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ABSTRACT

Fluid-structure investigations in hydraulic machines using coupled simulations are

extremely time-consuming; therefore we develop an alternative method. In this paper, a
model is proposed to predict fluid-structure coupling by linearizing the hydrodynamic load

acting on a rigid oscillating 2D hydrofoil surrounded by an incompressible turbulent flow.
Forced and free pitching motions are considered with a mean incidence of 0° and maximum

amplitude of 2°. Unsteady flow simulations, performed with ANSYS CFX, are presented and

validated with experiments carried out in the EPFL High-Speed Cavitation Tunnel. The

hydrodynamic moment is assumed to result from three actions: inertia, damping and stiffness.

The forced motion is investigated for reduced frequencies ranging from 0.02 to 100. As

expected by the potential flow analysis, the added moment of inertia is found constant, while

the fluid damping and the fluid stiffness coefficients are found to depend solely on the

reduced frequency after an appropriate scaling. Behavioral patterns are observed and two

different cases are identified depending on the development of vortices in the hydrofoil wake.

Using the coefficients identified in the forced motion case, the time history of the profile

incidence is then predicted analytically in the free motion case. An excellent agreement is

observed with results from coupled fluid-structure simulations. The model is validated and

can then be extended to more complex cases such as blade assemblies.
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 INTRODUCTION

Fluid structure interactions play a significant role in many engineering applications and

particularly in turbo machinery. For instance, rotor-stator interaction induces pressure fluctuations

which can lead to vibrations of the guide vane or resonance in the distributor channels, see Zobeiri

(2006) [1] and Nicolet (2006) [2]. Flow-induced vibrations of the guide vane excited by the von

Karman vortices can also lead to premature cracks, see Ausoni (2007) [3]. The elastic behavior of

vibrating blade assemblies is thus of strong interest to design reliable and resistant turbines. The

actual predictive methods to model fluid-structure coupling for aero engines or gas turbines are

divided into two classes, see Marshall (1996) [4]: classical and integrated, depending on the

coupling strength. The former combines the fluid and structural equations in an uncoupled way,

whereas the latter solves the equations simultaneously.

Coupled simulations of the hydraulic machines with classical or integrated method are extremely

time-consuming for complex geometries therefore we develop an alternative method. The unsteady

incompressible turbulent flow around an oscillating rigid 2D hydrofoil is numerically and

experimentally investigated. The hydrodynamic moment is assumed to result from three actions:

inertia, damping and stiffness. The determination of the inertial effect has been largely investigated.

Formulae have been established to estimate added mass and added moment of inertia for simple

geometries, see Brennen (1982) [5]. Empirical formulae are not available for the fluid damping and

the fluid stiffness effects. Experiments and numerical simulations are required to identify those

effects depending on the surrounding flow and the structure motion. The forced motion case is first

investigated in the frequency domain to identify the three coefficients. The free motion case is then

used to assess the model.

After a description of the case study, as well as the numerical and experimental set up, the results

are presented. The numerical simulations are validated: the grid and time step independencies are

checked and a good agreement is observed by comparing the fluid torque with experiments. The

hydrodynamic load is then analyzed. The method to determine the added moment of inertia, the

fluid damping and fluid stiffness coefficient is detailed and assessed. Finally concluding remarks

are made.

SET UP

Cases study

The investigated hydrofoil is a blunt trailing edge NACA 0009, see Abbott (1945) [6], having

100mm length with a maximum thickness of 9.27mm, see Figure 1. Forced and free oscillations of

the hydrofoil are considered, see Figure 1. In both cases, the hydrofoil rotates around its center of

mass with a mean incidence 0cα = °  and amplitude 2 .oα = °

Figure 1  2D NACA 0009 Hydrofoil, Sketches of  forced oscillating case and  free oscillating case.

For the forced oscillating case, the incidence angle is defined by equation (1), with angular

pulsation ω   imposed.

( ) sin( )α α α ω= +
c o

t t (1)



24th Symposium on Hydraulic Machinery and Systems

3

The conditions investigated are summarized in Table 1. We note the upstream velocity
ref

C , the

reduced frequency 2κ ω=
ref

L C  and the Reynolds number Re ν=
ref

C L .

Table 1 Forced motion : numerical and experimental conditions

Case α
o refC Frequency κ Re

Numerical 1 1000 Hz− 0.02 100− 60.5 1.5 10−
Experimental

2° 15,10,15 m s−⋅
2,10, 20 Hz 0.04 1.25− 60.5 1.5 10−

For the free motion case, the hydrofoil is attached to a flexible structure. This case consists of a

1-degree-of-freedom model of an oscillating hydrofoil. The structural parameters of the hydrofoil

are the moment of inertia
s

J , the stiffness
s

k  and the damping coefficient µ
s
. The hydrofoil is

departing at rest from the incidence angle
o

α . A Fortran program has been implemented in the fluid

solver to couple the structure motion with the fluid action. The new incidence of the hydrofoil is

computed as a function of the structural parameters, the fluid torque M and the incidences at the

previous time steps see equation 2.

2
1 2 12 1

µ µ
α α α+ −    ∆

= − ∆ − ∆ + ∆ − +   
   

n n n ns s s

s s s s

k t
t t t M

J J J J
(2)

The conditions for the numerical simulations are given in Table 2.

Table 2 Free motion : conditions for the numerical simulations

α
o refC J

s
µ

s s
k Re

2° 15  m s−⋅ 5 21. 10 kg m− ⋅ 4 2 14. 10 0.12 kg m s− −− ⋅ ⋅ 1, 30 N m⋅ 60.5 10

Experimental procedure

The EPFL High-Speed Cavitation Tunnel, described on the left of Figure 2, is a closed loop with

a test section of 150 150 750 mm× × , see Avellan (1987) [7]. The experimental 2D hydrofoil has a

span B of 150 mm. An oscillating system is used to generate hydrofoil angular pitching oscillations

for different values of frequency and amplitude. The driving system is detailed in Caron (2000) [8].

The operating conditions investigated are given in Table 1. Six miniature piezo-resistive pressure

transducers are flush mounted along the chord length in one side of the hydrofoil; see Figure 1.

These sensors have a diameter of 3 mm, a height of 1 mm and the measurement range is 0-7 bars.

They are directly embedded in small chambers previously drilled inside the profile. Each chamber

is connected to the surface through a small pipe filled with plastic compound, which also acts as a

protective layer for the sensing element. This ensures a good surface finish and enables the fitting of

pressure sensors in areas of the profile as thin as 2 mm without alteration of the hydraulic profile.

The data acquisition system has 16 bits A/D resolution, a memory depth of 1 MSamples/channel

and maximum sampling frequency of 51.2 KHz/channel. The pressure at the inlet of the test section

is held constant and sufficiently high to avoid any cavitation development.

Numerical procedure

The unsteady numerical simulations are carried out with ANSYS CFX 11. This software, based

on finite volume methods, solves the incompressible Unsteady Reynolds Averaged Navier-Stokes

U.R.A.N.S equations in their conservative form and the mass conservation equation. The set of
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equations is closed with a two-equation turbulence model: the Shear Stress Transport (SST), see

Menter (1994) [9]. The backward Euler implicit scheme (second order in time) and an advection

scheme (second order in space) are used. The hydrofoil is placed in a rectangular computation

domain measuring 250 150 1 mm× × , discretized with a structured mesh of 40,000 nodes, see Figure

2. The motion of the hydrofoil wall is specified or calculated, depending on the forced and free

motion cases and the deformable mesh is following the hydrofoil motion. The boundary conditions

consist of a no-slip condition on the hydrofoil wall and symmetrical conditions on the top and

bottom wall of the domain. Uniform velocity
ref

C  along x direction is fixed at the inlet and a

constant average static pressure is imposed at the outlet.

Figure 2 EPFL High Speed Cavitation Tunnel (Left), Computational domain (Right)

RESULTS

Experimental Validation

In this section, the numerical simulations are validated for the forced motion case. The fluid

torque amplitude, M, is considered to check the mesh and time step independency. Three meshes

are investigated, see Table 3. The difference between the medium and the fine mesh is smaller than

0.3%. The medium mesh is selected to save computational time. Three time steps are used: namely

120, 480 and 1920 iterations per period. The fluid torque amplitude with
2

t∆ is only 0.25% higher

that the case with the smaller time step. Each period will be discretized with 480 iterations to save

computational time.

Table 3 Conditions of time step and mesh independency checks for f=100Hz and Cref=10m.s
-1

Case Coarse Medium Fine 1
∆t

2
∆t

3
∆t

elements 20’000 40’000 80’000 40’000 40’000 40’000

Max plusy 50 5 1 5 5 5

It.per period 480 480 480 120 480 1920

Mmax [N.m] 25.32 10− 25.38 10− 25.40 10− 25.44 10− 25.38 10− 25.37 10−

Sensitivity 1.39 % 0.27 % 0 % 1.27 % 0.25 % 0 %

The numerical results are then validated by comparing the pressure coefficient with phase averaged

experimental results; see Figure 3 on the left. The comparison shows an excellent agreement for the

sensor location p2 defined in Figure 1. The fluid torque is then calculated from the pressure at the
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different sensor locations in both experimental and numerical cases. According to these

comparisons, the numerical simulations correctly predict the pressure and thus the fluid torque.

Figure 3 Experimental and numerical pressure coefficient at p2 and fluid torque during one period

for 0.21κ =

Fluid Torque: Numerical results and model

The model of the fluid torque is developed by assuming that the flow response is a linear

function of the angular position and its derivatives see equation (3). The hydrodynamic moment is

then assumed to result from three distinct actions: inertia, damping and stiffness.

( )( ) ( ) ( ) ( )
f f f

M t J t t k tα µ α α= − + + (3)

The aim of the following analysis is to identify the three parameters of this model: the added

moment of inertia
f

J , the fluid damping coefficient µ
f
 and the fluid stiffness coefficient

f
k . The

forced motion is investigated to identify those coefficients.

Using the complex forms ( )
i t

o
t e

ωα α=
,

and ( )
i t

o
M t M e

ω= , equation (3) can be written as:

( )2

o o f f fM J k iα ω µ ω= − − (4)

with oα the motion amplitude and
max

i

o
M M e

φ−=  the complex number taking into account the

phase shift between the excitation and the system answer. The transfer function ( )H ω describing

the system is then introduced, see equation (5).

2

( )

1
( )

o

o

f f f

H
M

H
J k i

α
ω

ω
ω µ ω

=

=
− −

(5)

The magnitude ( )H ω  and the phase φ  of the transfer function are both investigated in the

frequency domain. A normalized form of the magnitude *H , see equation (6), is plotted as a

function of the reduced frequency in Figure 4.

( ) ( )
( )

2

*

15 0 15
ref

ref

C

CH
H

H

ω
ω

=

 
= × 

 
                       (6)

An excellent agreement is observed between the numerical and experimental results for the

magnitude, which confirms the validity of the numerical simulation. At low frequencies,
*

H tends

to a constant value. For high frequencies, an asymptotic behavior is noticed. It corroborates the

linear model, see equations (7) and (8).

1
(0) =

f

H
k

                                 (7)
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2

1
lim ( )
ω

ω
ω→∞

=
f

H
J

                             (8)

Figure 4 Normalized magnitude and phase of the transfer function for three values of the upstream

velocity: numerical and experimental results.

In Figure 4 right, the phase shift between the forced motion and the fluid response is plotted as a

function of the reduced frequency for three values of the upstream velocity. The phase shift is found

to be independent of the upstream velocity in this range of Reynolds number values. A maximum

value of 20° is reached for 1κ ≈ , which corresponds to a transit-time and motion period of the same

order. For 1κ and 1κ , the hydrofoil motion and the torque are in phase ; the phase shift tends

to the constant value of 0° .

The added moment of inertia, the fluid damping and fluid stiffness coefficients are then

identified.
f

J is identified with the asymptotic matching of the magnitude for 1κ , see equation

(8). The estimated values for the three values of
ref

C are given in Table 4. A comparison with the

potential flow analysis is done, see Brennen (1982) [5] and equation (9).

4
1

8 2
B

L
J Bρπ  =  

 
                               (9)

with B, the span and L, the chord. The added moment of inertia found with this formula is equal to

the one computed in the three numerical simulations, see Table 4, which validates the assumption.

Table 4 Estimation of the added moment of inertia

refC -1m s ⋅ 
5 10 15 Potential flow

fJ 2kg m ⋅ 
62.46 10− 62.45 10− 62.45 10− 62.45 10−

The fluid stiffness coefficient is identified with the real part of the transfer function:

( ) 2 cos( )
,f ref fk C J

H

φ
ω ω= −                          (10)

A scaling of this coefficient is introduced. The dimensionless stiffness coefficient is defined by

equation (11).

*

21

2

f

ref

k
k

C AL

κ
ρ

= ×                               (11)
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with
ref

C the upstream velocity, L the chord and A L e= × , a section. In Figure 5, *k is plotted as a

function of κ  for three values of the upstream velocity as well as fitted quadratic laws. The right of

the figure provides a focus on low frequency.

Figure 5 Dimensionless fluid stiffness coefficient as a function of the reduced frequency.

According to those results, *k is found to be independent of the upstream velocity but strongly

dependant on the reduced frequency. For 14κ ≤ , the fluid stiffness tends to move the profile away

from the reference position 0α = ° , *k is negative. For 4κ ≤ and 12κ ≥ , two quadratic behavioral

laws are identified, see equations (12) and (13), represented in Figure 5 in solid and dashed lines

respectively.

* 24,     0.18 1.6κ κ κ≤ = −k                         (12)

* 212,   0.13 1.8κ κ κ≥ = −k                          (13)

In between, a transitional behavior is observed. The origin of this transition will be illustrated later

in the paper.

The fluid damping is then identified through the imaginary part of the transfer function.

( ) sin( )
,f refC

H

φ
µ ω

ω
=                           (14)

As for the fluid stiffness, the fluid damping is scaled following equation (15).

*

21

4

f

refC AL

µ
µ κ

ρ
= ×                             (15)

In Figure 6, *µ is plotted as a function of the reduced frequency for three values of the upstream

velocity. The low values of κ  are emphasized in Figure 6, right. As observed for *k , *µ is

independent of the upstream velocity but varies withκ . This coefficient is always positive. For

4κ ≤ and 12κ ≥ , two behavioral power laws are identified, see equations (16) and (17), represented

in Figure 6 in solid and dashed lines respectively.

* 0.64,     0.42κ µ κ≤ =                           (16)

* 1.612,  0.04κ µ κ≥ =                              (17)

In between, as observed for *k , a transitional behavior is observed for 4 12κ≤ ≤ .
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Figure 6 Dimensionless fluid damping coefficient as a function of the reduced frequency.

The flow dynamic around the hydrofoil is then investigated to identify the origin of the transition

observed for *µ and *k for 4 12κ≤ ≤ . In Figure 7, the scaled vorticity, defined by equation (18), is

plotted for the case
-115 m s= ⋅

ref
C  for four values of the reduced frequency.

∂ ∂
Ω = − ∂ ∂ 

y x
n

ref

C C L

x y C
                         (18)

Figure 7 Cross sections of the scaled vorticity for four values of κ .

According to the four pictures in Figure 7, the flow dynamic in the wake starts to change

dramatically for a reduced frequency equal to 4. The two layers of vorticity undulate with a

decreasing wake length and cross from 4.6.κ ≈  Then vortices develop, see Figure 7 d), as observed

by Koochesfahani (1989) [10]. The development of those vortices has an influence on the fluid

torque which explains the behavioral modification observed for *k and *µ for 4 12κ≤ ≤ .

Model assessment

An assessment of the model is then made by considering the free motion of the hydrofoil. The

free oscillating system is solution of equation (19).

α µ α α= + +
s s s

M J k                              (19)

Using the linearized model for the fluid torque, the equation can be written as:

α µ α α α µ α α+ + = + +f f f s s sJ k J k                      (20)

The damping ratio ξ and pulsation ωo are introduced:

( )( )2

s f

s f s f
k k J J

µ µ
ξ

+
=

+ +
                          (21)



24th Symposium on Hydraulic Machinery and Systems

9

s f

o

s f

k k

J J
ω

+
=

+
                             (22)

The equation to solve is then:

2
2 0α ξω α ω α+ + =

o o
                          (23)

The analytical solution in the under-damped case, 1ξ < , is:

( ) ( )2 2

2
cos 1 sin 1

1

ξω ξ
α α ω ξ ω ξ

ξ
−

 
 = − + −
 − 

ot

o o oe t t               (24)

Two under-damped cases with different structural properties are considered, see Table 5. Two

corresponding values of the reduced frequency are investigated to consider cases with and without

development of vortices in the wake of the hydrofoil.

Table 5 Conditions of free motion for 15 m.s−=
ref

C  and results for model and simulations

s
J

s
k µ

s κ ξ m ξ s ξ ξ

ξ

−m s

s
ω m ω s

ω ω

ω

−m s

s

2
kg m ⋅  [ ]N m⋅ 2 -1

kg m s ⋅ ⋅  [ ]− [ ]− [ ]− -1
rad s ⋅  [ ]−

a) 51.10− 1 44.10− 2.63 0.12 0.7 % 263 264 0.4 %

b) 51.10− 30 35.10− 15.5 0.14 1.4 % 1553 1560 0.4 %

A comparison of the damping ratios and frequencies computed with the model, ( ),ξ ωm m

o , and with

the coupled fluid-structure simulation, ( ),ξ ωs s

o , are provided to assess the model. , , µ
f f f

J k must

be known to compute ( ),ξ ωm m

o  .
f

J is a constant, see Table 4,  and µ
f f

k are calculated with the

equations (12), (16) in case a) and (13), (17) in case b). ( ),ξ ωs s

o  are extracted by fitting the time

history of the simulated value ( )α t  with equation (24). The results are given in Table 5. In both

cases, the predicted values of ( ),
o

ξ ω  with the model are very close to those obtained with the

coupled numerical simulations. The difference for the frequencies is less than 0.5% and the

damping values are predicted with an error less than 1.5%. To illustrate those results, the time

history of the incidence angle in case a) and b) is plotted in Figure 8. An excellent agreement is

actually observed. This proves that the simulation of the forced motion is sufficient to predict fluid-

structure coupling in the free motion case, avoiding coupled fluid-structure simulations.

a) b)

Figure 8 Results from the model and the simulations ( )tα in cases a) and b).
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CONCLUSIONS

Considering an oscillating NACA 0009 profile, this paper proposes a model to predict fluid-

structure coupling by linearizing the hydrodynamic load acting on a rigid oscillating hydrofoil

surrounded by an incompressible turbulent flow. Forced and free pitching motions are considered

with a mean incidence of 0° and maximum amplitude of 2°. Unsteady simulations of the forced

motion are carried out with ANSYS CFX and validated with corresponding experimental results.

An analysis of the hydrodynamic load is then performed as a function of the reduced frequency,

varying from 0.02 to 100. The added moment of inertia is found to be a constant as expected by the

potential flow analysis. Behavior laws are identified for the fluid damping and fluid stiffness

coefficients. The free motion is considered to validate the method. ( )α t  is first determined using

the linearized model and then carried out with a coupled fluid-structure simulation. An excellent

agreement is observed, as the differences for the damping ratio and the motion pulsation are less

than 2 %. Those results show that this model can be used to predict fluid-structure interactions

when linearized response of the system can be assumed.
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