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Abstract. Privacy is a major concern in RFID systems, especially with
widespread deployment of wireless-enabled interconnected personal de-
vices e.g. PDAs and mobile phones, credit cards, e-passports, even cloth-
ing and tires. An RFID authentication protocol should not only allow
a legitimate reader to authenticate a tag but it should also protect the
privacy of the tag against unauthorized tracing: an adversary should not
be able to get any useful information about the tag for tracking or dis-
covering the tag’s identity. In this paper, we analyze the privacy of some
recently proposed RFID authentication protocols (2006 and 2007) and
show attacks on them that compromise their privacy. Our attacks con-
sider the simplest adversaries that do not corrupt nor open the tags. We
describe our attacks against a general untraceability model; from expe-
rience we view this endeavour as a good practice to keep in mind when
designing and analyzing security protocols.

Keywords: RFID, authentication protocols, privacy, untraceability, prov-
ably secure.

1 Introduction

RFIDs are widely used in inventory control and supply chain management [1,
7, 18, 19, 25], in e-passports [12, 6, 11, 15, 20] e.g. for US’ visa waiver policies, in
contactless credit cards [10]. Thus the daily dealings of the present day individual
is in fact a wireless interconnected network involving interactions both within
his connected personal area network (PAN) among the things carried in his bag
or pocket, and between the PAN and the servers providing the services and
connectivitiy to those things. Among the things that the individual is carrying
on him would include those that are RFID enabled i.e. items he bought from a
retail chain, the credit cards in his wallet that he uses to purchase the items,
and his e-passport to identify himself to authorities.

Privacy, both in terms of tag anonymity and tag untraceability (or unlink-
ability), is a significant concern that needs to be addressed if RFIDs are to be
as widely deployed as conceived by proponents. To date, a rigorous treatment
of privacy for RFID models is still being developed, notably the work of Avoine
[2], Juels and Weis [13], Le, Burmester and de Medeiros [16]; and Vaudenay [27,
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28]. These models differ mainly in their treatment of the adversary’s ability to
corrupt tags. In fact, the recent privacy models [13, 27, 16, 28] define privacy in
the untraceability sense. This is intuitive since untraceabile privacy (UPriv) is a
strictly stronger notion (i.e. it implies) than anonymous privacy (APriv). To see
this, note that if there exists an adversary breaking APriv then he can easily also
break UPriv; while the converse is not necessarily true.

In this paper, we analyze the privacy issues of recently (in 2006 and 2007)
proposed RFID protocols, namely [8, 14, 24, 4, 9]. Our attacks do not even need
the strong requirement of corrupting tags [26, 13, 27, 17, 16, 28, 22]. To the best
of our knowledge, attacks presented here are the first known analyses of ProbIP
[8], MARP [14], Auth2 [24], YA-TRAP+ [4], O-TRAP [4] and RIPP-FS [9].

2 RFID Privacy Models

We describe for completeness, the general untraceable privacy (UPriv) model that
will be the setting in which we use in later sections to demonstrate how to trace
tags and thus show that the schemes do not achieve the notion of untraceable
privacy. It is also good practice to design and analyze security protocols with
reference to a clearly-defined model [23].

We do not claim to define a new model, for our emphasis in this paper is
instead on the analysis of the privacy and security issues of recent RFID proto-
cols. In fact, the model defined herein can be seen as an alternative definition
of the Juels-Weis model [13] with some differences e.g. in constraints put on the
adversary (see the discussion in section 6.1) in a style that is more in line with
the Bellare et al. [3] models for authenticated key exchange (AKE) protocols,
for which RFID protocols have close relationship with.

A protocol party is a T ∈ Tags or R ∈ Readers interacting in protocol
sessions as per the protocol specifications until the end of the session upon which
each party outputs Accept if it feels the protocol has been normally executed
with the correct parties. Adversary A controls the communications between all
protocol parties (tag and reader) by interacting with them as defined by the
protocol, formally captured by A’s ability to issue queries of the following form:

Execute(R, T , i) query. This models passive attacks, where adversary A gets
access to an honest execution of the protocol session i between R and T by
eavesdropping.

Send(U1, U2, i,m) query. This query models active attacks by allowing the ad-
versary A to impersonate some reader U1 ∈ Readers (resp. tag U1 ∈ Tags)
in some protocol session i and send a message m of its choice to an instance of
some tag U2 ∈ Tags (resp. reader U2 ∈ Readers). This query subsumes the
TagInit and ReaderInit queries as well as challenge and response messages
in the Juels-Weis model.

Corrupt(T , K) query. This query allows the adversary A to learn the stored
secret K ′ of the tag T ∈ Tags, and which further sets the stored secret to
K. It captures the notion of forward security or forward privacy and the
extent of the damage caused by the compromise of the tag’s stored secret.
This is the analog of the SetKey query of the Juels-Weis model.

TestUPriv(U, i) query. This query is the only query that does not correspond to
any of A’s abilities or any real-world event. This query allows to define the
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indistinguishability-based notion of untraceable privacy (UPriv). If the party
has accepted and is being asked a Test query, then depending on a randomly
chosen bit b ∈ {0, 1}, A is given Tb from the set {T0, T1}. Informally, A
succeeds if it can guess the bit b. In order for the notion to be meaningful,
a Test session must be fresh in the sense of Definition 2.

Definition 1 (Partnership & Session Completion) A reader instance Rj

and a tag instance Ti are partners if, and only if, both have output Accept(Ti)
and Accept(Rj) respectively, signifying the completion of the protocol session.

Definition 2 (Freshness) A party instance is fresh at the end of execution if,
and only if,

1. it has output Accept with or without a partner instance,
2. both the instance and its partner instance (if such a partner exists) have not

been sent a Corrupt query.

Definition 3 (Untraceable Privacy (UPriv)) Untraceable privacy (UPriv) is
defined using the game G played between a malicious adversary A and a collection
of reader and tag instances. A runs the game G whose setting is as follows.

Phase 1 (Learning): A is able to send any Execute, Send, and Corrupt
queries at will.
Phase 2 (Challenge):
1. At some point during G, A will choose a fresh session on which to be

tested and send a Test query corresponding to the test session. Note
that the test session chosen must be fresh in the sense of Definition 2.
Depending on a randomly chosen bit b ∈ {0, 1}, A is given a tag Tb from
the set {T0, T1}.

2. A continues making any Execute, Send, and Corrupt queries at will, sub-
jected to the restrictions that the definition of freshness described in
Definition 2 is not violated.

Phase 3 (Guess): Eventually, A terminates the game simulation and out-
puts a bit b′, which is its guess of the value of b.

The success of A in winning G and thus breaking the notion of UPriv is quan-
tified in terms of A’s advantage in distinguishing whether A received T0 or T1,
i.e. it correctly guessing b. This is denoted by AdvUPriv

A (k) where k is the security
parameter.

It remains to remark on the models other than Juels-Weis, namely the Le-
Burmester-de Medeiros (LBdM) model and the Vaudenay model. The LBdM
model similarly allows the corruption of tags. Nevertheless, proof of security is
in the universal composability (UC) model [5].

The Vaudenay model [27, 28] is stronger than both the Juels-Weis and Le-
Burmester-de Medeiros models in terms of the adversary’s corruption ability. In
more detail, it is stronger than the Juels-Weis model in the sense that it allows
corruption even of the two tags used in the challenge phase. It is stronger than
the Le-Burmester-de Medeiros model in the sense that it considers all its privacy
notions even for corrupted tags, in contrast to the Le-Burmester-de Medeiros
model that only considers corruption for its forward privacy notion.
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Our choice to describe our tracing attacks in later sections with reference to a
defined model is for more uniformity between similar attacks on different RFID
protocols, and for better clarity to illustrate how an adversary can circumvent
the protocols using precise types of interactions that he exploits, as captured by
his oracle queries. This will facilitate the task of a designer when an attempt is
made to redesign an attacked protocol.

3 ProbIP

At RFIDSec ’07, Castellucia and Soos [8] proposed an RFID protocol (ProbIP)
that allows tag identification by legitimate readers. Its security is based on the
SAT problem, which is proven to be in the NP class of complexity. See Fig. 1,
where the symbols in bold beneath each device denotes the stored state, and
K[ai] represents the ai-th bit of the `-bit length secret K. The authors of ProbIP
gave arguments [8] for its security in the Juels-Weis model.

For simplicity, we assume, and for the rest of this paper, that the reader and
backend database server (if it exists) are one entity. This is sound since it is
commonly assumed by RFID protocol designers that the channel between the
reader and server are secure.

Reader Tag
Database: {. . . , (ID,K), . . . } Shared Secret: K

hello−−−−−−−−−−→
Do P times:
generate ai, bi for i = 1 . . . L s.t.

Find (ID,K) s.t.
a1,b1,...,aL,bL←−−−−−−−−−−

PL
i=1K[ai]⊕ bi = L

2
.

K satisfies all the equations

Fig. 1. The ProIP protocol

3.1 Violation of Anonymous Privacy

We first start by two remarks:

1. The tag does not update its secret key so at each authentication, some in-
formation is leaked from the same key.

2. The tag does not check the authenticity of the reader, i.e. an adversary can
query the tag as many times as he likes.

From an information-theoretic point of view, a severe consequence of these two
statements is that at one point an adversary will gather enough information to
extract the key K from the responses of the tag.

Let us consider an adversary that will keep sending hello messages via Send
queries to the tag until he gets ` equations. Since at each request tags generate
P equations, an adversary would need to query the tag n

P times. After that, she
obtains the following system in which vj

i denotes a boolean variable that is set
to 1 if the K[i]-th bit of K is present in the j-th equation:
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∑L

i=1 v1
i (K[i]⊕ b1

i ) = L
2∑L

i=1 v2
i (K[i]⊕ b2

i ) = L
2

. . .∑L
i=1 v`

i (K[i]⊕ b`
i) = L

2

(1)

As for any boolean v we can write v+ v̄ = 1, we replace any K̄[i] by the value
1−K[i]. As a consequence we can deduce that there are as many as 3n possible
equations because every variable K[i] can have three coefficients: 0, 1,−1.

This way, the adversary gets a linear system of n equations and n variables
that can be solved using standard methods such as the Gaussian elimination
method. In the case where the n equations are not linearly independant, the
adversary can still can obtain more equations from the tag by sending Hello
messages until she gets enough equations.

3.2 Countermeasure

The weakness of this authentication protocol comes from the fact that each
round the advesary gets some information from the same key. So a quick way to
counter our attack is to include a key-updating mechanism similar to OSK[21]
at the end of the protocol using a one-way function.

In this case, adversaries do not get more than P equations for each key so
that the security proof and reduction to the SAT problem become sound. The
resulting protocol is even forward-private providing that adversaries do not get
side-channel information from the reader [28].

4 MARP

MARP is proposed by Kim et al. [14] at CARDIS ’06. They first describe a
scheme consisting of separate phases, and then describe a more integrated one.
For lack of better names, we denote these as MARP-1 and MARP-2, respectively.
Here, a MARP is like a PDA to which several tags could be attached. The
channels between reader and MARP, and between MARP and tag, are assumed
by Kim et al. to be insecure.

We summarize these schemes in Figs. 2 and 3, which show only the bare
minimal detail for understanding of our attacks. It suffices to note that 〈Kg

d , Kg
e 〉

(resp. 〈Km
d , Km

e 〉) is the private-public key pair of the reader (resp. MARP).
Keyt and PINt are stored secrets of the tag. The reader is referred to [14] for
more detailed descriptions.

4.1 Cryptanalysis of MARP-1

Tracing. Note that a2 is fixed per tag, being a function of a particular tag
Tt’s unique identifier Uidt and secret key Keyt. As the channel between the
reader and the MARP is not confidential, an adversary via Execute queries (i.e.
eavesdropping) can easily track the movement of Tt by checking for matches of
a2 with previously captured values, as long as the encryption is deterministic.
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Reader MARP Tag
(Identifier Ridg, (Km

d ,K
m
e , (Uidt,

key pair Kg
d ,K

g
e ) Ridg,K

g
e , Uidt, Keyt, P INt)

h(Keyt), P INt)
h(PINt)−−−−−−−−−−→

PINt⊕Uidt←−−−−−−−−−−
PINt⊕h(Keyt)←−−−−−−−−−−

Pick Rr.
Query||E

K
g
e

(Ridg||Rr)

−−−−−−−−−−−−−→
a1=E

K
g
e

(EKm
d

(Rr||Rm))

←−−−−−−−−−−−−−−− Pick Rm.
ar=EKm

e
(E

K
g
d

(Rm))

−−−−−−−−−−−−−→
a2=E

K
g
e

(EKm
d

(Uidt||Eh(Keyt)(Uidt)))

←−−−−−−−−−−−−−−−−−−−−−−−−−

Pick R.
E

K
g
d

(R)

−−−−−−−−−−→
R−−−−−−−−−−→

at=h(R⊕Keyt)←−−−−−−−−−−
E(at)←−−−−−−−−−−

Fig. 2. The MARP-1 protocol, comprising 3 phases: setup, privacy protection, and
authentication

Reader MARP Tag
(Ridg, (Km

d ,K
m
e , (Uidt,

Kg
d ,K

g
e ) Ridg,K

g
e , Uidt, Keyt, P INt)

h(Keyt), P INt)

Pick Rr.
Query||E

K
g
d

(Ridg||Rr)

−−−−−−−−−−−−−→
a1=E

K
g
e

(EKm
d

(Rr||Rd))

←−−−−−−−−−−−−−−− Pick Rd.
ar=EKm

e
(E

K
g
d

(Rd))

−−−−−−−−−−−−→
a2=E

K
g
e

(EKm
d

(Uidt||Eh(Keyt)(Uidt)))

←−−−−−−−−−−−−−−−−−−−−−−−−−
Pick Rs.

h(Keyt)⊕Rs−−−−−−−−−−→
as=Rd||h(Rd⊕h(PINt))||h(PINt)⊕Rs−−−−−−−−−−−−−−−−−−−−−−−−→

a3=h(Keyt⊕Rs)←−−−−−−−−−−
a3←−−−−−−−−−−

Fig. 3. The MARP-2 protocol, comprising 2 phases: MARP authentication and tag
authentication
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Alternatively, the adversary can replay an old R from MARP to the tag via Send
queries, and check if the response at matches the old value of at corresponding
to the replayed R.

We remark that these attacks have less requirement than the ones performed
by Juels and Weis [13] on some other older RFID protocols that require Corrupt
queries.

Violating the anonymous privacy. Note that the initial setup messages allow
to compute

z = [PINt ⊕ Uidt]⊕ [PINt ⊕ h(Keyt)]
= Uidt ⊕ h(Keyt).

Then the adversary simply issues Execute queries to be able to compute z, and
then issues a Send query to replace the message R from MARP to the tag with
R′ = 0, and so the tag responds with at = h(Keyt). This allows to compute:

z ⊕ at = [Uidt ⊕ h(Keyt)]⊕ h(Keyt)
= Uidt,

and so reveals a potential unique identifier of the tag, which can be cross-checked
against the possible list of identifiers for a match.

4.2 Tracing MARP-2

MARP-2 also allows tracing. By eavesdropping both messages via Execute queries
between the reader and the MARP and between the MARP and the tag, an ad-
versary gets h(keyt) ⊕ Rs and h(PINt) ⊕ Rs. By XOR-ing these two values,
the adversary gets h(PINt) ⊕ h(keyt) which does not depend on the session
parameters and can be used to trace a tag.

This scheme is also vulnerable to a replay attack since the response of the
tag does only depend on the parameters sent by the MARP. So if an adversary
sends twice the same message as via Send queries, she will get the same response
a3 which can also be used for tracing.

5 Auth2

At PerCom ’07, Tan et al. [24] proposed two RFID protocols. We are interested
here in the second protocol, and more exactly to the first variant described
therein. For lack of better names we simply call it Auth2, see Fig. 4 for a complete
description of the protocol, where rj is a unique identifier of the reader, f and h
are two collisions-resistant hash functions and h(.)m denotes the function that
truncates the output of h to its m first bits.

5.1 Cryptanalysis of Auth2

Definite tracing. It was noted by Auth2 designers that indefinite tracing is
possible but not a concern since many tags could result in the same h(f(rj ||ti))m

value. We show how this tracing can be made definite, i.e. it can precisely track
a unique tag, not just a group of them that have the same h(f(rj ||ti))m.
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Reader Rj Tag Ti
Database: {. . . , (IDi, ti, f(rj ||ti)), . . . } Shared secret: ti

request−−−−−−−−−−→
ni←−−−−−−−−−− Pick ni.

Pick nj .
nj ,ri−−−−−−−−−−→ h1 = h(f(rj ||ti)).

Check ∃ti s.t. h(f(rj ||ti))m = h1.
h1,h2←−−−−−−−−−− h2 = h(f(rj ||ti)||nj ||ni)⊕ IDi.

Compute IDi = h2 ⊕ h(f(rj ||ti)||nj ||ni).

Fig. 4. The Auth2 protocol

1. Learning: The adversary eavesdrops via Execute queries for a short period
during the protocol sessions involving tag T0 and two readers R1,R2 to
obtain 〈r1, h(f(r1||t0))m〉 and 〈r2, h(f(r2||t0))m〉.

2. Challenge: Some time later, when the adversary wishes to track the tag
T0, he starts a session with the challenge tag Tb ∈ {T0, T1} replaying r1 via
a Send query and checks the response from the tag for a match on the first
message component with h(f(r1||t0))m. He starts another session replaying
r2 via a Send query and checks the response from the tag for a match on the
first message component with h(f(r2||t0))m. With both matches, it is highly
likely that this is the same tag whose session he had initially eavesdropped
on, i.e. Tb = T0. Else Tb = T1.

Violating the anonymous privacy. When analyzing the anonymous privacy
of their Auth2 scheme, the authors [24] assume that the adversary has access to
the reader’s list L of data corresponding to targeted tags, i.e. each entry in L is
of the form 〈IDi, f(rj ||ti)〉.

The adversary only needs two entries in L corresponding to the targeted tag
Ti, i.e.〈IDi, f(r1||ti)〉 and 〈IDi, f(r2||ti)〉.

Issue a Send query with r1 in a session, and then another Send query with
r2 in another session to Ti. Check if both responses match f(r1||ti) and f(r2||ti)
respectively.

6 YA-TRAP, YA-TRAP+ and O-TRAP

At SecureComm ’06, Burmester et al. [4] proposed two RFID protocols with
formal proofs of security in the universal composability model [5], namely YA-
TRAP+ and O-TRAP. These were inspired by YA-TRAP proposed at PerCom
’06 by Tsudik [26].

6.1 YA-TRAP

The steps of YA-TRAP [26] are given in Fig. 5, where HMAC is a message
authentication code and PRNG is a pseudo-random number generator. It works
as follows: a tag is initialized with an initial timestamp t0 and the top timestamp
value tmax, as well as with a unique secret value Ki. Tags are also assumed to
be able to compute a PRNG, where PRNGj

i denotes the jth invocation by the
tag Ti of its own PRNG.
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Reader Rj Tag Ti
Database L: {. . . , (tj ,HMACKi(tj)), . . . } Shared secret: Ki, t0, ti, tmax

tj−−−−→
if (tj < ti) or (tj > tmax)

hj = PRNGj
i .

else
hj = HMACKi(tj) and

hj←−−−− update ti ← tj .
check ∃tj s.t. (tj , hj) ∈ L.

Fig. 5. The YA-TRAP protocol

The main goal of YA-TRAP’s design was to achieve untraceable privacy
(UPriv) with adversaries assumed to be able to corrupt tags.

Two operating modes were proposed [26] for YA-TRAP, namely real-time and
batch. The difference is that for batch mode, responses from tags are collected by
the reader in batches for later communication to the server for offline processing
and identification. This latter mode is suited for settings e.g. inventory control
where tags are assumed honest, since they will only be authenticated later in
batches rather than online. Thus, this mode is not suitable for applications where
feedback is required on the spot, e.g. library check-outs, or retail outlets for both
tags in purchased items as well as tags in credit cards.

Tsudik observed that it was possible for denial of service (DoS) attacks to
be launched towards YA-TRAP, and remarks that DoS resistance is not among
the key goals of YA-TRAP.

What is more subtile, however, is the fact that a denial-of-service kind of
attack could lead to an adversary being able to track a tag in the YA-TRAP
protocol.

Tracing tags in real time. In the YA-TRAP specification, it was suggested
[26] that the top value tmax of a tag’s timestamp need not be unique but could
instead be shared by a batch of tags.

Consider a scenario where tags have different tmax, operating in real-time
mode. Indeed, acknowledging the fact that tags are produced by different man-
ufacturers for diverse applications, it seems inevitable that some tags will have
differing tmax. An adversary can trace a tag, i.e. distinguish between two tags
(corresponding to a break of the privacy notion in the Juels-Weis model [13] and
the UPriv notion we described in Section 2), as follows. For simplicity, assume
two tags T0 and T1 with respective tmax0 and tmax1, where tmax0 < tmax1.

1. Learning: Issue a Send query with tj = tmax0 to a tag T ∈ {T0, T1}.
Since tmax0 is much into the future than current ti value, a response hj =
HMACKi

(tj) is expected, irrespective of which tag it is. Furthermore, the
tag will update its local time counter as ti = tmax0. This action serves to
send the tag into the future by marking it for future tracing.

2. Challenge: Some time later, when it is desired to trace the tag, issue a Send
query with tj for tmax0 < tj < tmax1. If T = T0, it will respond hj = PRNGj

i

and will not successfully pass the validation check by the reader. If T = T1,
it will respond hj = HMACKi(tj) and will successfully pass the validation
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check. Thus by observing the reader-tag interaction via Execute queries, an
adversary can distinguish between T0 and T1 and win the privacy game.

Juels and Weis [13] gave two tracing attacks on YA-TRAP that are valid in their
privacy model, thus showing YA-TRAP does not meet their definition of strong
privacy. Nevertheless, their tracing attacks would no longer apply in a weaker
privacy model, and in fact one which better models the practical setting, where
the adversary is further restricted by limiting its access to the TagInit message
[13] as follows: when the TagInit message is issued to its two selected tags T0
and T1 used during the challenge phase, the adversary does not know which one
of them was issued the message. This better models the practical privacy setting
as the adversary is unaware during the learning phase which tag it has queried.

In contrast, our attack still applies in this weakened-adversary setting, and
thus our result shows that setting a common tmax for tags offers more advantage
over having individual tmax for each tag.

YA-TRAP was designed to specifically output a random response even if
the tag does not want to be validated by the reader, such that an adversary
is unable to distinguish between that random response and a proper response.
Yet, by observing the output of the reader-tag interaction, i.e. seeing if the tag
passes the validation or not, still allows the distinguishing. In this sense, using
the YA-TRAP approach of generating random responses by itself is not sufficient
to prevent tracing.

To reiterate, our attack can be prevented if the adversary is unable to observe
the output of the reader-tag interaction, i.e. it does not know if the tag success-
fully passes the reader’s validation check. This inability in fact corresponds to
the narrow adversary model defined in Vaudenay’s privacy model [28]. One ex-
ample setting that fits this narrow model is the batch mode suggested by Tsudik
[26] for YA-TRAP. Nevertheless, it is worth recalling here that batch mode is
not relevant for applications where immediate feedback is required e.g. retail and
library check-outs, and furthermore is only meaningful in the setting where tags
are assumed to be honest (not usually the case) since they are not authenticated
on the spot but later.

Cloning. An adversary can issue Send queries to the tag with arbitrarily many
values of tj and obtain the corresponding responses hj . These values allow the
tag to be cloned so that when the cloned tag is queried a particular tj value,
it will reply with the captured response hj . The problem here stems from the
fact that tag responses hj are pre-computable only with the presence of the tag
and not the reader since the supposed reader-supplied challenge is a predictable
monotonically increasing timestamp tj .

6.2 Tracing YA-TRAP+ with Second Pass

The steps of YA-TRAP+ are shown in Fig. 6, where HK(·) denotes a keyed hash
function and the steps preceeded by [∗] are optional, and only meant to be used
by the reader if it is felt that DoS attacks are rampant. Legitimate readers share
with the tags their secret keys Ki.

It turns out that the tracing attack of subsection 6.1 is simpler when applied
to YA-TRAP+ if its optional second pass (preceeded in Fig. 6 by [∗]) is made
compulsory.
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Reader Rj Tag Ti
Database L: {. . . , (tj ,HMACKi(tj)), . . . } Shared secret: Ki, t0, ti

t,rt−−−−−−−−−−→
Pick ri.
if (t > ti)
h1 = HKi(00||t||rt)

else
ri,h1←−−−−−−−−−− h1 = HKi(01||ri||rt) if (t ≤ ti).

[∗] Calculate h2 = HKi(10||ri||t)
[∗] ri,h2−−−−−−−−−−→

check ∃(tj ,HMACKi(tj)) ∈ L s.t. [∗]check h2 = HKi(10||ri||t).
h1 = HKi(00||t||rt), if (t > ti)

or h1 = HKi(01||ri||rt). Update ti ← t.

Fig. 6. The YA-TRAP+ protocol

1. Learning: An adversary first issues Send queries to the tag T0 with some
rt and a value t that is predictably much larger than the tag’s ti, obtaining
the response ri, h1 = HK(00||t||rt). It then intentionally modifies via a Send
query the message h2 from reader to tag such that the tag does not success-
fully authenticate the reader and thus the tag does not update its internal
time counter ti to t.

2. Challenge: Issue a Send query to the tag in future (i.e. let the challenge
tag Tb ∈ {T0, T1} during the challenge phase) with the same rt and t. Since
t > ti, it will return the response r′i, h1 = HK(00||t||rt) for which h1 is the
same if the challenge tag Tb = T0. Otherwise, the adversary knows Tb = T1.
This allows to track the tag and win the privacy game.

Note that YA-TRAP+ was specifically designed to resist the kind of tracing
attack on its predecessor YA-TRAP that we mounted in subsection 6.1, and yet
this result shows that the optional second pass of YA-TRAP+ that requires to
check h2 before updating the stored secret, although meant to provide additional
security to resist denial of service attacks, will in fact cause the protocol to fall
to tracing.

6.3 Tracing O-TRAP

The steps of O-TRAP are shown in Fig. 7. The reader contains a hash table
indexed by ri with entries 〈ri, Ki〉 where ri and Ki correspond to secrets of tags
to which it has legitimate access.

1. Learning: An adversary can issue a Send query to the tag T0 with random
values rt repeatedly, causing the tag to update its ri each time such that it
is way into the future compared to its synchronization with the reader.

2. Challenge: The adversary observes the future interaction between a tag
Tb ∈ {T0, T1} and a reader via Execute queries to see if the reader accepts
the tag as valid. If not, then the adversary knows this was the tag that it
marked during the learning phase, i.e. Tb = T0. Else, Tb = T1.

Note that this kind of attack has been independently applied by Juels and Weis
[13] to a couple of other older RFID protocols. Yet what is interesting as has been
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Reader Rj Tag Ti
Database L: {. . . , (ri,Ki), . . . } Shared secret: ri,Ki

rt−−−−−−−−−−→
ri,h←−−−−−−−−−− Compute h = HKi(rt, ri).

check ∃(ri,Ki) in DB: s.t. Update ri ← HKi(ri).
h = HKi(rt, ri) or h = HKi(rt, ri).

Update ri ← HKi(ri) ∈ L.

Fig. 7. The O-TRAP protocol

demonstrated here, is that recent provably secure protocols like YA-TRAP+ and
O-TRAP in some sense still allow for tracing.

7 RIPP-FS

RIPP-FS was proposed by Conti et al. [9] at PerCom ’07. The steps of RIPP-FS
are given in Fig. 8.

Each tag Ti is initialized with a tag key K0
Ti

that it shares with the reader,
as well as the initial value-pair (K0, t0) generated by the reader, where K0 is the
last value in a hash chain

K` = w

Ki = H(Ki+1) = H`−1(w), i = 0, . . . , `− 1

for w a seed, and tj (j = 0, . . . , `) is a time interval counter.
A tag is also assumed to be able to compute a pseudo-random number gen-

erator (PRNG), where PRNGj
i denotes the jth invocation by the tag Ti of its

own PRNG.
One of the goals of RIPP-FS’s design was to achieve untraceable privacy

(UPriv) against adersaries able to corrupt tgs, and it is claimed to offer more
security properties than YA-TRAP, YA-TRAP+ and O-TRAP.

Reader Rj Tag Ti
Database L: {. . . , (Ti,Kj

Ti
,HMAC

K
j
Ti

(tj)), . . . } Shared secret: Kj , tj

K′j ,t
′
j−−−−−−−−−−→

δt = t′j − tj
if (δt > 0) and (Hδt(K′j) = Kj)
tj = t′j ,
Kj = K′j ,

KTi = Hδt(KTi),
hj = HMACKTi

(t′j).

else

hj = PRNGj
i .

hj←−−−−−−−−−−
check ∃Ti, hj : 〈Ti,Kj

Ti
, hj〉 ∈ L.

Fig. 8. The RIPP-FS protocol
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7.1 Tracing Tags

We show how to trace tags in the RIPP-FS protocol.

1. Learning:
(a) Query Send to the reader to initiate two protocol sessions, obtaining

(K ′j , t
′
j) and (K ′j+1, t

′
j+1), where t′j+1 > t′j , and K ′j = H(K ′j+1).

(b) Make a Send query to a tag T0 with the value (K ′j+1, t
′
j+1). Since this is a

valid message generated from the reader, a response hj = HMACKTi
(t′j+1)

is expected. More importantly, the tag will update its time interval
counter as tj = t′j+1, as well as the other secrets Kj = K ′j+1 and
KTi = Ht′j+1−tj (KTi).

2. Challenge: Some time later, when it is desired to trace the tag, issue a
Send query with (K ′j , t

′
j) to the challenge tag Tb, and pass the response

hj+1 to the reader. If Tb = T0, it will respond hj+1 = PRNGj
i and will not

successfully pass the validation check by the reader. If Tb = T1, it will respond
hj+1 = HMACKi

(t′j) and will successfully pass the validation check. Thus
by observing the reader-tag interaction via Execute queries, an adversary can
distinguish between T0 and T1 and win the privacy game.

8 Concluding Remarks

We first provided an alternative description of privacy models that captures
the notion of untraceable privacy (UPriv) and discussed its relation to existing
models. This was to pave the way for our analysis results in later sections.
We showed how the notion of UPriv cannot be achieved by some recent RFID
protocols.

Our emphasis in this paper was to analyze the level of untraceable privacy
offered by the protocols. We only discussed reasons why our attacks worked
and intentionally did not propose any tweaks nor fixes on the protocols; mainly
because there are already many available in literature, and so we feel this was not
necessary unless there is a serious void of well designed provably secure RFID
protocols.

Final remarks: while a uniformly accepted privacy model for RFID protocols
is still being developed by the community, the results here serve to strengthen
the need for such a standard model to facilitate better design of RFID protocols
that offer both privacy and security. This has to be fulfilled if RFIDs are ever
to be widely used by each individual within his network space of interconnected
things.
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