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1 Problem Statement

Throughout this note, we consider an optimization problem in the form of the following general NLP:
(minimize wrt π)

min
π

φ(π,y) (Pp)

s.t. y = F (π)

g(π,y) ≤ 0,

where π ∈ IR
nπ denotes the decision (or input) variables; y ∈ IR

ny the output variables; φ the scalar objective
function; g the vector of ng inequality constraints; and F the actual plant.

In practice, the map F is typically unknown, and only an approximate, finite-dimensional model is
available to describe its behavior,

y = f (π, θ), (1)

where θ ∈ IR
nθ is a set of adjustable model parameters. Based on this model, one can then get an approximate

solution to the original problem (Pp) by solving the optimization problem

min
π

φ(π,y) (Pm)

s.t. y = f (π, θ)

g(π,y) ≤ 0.

Due to the presence of uncertainty in the form of model mismatch and process disturbances, however, the
optimal solution to (Pm) –assuming it is unique– may be quite different from the optimal solution to (Pp).

The objective of real-time optimization (RTO) is to take advantage of the available measurements in
order compensate for the uncertainty and adapt the model-based problem so as to get closer to the actual
plant optimum. Our focus here is on modifier-adaptation methods [1] that use measurements to correct the
values and the first-order derivatives of both the cost and constraint functions in (Pm) as

min
π

φ(π,y) + λ
T

φπ (Pa)

s.t. y = f(π, θ)

g(π,y) + εg + λ
T

g π ≤ 0,
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where εg ∈ IR
ng is the constraint-value modifier; λg ∈ IR

nπ×ng the constraint-gradient modifier; and λφ ∈ IR
nπ

the cost-gradient modifier.
The use of modifiers is attractive in the sense that a KKT point π

∗ for the corrected model-based problem
(Pa) is also a KKT point for the original problem (Pp), provided that the modifiers satisfy:

εg = g(π∗, F (π∗)) − g(π∗, f(π∗, θ))

λ
T

g =
∂g

∂y
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∣
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∣
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.

An iterative scheme that adapts the modifiers so as to satisfy the foregoing conditions upon convergence
can easily be devised. Perhaps the key issue in applying this approach, however, is tied to the fact that the
gradient of the plant outputs with respect to the plant inputs, ∂F

∂π
, also called experimental gradient, must

be available.
The focus in the remainder of this note is on the reliable and accurate estimation of the experimental

gradient based on the knowledge of input/output measurements at previous operating points.

2 Experimental Gradient Estimation

Given nπ past operating points, π
(1), . . . , π(nπ), and the corresponding measured outputs y(1), . . . ,y(nπ),

the experimental gradient relative to the ith output at the new point π can be approximated as:

∂Fi

∂π

∣

∣

∣

∣

π

≈ Gi(π) := U(π)−1Yi(F (π)) (2)

with:

U(π) :=
(

π − π
(nπ)

π
(nπ) − π

(nπ−1) · · · π
(2) − π

(1)
)T ∈ IR

nπ×nπ (3)

Yi(y) :=
(

yi − y
(nπ)
i y

(nπ)
i − y

(nπ−1)
i · · · y

(2)
i − y

(1)
i

)T

∈ IR
nπ ,

for each i = 1, . . . , ny.
In theory, the smaller the difference between the operating points π

(1), . . . , π(nπ+1), the more accurate
the approximation Gi of the experimental gradient. In practice, however, having the past operating points
too close to one another can lead to unreliable estimates because the plant outputs are inevitably corrupted
by noise. To conduct the analysis, it shall be assumed throughout that the measurements yi, i = 1. . . . , ny,
at a given operating point π are independent Gaussian white noise processes with a mean of Fi(π) and a
variance of σ2

yi
,

yi ∼ N(Fi(π), σ2
yi

), ∀i ∈ {1, . . . , ny}. (4)

In previous work [2, 3], the effect of noise has been accounted for by requiring that the matrix U(π) at
the new operating point π be sufficiently well conditioned. While a large condition number can indeed lead
to considerable amplification of the measurement errors, thus leading to poor gradient estimates, a difficulty
with this approach is that the relation between the condition number of U(π) and the effect of measurement
noise on G(π) is not straightforward.

The novel approach proposed herein is based on the rather natural idea that the expected level of noise in
G, as induced by the noise in the output measurements, can be kept sufficiently small by ensuring a certain
distance between successive operating points. From (2) and (4), the components of the gradient estimate
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Gi(π) at a new point π are Gaussian white noise processes,

Gij(π) ∼ N(µGij
(π), σGij

(π)), ∀(i, j) ∈ {1, . . . , ny} × {1, . . . , nπ} (5)

with: µGij
(π) =

[

U(π)−1
]

j· Yi(F (π)) (6)

σGij
(π) = σyi

√

√

√

√2

nπ
∑

k=1

[U(π)−1]
2
jk . (7)

Observe that the variance of the estimated gradient components results from the measurement noise
in the measured outputs y corresponding to the new point π, but also on the measurement noise in the
measured outputs y(1), . . . ,y(nπ) relative to the past operating points π

(1), . . . , π(nπ).
Based on (5–7), different types of constraints can be defined in order to limit the effect of measurement

noise on the elements of the estimated gradients when selecting future operating points. In particular,
the variance (7) of the estimated gradient components being independent of the process model, it appears
promising to define constraints in terms of σGij

(π) since such constraints would remain valid no matter how
inaccurate the process model is.

2.1 Worst-case Constraint on Gradient Standard Deviation

Defining an upper bound on the maximal standard deviation σGij
(π) when selecting the new operating point

π, either output-wise or not,

max
1≤j≤nπ

σGij
(π) ≤ σ̄abs

Gi
, i = 1, . . . , ny, max

1≤i≤ny

1≤j≤nπ

σGij
(π) ≤ σ̄abs

G ,

guarantees that the standard deviation of any of the estimated gradient elements remain lower than σ̄abs
Gi

(or

σ̄abs
G ). One could also decide to restrict the relative standard deviation of the elements in G,

max
1≤j≤nπ

σGij
(π) ≤ Gij(π)σ̄rel

Gi
, i = 1, . . . , ny, max

1≤i≤ny

1≤j≤nπ

σGij
(π) ≤ Gij(π)σ̄rel

G .

By combining the foregoing absolute and relative restrictions, yet another constraint is obtained as

max
1≤i≤ny

1≤j≤nπ

σGij (π) ≤ max{σ̄abs
G ;Gij(π)σ̄rel

G }. (8)

2.2 Norm-based Constraint on Gradient Standard Deviation

Instead of considering the largest standard deviation of the elements of G(π) in selecting the new operating
point π, one could as well consider any p-norm of the vector σGi·

(or, alternatively, of the matrix σG). The
resulting constraints read

‖σGi
(π)‖p ≤ σ̄

p
Gi

, (9)

for each i = 1, . . . , ny.

Theorem 1 (Necessary Conditions I) For the condition (9) to be satisfied it is necessary that the fol-
lowing disjunctive affine constraints hold:

(

α
T
π ≥ β+

i

)

∨
(

α
T
π ≤ β−

i

)

, (10)
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where α ∈ IR
nπ and β+

i , β−
i ∈ IR, β+

i > β−
i , are given by

αk := (−1)1+k detU(1,k), k = 1, . . . , nπ (11)

β±
i :=

nπ
∑

k=1

(−1)1+kπ
(nπ)
k detU(1,k) ±

√
2σyi

σ̄
p
Gi

∥

∥detU(1,·)
∥

∥

p
, (12)

with (−1)i+j detU(i,j) standing for the (i, j)th cofactor of U .

Proof Observe first that the (1, k)th cofactor of U is independent of π since only the first row of U depends
on π. By contradiction, assume that (9) holds, but (10) does not. That is,

∣

∣

∣

∣

∣

nπ
∑

k=1

(−1)1+k
(

πk − π
(nπ)
k

)

detU(1,k)

∣

∣

∣

∣

∣

<

√
2σyi

σ̄
p
Gi

∥

∥detU(1,·)
∥

∥

p
. (13)

Noting that the determinant of U(π) is given by

detU(π) =

nπ
∑

k=1

(−1)1+k
(

πk − π
(nπ)
k

)

detU(1,k), (14)

and that

[

U(π)−1
]

k1
=

(−1)1+k detU(1,k)

detU(π)
,

for each k = 1, . . . , nπ, one has that the inequality (13) is equivalent to
√

2σyi

∥

∥

[

U(π)−1
]

·1

∥

∥

p
> σ̄

p
Gi

. (15)

On the other hand, by the definition of σGij
(π) in (7),

‖σGi
(π)‖p =

√
2σyi

∥

∥

∥

∥

∥

∥

√

√

√

√

nπ
∑

k=1

[U(π)−1]2·k

∥

∥

∥

∥

∥

∥

p

≥
√

2σyi

∥

∥

[

U(π)−1
]

·1
∥

∥

p
.

From (15), one finally obtains that ‖σGi
(π)‖p > σ̄

p
Gi

, which contradicts (9). �

Corollary 1 (Minimal Distance to Previous Points) Given nπ points π
(1), . . . , π(nπ) in IR

nπ , such
that a unique hyperplane, H(nπ), passes through these points, the distance between any new point π sat-

isfying the constraint (9) and H(nπ) is greater than
√

2σyi

σ̄
p

Gi

.

Proof From (14), the hyperplane H(nπ) is defined by the equation

nπ
∑

k=1

(−1)1+k
(

πk − π
(nπ)
k

)

detU(1,k) = 0.

In other words, H(nπ) is such that α
T
π = γ, with γ :=

∑nπ

k=1(−1)1+kπ
(nπ)
k detU(1,k). Clearly, this hyperplane

is parallel to the hyperplanes H(nπ)
+ : α

T
π = β+

i and H(nπ)
− : α

T
π = β−

i defined in Theorem 1. Moreover,

H(nπ) is equidistant to H(nπ)
+ and H(nπ)

− and one has

d(H(nπ),H(nπ)
± ) =

|γ − β±
i |

‖α‖p

=

√
2σyi

σ̄
p
G

‖detU1·‖p

‖α‖p

. (16)

The result follows by noting that ‖α‖p = ‖detU1·‖p. �
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Remark 1 (Independence of Minimal Distance to Previous Points) Corollary 1 shows that the
minimal distance between a new point π and the previous points π

(1), . . . , π(nπ) as imposed by (9) depends
only on the standard deviation of the measurement noise and the specified bound σ̄

p
G . In particular, this

distance remains unchanged no matter where the previous points π
(1), . . . , π(nπ) are located in IR

nπ .

Defining affine constraints such as (10) in selecting a new operating point is necessary for the estimated
gradient components to not be affected too strongly by the measurement noise. However, (10) is not a
sufficient condition for the constraint (9) to hold. Additional necessary conditions are derived in the following
theorem.

Theorem 2 (Necessary Conditions II) For the condition (9) to be satisfied it is necessary that the fol-
lowing disjunctive convex/concave constraints hold for each ` = 2, . . . , nπ, in addition to the disjunctive
affine constraints (10):

(

α
T
π ≥ µ

`,+
i (π)

)

∨
(

α
T
π ≤ µ

`,−
i (π)

)

, (17)

with α given by (11); and where µ
`,+
i , µ

`,−
i : IR

nπ → IR are a convex function on IR
nπ and a concave function

on IR
nπ , respectively, satisfying µ

`,+
i (π) ≥ µ

`,−
i (π), ∀π ∈ IR

nπ , and given by

µ
`,±
i (π) :=

nπ
∑

k=1

(−1)1+kπ
(nπ)
k detU(1,k) ±

√
2σyi

σ̄
p
Gi

∥

∥detU(`,·)(π)
∥

∥

p
. (18)

Proof Note first that µ
`,+
i , µ

`,−
i : IR

nπ → IR are a convex function on IR
nπ and a concave function on IR

nπ ,
respectively, because the function π 7→ ‖π‖p is convex on IR

nπ and the (`, k)th cofactor of U is an affine
function of π, for each k = 1, . . . , nπ and each ` = 2, . . . , nπ. By contradiction, assume that (9) holds, but
(17) does not for some ` ∈ {2, . . . , nπ}. That is,

∣

∣

∣

∣

∣

nπ
∑

k=1

(−1)1+k
(

πk − π
(nπ)
k

)

detU(1,k)

∣

∣

∣

∣

∣

<

√
2σyi

σ̄
p
Gi

∥

∥detU(`,·)(π)
∥

∥

p
. (19)

From (14) and noting

[

U(π)−1
]

k`
=

(−1)`+k detU(`,k)(π)

detU(π)
,

for each k = 1, . . . , nπ, one has that the inequality (19) is equivalent to

√
2σyi

∥

∥

[

U(π)−1
]

·`

∥

∥

p
> σ̄

p
Gi

. (20)

On the other hand, by the definition of σGij
(π) in (7),

‖σGi
(π)‖p =

√
2σyi

∥

∥

∥

∥

∥

∥

√

√

√

√

nπ
∑

k=1

[U(π)−1]2·k

∥

∥

∥

∥

∥

∥

p

≥
√

2σyi

∥

∥

[

U(π)−1
]

·`

∥

∥

p
.

From (20), one then obtains that ‖σGi
(π)‖p > σ̄

p
Gi

, which contradicts (9). �

2.3 Discussion

Clearly, adding such a constraint as (8) or (9) in the modified optimization problem (Pa) guarantees that
the gradient estimates are not affected too strongly by the measurement noise at the new operating point
π. On the other hand, these constraints do not tell anything about how close to (or far form!) the actual
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experimental gradient ∂F

∂π
the gradient estimates G are at that point. As already mentioned, the only

guarantee that G is a good approximation of ∂F

∂π
consists of taking π close enough to the past operating

points. Note that these two objectives of (i) reducing the sensitivity of G to noise, and (ii) getting accurate
gradient estimates are conflicting. For some problems, it may happen that obtaining a gradient estimate
that would be both accurate and reliable is simply not possible by using the finite difference scheme (2).
This is the case, e.g., when the level of noise is very high.
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