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A topological and analytical classification of planar branches introduces some invariant numbers
associated with a given planar branch that distinguishes the type of singularity of the branch. For
example, a planar branch in the ordinary plane is cut out by two formal power series inx andy,
and one attempt to classify the branch is by performing successive coordinate transformations to
write the resulting expression in a normal form in which the type and singularity can be readily
read off. Abstracting a little further, as is now widely done in algebraic geometry, a branch over
an algebraically closed fieldK is a prime idealC = 〈f1, f2, . . . , fr〉 of the ring of formal power
seriesK[[X1, X2, . . . , Xn]] such that its local ring has Krull dimension one. Then the question is
how to provide the algebraic classification and the singularity type of this local ring.

The paper proposes a computational technique that is based on the extension of classical poly-
nomial ring theory over a field to more general rings, i.e., the generalization of algorithms such as
the Buchberger division process and the Gröbner basis construction. The main difference here is
that the local ring is not necessarily generated over a field and this accounts for some difficulties
in the stopping condition for the construction of the basis. These bases are called standard bases.

The singularity type of the branch is closely linked to a specific valuation on the implicitization
of the branch. For instance,x2 = y3 admitsx = t3 andy = t2 as an implicit parametrization,
and the valuation is then given by the degree oft. The standard basis algorithm proposed gives a
set of formal power series representations associated with the branch. The monomials of highest
order of each member of the standard basis reveal the type of singularity. The conductor—
an important topological invariant of the branch—is the lowest numberc of the semigroup of
valuationΓ. This semigroup is characterized by the lowest degree oft in the components of the
implicitization of the branch. Whenever an element of the local ideal of the branch has valuation
c1 ≥ c, then necessarily there exists another element in the ideal with valuationc1 + 1. The main
proposition is the following:G= {h0, . . . , hg} ⊂ O is a minimal standard basis forO if, and only
if, {v(h0), . . . , v(hg)} is a minimal set of generators of the semigroup of valuesΓ of O. (Here,
v(·) stands for the valuation int.) Two irreducible algebroid curves are said to be equisingular if
they have the same semigroup of valuesΓ.

As an example for computingΓ, consider the branch given in implicit formx = t8, y = t10 +
t13 andz = t12 + at15. Since8, 10, 12 ∈ Γ and27 = v(x3 − z2) ∈ Γ if a 6= 0 or 23 = v(y2 −
xz) ∈ Γ if a = 0, it is simple to verify that the consecutive integers54, 55, . . . , 61 belong toΓ.
Hence the conductorc≤ 54. The minimalS-processes (i.e., analogs ofS-polynomials in classical
Gröbner bases) obtained by the proposed algorithm arey4 − x5, y2 − xz, z2 − x3, y2z − x4,
z3 − x2y2 andz4 − x6. Then, reducing modulox, y, z using the implicitization, it is shown that
F1 = {t8, t10 + t13, t12, 2t23 + t26} so that the set of degrees of the leading monomials becomes

/mathscinet
/mathscinet/pdf/2377895.pdf?arg3=&co4=AND&co5=AND&co6=AND&co7=AND&dr=all&pg4=AUCN&pg5=TI&pg6=PC&pg7=ALLF&pg8=ET&s4=Hefez&s5=&s6=&s7=&s8=All&yearRangeFirst=&yearRangeSecond=&yrop=eq&r=1
/mathscinet/search/publications.html?arg3=&co4=AND&co5=AND&co6=AND&co7=AND&dr=all&pg4=AUCN&pg5=TI&pg6=PC&pg7=ALLF&pg8=ET&s4=Hefez&s5=&s6=&s7=&s8=All&yearRangeFirst=&yearRangeSecond=&yrop=eq&r=1
/mathscinet/pdf/2075059.pdf?arg3=&co4=AND&co5=AND&co6=AND&co7=AND&dr=all&pg4=AUCN&pg5=TI&pg6=PC&pg7=ALLF&pg8=ET&s4=Hefez&s5=&s6=&s7=&s8=All&yearRangeFirst=&yearRangeSecond=&yrop=eq&r=3
/leavingmsn?url=http://dx.doi.org/10.1016/j.jsc.2006.02.008
/mathscinet/search/mscdoc.html?code=13N05%2C%2813F25%2C13P10%29
/mathscinet/search/publications.html?pg1=IID&s1=83380
/mathscinet/search/institution.html?code=BR_UFFM
/mathscinet/search/publications.html?pg1=IID&s1=682682
/mathscinet/search/institution.html?code=BR_MAR
/mathscinet/search/journaldoc.html?&cn=J_Symbolic_Comput
/mathscinet/search/publications.html?pg1=ISSI&s1=249069


the generators ofΓ, i.e., Γ = 〈8, 10, 12, 23〉. Now, adding elements ofΓ together gives rise to
the sequence8, 10, 12, 16, 18, 20, 22, 23, 24, 26, 28, 30, 31, 32, 34, 35, . . . , that is, all consecutive
integers beyond34 are generated through such combinations, so that the conductor isc = 34,
which is smaller than54.

Similar constructions are obtained for the module of Kähler differentials, giving a powerful
procedure for computing Milnor’sµ and Tyurina’sτ numbers (analytical invariants). LetΛ =
v(OdO/T), whereT is the torsion submodule of the module of differentialsOdO.

Using the relation

(1) τ = l(T) = µ−#(Λ r Γ),

where# indicates the number of elements in the set, together with its relation with the conductor,
µ = c, the computational procedures proposed can be used to computeτ . For example, consider
C as the curve parameterized byx = t8, y = t12 + t13 whose associated semigroup of values is
Γ = 〈8, 12, 25〉 with conductorc = 80. Computing the differentialsdx, dy, anddz wherez =
y2−x3, the proposed standard basis algorithm provides:ω1 = 3ydx−2xdy,ω2 = 8xdz−25zdx,
ω3 = 12ydz− 25zdy, andω4 as the reduction of25x2zdx− 8y2dz by 202/25zdz andω5 as the
reduction ofyzdx+ 8x3ω1 by 6zω1. (The reduction resorts to a dedicated algorithm that goes
along with the one used for the basis construction.) Therefore, after implicitization,ψ(ω1) =
−2t20, ψ(ω2) = 8t33, ψ(ω3) =−38t37− 13t38, ψ(ω4) = 204

25 t
50 + 52

25t
51 andψ(ω5) =−4t46, from

which

τ = c−#(Λ r Γ) =
80−#{21, 29, 34, 38, 42, 46, 47, 51, 54, 55, 59, 63, 67, 71, 79}= 65.

The paper gives all the details on the above ideas with complete descriptions of algorithms
and proofs. It shows how existing identities such as (1) can be put to good use so as to guide
the algorithm in obtaining a standard basis. Such algorithms are useful in various situations for
establishing key topological and analytical invariants.

Reviewed byPhilippe A. M̈ullhaupt
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