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On the Coupling Integrals Arising in the
Method of Moments Formulation of
Laterally Bounded Structures
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Abstract—A generic integral equation and method of moments
formulation is presented for laterally bounded stratified media
including planar metallization. The main asset of the developed ap-
proach is its flexibility, as it encompasses generic lateral boundary
conditions and explicitly applies to any linear subsectional basis
functions with constant surface divergence. This includes the
rooftop functions on rectangular and triangular supports cur-
rently proposed in standard method of moment meshers. This
approach provides closed expressions for the coupling integrals
appearing in the method of moments matrix elements. These
formulas are based of Green’s functions modal expansions and
in the possibility, conclusively demonstrated in this paper to
transform the surface integrals into contour integrals allowing
an efficient and systematic implementation of the procedure. Full
derivations are presented for several lateral boundary conditions,
including rectangular and circular metallic cavities and periodic
structures. Numerical examples including the analysis of real-life
planar boxed circuits are presented. In all cases the obtained
results compare favourably with other existing techniques.

Index Terms—Coupling integrals, Green’s function, integral
equation, lateral boundary conditions, method of moments
(MoM), periodic structures, planar circuits, stratified media,
waveguides.

I. INTRODUCTION

RACTICAL RF, microwave, and high-speed electronic
P circuits are typically realized with planar transmission
lines and components printed over dielectric layers. The electro-
magnetic (EM) modeling of these structures has been subject of
study for a long time, yielding a variety of numerical methods.
Despite the power of generic numerical techniques like finite
elements [1], finite differences [2] or the transmission-line mod-
eling [3] methods, the techniques based on integral equations in
conjunction with the method of moments (MoM) have shown
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to be the most efficient for this kind of structures [4]-[6]. The
strength of integral equation techniques lies in the formulation
of an ad hoc Green’s function that provides an EM description
of the surrounding environment, reducing the number of un-
knowns in the numerical problem and improving the accuracy
of the solution. This advantage, however, is at the same time
its biggest drawback compared to the aforementioned methods,
since every different environment will require a completely
different Green’s function formulation.

In this study, we mitigate this constraint and present a generic
formulation for planar circuits within laterally bounded media,
with a seamless transition between different lateral boundary
conditions. The concept of laterally bounded media accounts for
any structure having a boundary condition with uniaxial sym-
metry wrapping the planar circuit. This allows an efficient anal-
ysis of a wide range of useful structures such as planar circuits
embedded in shielded multilayered media, infinitely thin dis-
continuities in waveguides or even 2-D printed periodic struc-
tures.

These examples were solved using different integral equa-
tion—-MoM approaches. A classic strategy is to derive special-
ized Green’s function for each particular boundary condition
while the currents of the planar circuits are approximated as an
expansion of basis functions. Typically, the Green’s function
of bounded problems with canonical shapes can be computed
using quasi-analytical expressions (e.g., expansion of modes
in a rectangular/circular waveguide), whereas more intricate
shapes can be treated using numerical approaches [7]. There
are also different choices of basis functions depending on the
shape of the planar circuits. For arbitrary shapes subsectional
basis functions [8] are preferred whereas entire domain basis
functions might be a more suitable choice for circuits having
a canonical geometrical form [9]. An intermediate solution to
deal with ’nearly-canonical’ shapes is also provided in [10],
[11] using the boundary integral resonant-mode expansion
method. Finally, the combination of these elements in the
MoM led to different integration schemes to be solved for each
scenario: each problem required a different method.

The formulation that we present here is able to provide a sys-
tematic approach in the most general case, i.e., assuming arbi-
trary shape for both the planar circuits and the boundary con-
ditions. This technique is based on the modal representation of
the fields in bounded media and uses general properties satisfied
by a wide range of practical basis functions. This combination
results in a generic MoM scheme with coupling integrals, i.e.,
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Fig. 1. (a) Cross section (left) and longitudinal view (right) of planar electric
(J) and magnetic (M) sources embedded in a medium with boundary condition
imposed on an arbitrary cylindrical surface 9€2. (b) Segmentation of plane sur-
face with Q = {E, H}-type sources into D domains.

integrals between a mode and a basis function, that can be re-
duced to contour integrals. The evaluation of reaction terms in
the MoM matrix is therefore greatly simplified, resulting also
in analytical solutions to the coupling integrals when generic
boundary conditions are considered over canonical shapes.

This paper is organized as follows. It starts with an overview
of the integral equation and MoM formulation in order to pro-
vide a working frame and to introduce the notation. This sec-
tion concludes with a formal definition of the coupling integrals
that are the cornerstone of this approach. The next section de-
scribes how the coupling integral expressions can be reduced
from surface to contour integrals. This results in a very gen-
eral and powerful algorithmic framework. For the sake of con-
creteness, two specific specializations are considered. Firstly,
our formulation is shown to be applicable without modification
to two of the most commonly used subsectional basis functions.
Secondly, three different boundary conditions are considered,
namely rectangular and circular perfect electric conductor (i.e.,
waveguides) and periodic boundary conditions. Finally, the va-
lidity of our approach is convincingly demonstrated by applying
it to several structures.

II. INTEGRAL EQUATION—MoM FORMULATION

The transverse and longitudinal cross sections of a generic
planar structure in a bounded layered medium are depicted in
the left and right hand side of Fig. 1(a), respectively. The planar
structures are represented as two arbitrary surfaces, Dy and Dy,
enclosed by a generic lateral boundary condition over 0f2 that
extends infinitely along the z axis. The surface Dg stands for
any planar metallic (ideally perfect electric conductor) obstacles
isolated at a certain height of the cylindrical structure, whereas
Dy corresponds to a generic slot or aperture drilled on a ground
plane transverse to the boundaries, as depicted in the longitu-
dinal cross section of Fig. 1(a).
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Using the equivalence principle [5], [12], EM scattering on
these surfaces can be modeled by replacing them with equiva-
lent transverse electric J € Dg and magnetic M € Dy induced
surface currents that radiate in the medium. Slots are replaced
by continuous ground planes and magnetic currents, identical
but of opposite sign, must be introduced on both sides of the
ground plane at the points previously occupied by the slot [4].
This is represented in Fig. 1(a) with arrows over the planar sur-
faces indicating the current flow.

The total EM field can then be recovered as the superposition
of an excitation field and the scattered field, radiated by J and
M in the equivalent problem and can be written as

ET =E° + E(J,M)
H' =H® + H(J,M)

(1a)
(1b)

where the superscripts T, e, and s stand for total, excitation, and
scattered, respectively. From now on, we will consider exclu-
sively tangential fields. Hence, {E, H} will denote the tangen-
tial components of the electric and magnetic fields. The next
step towards the establishment of an integral equation formu-
lation is to consider the boundary conditions to be satisfied by
the tangential fields. A careful distinction must be made here
between metallic surfaces Dy and apertures on metallic ground
planes Dy. In the first case, the relevant boundary condition is
a vanishing total tangential electric field

E° + E*(J,M) = 0 on Dg. 2)

On the other hand, continuity of both electric and magnetic total
tangential fields must be imposed for the slots. Selecting equiv-
alent magnetic currents equal but of opposite sign at both sides
of the slot already guarantees the continuity of the total tangen-
tial electric field. The continuity of the magnetic field must be
explicitly imposed in a boundary condition. Using indices I and
II to denote the two sub-regions at both sides of the slot, this
boundary condition can be written as

H? + H?(JI —M) = H?I + H?I(JIL M) onDy. (3)

For the sake of compactness and internal coherence, we intro-
duce the symbol A f to denote the difference f; — fi; and we
write the boundary condition (3) as

AHE + AH;(J,M) = 0 on Dy @)

Thus, the boundary conditions (2) and (4) now have the same
formal mathematical structure. By using linearity and the
Green’s function concept, the scattered field can now be ob-

tained as
i - o

Again, special care must be taken when applying these generic
expressions to particular situations. For instance, if we concen-

GHE A(;'HH

trate on a slot problem, the symbol AGyy in (5) is actually the
sum and not the difference of the two Green’s functions corre-
sponding to the subproblems in both sides of the slot. This is
due to the sign reversal of the equivalent magnetic currents in
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both sides of the slot. In (5), Gpq (r|r’) is the dyadic Green’s
function relating P-type fields at r and Q-type sources at r’ (with
P,Q = {E, H}); and the operator * denotes the convolution in-
tegral over the pertinent surface Dq . Substituting (5) into (2) and
(4) leads to the sought-after coupled system of integral equa-
tions. In the next step, these equations are further transformed
into a linear system using the MoM [13]. The Galerkin proce-
dure is applied expanding the equivalent currents as

J=) by M=3 ub ©)

k l

where i, v; are unknown complex coefficients and by =
b(uf, u%) are basis functions defined on an arbitrary transverse
domain Dqy, C Dq . Itis necessary to employ expansion func-
tions that ensure a finite divergence across domain boundaries,
or equivalently basis functions that maintain normal continuity
between subdomains [8]. We will consider here basis functions
being locally curl-free and with locally constant charge density,
i.e., any by satisfying

VtXbZO
th:d

(7a)
(7b)

with d being a real nonzero constant and Vy = V — 29/0xz.
These properties are satisfied by divergence-conforming basis
functions [8].

The resulting linear system, discrete counterpart of our set of

integral equations, is given by
u
- (3
J

Ree | Ren i
Rue | Run v
where i, v and u, j are column vectors. i, v contain the induced

current coefficients defined in (6) and u, j include the results of
the projection of the excitation fields onto each basis function

U = / bk -E°dsS jl = / bl -HedS. (9)
DEk D‘Hl

Finally, the four submatrices Rpg comprise the reactions be-
tween electric and magnetic surface currents [14]. Expressions
can be systematically obtained for them taking into account
the fact that in a laterally bounded medium, the Green’s func-
tion can always be expressed as a series expansion of “guided”
modes [15] as

aPQ(rh‘/) = Z Grqi(2z, 2') pi(ur, u) q;(uf, uh)  (10)

7

where §; is the complex conjugate of g;. The series (10) com-
prises the transverse field components p;,q; = {e;,h;} and
the spectral amplitude CNJPQ,; for the 7th mode. The former are
eigensolutions of the transverse boundary problem (e.g., wave-
guide [16] or periodic structure [17]), whereas the latter is cal-
culated by solving a transmission line model accounting for the
boundary condition imposed along z-axis, which can be simply
vacuum or a multilayered dielectric medium [18]. The same
considerations apply to any linear combination of Green’s func-
tions appearing in a specific problem. Now, the reaction Rpg

2887

TABLE I
TRANSVERSE COMPONENTS IN TERMS OF SCALAR POTENTIALS
e h
TEmn 2 X ViXmn/Kmn —ViXmn/Emn
TMn —ViXmn/Emn —2 X ViXmn/Kmn
TEM,, -Vix®, —2x VX9,

between kth and /th basis functions for P- and Q-type sources is
the result of applying a Galerkin procedure to the basis expan-
sions (6). Therefore, it can be also expressed as a modal sum

Rpq(k,1) = Gpqi Cp(k,i)Cq(l, 1) (11)

where every modal function of (10) is now projected over each
basis function from (6). Formally speaking, the coupling inte-
gral between the kth basis function on the ith mode is given by

Cp (k. i) = / bi(ur,uz) - pi(ur,u)dS.  (12)

Dy

Thus far, only two assumptions have been made, namely, in
(7) and (10), and the whole integration scheme in the integral
equation—-MoM problem has been reduced to the computation
of coupling integrals. In the following section, we will demon-
strate how these integrals can be systematically simplified. The
reader should be aware of the fact that (12) does not refer to the
coupling integrals solved in [9]-[11], since there the basis func-
tions were eigensolutions of a predefined boundary problem. In
that case, the coupling integrals can be solved using the proce-
dure described in [19].

III. GENERAL TRANSFORMATION OF COUPLING INTEGRALS

The general expression for coupling integrals presented in
(12) can take six different forms considering the combination of
electric/magnetic sources with three different families of modes
(TE, TM, and TEM), namely,

cp = /b-erS (13a)
Dg

Ch= / b-h"dS (13b)
Dy

with 7 = {TE, TM, TEM}. We prefer to express these equa-
tions in terms of scalar potentials using the identities presented
in Table I. A scalar potential x (subindices are suppressed for
simplicity) represents any eigensolution, with x being the asso-
ciated eigenvalue, of the Helmholtz equation

(Vi+r%)x=0 (14)
with appropriate boundary conditions on the transverse
boundary 92 and where, as before, V2 = V? — 20%/02%. If
x = 0 (TEM case), the scalar potential, denoted in this case as

X", is an eigensolution to the Laplace equation

Vvix? =o. (15)
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TABLE II
RELATIONS BETWEEN OVERLAPPING AND CONTOUR INTEGRALS

X (analogously for x")

Overlapping Surface Contour (b satisfies (7))
kCTE, —kCIM, —CIEM (with x = x°) | [b- (2 x Vix) dS $ xbrdl
D 8D
—kCM, _CIE $xbydi+% § &dl, x#0
8D 8D
[b-VixdS
—CTEM b $ aaai: di, k=0
4D
Consequently, any integral in (13) can be written in terms of aD, Vg
) fa | q
Lq
/b (2 x Viy) dS = /(b x3)-VodS (6 . wForr |ttt o

D

A
/ b - V,ydS. (16b)
D

These new expressions can now be further transformed into
contour integrals using Green’s first identity and the properties
of the basis functions assumed in (7). Some details of the math-
ematical manipulations follow.

Green'’s first identity states that

?{B&-Adl—/BVt-AdS. (17)

/A~VthS:
D D

oD

where {A, V B} represent two generic vector functions and
U, 7 are normal and tangential unit vectors defined over the in-
tegration contour 9D.

Let us first demonstrate how (16a) is reduced to a contour
integral. Substituting

A=bxZ B=y

into (17) results in an identity for (16). Using the relations o -
(bx 2)=b-7and Vi-(b x 2) = (V; x b)- 2, we can rewrite
(16a) as

/b-(ngtx)dszfxb-fdl—/xvtxb-gds.

D oD D

According to property (7a), the last term in the equation above
vanishes, resulting in the desired transformation between sur-
face and contour integrals. The demonstration is analogous for
(16a) applied to the scalar potential x°.

The manipulations needed on the integral (16b) differ de-
pending on whether it involves x or x°. In the first case, (17)
is used with

A=b B=y

and (7b) is applied to reduce the identity to

/b-vtxdszjfxb-ﬁdl—d/xds.

D oD D

Fig. 2. Half-basis function g defined on a triangular and rectangular subdo-
main D*. The arrows represent the vector function g,,, the lines the contour
plot of the auxiliary function f,, and the gth nodes and sides are enumerated
counterclockwise.

The remaining surface integral can be transformed using (14)
as

_ _Vth _ _Vt'(VtX)
- 2 2

K K

provided that k # 0, and applying the Gauss theorem, i.e.,
—n2/xd5 = /Vt (Vex)dS = j{VtX -odl. (18)
D D aD

Obviously, (18) cannot be applied to x° because it requires x #
0. Instead, as the rotational in (7) vanishes, we can define an
auxiliary function a such that

b= Vta (193)
Via =d. (19b)
Then, using (17) with
A=V" B=a

we can rewrite (16b), for x°, as

/b - Vex'dS = jfavtxo odl — /avfxods.

D oD D

Finally, since XO is a solution of (15), the surface integral on
the right hand side of the previous equation vanishes.

The validity of these expressions extends to any kind of trans-
verse boundary conditions that can be defined in terms of modal
functions and to a large variety of basis functions having the
properties in (7), among which we could mention the rooftop
[20], the Rao—Wilton—Glisson [21] or the generalized Poisson-
Neumann polygonal basis functions [22]. A summary of the re-
sults in this section are given in Table II, with the following no-
tation: dx/0s = Vix - Sand b - § = bs fors = v, 7.
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TABLE III
VARIATION OF g-COMPONENTS ON A TRIANGULAR (SECOND ROW) AND RECTANGULAR (THIRD ROW) CONTOUR
gp 8p Vg 8pTq = E Ai(p, ‘I)ti fo= Z Bi(p, ‘I)ti
2,2 _
Lat, qa=p eq,+2L Lott =r
55Pp 554 La—17q—1-Tq+ Lqt, q=[p+1]5 5 g, AT _
Lo(t-1) a=lp~1] et a=btls
e ’ 8 Ly (t—1)?, q=[p-1]
LLq’ q= [P+ I]N; 2
0, otherwise. t, q=p t%, qg=p
T2 L2 —
L Lo { o, g=[p*1], - red L g=[p+1],
t—1, g=[p+2], 0, g=[p-1,
t-1)°, g=[px2],

p,q=0,1,... N(= 3,4) are 0-based indices and D is the subdomain’s area.

IV. COUPLING INTEGRALS WITH LINEAR
SUBSECTIONAL BASIS FUNCTIONS

Linear subsectional basis functions, like rooftops [20] and
Rao—Wilton—Glisson functions [21], constitute a common
choice for the expansion of surface currents formulated in (6).
Each planar surface D, in the structure, as depicted in Fig. 1(b),
is divided into triangular and/or rectangular subdomains that
are used as support for these basis functions. Subsectional basis
functions can be expressed as the sum of two “half-functions”
with adjacent supports D* connected through a common side,
denoted as dDC. In mathematical terms, the basis function b
and its auxiliary function a, are decomposed into

a=ft-f

where g%, f* € DFand D = Dt U D~ .

InFig. 2, g* and f* are represented on triangular and rectan-
gular subdomains D*. The vector function g, models a current
flow diverging from the pth node on the triangular subdomain,
or in the direction of the pth side if the subdomain is rectangular.
The current varies linearly and is tangential to each side of D+
except along 9D, where it has a constant normal component
g - 7 that guarantees the continuity of the current between adja-
cent subdomains in accordance with Kirchhoff’s law.

The variation of these functions along the subdomain contour,
regardless of its shape, can be expressed in a general form. Let
us define a parametric function that maps a normalized variable
t into the qth side of a subdomain as

b=gt—g" (20)

o,:[0,1]— D, C R?

t~ r(t) =Py + Lyt7, (21)
where P, L,7, are vectors defined in Fig. 1. Therefore, the
variation of any pth “half-function” along any qth side can be
expressed as

5
g (04) = [A1(p, )t + Ao(p, q)] 7y + %ﬁq (22a)
q
fp(@4) = Ba(p,q)t* + Bi(p, )t + Bo(p, q) (22b)

where A;, B; € R are constant values for each combination of
(p, q), N is the number of sides and [z], = mod(z,y) = z—ny
where n = |z /y] ify # 0and d[p41, 4 designates a Kronecker
delta that equals one when ¢ coincides with the common side.

The values of A;, B; for triangular and rectangular contours can
be found in Table III.

We now turn to the evaluation of coupling integrals using
these types of basis functions. The contour form of coupling
integrals presented in Table II is now calculated as the sum of
line integrals along each side of the complete domain, i.e.,

JomS ([ =S [oa) e

where each integral applies over a half basis function, as can be
readily deduced from (20). Four types of line integrals can arise
in (23) for a qth side. Using (22), these can be written as

/ X 8p - Vgdl = 1,(0) Op+1]n.a (24a)
aD,
1
[ e nudi =1, 3" Aupal(n) @
aD, n=0
/ Xl =1, T;(0) (24c)
vy 17aq
oD,
Ox° 2 ,
/ fPaquz =1, Z{)Bn(@ Q)T (n) (24d)
oD n=
where
1
I,(n) = /tn X(o4(t))dt (25a)
0
1
I(n) = /t" Vix(og(t)) - Dgdt (25b)

0

for n = 0,1,2. Note that the transition between the coupling
integrals over any of the basis functions considered here is
seamless and it is reduced to the proper choice of the constants
{4;, B;} in the formulation. In addition, the generality of the
transverse boundary condition is still preserved in (23).

V. SOME LATERAL BOUNDARY CONDITIONS

The solution of the coupling integrals presented so far is sub-
ject to the election of appropriate boundary conditions, or equiv-
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alently, to the substitution of pertinent scalar potential functions
in (25). In this section, we will obtain the solution to these inte-
grals, and therefore to any coupling integrals using subsectional
basis functions, in three practical boundary conditions, namely
boundaries with rectangular and circular perfect electric con-

ductor and a 2-D periodic boundary condition. In the following

—1/2
developments, the scale factor & = | [ x; X;‘dS} is used
Q

as normalization of each ¢th mode.

A. Rectangular Perfect Electric Conductor

Substituting the expressions for the ith rectangular mode [16]
into (25) and after some simple manipulations we obtain

1 1
I y(n) = % [/t" cos Aydt + /t” cos Eth} (26a)
0 0
¢ 1
z/q(n) = - EL[(K, - Dy) / 1" sin Agdt
0

1
+ (k-7 / " sin Eth} (26b)
0

where n = 0,1 and X, A, are

Y=knrx+kyy=K-r
A=kpr—kyy=K-r
evaluated on the gth side according to (21) (i.e., withr = P, +
Lt).
B. Circular Perfect Electric Conductor

The integrals (25) are transformed using the circular mode
expresions in [16] in conjunction with the cylindrical to carte-
sian transformation presented in [23] that approximates

oy N—1
. m ..2mm
Xi X (ki) exp(jmep) = JF Z exp <JZT>
1=0
cexp (—jr; Ty r)  (27)

where

T B 2l7r+ 2w
[T = X COS i ysin i

and N — 1 > k;r + Ny with Ny being a small integer. The final
expressions for (25) are

Lig(n) | _i™& (,2mm

P = S e (15 -,
1

J ™ exp (—jri Ty - Lgt) dt

0

1
—jki Ty - g [t exp (=jr; Ty - Lyt) dt
0
(28)

forn = 0, 1.
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a9 l

perfect electric conductor
periodic boundary condition

@ (b)

Fig. 3. Planar strip conductor of w = 2.38 mm and ! = 13.30 mm used as:
(a) an iris in a rectangular waveguide of a; = 7.60 mm, a> = 15.20 mm and
(b) a unit cell in a 2-D periodic lattice with @} = 7.60 mm, ¢}, = 15.20 mm
and a = 90°.

C. General Periodic Lattice

Let us consider a periodic structure with translation vectors
in the direct and reciprocal lattices [24] given by

Pn = Mmai + nas
and
kmn = mk1 + ’I’Lk2
2mm . ( 2nm
a9 SN (¢

2mm .
Yy
aq tan «

respectively. The structure is illuminated with an arbitrary po-
larized plane wave impinging with angles (6, ¢) and

ay

k=Fksinfcos¢pz + ksinfsin¢py

where k = w,/pe is the propagation constant. Equation (25) for
the +th Floquet mode [17] can be expressed as

1

I y(n) =& exp(jni -Pq)/t" exp(jn,; ~th>dt (29a)

0

!

I (n) = ki - g I; 4 (n) (29b)

where K; = Kmn = kyn —kandn = 0,1, 2.
The remaining integrals in(26), (28), and(29) have trivial an-
alytic solution.

VI. NUMERICAL EXAMPLES

In the first two examples, represented in Fig. 3, we consider
a planar strip conductor surrounded by two different transverse
boundary conditions, namely a rectangular perfect electric con-
ductor and periodic boundary condition. The first structure, in
Fig. 3(a), is excited with the mode TE(; of the rectangular
waveguide. The return and insertion losses at z = 0% are com-
puted using different methods and the results are compared in
Fig. 4. Two simulations have been performed with the methods
presented using different mesh schemes in each case.

The same structure has also been simulated with a different
integral equation-based method described in [25] and an ap-
proach based on the mode matching/generalized transverse res-
onance technique [26]. The agreement between the two integral
equation approaches is excellent while the differences arising
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Fig. 4. Scattering of the TEy; mode from a strip inside a rectangular wave-
guide in Fig. 3(a). The presented method using only rooftops (solid line) or
Rao—Wilton—Glisson basis functions (dashed line), integral equation method of
[25] (dotted line) and mode matching/generalized transverse resonance tech-
nique of [26] (dashed-dotted line).

1.0

200
L 09} 150 Z\“\-‘._.
™ & 100 1
g 08 )
2 07 T 9
= )
2 06 g -50
= B 100 [
05 -150 e
0.4 -200 .

6 8 10 12 14 16
Frequency (GHz)

@ (®)

18 20

Frequency (GHz)

Fig.5. Reflection coefficient p at = = 0+ for a TEg, Floquet mode impinging
the periodic lattice Fig. 3(b) with angles § = 1°, ¢ = 1°. This method using
only rooftops (solid line) or Rao—Wilton—Glisson basis functions (dashed line)
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Fig. 6. Return and insertion losses simulated with the presented method (solid
line) and MoM based software (dashed line). The dimensions of the circuit are
I, = 1207 mm, s = 0.20 mm, I, = 12.38 mm, /;, = 6.50 mm, I, =
5.46 mm, wy = 1.16 mm, w,; = 0.3 mm, ! = 26.06 mm. The metallic shield
is 24.75 mm X 40.83 mm X 5.27 mm and the dielectric is RT/Duroid 6010 with
a thickness of 1.27 mm.

as compared to the mode matching/generalized transverse res-
onance method are associated to the zero-thickness nature of
the structure. The same planar strip is used as a unit cell in
a planar periodic structure in Fig. 3(b). The structure is illu-
minated with a TEqy mode slightly tilted with respect to the
normal direction. The scattering is presented in Fig. 5 and com-
pared with the results provided in [27] showing an excellent
agreement in phase and differences of at most 7% in magnitude.
Finally, this method has also been applied in the simulation of
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a more realistic structure involving a two-port microstrip res-
onator enclosed in a metallic rectangular shield, as represented
in Fig. 6(a). The response shown in Fig. 6(b) is simulated with
this method and Ansoft Designer [28], a MoM-based commer-
cial software. This result demonstrates how this method can also
be applied to multilayer structures and hybrid meshes, providing
accurate results.

VII. CONCLUSIONS

We have presented a new integral equation—-MoM formula-
tion, based on modal expansion, for the EM modeling of later-
ally bounded planar structures in multilayered media. Essential
to this method is the strategy used for the resolution of cou-
pling integrals combining divergence conforming basis func-
tions, with locally zero-curl and constant-charge, and modal
functions derived from the transverse boundary problem. The
coupling integrals have been first reduced to contour integrals
in a general fashion. Then, these were specialized to linear sub-
sectional basis functions over triangular or rectangular domains
with a seamless transition between the two. An example of ap-
plication showed solutions for three different boundary condi-
tions. This technique avoids having a specific formulation for
each type of problem. Instead, it offers a unified and versa-
tile approach that, on the one hand eliminates redundancy in
the formulation and on the other hand reduces each particular
problem to the proper choice of constant coefficients or the eval-
uation of a few basic line integrals. In particular, seemingly
different problems like discontinuities in circular waveguides
and 2-D periodic structures embedded in multilayered media,
are brought under the same frame. Once properly implemented,
the technique does not introduce any computational overhead
when compared with other standard integral equation—MoM ap-
proaches, while widely broadening the scope of solvable prob-
lems. Finally, the method has been validated with several nu-
merical examples and the results compared against alternative
approaches. This work also opens the door for obvious exten-
sions, like the treatment of more general boundaries with planar
or curved contours. This generalization should be easily inte-
grated into the present framework and work towards this goal is
under progress.
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