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Techniques for estimating the region of attraction of stationary and periodic movements are
reviewed, especially those that can be found in human coordinated movements. The mathematical
model used is based on a muscle-skeletal system without reflexes derived using simple modeling
assumptions. It yields a second-order ordinary differential equation of the following form:

β̇ = ωω̇ = f(t, β, ω),

whereω is the angular velocity. Two typical muscle-skeletal movements are analysed using the
above framework, namely (i) standing, where the force-length functionf(β, ω) is independent
from t, and (ii) walking, where the solution of the above equation has a solution which is periodic
with periodT (i.e., f(t+ T, β, ω) = f(t, β, ω)). The force functionf has the particularity that
∂f
∂ωf(t, β, ω)< 0, because of muscle-force considerations.

The basin of attraction is then estimated for each class of behaviors. For case (i), the linearization
furnishes a system matrix from which a local Lyapunov function can be obtained. However,
after taking full advantage of the dynamical structure, and particularly∂f

ω (β, ω) < 0, the special
Lyapunov function

V (β, ω) =−
∫ β

0
f(β̃, 0)dβ̃+

1
2
ω2

leads to a subset of the basin of attraction. Consider(β0, 0) and(β1, 0) to be some equilibria, with
βi ∈ (0, π), i= 0, 1; then set

S = {(β, ω) | V (β, ω)< V (β1, 0)}∩ (0, π)×R.
Now, if the closureS is connected and compact andf(β, 0) 6= 0 for (β, 0) ∈ S r {(β0, 0)}, the
setS is included in the attraction domain ofβ0, S ⊂A(β0, 0).

Another technique for estimating the region for point stabilization (standing) is to resort to radial
basis functions through setting the Lyapunov function to

V (x) =
N∑
j=1

αj〈∇yΨ(x− y), F (xj)〉
∣∣
y=xj

whereΨ(x) = ψ(‖x‖) is a fixed radial basis function andF stands for(ωf(β, ω))T . The coeffi-
cientsαj are chosen such thatv satisfies the equation on the grid. The explicit solution ofαj is
easily achieved by solving a system of linear equations.

In the case of walking, periodic movements lead to a more complex analysis. Floquet theory
transforms the initial time-varying systeṁx = F (x, t) into ẏ = G(t, y) after setting(t, y) :=
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(t, x− x̃(t)). This transforms the periodic solutioñx(t) into the zero solutiony(t) = 0. For
example, for a system leading to the particular structureẏ = G(t)y, each fundamental matrix
X(t) has a representationX(t) = P (t)eBt whereP (t+ T ) = P (t) is a periodic (2×2) matrix-
valued function andB a (2× 2) matrix. The eigenvalues ofB are called Floquet exponents, the
real parts of which indicate asymptotical stability as long as they are all negative. A radial basis
function can also be used after adding the differential equationṫ= 1 to ẏ =G(t, y) and using the
non-autonomous technique.

Unfortunately, Lyapunov functions and Floquet theory need the knowledge of the periodic
movement̃x(t). This is not the case with Borg’s method, which is based on the following notion of
a Riemannian metric. Consider a matrix-valued functionM(t, x) which is symmetric and positive
definite for each(t, x) ∈ S1

T ×R2. Now considerM ′(t, x) to be the matrix with entriesmij =
∂Mij(t,x)

t +
∑2

k=1
∂Mij(t,x)

xk
Fk(t, x) (the orbital derivative ofM ), so that after defining

LM(t, x) := max
wTMw=1

[
MDxF (t, x) +

1
2
M

′
(t, x)

]
w,

the conditionLM(t, x) < 0 implies that there exists one and only one periodic orbit which is
exponentially stable. Moreover, all points satisfying this inequality and belonging to a connected,
compact, and positively invariant set also belong to the basin of attraction.

The paper considers the above techniques applied to the periodic movement of an elbow-joint
and a knee-joint for whichf(t, β, ω) is explicitly given, based on models of extensor and flexor
muscles. The stability property is strongly dependent on the positive slope of the force-length
function (elbow) and the moving center of rotation (knee-joint). A high co-activation also stabilizes
the system. The stability of stationary movements depends on the position of the joint angle: for
the elbow, small angles are stable, whereas large angles are unstable. For periodic movements,
general answers to these questions are difficult to obtain.
{For the entire collection seeMR2271880 (2007f:70005)}
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