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Back in 1858, H. Holditch stated and proved an interesting theorem. An oval path is given together
with a rigid rod of lengthl. Each end of the rod (sayA andB) touches the oval. Whenever the rod
completes a full turn while moving along the oval path, a given fixed point in the rod (say at the
distancea from A andb from B so thatl = a + b) also describes a closed curve, but one which is
not necessarily convex. The surface part between the center of the oval and the curve traced out by
the fixed point on the rod at distancea from A is then removed from the surface bounded by the
oval curve. This yields Holditch’s ring, the surface of which obeys a simple and elegant formula

F = abπ.

Such a result has been extended to various other curves that are not necessarily convex (as in the
case for the oval) or that are not closed (for instance for infinite “rails” on which the rod slides).
Corresponding formulas for what can be defined as “the remaining ring” which is obviously not a
ring anymore in case the curve is given by a pair of infinite rails. For instance, H. Pottmann [Arch.
Math. (Basel)44 (1985), no. 4, 373–378;MR0788954 (86i:53006)] has shown that a rotational
angle corresponding to the two extreme excursions of parallel tangentsδ can be defined. Then he
also showed how to define the ring, much in the same way as for the classical Holditch ring based
on the surface separating the guiding curve (one of the rails) and the curve traced by the point fixed
on the rod. One difficulty is that the curve can loop back on itself and therefore parts of the surface
need to be added with a negative sign. Nevertheless, the surface still keeps a simple expression
which is

F = abδ/2.

In the paper under review, a further generalization is obtained for movements that not only
follow a given curve which is not closed, but for which the linked frame, attached to the selected
moving point in-betweenA andB, distorts according to a homothetic scaleh(t) (i.e. a sort of
continuous “zooming in and out” motion). Therefore, two moving frames in the Euclidean planes
are defined, one for the fixed reference frameE′ = {O′; e′1, e

′
2} and one for the moving referential

E = {O; e1, e2}. For a closed homothetic motion, the moving frame is related to the fixed one
through

e1 = cos(ϕ(t))e′1 +sin(ϕ(t))e′2,
e2 =− sin(ϕ(t))e′1 +cos(ϕ(t))e′2,

and the coordinatesx′ = (x′1 x′2)
T are related tox = (x1 xT

2 ) through

x′ = h(t)x−
(

u1(t)
u2(t)

)
,

whereh(t) is the homothetic periodic scale,ϕ(t) is a periodic rotation andu1(t) andu2(t) are
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periodic translation functions, that is, there existsT > 0 such thath(t + T ) = h(t), ϕ(t + T ) =
ϕ(t) + 2ϕν, u1(t + T ) = u1(t) andu2(t + T ) = u2(t). The integerν ∈ Z is called the rotation
number of the closed planar homothetic motion. An open homothetic motion is one for which
one of the above periodicity does not hold anymore and therefore leads to a possible unbounded
motion. For the open homothetic case, the paper gives the area of the associated ring as

F = h2(t0)abδ/2

for a certaint0 ∈ [0, T ]. It is shown thatt0 exists but it is not constructed explicitly (it is a
consequence of the mean-value theorem).

The paper also gives a formula for a spatial generalization of the above result leading to the
volume cut-out by a straight line guided by convex bodies. The region defined as the spatial
Holditch sickleS ⊂ R3 is the point set bounded by the ruled surface and the cylinder parts
between two horizontal planesz = 0 andz = k. The volume traced out is shown to be equal to

V = h2(t0)
δ

2
k2 cot2 β

for a certaint0 ∈ [0, T ] and whereβ is the constant ruling anglearcsin(k/hl), l being, as above,
the length of the line.

Reviewed byPhilippe A. M̈ullhaupt
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