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Abstract— A new approach for robust fixed-order Ho con-  optimization method for PID controller tuning by open-loop
troller design by convex optimization is proposed. Linear tme-  shaping in the frequency-domain is proposed. The infinity-
invariant single-input single-output systems represent by a oy of the difference between the desired open-loop trans-

finite set of complex values in the frequency domain are corngi . . .
ered. It is shown that the H., robust performance condition can fer function and the achieved one weighted by a so-called

be approximated by a set of linear or convex constraints with target sensitivity function is minimized. For open-looplse

respect to the parameters of a linearly parameterized conwller ~ systems, it is shown through the small gain theorem that if
in the Nyquist diagram. Multimodel and frequency-domain the infinity norm is less than 1, then the nominal closed-
uncertainty can be directly considered in the proposed appwach loop system is stable. This is a sufficient condition which

:;y ::r:)cr:]epe;srgwg tvr\]/ﬁhnl:rr]rébirt;:];;rés%a:ti'oﬁgilp;?ggls:n(:_rr:te tirgb depeln.ds on the choigg of the ta_rget sensitivity functiore Th

shown by an examp|e that for an unstable uncertain mode|, Condltlon fOI‘ the Stab|l|ty Of multlp|e mOde|S becomes more

a PID controller can be designed with the proposed approach conservative as for each model a reasonable target sémgsitiv

which gives better H, performance than a 7th order unstable fynction should be available.

controller obtained by the standard Ho. solution. In [6] a robust fixed-order controller design using linear
. INTRODUCTION programming is proposed. The main feature of this method is

tgat the stability and some robustness margins are guadnte

Spectral models (or frequency function models) can bb i traints in the Nvauist di d1th thod
easily identified from input/output data using Fourier ogsp . y linear constraints in the Nyquist diagram and the metho
|§)fappl|cable to multiple models as well. However, the

tral analysis. These models are represented by a finite set o - .
complex values and give some important information abo erformance specifications are limited to th_e _ch_0|c_e of a
the bandwidth and the static gain of the system. Althoug wer bound for crossover frequency and m|n|m|gat|on of
spectral models are largely used in practice, controllsige the integral of the tracking error. The resglts are mp_roved
methods based on this type of models are rather limite@Y opep-lo_op and closed-loop shaping using quadratic pro-
The first systematic controller design methods were bas&dmming In [7]. . .
on loop shaping with graphical tools in Bode diagrams or In this paper, based_on the idea proposed in .[6]' [7] anew
in Nichols chart and are discussed in classical textbooks fgpproach for robust flxed-ord_er controlle_r design is devel-
ed. It is shown that robust fixed-order linearly parameter

design and analysis of control systems. These approact?e%

are very intuitive and work well for simple systems that caﬂge? cctmt[_cl)_lllesr;ssfgr Llne?r Time Invanar;tglrg)gle—lnpunsle i
be approximated by a low-order model with relatively smal utput (LTI- ) systems represented by nonparametric
ectral models can be computed by convex optimization.

delay. For unstable and non minimum phase systems a @I ; ification. like the standAtd ol
systems with parametric and frequency-domain uncertaint € periormance spectiication, like he stancdatd contro

more advanced methods should be used. A We”_knov\%roblem, is a constraint on the infinity norm of the weighted

method is the Quantitative Feedback Theory (QFT) [1] whicﬁensmvIty functlp_n: It should be mentloned that the se@lbf
is based on loop shaping in the Nichols chart. Frequenc]c xed-order stabilizing cqntro!lers IS a nonconvex set.is t
domain approaches lead usually to low-order controllets a ?p_er, a convsx_afp_roxtlrr]naﬂlon O.f ttrgs setis gr?]/en by a S?jt
the design procedures need some expertise and are based olﬁqegr Consbraln s '3 f © PIVSUIS tlaﬁ;ram. © FIJIroposfe

trial and error. Although recently optimization approatzcheme od can be used for controtiers as well as for

are used to compute controllers in the QFT framework [2 ighgr order. linearly parametrized controllers in diseret
[3], H, and H., control criteria for spectral models have not ontinuous time. The case of unstable open-loop systems can

been considered. alsp bg consLde(;e? if a stab|I|Z|ntg c;otntrollerr] ItSh a;/tarlllailjlbe_ .
With new progress in numerical methods for solvindnalnl €a s to define new constraints such that tne designe

convex optimization problems, new approaches for corroll open-_loop syg.tem_ ha_\s the wmdmg number satisfying the
design with convex objectives and constraints have be%ﬁ/qwst stability criterion. Another important featuretisat,
b

developed. These techniques have been also applied contrast with the standarif, problem, this approach

controller design for spectral models. In [4], [5] a convexa" tfeat the case of multimodel uncerta_mty as well. The
effectiveness of the proposed approach is illustrated loy-co
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Section Il introduces the control design methodology Hasecontroller design, a lower bound on the modulus margin
on the linear and convex constraints in the Nyquist diagranithe inverse of the infinity norm of the sensitivity function
Simulation results and comparison with the standdrd de- that ensures a lower bound on the gain and the phase
sign are given in Section IV. Advantages and disadvantagesargin) and a desired value for the crossover frequency can
of the proposed method are discussed in Section V. Finallge considered. While more advanced control problems in
Section VI gives some concluding remarks. which the performance and robust stability are defined by
constraints on the infinity norm of the weighted sensitivity
functions can also be treated for fixed-order controlleigtes
A. Class of models A very standard robust control problem is to design a
The class of continuous-time LTI-SISO systems wittcontroller that satisfie§11S[|.. < 1 for a set of models,
bounded infinity norm is considered. However, the resultwhereV;(s) is the performance weighting filter. If the set
can be applied directly to the discrete-time systems. It igf models is represented by multiplicative uncertaintg, i.
assumed that the plant model belongs to aGéhat is the G, (s) = G(s)[1 + Wa(s)A(s)] with [|All« < 1, the
convex combination ofn. spectral models with a sufficiently necessary and sufficient condition for robust performaace i
large number of frequency poinfg: given by [8]:

Il. PROBLEM FORMULATION

[[WiS| + [WaTl|, <1 (4)

m m
G= {Z AiGi(jwr) - Z)\i =Lk= LN} (1) There is no analytical solution to this problem, however,

i=1 i=1 in the standard{,, framework a solution to the following
where )\; are real positive numbers. By sufficiently largeapproximate problem can be found:
number of frequency points we mean that the open-loop WS 1

. . . 1

frequency response of the system in the Nyquist diagram H WoT H < — (5)
between two adjacent frequency points can be well ap- 2 o V2
proximated by linear interpolation. The sét represents This solution is conservative and leads to high order con-
multimodel and unstructured frequency-domain uncenainttrollers. The proposed approach in this paper is based on
In the sequel, for the sake of simplicity, we consider ®ome linear or convex constraints on the Nyquist diagram
nominal modelG € G and represent the robust performancesuch that the following constraints are satisfied :

conditions for a single nominal model with frequency- . . . .
domain uncertainty. It will be shown that the multimodel Wi (jwr)S(Gwi)] + [Wa(jwr) T (Gwr)| < 1 (6)

uncertainty can be considered by repeating the constraifs 1 — 1,..., N. For models with additive uncertainty, i.e.
for each model. Ga(s) = G(s) + Ws(s)A(s) with [|All < 1, the robust
B. Class of controllers performance condition is given by:
Linearly parameterized controllers are given by : W1 (Gw)S(iwr)| + W (jwr) K (jur)S(jwr)| < 1 (7)
K(s) = p"(s) @) for k = 1,...,N. The use of linear or convex constraints
where p7 = [p1, po, ..., puls #T(s) = [¢1(5), d2(5), ..., instead of the above non-convex constraints leads also to a

én(s)], n is the number of controller parameters apds) conserva.tive. §o|ution. It will bg shown. that this consesrat

are stable transfer functions with possible poles on thgimaCan be significantly reduced if a desired open-loop transfer
inary axis chosen from a set of orthogonal basis functionfinction La(s) is available and a norm ak(s) — La(s) is

It is clear that PID controllers belong to this set. The maiffinimized under the robust performance constraints.
property of this parameterization is that every point on the The chc_)|ce OfL_d(S) has already been dlscu_ssed In open-
Nyquist diagram ofL(jw) = K (jw)G(jw) can be written loop shaping design methods and we do not intend to inves-

as a linear function of the controller parameters tigate this choice in this contribution. However, some danp
, , o ) choices are recalled that usually lead to good results for
K (jwr)G(jwr) = PT¢(ka)G(2wTk) (3) simple models. For example,(s) = w./s is an appropriate
P RAwk) +7p" T(wi) choice for low-order stable systems. If a desired reference
whereR (wy,) andZ(wy,) are respectively the real and imag-model M (s) for the closed-loop system is availableq(s)
inary parts ofg(jwi )G (jwr). can be chosen equal t8/(s)[1 — M(s)]~!. The choice
) o of L,(s) is more important for unstable systems. In this
C. Design Specifications case the winding number df,(s) around the critical point

Let the sensitivity functionS(s) = [1 + L(s)]~!, the in the Nyquist diagram should satisfy the Nyquist stability
complementary sensitivity functich(s) = L(s)[1+L(s)]™'  criterion. For this purpose, the number of unstable poles of
and the crossover frequency. be defined. The proposed the plant model should be known or a stabilizing controller
approach can consider very simple specifications for th&,(s) should be available. It should be mentioned that a
design of simple PID controllers as well as standard perfononrealistic choice ofL,(s) (with respect to plant model
mance specifications fof ., control problems. For simple and controller structure) will only increase the consasvat



of the approach and never leads to a destabilizing controlle
A reasonable approach, known as windsurfing [9], is to start
with a modest choice of4(s) (with a small bandwidth) and
increase iteratively the closed-loop bandwidth.

[WiGwr)  dr

Ill. ROBUST CONTROLLERDESIGN INNYQUIST
DIAGRAM

Y

Re
A. Robust performance constraints

The basic idea is to approximate the nonconvex robust
performance constraints in (6) and (7) by linear constsaint
This way, the controller design is represented by a convex
feasibility problem. We start by multiplying the robust per
formance condition in (6) byl + L(jwy)| to obtain:

W1 (jwi)| + [Wa(jwr) L(jwr)| < |1+ L(jws)|
for k=1,N (8)

(W2 (jwi) L(jwi)| |

Note that|l + L(jwy)| is the distance between the critical
point and L(jwy). Hence, this constraint is satisfied if and
only if there is no intersection in the Nyquist diagram Fig. 1. Linear constraints for robust performance in Nytjdiagram
between a circle centered at the critical point with a ra-

dius of [W;(jwy)| and a circle centered ak(jwy) with

a radius of [Ws(jwi)L(jwk)| at each frequencyy [8]. satisfied if all vertices are located in the right side daf
Now, consider a straight lin€; which is tangent to the This can be represented by the following constraints :
circle with radius |W;(jwy)| and orthogonal to the line

between the critica_l .poin_t anﬂ(j%). T.helrefore, the robust. W1 (Gwr)[1 + La(Gwr)]| = Im{La(jwr) }pT Zi (wr) —
performance condition in (6) is satisfied if and only if _ T .

the circle centered ak(jw;) does not intersea; and is [+ Re{La(jwr)}][1 + p" Ri(jwr)] <O

completely in the side that excludes the critical point (at for k=1,....,N and i=1,...,m (10)

the right hand side in Fig. 1). This condition cannot be

represented as a convex constraint becdfise a function of whereR;(jwy) andZ;(jws) are the real and the imaginary
the controller parameters. Howevef, can be approximated parts of¢(jwy)Gi(jwr) with

by dj. which is tangent to the circle with radiu¥/; (jwy)]|

but orthogonal to the line connecting the critical point to o (W (Gwi)| iori/m

L4(jw) (see Fig. 1). It should be noted that the equation Giljwr) = Gjwr)[1 + cosm/m e?m] (11)

of dj at each frequency; depends only oV (jwi) and

Ly(jwy). If we namex and y, respectively, the real and It can be observed that the number of linear constraints are
imaginary parts of a point on the complex plane, the equationultiplied by m when the uncertainty circle is approximated

of dj, at each frequency; becomes : by a polygon ofm vertices.
The second alternative is to consider for each frequency
W1 (jwi)[1 + La(jwr)]| — In{La(jwr) }y— only one constraint for the closest point of the circle to

1+ Re{La(jwr)}][1+2] =0 (9) di. Itis clear that if this point is at the side af; that
) . excludes the critical point, then the whole uncertaintgleir
where R.{-} and I,,{-} represent real and imaginary partsis in the correct side. The coordinates of the closest pdint o

of a complex value, respectively. Therefore, the conditioghe uncertainty circle frond;, can be computed as :
that L(jwy) for all wy is located in the side ofl; that

e_xcludes the _cr|t|<.:al point can be given by the following z = pTR(Gwr) — |Wa(jwr)pT ¢ (iwn)G (jws)]
linear constraints : .
14+ Re{La(jwr)} (12)
Wi (jewon)[1 + La(Ger)]| = In{ LaGeor) }oT T (Gor) - o W LaGedl -
[1+RA{La(jwr) }[14p"R(jwr)] <0 for k=1,...,N y=r I(;wﬁ—( !Wz)(}ka)p ¢(jwr)G (jwr)|
m d\JWk
There exists two alternatives in order that this condition t % 11+ La(jwe)| (13)

be satisfied for all models in the uncertainty set represente

by a circle centered aL(jwy). The first alternative is to Using these coordinates and the equationipfin (9) the
approximate the uncertainty circle by a polygonmf> 2  robust performance constraints obtained are no longeauline
vertices. Then, the robust performance condition in (6) ibut convex with respect to the controller parameter vector



P L4(jw), a straight line with a fixed slope for all frequencies
can divide the Nyquist plane into two half planes and leads
[W1 (jwr)[1 + La(jwr)]| = Im{ La(iwr) }p" T (jwr)+ to a set of linear constraints for robust performance [6].
(Wa (jwn)pT d(jwn) G Gwi)[1 + La(jw)]|— Therefore,Ld(j%u) .just adjusts the s!ope afy, to enlarge.
[+ Re{ La(jw) N1 + p"R(jeor)] < 0 the set of admissible controllers defined by the constraints
LIk prRAIWk As a result, a non properly chosdn,(jw) may lead to a
for k=1,....,N (14) infeasible solution. By a non properly chosén(jw) we
gnean a frequency function which is not coherent with the
rrcLen‘ormance specification (with a bandwidth much larger
(convex constraints instead of linear constraints). than that speC|_f|ed _bW1) and is _far from ach|evab!e forthe
R . plant model with given uncertainty set and restricted order
emarks: ; .
) _ and structure of the controller. For example, if we consider
1 '!'he same gpproach can be_applled Wh_”e an addy, integrator in the controller but we do not put itlig(jw)
tive uncertainty model is _a.va|le}ble. In this case th‘?/ve will have evidently a non properly chosem;(jw). A
robust performance condition in (7) can be repreg ianie choice of.4(jw) is a simple choice that satisfies
senFed t_)y linear qonstraln_ts in (10) or by CONVeX cong,e Nyquist stability criterion and has essentially theegol
straints in (14) with the difference thalVs (jwi)| = on the imaginary axis of the controller and the plant model.

|W3(jwk)|/|G(j9’k)|‘ o i ) If Lq(jw) is chosen such that it represents some desired
2) Individual shaping of the sensitivity functions is alsogqnq specifications, then it is judicious to minimize amo

possible usi_ng the constraints in (6) and (7) ant_j puttingf L — Ly under the robust performance constraints. We
one of the filters equal to zero. For example, in man}ﬁropose either a quadratic programming approach in which

applications we need to put some constraints on thg, 5,5roximation of the two norm df — L, is minimized
magnitude of the input sensitivity functiotl(s) = under some linear constraints :

K(s)[1+ L(s)]~* in order to reduce the control effort. N
This can be done by defining a weighting frequency . T .. . L2
. . . . — L
function W5 (jwy ), usually a high pass filter, and using m;}n]; 7 @) Gjewr) aljwn)l
the constraints in (7) withV; (jw) = 0. Subject to:
3) Multimodel uncertainty can be directly taken into |y, (jwy)[1 4 La(jwi)]| — Lo {La(iwr)}pT Ti (jwr)—
account in the proposed approach. We only should 11 + R_{L,(jw)}][1 + pTRs(jwr)] < 0
repeat the constraints for each model in the model set. for x=1,... N and i=1,...,m
4) The robust performance can be improved by defining (16)
the following constraint : or a convex optimization approach in which an approxima-
tion of the infinity norm ofL — L, is minimized under some
IW1S] + [WT lleo < (15)  convex constraints :

This alternative has less constraints and no conservatigm
leads to a bit more complex convex optimization proble

and minimizingy. In the proposed approach an upper min max |p? ¢(jwr)G(jwr) — La(jwr)]
bound for~ can be computed by an iterative bisec- r k
tion algorithm. At each iteration for a fixed;, we
replacelV; and Wy with Wy /~; and Wa/~; and we
solve the feasibility problem represented by the linear . T /-

constraints in (10) or convex constraints in (14). If the %r+kR;{1Ld(jw§\;}] [L+ P R{jwr)] <0

problem is feasibley;, ; will be chosen smaller tham; T 17)
and if the problem is infeasibtg, ; will be increased.

Subject to:
(Wi (jwi)[1 4 La(jwr)]| = Im{ La(jwr) }p" L (jwi)+
(Wa(jwi)p” ¢(jwi)G(jwr)[1 + La(jwi)]|—

It is interesting to notice that a large value of the critario
for the optimal solution shows that the choice bf(jw)
has not been appropriate and with a better choice better

performance may be achieved. Based on this observation a

Up to now, it has been shown that the robust performanggactical algorithm for improving the control performance
condition can be represented in the Nyquist diagram by @&n pe suggested. We can start with a simpl¢jw) and
set of linear or convex constraints. Hence, fixed-order$t)bucompute a first controller, salfo(s), then we can compute a
performance control problem becomes a feasibility problem\ede(jw) equal toK (jw)G(jw) and run the optimization
with linear or convex constraints. The major drawback ofroplem with tighter specifications (e.g. largé¥: ). In this
the proposed approach with respect to the standésd npew optimization the conservatism is significantly reduced

control problem is the need for a desired open-loop freayiengecayse, and ., and consequently; anddy, are close to
function L4(jw). However, it should be noted that the per-gach other at all frequencies.

formance specification is defined by the weighting frequencz

function W1 (jw) and La(jw) plays only an intermediate C- Unstable systems

role to reduce the conservatism of the solution and not One of the main interest of the proposed approach with
the solution itself. This means that even without knowingespect to other frequency-domain methods is that it can

B. Optimization criterion



be applied to the unstable systems. The essential conditionNow, the proposed method is applied to design a PID
is that the desired open-loop frequency functibp(jw) controller represented by :

should satisfy the Nyquist stability criterion. It meansitth 1 s
La(jw) has to encircle the critical point,, times, where K(s) = [Kp, Ki, Ka[1, T3 Tys

n, is the number of unstable poles 6f(s) (knowing that ) o
)_Where the time constant of the derivative part of the PID

the controller K (s) has no poles in the right half plane ,
Under this condition,(jw) will encircle the critical point controllerZy is set to 0.01 s. The frequency response of the

n, times too if the constraints in (10) or (14) are satisfiedModel is computed av = 50 Iog?rithmically spaced fre-
The reason is as follows : iq(jw) encirclesn, times the dUeNCy points betweer)™ and 10° rad/s. The uncertainty

critical point, then the vectot + Ly(jw) and d; which is circle at each frequency is approximated by an outbounding

orthogonal to this vector will turn,, times around the critical polygon withm = 8 vertices. The plant model contains one
point. Hence, sincd.(jw) and all models in the uncertainty unstable pole and the controller an integrator, so the elsir

circle are always in the side af, that excludes the critical OP€n-loop transfer function is chosen as
point, they will also encircle the critical point, times. La(s) = 8 s+1
If the unstable poles of the plant model are known, a ¢ s

]T

T 23
G- (23)
good choice ofLq(jw) includes these poles. If these polesyhere 3 > 1 satisfies the Nyquist stability condition for
are unknown,L,(jw) should contain the_ same number_(_)de(S). In this example, we choosé = 2. It should be
unstable poles as the plant model. Finally, if a stabilizygteq that this choice df4(s) is not compatible with desired
ing controller Ko(s) is known, an appropriate choice is performances so the difference betwdg) and Lg(s) wil
La(jw) = Ko(jw)G(jw). In this case/, does not represent ot he minimized. In order to obtain the controller giving
a desiredopen-loop transfer function so it is not necessaryhe minimal value fory, the bisection algorithm explained
to minimize a norm ofl. — L, in the optimization problem i, Remark 4 is used with the linear constraints in (10) that
and only a feasibility problem can be solved instead. leads to

[[WAS| + [WaT s = 0.7233

IV. SIMULATION RESULTS

. . The resulting PID controller is :
This example is taken from [10] where a robust perfor-

mance problem is defined for an unstable plant. Consider Ko(s) = 2.4265° + 6.675s 4 11.11 (24)
the family of plants described by the following multiplicat 0.01s% + s
uncertainty model: It is interesting to observe that this PID controller givester

performance than thél., controller. Moreover, it is stable
(s+1)(s+10)

p _ 1+ Wols)A 18 and easily implementable on a real system. The performance
() (s+2)(s+4)(s— 1)[ + Wa(s)AG)] (18) can be further improved using a ndw;(s) based oni(s).
where With this newL,(s) the optimal controller is given by :

1.1337s% +6.8857s 4+ 9 3.4165% + 26.28s + 25.08
(19) K(s) = -
(s +1)(s+ 10) 0.01s% + s
which leads toyppt = 0.7213.
In order to study the sensitivity of the solutions to the
2 (20) choice ofL,(s), the value of in (23) is changed from 2 to
(20s 4 1)2 97 with a step size of 5. For each value ®the minimum
o ~of v is computed. The mean value of optimgs$ is 0.7549
The objective is to compute a controlléf(s) that opti-  and its standard deviation 0.0228. This shows that although
mizes the robust performance by minimizingn (15). the optimal solution depends on the choicelgfs), it is not
The standardH.. solution that solves an approximateyery sensitive to this choice. Moreover, the results ofetdin
problem leads toyppt = 0.844 for this problem with the py this approach, whatever the choice dbetween 2 and
controller K(s) = Noo /Do Where 97, are better than the standaftl. optimal solution.

Wa(s) = 0.8 (25)

The nominal performance is defined Py S|, < 1 with :

W1 (S) =

Noo = 7.409¢65° + 1.266¢85° + 6.335¢8s" + 1.152¢95° V. DiscussioN

1 6.911e85% + 5.442¢Ts + 9.37¢5  (21) It should be mentioned that the problem of robust fixed-
order controller design is a non-convex NP-hard problem
and and all solutions to this problem, including ours, are based
on some approximations. For example, if we consider the

Do = 87 49.07¢55%+1.901e7s°+1.043e8s*+4.416¢7s®>  standardH., control problem for design of a fixed-order
— 4.682¢T52 — 4.962¢65 — 1.262¢5  (22) controller for a system with multiple models and frequency-

domain uncertainty, we have the following approximations :

This 7th-order controller is unstable and has a pair of 1) Approximation of the structured multimodel uncer-
complex conjugate poles very close to the imaginary axis. tainty with unstructured frequency-domain uncertainty.



2)

Approximation of the frequency-domain uncertainty
with a reduced-order weighting filter.

VI. CONCLUSIONS

A new fixed-order robust controller design method in the

3) Approximation of the real robust performance condinyquist diagram for spectral models has been developed.

tion in (4) with the condition given in (5).

The method is based on an approximation of the robust per-

4) Approximation of the resulting high-order controllerformance condition in thél., framework that leads to linear
with a fixed-order controller. In this operation, itis dif- or convex constraints with respect to linearly paramesetiz
ficult to even guarantee the stability and performancgongrollers. The advantages of this approach are sumndarize

for the reduced-order controller.

below:

The proposed method considers directly the multimodel and 1) The method uses only the frequency response of the
frequency-domain uncertainty and designs directly a fixed-
order controller. However, it seems that this method hasesom
drawbacks which are discussed below :

1)

2)

3)

The plant and uncertainties are defined only Nnh
frequency points, so the performance and stability
conditions are satisfied only iN points. It is clear that

N should be sufficiently large such that the Nyquist
diagram ofL(jwy) is a good approximation ak(jw).

For discrete-time controller design, since the frequency
domain is limited to the half of sampling frequency,
by increasingN the quality of approximation can be
improved. This will increase the number of constraints
but will not make a serious problem for linear and
guadratic programming methods which are able to deal
with more than hundred thousand of linear constraints.
For continuous-time controller design, the choice\of
and the sampling frequency should be done cautiously.
This will need some information about the plant and
the desired closed-loop specifications.

The controller is linearly parameterized so the denom- 3)

inator of the controller is fixed and it should be chosen
prior to design. In practice, some of the poles of the
controller are usually fixed to achieve certain closed-
loop performances. For example a pole at origin, an
integrator, or a pair of complex poles in a certain [1]
frequency are fixed in order to reject the disturbancegy,
(internal model principle). Therefore, this condition
is not restrictive for low-order controller design. For
higher order controller design the use of a set of
orthogonal basis function is proposed. It is known that
by increasing the controller order any stable transfer
function can be approximated with such a set. On th
other hand, this restriction ensures the stability of the
controller which is required in many applications and !
cannot be guaranteed by a full controller parameteri-
zation.

The robust performance condition in (4) is approxi- (]
mated by a set of linear constraints in (10) or convex
constraints in (14). It is discussed in the paper that the7]
quality of this approximation depends on the choice of
a desired open-loop transfer function.

(3]

It is too difficult (if not impossible) to compare, by a the- (8]

oretical analysis, the overall approximation or conseswat

9]

of different approaches to fixed-order controller design. |
this paper we tried to show the effectiveness of the propos?lc(i)]
approach by means of a simulation example and compare it
with the standard?., method.

system and no parametric model is required. The
frequency response of the model and the uncertainty
at each frequency can be obtained directly by discrete
Fourier transform from a set of periodic data, so the
method can be considered as completely “data-driven”.
Of course, the method can be applied as well if a
parametric model with an uncertainty set is available.

2) The method is very simple, at least as simple as open-

loop shaping methods in Bode diagram or in Nichols
chart currently used in textbooks for undergraduate
courses in control systems. For instance, it can be
used to design of PID controllers ensuring a given
modulus margin and optimizing for a desired crossover
frequency by a quadratic programming optimization
approach. Moreover, the case of multimodel uncer-
tainty can be handled easily just by increasing the
number of linear constraints while the mentioned clas-
sical frequency-domain approaches cannot deal with
this type of uncertainty.

Higher order controllers for unstable systems with,

type specifications can also be designed within the
same framework.
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