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Time biasing due to the slow-light effect in
distributed fiber-optic Brillouin sensors
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The influence of the slow-light effect on the performance of distributed Brillouin sensors is studied. We show
that, while in most situations it can be neglected, it may greatly affect the results obtained for certain ex-
perimental configurations. More specifically, for one of the experimental arrangements described in the lit-
erature (a strong continuous-wave pump and a weak pulsed probe) we show that this effect induces a large
time biasing of the traces that depends not only on the fiber length but also on the frequency separation
between pump and probe. This biasing reduces the available resolution in this experimental arrangement.
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Distributed fiber-optic sensors offer unique capabili-
ties for the monitoring of quantities such as tempera-
ture and strain over long distances. In many applica-
tions, these sensors avoid the need for thousands of
pinpoint sensors and complicated multiplexing
schemes. Among these, distributed Brillouin sensors
have attracted much research interest in the past
yearsl_7 and are now widely used for the monitoring
of strain and temperature distribution within large
structures in civil eng‘ineering.2 Several techniques
have been proposed for performing distributed Bril-
louin sensing, and the principal configurations have
been summarized in Fig. 1, together with the typical
parameters used in experimental setups selected
from representative publications. In the Brillouin op-
tical time-domain reflectometer (BOTDR) configura-
tion, a pump pulse is launched into the fiber
(~200 ns duration, ~150 mW of peak power), and
the spontaneous Brillouin backscattered light is syn-
chronously analyzed as a function of the time (dis-
tance along the fiber) by using heterodyne detection.?
For each position the pump—Stokes frequency shift is
determined, which is then translated into strain or
temperature values.

In the Brillouin optical time-domain analysis*
(BOTDA-1) configuration, however, the Brillouin in-
teraction is performed in the stimulated regime, thus
requiring two counterpropagating waves, a powerful
pulsed pump wave (~50 ns with ~70 mW of peak
power) and a weak probe wave (~100 uW). If par-
ticular phase-matching conditions are met (namely,
foump =/probe+ VB, vp being the Brillouin shift), an
acoustic wave is generated that scatters photons
from the pump to the probe wave. This leads to a lo-
cal amplification of the probe wave, which yields a
time-dependent variation of the detected probe signal
in the pump end. An earlier version of this technique®
(labeled BOTDA-2 in Fig. 1) uses a powerful,
continuous-wave (cw) pump wave (~6 mW) and a
weak pulsed probe wave (~50 ns pulse length with
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~1 mW of peak power) tuned at f},;obe = fpump+ ¥5- The
position-dependent Brillouin attenuation of the
pump induced by the probe is recorded in terms of a
variation in the cw pump power detected from the
probe end. Schemes similar to BOTDA-1 and
BOTDA-2 can be developed in the frequency
domain.® The conclusions of the analysis of the time-
domain configuration can be exactly translated into
the frequency-domain one. Last, centimetric resolu-
tion sensors make use of the Brillouin optical corre-
lation domain analysis (BOCDA) technique,7 in
which the short correlation length between two
modulated, counterpropagating laser beams is ex-
ploited to achieve very small amplification windows
whose width and position is controlled by the modu-
lation parameters.

All these sensing schemes developed until now
have estimated their resolution by using the pulse
width directly (for BOTDR, BOTDA-1, and
BOTDA-2) or the calculated correlation window (for
BOCDA). However, in these approaches the group-
velocity changes induced by the Brillouin
amplification—attenuation mechanisms have been
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Schemes for performing distributed Brillouin
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Fig. 2. Principle of group-velocity changes induced by the
Brillouin interaction in optical fibers.

fully neglected. Recent theory and experimen‘cs8 have
shown, however, that these group-velocity changes
can be extremely large in certain situations and can
cause significant signal delay or advancement even
when modest amplifications are achieved. In this Let-
ter we systematically analyze all the signal delay—
advancement effects that can take place in any of the
reported Brillouin distributed sensor configurations,
and we quantify those that can affect the sensor per-
formance.

We start by considering the interaction of a cw
wave at f,, with a pulsed signal tuned at f,=f.,,— v5.
For the following theory, we make two assumptions:
(1) The linear loss « is identical for the pump and sig-
nal, and (2) the cw experiences a negligible amplifi-
cation or depletion as a result of the interaction with
the pulse signal. Let the pulse amplitude be A,, and
the cw amplitude be A,,. The well-known basic rela-
tion for the amplitudes in the Brillouin interaction
reads as
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where ggp is the Brillouin gain coefficient, Ay the
mode effective area, v the light frequency, v—vg the
frequency offset from the peak gain frequency vg, Avg
the gain bandwidth, and « the linear attenuation co-
efficient. Since we assume that the interaction has no
effect on the cw wave, its intensity is just modified by
the linear loss. Thus, for a counterpropagating wave
with intensity I, at the far end (input intensity),

Iy(2) = |Acy(2)* = I, exp[- a(L - 2)], (2)

where L is the total fiber length. Substituting Eq. (2)
into Eq. (1) yields a differential equation with a
straightforward solution of the form

Ay(2) =A(0)exp[G(2)/2 - jP(2) Jexp[ - (a/2)z], (3)

so that G(z) represents the well-known gain factor in
intensity, I,(z)=I,(0)e®e~*, and ®(z) is the addi-
tional phase summed up at position z due to the Bril-
louin interaction. These two quantities read as
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The usual treatment of these equations in the litera-
ture has basically concentrated on the exponential
intensity increase of the signal wave, but the effect of
the additional phase shift ®(z,v) induced in the sig-
nal wave has been largely omitted. This additional
phase shift can be regarded as a change in the propa-
gation constant; hence ®(z,v)=AB(z,v)z, which can
be translated into an equivalent refractive index
change An=(c/2mv)AB. A brief inspection of AB shows
that it has a strong frequency dependence (hence
An), as we try to show schematically in Fig. 2. If we
consider a pulse propagating at the probe wave-
length, its velocity will be related to the group veloc-
ity; hence the derivative of the propagation constant
with frequency V,=(dBdw)™. Thus a sudden change
in the propagation constant with frequency produces
a strong change in the group velocity, which in turn
introduces an additional delay of the signal (pulse) at
the fiber output. The group-velocity change can be
written as
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and the extra time delay can be evaluated as At
=AN,(z/c), where AN, represents the group index
change. If the frequency difference between the pump
and the probe exactly matches the Brillouin shift (v
—vp=0), the resultant optical time delay is given by
At=G(L,vg)/27Avg=ggl L./ (2mAvg), where the ef-
fective fiber length L.y adopts its usual definition.’
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Fig. 3. Probe pulse delay as a function of distance for the
BOTDA-2 configuration; the pump power is 6 mW.



We can thus say that the delay varies logarithmically
with the net gain (loss) experienced by the probe. A
fast evaluation of these quantities in conventional
single-mode fibers (Avy~35 MHz) leads to a surpris-
ingly simple rule of thumb: 1 ns delay is introduced
per decibel gain introduced in the probe. The same
calculations can be performed in the case of Brillouin
loss (this is when for the signal frequency f;=f.+ vp)
and the results hold basically the same except for the
sign of the delay, which is reversed. This can be
viewed as a certain advancement of the pulse with
respect to its conventional propagation.

We now analyze the effect of this extra delay—
advancement on the performance of the distributed
Brillouin sensors. In the BOTDR configuration, a
noise photon is generated with equal probability over
the whole pulse length, which subsequently suffers
Brillouin amplification along the pulse interaction
length. With the previously supplied data (peak
power P,=150 mW, pulse length 7=200 ns) and the
usual fiber parameters (g5=2.3 107! m/W, mode
field diameter A =80 um?, Avg=35 MHz) the maxi-
mum delay that can be introduced in a single noise
photon is 3.6 ns, which is small in comparison with
the resolution and corresponds to a position inaccu-
racy of about 0.72 m. A complete evaluation of the
noise-induced loss (depletion) of the pump pulse
would require a numerical resolution of the Brillouin
equations taking into account the spontaneous
noise, but we can consider that this advancement is
negligible by noting that in their usual application
(long-range sensing) this scheme requires a nearly
negligible pump depletion and thus no visible ad-
vancement of the pump pulse.

In the BOTDA-1 configuration the maximum over-
all delay that the pump pulse introduces on the probe
wave is 0.4 ns (a maximum of 0.4 dB gain). The the-
oretical attenuation of the probe wave on the pump
pulse is, however, more limiting. In the worst case
(completely homogeneous fiber) and with the previ-
ous data, this attenuation can amount to as much as
2.2 dB in 30 km of fiber, and hence a 2.2 ns advance-
ment of the pump pulse (or a 0.22 m position shift).
This is still negligible in comparison with the pulse
length, but it can have a certain effect in short-range
high-resolution systems with higher values of pump
depletion. An even worse case appears when we con-
sider the consequences of the slow-light effect for the
performance of the BOTDA-2 configuration. Although
the attenuation effect of the probe pulse on the cw
pump is less than 0.05 dB (hence there is no visible
pump wave advancement), the probe pulse is ampli-
fied greatly at the expense of the pump wave. Again,
a worst-case estimation leads to a 130 ns probe pulse
delay, i.e., more than twice the reported resolution
(see Fig. 3). Of course, all these estimations have
been done in the worst case (ideally homogeneous fi-
ber and v—rg=0), assuming no spontaneous Brillouin
scattering and no pump depletion. A more realistic
approach would require accounting for these last ef-
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fects, which would very probably limit the amount of
pulse advancement to a few tens of nanoseconds.
Still, this simple evaluation suffices to raise aware-
ness of the problem, and the worst case must be con-
sidered to set the system accuracy.

Even though the time biasing of the Brillouin trace
is already an inconvenience, it should be possible to
correct it in a relatively easy way. A more delicate
question arises when we consider the effect of this
time biasing on the resolution of the sensor. When in-
stead of v—vp=0 we have v—vg=Avg/2, the delay—
advancement is halved; i.e., the time encoding of the
fiber length varies as a function of the analyzed fre-
quency. This means that the resolution is no longer
given by the pulse length only, but by the sum of the
pulse length with half of the maximum time delay-
advancement of the probe—pump pulse for each fiber
position. A frequency-dependent correction of the
horizontal axis of the trace is thus necessary to main-
tain the resolution of the measurement, where addi-
tional difficulties may arise, since a perfect correction
should require the unknown local Brillouin gain pro-
file. Cumulative errors arising in a multipass feed-
back algorithm may severely impair the accuracy.

In the BOCDA configuration with the usual param-
eters, the maximum observable amplification—
attenuation in the probe—pump wave is of the order
of 10~* dB, implying a negligible delay of 0.1 ps.

In conclusion, we have demonstrated that the slow-
light effect can have a strong consequence in certain
configurations of Brillouin sensors, especially in
those having a strong, cw pump (BOTDA-2). In these
systems the slow-light effect introduces not only a
time biasing of the trace but also a strong impair-
ment in the available resolution because this time bi-
asing is strongly dependent on the pump—probe fre-
quency difference. A frequency-dependent correction
of the time axis should be sufficient to overcome this
resolution impairment.
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