement

We are given K images yk , k ∈ [1, ...,K], which are
taken with a set of cameras of which we know the internal
and external calibrations. Each image consists of a set of
pixel values over a rectangular lattice and will be denoted
as yk ={yk

i }, where i indexes the nodes of the lattice. The
objective is to compute the depth of the scene in such a way
that the information of all images contributes to the final so-
lution. Depth is computed w.r.t. a particular camera, which
could be one of the cameras from which the input images
are taken, but which could equally well be a virtual camera
representing a view point not available in the set of input
images. The (hypothetical) noise-free image that can be ob-
served from this camera is referred to as the ideal image and
will be denoted as y∗ = {y∗i }. The multi-view stereo prob-
lem now consists of computing those depth values which
map the pixels y∗i of the ideal image onto similarly coloured
pixels yk

i′ in all input images 1.

2.2. Generative Imaging Model

In this paper, we take a generative model based approach
to solve the multi-view stereo problem. The input images
are considered to be generated by either one of two pro-
cesses: (i) an inlier process which generates the pixels yk

i

which are visible from the camera related to y∗ and which
obey the constant brightness assumption, and (ii) an outlier
process which generates all other pixels. The inlier process
is modelled as:

yk
i′ = y∗i + ε , (1)

where ε is image noise which is assumed to be normally
distributed with zero mean and covariance Σ. The outlier
process is modelled as a random generator, sampling from

1Given the camera calibrations, it is easy to compute the locations cor-
responding to y∗

i in the other images, see for example [19].



K unknown distributions characterised by probability den-
sity functions (PDFs) gk. These PDFs are modelled as his-
tograms and are parametrised by the histogram entries hk.

Associated with the ideal image y∗ is a hidden Markov
Random Field (MRF) x = {xi}, where i again indexes the
nodes of the lattice. This random field represents the unob-
servable state of each node. Traditionally, the state of a node
corresponds to its depth-value. Suppose depth is discretised
into R levels, then each element xi is defined to be a binary
random R-vector, i.e. xi = [x1

i . . . x
r
i . . . x

R
i ], of which ex-

actly one element is 1 and all others are 0. The position of
the 1 indicates the depth-value of the pixel. Furthermore, a
smoothness constraint is imposed by defining a Gibbs prior
distribution on x which favours spatially smooth random
field configurations. In this paper, we augment this repre-
sentation and consider the state of a pixel to be a combina-
tion of its depth and its visibility configuration.

The visibility configuration of the ith pixel specifies in
which of the K input images it is visible. In principle, the
total number of visibility configurations is 2K . However,
certain configurations, in which the pixel is visible in less
than a predescribed number of images, are not very likely
and will not be considered. Let S denote the number of
visibility configurations under consideration and let s be an
index over these configurations. Then the sth configuration
of the ith pixel can be represented by a binary K-vector
vs

i = [vs1
i . . . vsk

i . . . vsK
i ], in which each element signals

whether or not the pixel is visible in the respective image.
The state of a pixel is a combination of its discrete depth

and its visibility configuration, and the number of possible
states is M = RS. The state of the ith pixel is represented
by the binary M -vector xi = [x1

i . . . x
m
i . . . xM

i ], of which
exactly one element is 1. Sometimes, we will find it conve-
nient to index these elements with the double index rs, in
which r refers to the depth level and s refers to the visibil-
ity configuration. The conversion between single and dou-
ble indexing is given by m= (r − 1)S+s. A smoothness
constraint is imposed on the random field x by defining a
suitable Gibbs prior distribution. This distribution, which
will be specified in the next section (2.3), favours random
field configurations in which neighbouring pixels have sim-
ilar depths and similar visibility configurations.

We are now in the position to describe the probabilis-
tic model in more detail. Let f(.; µ,Σ) denote a normal
PDF with mean µ and covariance Σ, and let g(.;hk) be the
outlier distribution associated with the kth image. Further-
more, let xrs

i be the element of the state vector xi which is
1 and let yk

i′ be the pixel in the kth image onto which y∗i is
mapped. Then the probability of observing yk

i′ , conditioned
on the unknowns θ={y∗,Σ,hk} and the state of the MRF
x, is given by:

p(yk
i′ |θ,x) =

{
f(yk

i′ ; y
∗
i ,Σ) if vsk

i = 1
g(yk

i′ ;h
k) if vsk

i = 0 (2)

2.3. Markov Random Field Gibbs Prior

In the previous section we introduced the MRF x which
represents the unobservable state of each pixel in the ideal
image y∗, where the state of a pixel is a combination of
its discrete depth and its visibility configuration. Accord-
ing to the Hammersley-Clifford theorem, the prior distribu-
tion p(x) is a Gibbs distribution which factorises over the
cliques of the graph. Let Ni represent a 4-neighbourhood
of the ith node, i.e. Ni is the set of indices of the nodes
directly above, below, left and right of the ith node. The
Gibbs prior is given by:

p(x) =
1
Z

∏
i

∏
j∈Ni

ψ(xi, xj) , (3)

where Z is a normalisation constant (the ’partition func-
tion’) and ψ is an interaction potential. The latter is a pos-
itive valued function defined over the cliques of the graph,
and embodies the prior beliefs about the smoothness of the
random field. In our case, the interaction potential should
consider both the depths and the visibility configurations of
neighbouring nodes. Suppose node i is in the rsth state
and has discrete depth d r

i and visibility configuration vs
i .

Furthermore, suppose node j is in the pqth state and has
discrete depth d p

j and visibility configuration vq
j . The dis-

tance Dij(r, p) between two depth labels r, p of neighbour-
ing nodes i and j is defined by the L1 norm | r − p | /R.
Since the discrete depth values d r are sampled uniformly on
an inverse depth scale, this choice leads to a smooth dispar-
ity. The distance Dij(s, q) between two visibility configu-
rations s, q is defined as the number of dissimilar entries of
vs

i and vq
j . Furthermore we introduce a constant C with ac-

counts for non smooth cliques interactions. The interaction
potential has the following form:

ψ(xrs
i , x

pq
j ) = e

−Dij(r,p)
σd e−

Dij(s,q)
σv + C , (4)

where σd and σv are proportional to the standard devia-
tions of the Laplace distributions. Note that this interaction
can be derived from a generative model (similar to (2)) of
depth and visibility under a Laplacian noise distribution and
with outlier probability C [5]. It has also strong similarities
to [9].

3. Maximum Likelihood Estimation

Let θ = {y∗,Σ,hk} denote all unknowns, and let y =
{yk} denote all input data. The maximum-likelihood (ML)
estimate of the unknowns is given by:

θ̂ML = arg max
θ

{
log p(y |θ)

}
= arg max

θ

{
log

∑
x

p(y |x,θ) p(x)
}
, (5)



where the assumption was made that the random field x is
independent from θ. Conditioned on the state of the hidden
variables x, the data-likelihood factorises as a product over
all individual pixel likelihoods:

p(y |x,θ) ≈
∏

i

∏
k

p(yk
i′ |xi,θ)

=
∏

i

∏
k

∏
m

p(yk
i′ |xm

i ,θ)xm
i . (6)

In the product overm, only the factor for which xm
i =1 sur-

vives. Notice that the data-likelihood factorisation is only
approximately correct, because in general pixels y∗i in the
ideal image will not map onto integral positions in the input
images yk . Depending on the relative positions and orien-
tations of the cameras, this will lead to overusage or under-
usage of the pixels yk

i . Each binary index xm
i corresponds

to a particular discrete depth value d r
i and visibility config-

uration vs
i = [vs1

i . . . vsk
i . . . vsK

i ]. Based on these visibility
values, the pixel-likelihood in the right hand side of eq. (6)
can be further expanded as:

p(yk
i′ |xm

i ,θ) =
[
f(yk

i′ ; y
∗
i ,Σ)

]vsk
i

[
g(yk

i′ ;h
k)

]1−vsk
i

. (7)

We have now specified all terms of the data-likelihood
p(y |θ). However, the sum

∑
x in the right hand side of

eq. (5) ranges over all possible configurations of the random
field x. Even for modest sized images, the total number of
configurations of x is huge, hence direct optimisation of the
log-likelihood is infeasible. The Expectation-Maximisation
(EM) algorithm offers a solution to this problem, essentially
by replacing the logarithm of a large sum into the expecta-
tion of the log-likelihood.

3.1. EM Algorithm

It was shown by Neal and Hinton [15] that the EM algo-
rithm can be viewed in terms of ’free energy’ minimisation,
where the free energy is defined as follows:

F (p̃,θ) = −Ep̃[log p(y,x |θ))] −H(p̃) . (8)

Here, p̃ is some distribution over the hidden variables x,
Ep̃[ ] denotes the expectancy under p̃, and H(p̃) is the
entropy of p̃. Starting from an initial parameter guess
θ̂(0), the EM algorithm generates a sequence of parameter
estimates θ̂(t) and distribution estimates p̃(t) by alternating
the following two steps:

E-step Set p̃(t) to that p̃ which minimises F (p̃, θ̂(t)).
M-step Set θ̂(t+1) to that θ which minimises F (p̃(t),θ).

Moreover, the authors prove that in the E-step, the

minimiser of F (p̃,θ) is given by the true posterior distri-
bution p(x | y, θ̂(t)). In order to compute this posterior in
a tractable manner, it is often approximated by a simpler,
factorisable distribution h(x). The task then is to find
h(x), which is as close as possible to the true posterior,
where the distance between both distributions is measured
by the Kullback-Leibler divergence. The minimum of
the Kullback-Leibler divergence is directly related to the
minimum of the free energy [15, 21].

In the mean field approximation, p(x |y, θ̂(t)) is approx-
imated by a distribution h(x) which fully factorises over the
nodes of the lattice:

h(x) =
∏

i

hi(xi) , (9)

where hi is a distribution over the M possible states of the
ith node. It is specified by an M -vector of one-node beliefs
[b1i . . . b

m
i . . . bMi ], in which bmi is the probability that node

i is in state m. Let ψmn denote the value of the interac-
tion potential ψ(xi, xj) when nodes i and j are in the mth

and nth state, respectively. Then the mean field free energy
FMF is, upto a constant, given by:

FMF = −
∑

i

∑
k

∑
m

bmi log p(yk
i′ |xm

i ,θ)

−
∑

i

∑
j∈Ni

∑
m,n

bmi b
n
j logψmn

+
∑

i

∑
m

bmi log bmi . (10)

The first two terms of FMF correspond to the expected
value of the log-likelihood (the so-called Q-function), and
the last term is the negative entropy of x under h(x).

In the E-step, the free energy is minimised w.r.t. the dis-
tribution h(x), where we use the current estimates θ̂(t) for
θ. This is achieved by setting the derivatives ∂FMF /∂b

m
i

to zero, and leads to the update equations:

bmi ←
∏
k

p(yk
i′ |xi, θ̂

(t)) exp
( ∑

j∈Ni

∑
n

bnj logψmn

)
.

(11)
After these updates, the beliefs are renormalised as to fulfil
the normalisation condition

∑
m bmi =1. These equations

are solved by iterative re-substitution, which converges fast.
At the end of the E-step, for each node i we can com-

pute the depth Di and visibility V k
i w.r.t. the kth image in

two ways. First of all, we could only consider the state with
maximal belief, say xrs

i , and use the depth and visibility
configuration of this state: Di =d r

i and V k
i =vsk

i . Alterna-
tively, we could compute the expected depth and visibility
by considering all states:

Di =
∑
rs

brs
i d

r
i , V k

i =
∑
rs

brs
i v

sk
i . (12)



The last method has the advantage of generating smoother
and non-discrete depth estimates. However, if multi-
modalities exist in the posterior beliefs bmi , the estimate
might be wrong.

In the M-Step, the free energy is optimised w.r.t. the
parameters θ. This is achieved by setting each param-
eter θ to the appropriate root of the derivative equation
∂FMF /∂θ = 0. The update equations for the ideal image
and noise covariance are:

y∗i =
∑

k V
k
i y

k
i′∑

k V
k
i

Σ =
∑

i

∑
k V

k
i (yk

i′ − y∗i )(yk
i′ − y∗i )T∑

i

∑
k V

k
i

, (13)

where V k
i are the expected visibilities computed according

to eq.(12). The histogram entries of the outlier distributions
g(.;hk) are updated as follows. Suppose the colour space is
discretised into B bins, i.e. hk = {hk

b}, b ∈ [1. . .B]. Max-
imisation of FMF w.r.t. the histogram entries hk

b , subject to
the constraint that all entries should sum to the inverse bin
volume, results in:

hk
b ∝

∑
i

(1− V k
i ) δb(yk

i′) , (14)

where δb(yk
i′ ) is an indicator function which evaluates to

1 if the pixel value falls in the bth bin and evaluates to 0
otherwise. Put differently, hk is a histogram of the kth input
image, where the data yk

i′ are weighted by their probability
of being not visible. The E and M-step are alternated until
the relative change of the parameters θ falls below a pre-
specified threshold.

Alternatively, in the Bethe approximation p(x |y, θ̂(t))
is approximated by a distribution h(x) which factorises as
follows [21]:

h(x) =

∏
ij hij(xi, xj)∏
i hi(xi)qi−1

. (15)

Here, qi is the size of the neighbourhood (4 in our case) and
hij(xi, xj) is a joint distribution over the states of neigh-
bouring nodes. It is specified by the M×M -matrix of two-
node beliefs bmn

ij , which specify the probability that node i
is in state m and node j is in state n. The Bethe free energy
is a function of the one-node and two-node beliefs:

FB = −
∑

i

∑
k

∑
m

bmi log p(yk
i′ |xm

i ,θ)

−
∑

i

∑
j∈Ni

∑
m,n

bmn
ij logψmn

+
∑

i

(qi − 1)
∑
m

bmi log bmi

+
∑

i

∑
j∈Ni

∑
m,n

bmn
ij log bmn

ij . (16)

Again, the first two terms of FB correspond to the expected
value of the log-likelihood, and the last two terms specify
the negative entropy of h(x). The Bethe free energy is exact
for graphs without loops [21]. For graphs with loops, like
in our case, it is an approximation of the true free energy.

It was recently shown that the popular belief propaga-
tion algorithm, introduced by Pearl [16], minimises the
Bethe free energy w.r.t. respect to bi and bij [21]. The EM-
algorithm proceeds by iterating the following steps. In the
E-Step, the Bethe free energy is minimised w.r.t. bi and bij
by belief propagation. In the M-Step, the parameters are
updated according to eqs. (13) and (14). The updates of
the parameters are the same for both free energy approx-
imations, because they only appear in the terms of FMF

and FB which correspond to the expected value of the log-
likelihood.

4. Experimental Validation

In our experiments we do not consider all possible visi-
bility configuration of a pixel, since some of them are very
unlikely. Consider the case of three images yk in which
there are 8 possible visibility configurations vs

i for every
pixel y∗i in the ideal image. These configurations are shown
in table (1). Depending on the application we can distin-

v1
i v2

i v3
i v4

i v5
i v6

i v7
i v8

i

y1 1 1 1 1 0 0 0 0
y2 1 1 0 0 1 1 0 0
y3 1 0 1 0 1 0 1 0

Table 1. Possible visibility configurations for
three images.

guish between two scenarios. The first scenario is the most
general one. The reference camera is one of the input cam-
eras or a virtual camera, and there might be independently
moving objects in the scene. This implies that one cannot
assume that all pixels y∗i from the ideal image are simultane-
ously visible in one of the input images yk. To be able to as-
sign a meaningful depth and colour to an ideal image pixel
y∗i , it must be visible in at least two images. Configurations
in which a pixel is visible in only one image are in principle
possible, but are in reality not very likely to occur. There-
fore, we only consider the visibility configurations given by
s = {1, 2, 3, 5}. By using these configurations, it is possi-
ble to remove independently moving objects from the scene
and still compute a depth value at these outlier pixels.

In the second scenario, the reference camera is one of the
input cameras, say y1, and if there are independently mov-
ing objects in the scene they are not visible from the ref-
erence camera. In this particular case, all pixels y∗i are by



Figure 2. Comparison of Bethe (top) and
mean field (bottom) approximation: depth
(left) and detected occlusions (right).

definition visible in y1 (the geometrical transformation be-
tween y∗ and y1 is the identity transformation), which puts
stronger constraints on the possible solutions. The possible
visibility configurations vs

i are given by s = {1, 2, 3, 4}. In
this case we are now able to explicitly identify the regions
for which no depth estimation is possible (s=4).

In order to model discontinuities of the MRF we use
two interaction matrices, which differ by the constant C in
eq. (4). The first (C = Cd) is used for all cliques for which
the endpoints fall into a different mean shift colour segment
[1], and the second (C = Cs) for the remaining cliques.

4.1. Ground truth Evaluation

In the first experiment we compare the quality of
the mean field with the Bethe approximations on the
‘cones sequence’ of the Middlebury Stereo evalua-
tion set [18]. Three images have been used with
visibility configurations s = 1, 2, 3 and parameters
σd =400, σv =30, Cs =10−10, Cd =10−4. The extracted
depth and visibility for the images which are used in the
Middlebury set are shown in fig. (2). Table (2) compares
both approximation by the percentage of pixels with a dis-
parity error large than 1 and larger than 0.5, evaluated for all
visible pixels (equivalent to [18]). The best result was ob-
tained by the Bethe approximation, which is in agreement
with the results of Weiss on other inference problems [20].
The occlusions are detected well as long as the occluded
parts contains textural information. For homogeneous oc-
cluded regions a match at a wrong depth is estimated as
being more likely.

Bethe Mean Field
error σd = 300 σd = 400 σd = 300 σd = 400

1.0/0.5 3.83/8.43 3.71/7.68 13.2/22.1 10.1/18.9

Table 2. Results for Bethe and mean field ap-
proximation on Cones ground truth data.

The results for two view stereo on the whole Middlebury
set, all processed with σd =300, σv =30, Cs =10−10, Cd =
10−4, are shown in table (3). We report the percentage of
pixels with a disparity error larger than 1 and larger than
0.5, evaluated at all pixels for which correspondence can be
established.

error Tsukuba Venus Teddy Cones
1.0/0.5 2.57/7.89 1.72/4.59 6.86/14.8 4.64/10.2

Table 3. Middlebury stereo evaluation.

4.2. Outdoor Scene Reconstructions

We tested our algorithm on several challenging outdoor
scenes, characterised by multiple depth occlusions, inde-
pendently moving objects and complicated scene geometry.

The first example shows a scene which is contaminated
by pedestrians. The three input images are shown in the top
row of fig. (3). The camera position of the ideal image was
chosen to be the left of these images. Notice that all images
are contaminated with independently moving objects. Also
the reference image contains pixels (e.g. woman in white)
which have no support in any other image. Still, the results
in fig. (4) show that our algorithm could assign a meaningful
colour (left) and depth (right) to those outlier pixels. The
bottom row in fig. (3) shows the visibility estimates. The
Bethe approximation of the free energy was used, and four
visibility configurations vs, s = 1, 2, 3, 5 were considered.
The depth estimation at the bottom of the ideal image y∗ is
rather poor. The reason for this is the lack of texture and the
fact that the epipole lies within all target images. However,
the ideal image looks visually convincing and the estimated
depth, visibility and ideal image constitute a solution which
makes the input images very likely.

In the next experiment we used three images of the ‘city-
hall scene’ [19]. These images are shown in the top row
of fig. (5). Because this scene does not contain indepen-
dently moving objects, we only consider the three visibility
configurations vs, s = 1, 2, 3 in table (1). In the bottom
row the extracted depth and visibilities are shown. We used
the Bethe approximation with parameters σd = 300, σv =



Figure 3. Top: the three input images. The
camera position of the virtual image y∗ was
chosen to be the left of these images. Bot-
tom: visibility estimates related to y∗.

30, Cs = 10−10, Cd = 10−4. For the experiment in fig. (1)
the same visibility configurations were considered. Both
experiments show excellent depth and visibility estimates.
The datasets (images, calibration and calibration points) are
available at www.esat.kuleuven.be/∼cstrecha/testimages.

5. Discussion and Conclusions

We presented a new approach to multi-view stereo which
can deal with scenes that are contaminated by accidental ob-
jects. A novel view is computed, which is most likely given
the input images. To compute this view, all possible con-
figurations of depth and visibilities are taken into account.
This results in the elimination of accidental objects which
cannot be explained by the majority of input images. Most
existing multi-view stereo algorithms compute depth w.r.t.
the reference image itself, and therefore lack this ability.

Novel view synthesis in conjunction with depth estima-
tion has been formulated in [19] and further extended in
[7]. Both methods use a PDE solution scheme. Being lo-
cal methods, memory and CPU demands are relatively low,
hence depth can be computed for large images. However,
they also rely on a good initialisation in order to converge.
Global formulations like MRF, on the other hand, have been
shown to convergence well even without initial depth es-
timate. They could therefore be used as an initialisation
for a local optimisation scheme on high resolution images.

Figure 4. Ideal image y∗ and depth estimate,
computed from the three input images shown
in fig. (3). Notice that the woman has disap-
peared from y∗ and that a depth and colour
value is assigned to these pixels by matches
in the other views.

In the E-step of the EM algorithm, we experimented with
two approximations of the free energy: the mean field and
Bethe approximation. Minimising the latter energy can be
achieved by belief propagation. We numerically evaluated
the quality of both approximations on ground truth data.
This showed that for the stereo problem, the Bethe approx-
imation has clear advantages over the mean field approxi-
mations. The results also show that our method scores well
on the Middlebury stereo evaluation. Currently, we are at
the fourth position when performance is measured at the
highest precision (0.5 pixels disparity error) for all visible
pixels.

The presented approach to detect outliers is purely based
on photometric cues. Therefore, it can cope with indepen-
dently moving objects, as well as geometric occlusions.
For example, photometric cues are necessary to deal with
scenes like the one shown in fig. (3). However, when the
scene contains large untextured regions, photometric cues
could fail to detect an occlusion. It remains possible that the
occlusion can be explained by assigning a wrong depth, if
this provides a consistent match in all images. An example
of this can be observed at the left side of the front-right
cone in fig. (2). Combining photometric and geometric cues
is expected to further increase the robustness of outlier de-
tection. This combination will be considered in future work.
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Figure 5. Cityhall scene. Top: the three input images, the camera position of ideal image y∗ was
chosen to be the left image. Bottom: estimated depth and visibility.
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