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ABSTRACT 

Distributed fibre optic sensors are being evaluated by the nuclear industry for monitoring purpose. We evaluate the 
radiation tolerance of distributed Brillouin sensors up to very high total gamma doses. 

1. INTRODUCTION 

Fibre optic sensing technology can bring promising alternatives to classical measurement techniques in harsh nuclear 
environments[1][2][3]. Distributed fibre optic sensing technologies would allow structural integrity monitoring of reactor 
containment buildings, nuclear waste repository monitoring and remote-safety control of nuclear installations. The 
potentialities of Raman distributed temperature sensors have already been studied in radiation environments[5][6][7] . 

Exposing optical fibres to ionizing radiation results in a wavelength-dependent attenuation increase. This effect 
limits the radiation-acceptance level of intensity-based fibre optic sensors in nuclear environments. The narrow 
wavelength encoding of the sensing information, however, helps to avoid the influence of the broadband radiation-
induced loss, as we already show for fibre Bragg grating sensors[4].

Distributed sensors based on stimulated-Brillouin-scattering have an interesting potential for distributed strain and 
temperature monitoring in the nuclear industry. Since the sensing information is frequency-encoded, i.e. therefore 
potentially radiation tolerant, it was interesting to study the radiation effect on the Brillouin shift for application in 
ionizing environments. 

In this paper, we present our preliminary results on the properties of the Brillouin gain spectrum in a gamma-
irradiated commercially-available optical fibre. 

2. EXPERIMENTAL DETAILS 

We investigated the effects of ionising radiation on the characteristics of the Brillouin gain spectrum in standard Ge-
doped telecom single mode fibres (Lucent Allwave™). During this irradiation campaign, four fibre samples, cleaved to 
a common length of 50 m, have been irradiated off-line in the BRIGITTE gamma irradiation facility[8] (SCK•CEN, 
Belgium) at the same dose rate of 27 kGy/h but at different total doses. Table 1 lists the total dose absorbed by each 
fibre. 

Fiber sample Length Dose (MGy) 

1 50 m 0.33 

2 50 m 0.97 

3 50 m 4.70 

4 50 m 9.90 

Reference 50 m 0 

Table 1: Samples of Lucent Allwave™ single mode fibers used in this work 
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The experimental configuration used for Brillouin sensing is schematically shown in Figure 1. Two distributed-
feedback lasers (called Master and Slave) generate two counter-propagating lightwaves at 1550 nm (called respectively 
probe and pump) whose frequency separation must be kept constant and close to the Brillouin shift ( B) of the fibre 
under test. An efficient technique to obtain these waves is by modulating[9] the master laser at the Brillouin frequency 
(10-11GHz) and by injection-locking the slave laser on the sidebands of the master[10]. This is achieved by coupling a 
portion of the light of the master into the cavity of the slave. Distributed measurements are simply obtained by gating 
the pump signal through a semiconductor optical amplifier (SOA); pulses are then boosted through an erbium-doped 
fibre amplifier (EDFA). The probe signal is finally detected by a photodetector and analysed on an oscilloscope. 

By varying the modulation frequency of the master, the fibres are completely scanned; the oscilloscope traces are 
collected and processed in order to calculate the Brillouin shift and the Brillouin linewidth. The injection-locking 
technique being intrinsically stable the Brillouin gain curves can be measured with high accuracy. 

3. EXPERIMENTAL RESULTS 

We measured the total radiation-induced attenuation in the 1550 nm window for each sample with an OTDR 
analyser. The results, summarised in Table 2, are comparable with previous works[11].

Figure 2 shows and compares the spectral responses of the radiation-induced absorption. This behaviour is typical 
of doped-optical fibres when exposed to ionising radiation[11] . However despite of the significant radiation-induced 
absorption, frequency-based systems, like Brillouin distributed sensors, still operate correctly. The radiation-induced 
attenuation only affects the signal-to-noise ratio. 

Fig. 1. Schematic diagram of the injection-locking based configuration for Brillouin 
sensing. Master, Slave: distributed-feedback lasers; SOA: semiconductor optical 
amplifier; EDFA: erbium-doped fibre amplifier; FUT: fibre under test. 

 Reference Sample 1 Sample 2 Sample 3 Sample 4 

Dose (MGy) 0 0.33 0.97 4.7 9.9 

Attenuation (dB/km) 0.43 44.94 62 144 170 

Table 2. Attenuation measured with an OTDR at 1550 nm. 
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Figure 3 and 4 show the Brillouin frequency ( B) and 
the Brillouin linewidth ( B) as a function of the absorbed 
dose. The results presented here were obtained by 
averaging on several measurements carried out in the same 
conditions and at the same ambient temperature, in order 
to be free of systematic errors which could bias our data. 

The results are summarized in Table 3 and show a 
clear dependence of the Brillouin scattering on the ionising 
radiation: frequency and linewidth increase nonlinearly as 
a function of the dose. 

 Reference Sample 1 Sample 2 Sample 3 Sample 4 

Dose 0 MGy 0.33 MGy 0.97 MGy 4.7 MGy 9.9MGy 

Brillouin frequency (GHz) 10.8413 10.8417 10.8426 10.8451 10.8462 

Brillouin linewidth (MHz) 43.2 43.6 44.4 46 48 

Table 3. Brillouin characteristics parameters. 

4. DISCUSSION 

The properties of Brillouin sensors to be able to measure temperature or strain variations is intrinsically related to the 
physical origin of the Brillouin scattering, resulting of the change in the acoustic velocity propagation according to 
variations in the silica density. 

Our results show a change in the Brillouin shift due to ionisation radiation. The radiation-induction compaction 
being a non-reversible phenomenon, the Brillouin shift is frozen in the fibre when exposed to ionising radiation. 
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Fig. 2. Spectral response of the radiation-induced 
attenuation. Curves are normalised with respect to the 
reference fibre spectrum. 
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Fig. 3. Brillouin shift measured as a function of the 
absorbed dose. All measurements were made at constant 
temperature (T = 295.25K±0.05) 

Fig. 4. Brillouin linewidth measured as a function of 
the absorbed dose. All measurements were made at 
constant temperature (T = 295.25K±0.05) 
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This tends to indicate a change in the silica density during the irradiation. This phenomenon is known as silica 
compaction and has already been studied in bulk silica[11]. In our case, we observe a negative compaction, i.e. dilatation, 
due to the ionization. Our results confirms the pioneer work of Starodubstev and Azizov[13] . In addition, Primak showed 
that the sign of the compaction strongly depends not only on the silica type but also on the type and on the concentration 
of the dopants [14]. This opens ways for having optical fibres with a reduced Brillouin shift by carefully chosing the 
dopant concentration and the fiber type.

The reason of the growth of the Brillouin linewidth is still unclear and need further investigations, due to the 
complex interactions of ionizing radiation with silica. Nevertheless this modest change causes no impairment for the 
measurement of the Brillouin shift, that is the essential information for sensing. 

The frequency variation is about 5 MHz for both frequency and linewidth for the worst case (most irradiated 
sample), which corresponds approximately to a temperature change of about 5K for a total dose of about 10 MGy. 
However, it is important to note that the required radiation acceptance level for nuclear monitoring instrumentation is of 
the order of 10-100 kGy max. Therefore, the radiation induced shift of the Brillouin frequency can be considered to be 
practically negligible in real application. 

5. CONCLUSIONS 

The effect of gamma radiation on the Brillouin scattering in commercially-available optical fibres has been studied up to 
very high total gamma dose. Distributed sensors based on stimulated Brillouin scattering can be considered to be 
radiation-tolerant up to total doses of about 100 kGy, if the signal-to-noise ratio is kept acceptable . Further work on 
different fibres with different dopant concentration types will indicate which fibre is more suitable for nuclear 
environments. In addition, the use of the radiation-induced Brillouin shift as tool analysis will certainly bring new 
perspectives in the understanding of the compaction mechanism in irradiated amorphous silica. 
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