
POUR L'OBTENTION DU GRADE DE DOCTEUR ÈS SCIENCES

PAR

Master of Applied Mathematics and Physics, Moscow Institute of Physics and Technology, Russie
et de nationalité russe

acceptée sur proposition du jury:

Lausanne, EPFL
2008

Dr M. Rajman, président du jury
Prof. A. Wegmann , directeur de thèse

Dr T. Baar, rapporteur
F. Bouchet, rapporteur

Prof. V. Kuncak, rapporteur

Formal Semantics for Refinement Verification of
Entreprise Models

Irina Rychkova

THÈSE NO 4210 (2008)

ÉCOLE POLYTECHNIQUE FÉDÉRALE DE LAUSANNE

PRÉSENTÉE le 31 octobre 2008

À LA FACULTE INFORMATIQUE ET COMMUNICATIONS

Laboratoire de modélisation systémique

SECTION DES SYSTÈMES DE COMMUNICATION

gÉ itÄxÇà|Ç

iv

v

Acknowledgments

I would like to sincerely thank my thesis director Professor Alain Wegmann for his

guidance and support during my work at EPFL, and especially for the energy and time he

dedicated to this dissertation. I very much appreciate the enthusiasm with which he examines

every new idea and his suggestive comments: working with him was always interesting and

motivating. I would also like to thank him for giving me an opportunity to complement my

PhD with a practical experience, and for supporting my internship at adidas-Group. This

experience adds a value to my research results and has a very important impact on my

professional life.

I would like to express my gratitude to Professor Viktor Kuncak, whose ideas helped me

to structure my research matter. I want to especially thank him for being always ready for

discussions: owing to his suggestive remarks, my reasoning has acquired the necessary rigor

and evolved to an approach presented in this dissertation. My greatest thanks I address to the

other members of my PhD cometee: Dr. Thomas Baar, who gave an important feedback on

my work, and Mr. Frederic Bouchet, who contributed to my thesis with valuable industrial

insights, and Dr. Martin Rajman, who kindly accepted the role of the president.

I also like to thank Ian F. Alexander (Scenario Plus), Dr. Ilia Bider (IbisSoft), Professor

Donald C. Gause (Savile Row LLC; Binghamton University), Dr. Thomas Langenberg

(McKinsey), Dr. Alexander Samarin (Teamlog S.A.), who dedicated their time to read about

my research and to participate in my inquiry. Their comments helped me better understand

the practical value of my research and to prioritize the directions of the future work.

I am also grateful to my colleagues at LAMS: Pavel, Andrey, Jose-Diego, and Lam-Son

for the interesting discussions and valuable comments that helped me during my work; I

especially thank Gil for his knowledge management, his remarkable talent to put things on

their places, and for his English lessons. I also greatly acknowledge the efforts of Angela,

Danielle, and Patricia, who make the complex engine of our research team working

smoothly. My sincere thanks to Holly, who contributed to my dissertation as an English

editor and who, perhaps, would significantly improve this section as well.

In addition, I would like to thank my language professors at EPFL Centre de Langue :

Mme Michele Amiot et Mme Jacqueline Allouch, qui m’ont amenées dans le monde de

langue la plus belle en Europe.

vi

I wish to thank my friends, who made these six years in Switzerland the unforgettable part

of my life. I thank Kerstin for her optimism, energy, and for being my best training partner

and strategic consultant; Alexei: without him I would have never looked at the world from

the altitude of 4807m; Dmitry, for his passion to photography and his valuable master-classes

in the Alps.

I would like to acknowledge here my dear friends who will always stay for me “the

Doctoral School”: Sarunas, Ivana R., Maciek, Marta, Michal, Kasia, Ivana J, Denis, Natasha,

Gleb, Adriana, Wojtek, Maxim, Dan, and a dozen of others. I thank you guys for making

Lausanne and EPFL home for me, for being the never-exhausting source of fun, for all our

time spent together hiking, skiing, travelling, celebrating, for zillions of scientific and not-

exactly-scientific discussions, lunches, beers, dinners, and simply for being here all this time!

In addition, I wish to thank my family: my brother-in-law Slava and my parents-in-law

Tatiana and Sergei, who also contributed to my work with their interesting comments. I

sincerely thank my parents Tamara and Youri for all what they gave to me and for supporting

me even through the great distance between Samara and Lausanne.

My last words of gratitude I address to my husband Valentin: during all these years of my

PhD he was always next to me with his advice, valuable comments, encouragements, and his

care.

1

Abstract

In this dissertation we investigate how Business/IT alignment in enterprise models can be
enhanced by using a software engineering stepwise refinement paradigm.

To have an IT system that supports an enterprise and meets the enterprise business needs,
management seeks to align business system with IT systems. Enterprise Architecture (EA) is
the discipline that addresses the design of aligned business and IT systems. SEAM is an
Enterprise Architecture method, developed in the Laboratory of Systemic Modeling (LAMS)
at EPFL. SEAM defines a visual language for building an enterprise model of an
organization. In this work, we develop a theory and propose a technique to validate an
alignment between the system specifications expressed in the SEAM language.

We base our reasoning on the idea that each system (an organization, a business system, or
an IT system) can be modeled using a set of hierarchical specifications, explicitly related to
each other. Considering these relations as refinement relations, we transform the problem of
alignment validation into the problem of refinement verification for system specifications: we
consider that two system specifications are aligned if one is correctly refines the other.

Model-driven engineering (MDE) defines refinement as a transformation between two
visual (or program) specifications, where a specification is gradually refined into an
implementation. MDE, however, does not formalize refinement verification. Software
engineering (SE) formalizes refinement for program specifications. It provides a theory and
techniques for refinement verification.

To benefit from the formal theories and the refinement verification techniques defined in
SE, we extend the SEAM language with additional concepts (e.g. preconditions,
postconditions, invariants, etc). This extension enables us to increase the precision of the
SEAM visual specifications. Then we define a formal semantics for the extended SEAM
modeling language. This semantics is based on first-order logic and set theory; it allows us to
reduce the problem of refinement verification to the validation of a first-order logic formula.

In software engineering, the tools for the automated analysis of program specifications are
defined. To use these tools for refinement verification, we define a translation from SEAM
visual specifications to formal specification languages.

We apply, using case studies, our theory and technique in several problem areas to verify:
(1) if a business process design and re-design correspond to high level business process
specifications; (2) if a service implementation corresponds to its specifications. These case
studies have been presented to a group of domain experts who practice business/IT
alignment. This inquiry has shown that our research has a potential practical value.

Key words: Business/IT alignment, visual modeling, formal semantics, refinement,
refinement verification, SEAM, Alloy, Jahob.

2

3

Résumé

Dans cette thèse nous étudions comment l'alignement Business/IT dans des modèles
d'entreprise peut être améliorée en utilisant le ‘raffinement par étapes’ – un paradigme
développé en génie logiciel.

Pour obtenir un système informatique qui répond aux besoins de l'entreprise, la direction
vise à aligner les systèmes informatiques avec le métier. L’Architecture d’Enterprise (EA) est
la discipline qui étudie et développe des théories et méthodes pour cet alignement. SEAM est
une méthode d’architecture d'entreprise, développée dans le Laboratoire de modélisation
systémique (LAMS) à l'EPFL. Dans cette thèse, nous développons une théorie et proposons
une technique de validation d’alignement entre les spécifications exprimées dans le langage
de modélisation SEAM.

Nous fondons notre raisonnement sur l'idée que chaque système (une organisation, un
système d'entreprise, ou un système d'information) peut être modélisé en utilisant un
ensemble de spécifications hiérarchiques, explicitement liés les uns aux autres. En repensant
ces relations comme des ‘relations de raffinement’, nous transformons le problème de
l'alignement entre spécifications au problème de validation de raffinement entre ces
spécifications. Nous considérons que deux spécifications du système sont alignées si ce
raffinement est correct.

Le concept de raffinement est défini en Model-Driven engineering (MDE) comme une
transformation entre deux spécifications visuelles où une spécification est progressivement
affinée et détaillée jusqu’au niveau d’implémentation. Cependant, les règles de la vérification
pour le raffinement ne sont pas formalisées en MDE. Le concept de raffinement pour logiciel
a été formalisé en génie logiciel. Le génie logiciel fournit, d'ailleurs, une théorie et des
techniques pour la vérification du raffinement. Pour bénéficier de ces théories et techniques,
nous étendons SEAM avec des concepts de modélisation supplémentaires. Cette extension
nous permet d'augmenter la précision de nos spécifications visuelles. Nous définissons une
sémantique formelle pour le langage visuelle de SEAM. Cette sémantique est basée sur la
logique de premier ordre et sur la théorie des ensembles. Elle nous permet de réduire le
problème de la vérification de raffinement à la validation d’une formule de premier ordre.

Pour utiliser les outils d'analyse automatique des spécifications de logiciels dans le
contexte des spécifications visuelles, nous définissons une traduction des spécifications
SEAM dans un langage de spécifications formelle.

Nous appliquons la théorie et les techniques que nous avons développées à plusieurs
domaines: (1) à la vérification des processus métier par rapport aux spécifications
d’organisation de haut niveau; (2) à la vérification d'une implémentation de service par
rapport à ses spécifications. Ces études de cas ont été présentées à un groupe d'experts du
domaine qui pratiquent l’alignement Business et IT. Cette enquête a montré que notre
recherche a potentiellement une valeur pratique.

Mots-clés: alignement Business/IT, spécifications visuelles, sémantique formelle,
raffinement, vérification de raffinement, SEAM, Alloy, Jahob.

4

5

Contents

Chapter 1 Introduction... 9
1.1 Business /IT Alignment vs. Stepwise Refinement .. 9
1.2 Verification of Refinement.. 10
1.3 The SEAM Method for Enterprise Architecture ... 10
1.4 Alignment Validation vs. Refinement Verification in SEAM .. 11
1.5 The Structure of this Document .. 12
Chapter 2 The State of the Art... 13
2.1 Theoretical Foundations of this Work.. 13

2.1.1 Model Transformations ... 13
2.1.2 Refinement and Refactoring in Software Engineering 15
2.1.3 Refinement and Refinement Verification.. 16
2.1.4 Model Verification .. 17
2.1.5 Formal Semantics for Visual Modeling Languages.. 18

2.2 Visual Modeling Methods and their Consideration of Refinement 18
2.2.1 Classification Framework for Modeling Methods .. 19
2.2.2 Modeling Methods Overview.. 19
2.2.3 A Comparison of Modeling Methods.. 22

2.3 Visual Modeling Tools and their Support of Model Refinement and Refinement
Verification... 23

2.3.1 Classification Framework for Modeling Tools ... 23
2.3.2 Modeling Tools Overview .. 24
2.3.3 A Comparison of Modeling Tools .. 26

Chapter 3 The SEAM Method ... 31
3.1 The SEAM Specification of a System ... 31
3.2 Declarative vs. Imperative Action Specifications in SEAM.. 35
3.3 The SEAM Metamodel (Abstract Syntax) ... 36
3.4 The SEAM Semantics and Graphical Notation (Concrete Syntax) 38

3.4.1 Working Object ... 38
3.4.2 Property ... 39
3.4.3 Action .. 40
3.4.4 Action- to-Action (AA-) Relations ... 40
3.4.5 Action-to-Property (AP-) Relations .. 43
3.4.6 Localized vs. Joint vs. Distributed actions .. 44
3.4.7 Shared Properties, Input and Output Parameters, Local Variables 44
3.4.8 Relations with Multiplicities ... 45

Chapter 4 Formal Semantics for SEAM Specifications .. 47
4.1 First-Order Logic ... 48
4.2 Intuition for Set-Theoretical Interpretation of SEAM Modeling Concepts 49
4.3 Formalization of SEAM Model Elements in FOL... 52

4.3.1 Working Object ... 52
4.3.2 Property and State ... 52
4.3.3 Host Relations, Property Associations, and Property Compositions 53

6

4.3.4 Action .. 56
4.3.5 Action-to-Property (AP-) relations.. 62
4.3.6 Action-to-Action (AA-) relations.. 63
4.3.7 Distributed Action and Distributed to Localized Action (DALA-) Relations .. 66

4.4 Imperative vs. Declarative Specifications.. 66
4.5 Instance Creation and Deletion: Local Variables... 67
Chapter 5 Transformations of Refinement in SEAM and Refinement Verification 69
5.1 Refinement vs. Refactoring.. 69
5.2 Simulation Techniques: the State of the Art .. 70

5.2.1 Data Refinement with Forward Simulation: (1, 1) - refinement schema 72
5.2.2 ASM Refinement: (m,n) – Refinement Schema ... 73

5.3 Specification Consistency .. 77
5.4 Functional and Organizational Refinement in SEAM ... 77

5.4.1 Functional Refinement in SEAM.. 79
5.4.2 Organizational Refinement in SEAM ... 81

5.5 Correctness of Functional Refinement... 82
5.5.1 Property Refinement ... 82
5.5.2 Behavioural Refinement.. 85

5.6 Correctness of Organizational Refinement .. 90
5.6.1 Working Object Decomposition and Property Distribution.............................. 90
5.6.2 Refinement of a Localized action with a Joint action 92
5.6.3 Refinement of a Localized Action with a Distributed Action........................... 94

Chapter 6 Analysis of SEAM Specifications using Formal Specification Languages..... 99
6.1 Approaches to Formal Verification.. 100

6.1.1 The Alloy Specification Language and the Alloy Analyzer 101
6.1.2 The Jahob Verification System ... 101

6.2 The 'XYZ' Example.. 103
6.3 Mapping to Alloy ... 105

6.3.1 Model Elements... 105
6.3.2 Functional Refinement: from an Action as a Whole to an Action as a Composite
 108
6.3.3 Organizational Refinement: from a Working Object as a Whole to a Working
Object as a Composite... 112

6.4 Automated SEAM to Alloy Translation .. 115
6.5 Mapping to Jahob... 118

6.5.1 From an Alloy Specification to a Jahob Formula ... 118
6.5.2 From a SEAM Specification to a Jahob Program ... 122

Chapter 7 Practical Impact: Application of the Developed Theory in Practice............ 123
7.1 High-Level Design and Analysis of Business Processes: The On-Line Book Store

Example .. 123
7.1.1 A Business Process Specification in SEAM ... 124
7.1.2 Example: A Sale Process for the On-Line Book Store 125
7.1.3 Validation of Declarative Business Process Specifications in Alloy.............. 129
7.1.4 Validation of Refinement from LA to DA Using Alloy Analyzer 4.0............ 131

7.2 Specification and Alignment Verification of Services in ITIL: The Gas Incident Service
Case Study .. 132

7.2.1 Case Study: Gas Incident Service ... 133
7.2.2 Validation of a Service and its Construction in Alloy 135
7.2.3 Validation of Refinement from SLA (Modeled as SEAM Localized Action) to
OLAs (Modeled as SEAM Distributed Action) Using Alloy Analyzer 4.0.................. 138

7

7.3 Practical Feedback ... 139
Summary ... 140

Chapter 8 Conclusion.. 143
8.1 Future Work ... 144

8.1.1 Complexity Reduction, Usability.. 144
8.1.2 Formal Semantics .. 144
8.1.3 Refinement .. 145

Bibliography .. 147
Appendix A .. 155

Alloy Specification of the XYZ Example ... 155
Appendix B... 163

Jahob Formulas for the XYZ Example ... 163
Appendix C .. 169

Practical Feedback... 169
List of Figures ... 177
List of Abbreviations... 181
List of Publications.. 183
Curriculum Vitae... 185

8

9

Chapter 1

Introduction

In providing services to stakeholders, many organizations depend heavily on their IT
infrastructure. Insuring that IT does what business needs is a very important issue for
management and is achieved by Business-IT alignment. Business-IT alignment is defined in
[110] as “.. an ongoing process that will optimize the relational mechanisms between the
business and IT organization by working on the IT effectiveness of the organization in order
to maximize the business value from IT.”.

Enterprise Architecture (EA) is the discipline that addresses the design of aligned business
systems and IT systems. Enterprise Architecture methods provide techniques, tools, and
guidelines for building an enterprise model of an organization.

Traditionally, an enterprise model is a set of visual specifications of an organization that
has a hierarchical structure. Each hierarchical level specifies an organization from different
perspectives, e.g. business, organizational, or IT. The main challenge of enterprise modeling
is to insure that the specifications representing an organization at the IT level correspond to
the specifications at the higher levels, where the value for this organization is defined.

1.1 Business /IT Alignment vs. Stepwise Refinement

Enterprise models are mostly represented in graphical form that we call visual specifications.
The main advantage of visual specifications is that they enable discussion about the model
among different stakeholders. However, the lack of precision and formally-defined semantics
makes a further analysis (such as a comparison of different versions of the model, or an
alignment validation between models) complicated, if at all possible.

Software Engineering (SE) provides an underlying theory and a set of techniques for
program specification analysis. Program specifications, similarly to visual specifications, are
used to describe systems: their construction and functionality.

Stepwise refinement is a paradigm for semantic program construction, originally proposed
by Dijkstra [31] and Wirth [111]. It is based on the idea that a program can be developed
through a sequence of refinement steps starting from an abstract specification. At each step,
the refined (‘concrete’) specification is proven to be a correct refinement of the ‘abstract’
specification.

In this dissertation, we make a correspondence between program specifications in SE and
visual system1 specifications in order to benefit from theories and tools exist for program
specification analysis.

We explore the idea that, similarly to program specifications, each visual specification can
be seen as a refinement of another visual specification. This describes the organization at a
more abstract organizational level.

1 In this work, we will use the generic term system to discuss organizations, business systems, IT systems, and
their alignment.

10

As a main contribution of this dissertation, we reduce the problem of alignment
verification in enterprise visual specifications to the problem of refinement verification,
defined for program specifications in SE.

1.2 Verification of Refinement

Refinement correctness for programs is validated by establishing simulation relations [65]
between the abstract and concrete specifications. In other terms, the refinement is correct if
the concrete specification simulates the abstract specification.

A simulation relation R (also called a refinement relation) puts into correspondence the
states of abstract and the concrete specifications. The concrete specification is said to be a
correct refinement of the abstract specification when, starting at the corresponding initial
states, both specifications will terminate in the corresponding final states (Fig. 1-1).

Figure 1-1: Refinement verification by simulation.

The same way, we define semantics for visual system specifications in terms of states and

transitions between them. Therefore, the refinement verification schema, illustrated in Fig.1-
1, is also valid for visual specifications. We proceed with an automated validation of
refinement, providing a mapping of visual specifications to a formal language, for which
tools for automated analysis already exist.

1.3 The SEAM Method for Enterprise Architecture

We implement the theory of refinement verification in order to validate the alignment
between systems specified in SEAM [108]. SEAM is an Enterprise Architecture (EA) method
that provides a visual notation for modeling systems, including business and IT systems.

In SEAM, a system is represented by a working object. A SEAM model of a system
contains a set of specifications of the working object structured in two hierarchies: an
organizational level hierarchy and a functional level hierarchy.

A working object, modeled as a whole at one organizational level, can be represented as a
composite on the next organizational level. This maintains the explicit traceability between
organizational levels.

Fig. 1-2 (a) illustrates a working object WObject1 as a whole; Fig. 1-2 (b) illustrates this
working object on the next organizational level (i.e. seen as a composite).

A working object, as a whole, has properties and localized actions; A working object, as a
composite, has component working objects and joint or distributed actions between them.

11

Figure 1-2: a) Working object as a whole (org. level 1, func. level 1) is specified with a property and a
localized action. Properties represent data the working object stores or operates with. A localized action
changes the state of the working object by modifying its properties; b) Working object as a composite
(org. level 2, func. level 1) is specified with its component working objects and a joint action between
them.

A property or an action, modeled as a whole at one functional level, can be represented as

a composite on the next functional level. This maintains the explicit traceability between
functional levels:

Figure 1-3: Working object as a whole (org. level 1, func. level 2), specified with a property seen as a
composite and a localized action seen as a composite.

1.4 Alignment Validation vs. Refinement Verification in SEAM

This work applies the paradigm of stepwise refinement for SEAM specifications and
describes how SEAM specifications can be aligned and how this alignment can be validated.

To rigorously reason about SEAM specifications and their refinements, we provide a
formal semantics for SEAM specifications and their refinements, based on set theory and
first-order logic (FOL)2. To formalize the criteria of refinement correctness, we use a theory
of data refinement from [72][51][101] and more generalized form of refinement from
[15][16].

Based on the formal semantics, we specify a mapping of SEAM visual specifications to
the specification languages (e.g. Alloy [59], Jahob [63]) for further refinement verification.
We interpret the result of refinement verification as the validity of the alignment between
visual specifications.
The contributions of this dissertation can be summarized as follows:
• Formalization of the initial set of SEAM modeling concepts using first-order logic;
• Classification of SEAM refinements;
• Identification of the modeling concepts, missing in the current version of SEAM and

required for refinement verification (i.e. action preconditions, postconditions etc.);
• Formalization of the initial set of SEAM modeling concepts;
• Definition of refinement correctness for SEAM using a forward simulation for data

refinement from [72][65] and generalized forward simulation from [16];

2 FOL is a system of formal reasoning also known as a first-order predicate calculus [53][18].

12

• Mapping of SEAM specifications to the Alloy specification language [59] for the
validation of refinement using the Alloy Analyzer tool;

• Mapping of SEAM specifications to the Jahob formulae [63] in order to generate a
formal proof of refinement correctness using the Jahob formDecider.

1.5 The Structure of this Document

In Chapter 2 of this document, we analyze the state of the art. It comprises (a) theoretical
foundations in specification development using refinement, formal refinement verification,
and visual modeling and (b) practical applications of modeling techniques developed in
academia and in the industry.

In Chapter 3 we present the SEAM method. This work extends the original set of SEAM
modeling concepts. In this chapter, we specify the graphical notation and semantics for the
extended SEAM language.

In Chapter 4 we present the formalization of SEAM modeling concepts using first-order
logic (FOL).

In Chapter 5 we classify refinements in SEAM and specify correctness for each
refinement type. We use forward simulation for data refinement and generalized forward
simulation, defined in the ASM refinement method, as proof methods for refinement
correctness. We reduce a problem of refinement verification in SEAM to a proof of validity
of a corresponding FOL-formula.

In Chapter 6 we present two techniques for the automated refinement verification in
SEAM: The first technique is based on use of the Alloy Analyzer - a tool for analyzing
models written in the Alloy specification language; the second technique is a formal proof of
refinement correctness in the Jahob verification system.

In Chapter 7 we present the practical impact of the developed theory. In this chapter, we
discuss in detail two examples that illustrate how the achievements of this thesis can be
implemented to verify:

(1) If business process design and re-design correspond to the high level business process
specification (Book Store example);

(2) If service implementation corresponds to its specification (SIG example).
In Chapter 8 we present our conclusion and discuss a future work.

At the beginning of each chapter, we give an overview of the chapter’s content.
For the reader interested in business / IT alignment and the practical aspects of the

proposed theory, we recommend reading Chapter 2: it provides a state of the art. Then read
briefly Chapters 3 and 6, where the SEAM notation and the rules of transformation of SEAM
models to formal specifications are explained. And then proceed with Chapters 7 and 8: they
illustrate our technique on the examples and provide a practical feedback.

For the reader interested in modeling languages and their semantics, we recommend
reading Chapters 2, 3, 4 of this document, then proceed with Chapters 6 and 7.

For the reader interested in formal methods and their implementation, we recommend
reading Chapters 3, 4, 5, 6, and 7 of this document.

13

Chapter 2

The State of the Art

This dissertation reports the results of an interdisciplinary research that involves the
following areas of information science, and computer science: Enterprise Architecture,
Model Driven Engineering, Visual Modeling Languages, and Formal Methods and
Languages.

In the first part of this chapter we make an overview of the work, which describes the

theoretical foundations of this Ph.D:
In Section 2.1 we introduce the term of model transformation as it is defined in Model

Driven Engineering (MDE). In Section 2.2 we provide an overview of the existing theories
and the approaches to refinement verification: model checking and theorem proving. In
Section 2.3 we give a definition of the semantics for visual modeling languages and explain
the role of formal semantics in the process of refinement verification.

In the second part of this chapter, we study how model transformations (namely, model

refactoring and refinement) are (1) specified in different visual modeling methods and (2)
how they are supported by different modeling tools used in Software and
Enterprise modeling:

In Section 2.4 we define a comparative framework for visual modelling upon which we
analyse five methods developed in the area of Enterprise and Software modelling. In Section
2.5 we define a comparative framework for the modeling tools. Tools, compared to methods,
are more user-oriented: some of them (mostly commercial tools) are based on best-practices,
whereas the others (research prototypes developed in an academia) implement the theoretical
methodologies. We analyse four commercial tools and seven tools, developed in academia.
We explore how the automated refinement and the refinement verification are supported by
these tools.

In Section 2.6 we apply the same frameworks to evaluate the SEAM modelling method
and tool.

2.1 Theoretical Foundations of this Work

2.1.1 Model Transformations
Model-Driven Engineering (MDE) is a discipline that defines a set of methods and tools for
the software development, where a model plays a central role. Model evolution and
elaboration in MDE is described as a result of model transformations.

The best known MDE initiative is the Model-Driven Architecture (MDA) software design
approach [75]. MDA describes a model evolvement from abstract specifications to their
implementations (code). The separation of design from architecture is one of the main
principles of MDA. Kleppe et al. [62] provide the following definition of a model
transformation: “A transformation is the automatic generation of a target model from a
source model, according to a transformation definition. A transformation definition is a set of
transformation rules that together describe how a model in the source language can be
transformed into a model in the target language. A transformation rule is a description of

14

how one or more constructs in the source language can be transformed into one or more
constructs in the target language.”

Source and target models, in model transformation, are expressed in corresponding
languages and are said to be conforming to metamodels. The term metamodel is often
associated with a set of rules and definitions, provided by the modelling language.

[70] proposes the following dimensions for the categorization of transformations:
endogenous/exogenous and horizontal/vertical.

A transformation is endogenous if the source and the target models conform to the same
metamodel (are expressed in the same language). If the source and the target metamodels are
different, then the transformation is exogenous. Exogenous transformations can be also
called translations from one language to another.

A transformation is horizontal if the source and the target model reside at the same
abstraction level. A vertical transformation, respectively, is a transformation, where the
source and the target model reside in different abstraction levels. The taxonomy of model
transformations is presented in [70].

Figure 2-1: Classification of model transformations in context of Visual modeling.

In context of visual modeling, we distinguish the transformations of visual specifications

to executable program specifications, and the transformations of visual specifications to
visual specifications. Former transformations are exogenous; latter transformations can be
endogenous (if both models are expressed in the same visual modeling language) or
exogenous (if a language of the target model is different from the language of the source
model).

In Fig. 2-1, transformations T1 and T2 specify transformations from a visual specification

to a program specification – they are exogenous; T0 specifies a transformation between two
visual specifications, where one conforms to a metamodel MM1 and another - to a
metamodel MM2. If MM1 = MM2 then T0 is an endogenous transformation.

Examples of transformations are:

– Synthesis of a higher level (more abstract) specification into a lower-level (more
concrete) specification. The result of synthesis of a visual specification is typically a code
generation.

15

- Generation of an abstract specification from its implementation (also called a
reverse engineering). This transformation is the opposite of a synthesis. The result of reverse
engineering is typically a visual specification generated from the program specification.

Synthesis and reverse engineering aim at increasing or decreasing the abstraction level of
a model; these transformations are vertical transformations (Table 2-1).

- Language migration is an exogenous transformation that specifies a translation of a
visual (or a program) specification expressed in one language to a visual (or a program)
specification expressed in the other language, keeping the same level of abstraction.
Language migration is a horizontal transformation. (Table 2-1).

In this work, we consider two endogenous transformations: refactoring and refinement.
Both refinement and refactoring specify transformations between two visual (or program)
specifications expressed in the same language. Refinement changes the internal structure of a
specification while keeping the same level of abstraction. Refactoring is a horizontal
transformation. Refinement is a transformation, where a specification is gradually refined
into an implementation [70]. Refinement is a vertical transformation.

The design process in SEAM can be seen as a sequence of the transformations of visual
specifications. Based on our classification, the transformations of SEAM specifications are
refinements and/or refactorings.

Table 2-1 summarizes transformation types along two classifications:

exogenous/endogenous and vertical/horizontal.

Table 2-1 Classification of Model Transformations

 HORIZONTAL
(level of abstraction
does not change)

VERTICAL
(level of abstraction
changes)

ENDOGENOUS
(MMs = MMt) Refactoring Refinement

EXOGENOUS
(MMs MMt) Language migration

Code Generation,
Reverse engineering

Model Driven Engineering provides a classification of model transformations, however it
does not provide a theory for reasoning about these transformations. Such a theory can be
found in domain of Software Engineering.

2.1.2 Refinement and Refactoring in Software Engineering
Transformations of refactoring and refinement are also defined in Software Engineering (SE)
to specify transformations of programs.

 [42] defines refactoring as “the process of changing a software system in such a way
that it does not alter the external behavior of the code yet improves its internal structure."
Refactoring can be considered as a series of atomic behavior-preserving transformations (also
refactorings) which in combination may result in substantial reorganization of the code.
Refactoring does not consider transformations, which change a state space of the model.

In the domain of software modeling, refactorings for UML class diagrams annotated by
OCL constraints are systematized and formalized in [68].

16

Refinement [111] is a more general technique that specifies a stepwise development of the
program by adding details or eliminating nondeterminism. As opposed to refactoring,
refinement can change a state space and an observable behavior of a model (e.g. adding,
removing a field or a method of a class). Thus, refinement specifies a wider class of
transformations then refactoring does (see www.refactoring.org).

In Software Engineering, the criteria of refactoring/refinement correctness are well
specified; therefore these transformations can be verified.

Refinement verification techniques are often used to verify refactoring correctness [23],
[85]. The semantic correctness of the refactorings for UML class diagrams is presented in [6].

In this work, we formalize all types of transformations defined for SEAM visual
specifications as refinements.

2.1.3 Refinement and Refinement Verification
Stepwise refinement is a well-known paradigm for semantic program constructions originally
proposed in [31] and [111]. It is based on the idea that a program can be developed through a
sequence of refinement steps starting from an abstract specification. Different notions of
refinement can be found in the literature (see [88] for an overview). We list only a few.

A method of program construction based on stepwise data refinement together with proof
of refinement correctness was proposed by Hoare [51].

Data refinement and techniques to prove its correctness are presented in [93].
In [15], the Abstract State Machine method of abstract refinable system specifications is

introduced. In [16], the Abstract State Machine refinement method is presented. The ASM
refinement method generalizes the notion of refinement for an arbitrary number of transitions
(run segments) between the initial and the final specification states.

Refinement verification is largely based on the use of simulation techniques [65]. By the
simulation we understand a correspondence between the states of two systems, where one
system is considered a specification and other – its implementation. The simulation proof is
based on the establishing of this correspondence. The fact that a simulation between two
systems exists shows that any behavior of one system can also be exhibited (simulated) by
the other system.

The research literature contains a large number of different types of simulations, such as
forward simulation, backward simulation, hybrid simulations (i.e. forward-backward and
backward-forward simulations) [65][112][50][27], refinement mappings [1], and a
generalized forward simulation [15][16][98]. These simulations are differentiated based on
the way they relate system specifications and their implementations: for example, forward
simulation matches each step of the system implementation with a corresponding step
forward of its specification; whereas the backward simulation matches each step of the
system implementation with the corresponding step backward of its specification. The
simulation techniques will be presented in detail in Chapter 5.

In contrast to refinement techniques where an intermediate specification is first proposed
and then proved (for example, by simulation) to be a correct refinement of its antecedent,
there exists a refinement technique based on calculation [72]. The refinement calculus by
Back [7] is an underlying theory of this technique. According to this technique, every
intermediate specification can be calculated from the previous one by using refinement laws.
The application of these laws enables the reduction of proof obligations and assures
refinement correctness.

In the context of visual modeling methods, incremental software construction using
refinement diagrams is proposed in [8]. Here refinement calculus is used as logic for
reasoning on software systems and their evolution. Pons defines in [85] the UML refinement

17

patterns grounded on Object-Z. In [6] refinement for the UML class diagrams and
corresponding OCL contracts is specified.

2.1.4 Model Verification
When a model (a program or a visual specification) is created or obtained by refining another
model, it is important to validate that it is constructed correctly: for example, that it has a
certain property. This can be done by formal verification.

There are two main approaches to formal verification: model checking [20] and theorem
proving based on logical inference [47] [64].

Model checking is an approach for verifying the requirements and design for a vast class
of systems. A system, specified as a Kripke structure, is checked against some logical
formula that expresses a desired property or requirement of this system. Typically, formal
specification languages are used to specify the system, its properties, and requirements.

A model M of the system can be considered in model checking as a finite state machine
(FSM). A FSM consists of nodes, representing system states, and vertices, presenting
transitions between their states. Desired properties of the system are specified as logical
formulas. To find out whether the model M with the initial state s satisfies some property φ,
(denoted M, s ╞ φ) the state space and all transitions of the model are systematically and
exhaustively explored.

The major drawback of the model checking is a state explosion problem, which originates
from the fact that for real systems the size of the state space grows exponentially with the
number of processes [21]. To avoid the state explosion, model checkers implement specific
techniques, such as symbolic algorithms and binary decision diagrams (BDD) [54], bounded
algorithms [3], counter-example guided abstraction refinement [52], and algorithms based on
partial order reduction, or on abstraction.

Model checking approaches largely use the counterexample-based algorithms to validate
properties of a system, specified as logical formulas. Such algorithms explore the system
state space looking for the case, where this formula is violated. This case is called a counter-
example; the occurrence of a counter-example demonstrates that the formula is invalid.
However, the fact that no counterexample is found does not prove the validity of the formula,
because the state space under the exploration is limited.

The second approach is an automated theorem proving based on logical inference.

Within this approach, the fact that the system specification (a model) satisfies a certain
property is expressed as a logical formula. The task is to prove the validity of this formula,
deducing it from a set of axioms that exist for the underlying logic (e.g. first-, second-,
higher-order logic etc), and hypotheses made about the system.

Depending on the underlying logic, the problem of deciding the validity of a theorem
varies from trivial to impossible. Theorem proving for the first-order logic (FOL) is widely
represented in the literature (see for example [100][99]).

Higher-order logic (HOL) operates on predicates and functions of higher order (a higher-
order predicate is a predicate that takes one or more other predicates as arguments). It is more
expressive and appropriate for a wider range of problems then first-order logic. However the
theorem proving procedures for HOL are more complicated [48][74][82].

Despite the fact that automated theorem proving is complex and requires a lot of

involvement from the modeler, its application is promising: this approach is not limited by
the state explosion problem (the main limitation of model checkers) and can handle the
infinite number of states.

18

2.1.5 Formal Semantics for Visual Modeling Languages
To prove the desired properties of specifications, or to verify the refinement correctness of a
visual specification, these specifications should be translated to a formal specification
language, accepted by a model checker or an automated theorem prover. Translation (or
mapping) rules for a visual specification language can be defined as its formal semantics.

The semantics of a visual language L gives a meaning to the constructs and the expressions
in this language and can be defined in two ways [10]: "(1) By providing a way in which
expressions (and constructs) of L are made (2) By translating the expressions (and
constructs) of L into expressions of another language that is already known".

Fig. 2-2 illustrates the refinement of a visual specification and its verification. Here M1
and M2 are visual specifications conforming to a source metamodel MMs. T0 is a
transformation that specifies a refinement between M1 and M2. We say 'M2 refines M1'.
Transformations T1 and T2 specify translations of M1 and M2 to specifications P1 and P2,
written in a formal specification languages and defined by formal semantics. We also say that
P1 and P2 conform to a target metamodel MMt. Specifications P1 and P2 are formalizations
of M1 and M2 in the target language.

We identify the refinement between M1 and M2 with the refinement between P1 and P2.
For P1 and P2 we can check the refinement correctness using formal verification tools. We
interpret the obtained result for M1 and M2: M2 correctly refines M1 if and only if P2
correctly refines P1.

Figure 2-2: Refinement verification of visual specifications is considered as a refinement verification of
corresponding specifications written in a formal specification language.

There is a gap between visual modeling languages and formal specification languages:

Whereas visual languages are practice-oriented and tend to specify the system avoiding
exhaustive details, formal specification languages demand a high precision in model
definition. This gap makes translations between specifications complicated. To define formal
semantics for visual specifications, the level of precision of these specifications should be
increased by introducing new elements to the visual modeling language.

2.2 Visual Modeling Methods and their Consideration of Refinement

Many modeling frameworks and methods in the domain of enterprise modeling, system
modeling, and software modeling have emerged in the last decades. See for example
[77][78][81][32][114][35][45]. Some of those are discussed and compared in [97]. In this
section we analyze some of the methods that we consider the most relevant to the problem of
refinement verification.

19

2.2.1 Classification Framework for Modeling Methods
Visual modeling methods in Software and Enterprise modeling can be classified based on the
way they organize their specifications and guide the modeling process: Some methods define
several types of highly specialized diagrams, whereas the others use one diagram type; some
methods keep their diagrams explicitly related (aligned) and provide mechanisms for this
alignment, and the others define loosely coupled sets of specifications, leaving the
relationships between these specifications to a modeler’s consideration.

These characteristics of modeling methods affect the way these methods support
refinement. We develop the following criteria to classify different modeling methods:

1. Diagram Types
We distinguish the modeling methods that define one diagram type for its specifications and
those that define many specific diagrams (e.g. UML).

2. Model Structure
We distinguish a plain or hierarchical model structure. A hierarchical structure enables
‘zooming in and out’ into model details by switching hierarchical levels. In the plain model,
the system is represented by a collection of complementary views that capture different
aspects of the system.

3. Traceability
Traceability is a relationship between elements in different specifications, which enables a
designer to carry out an impact analysis. For the model with a plain structure, the traceability
between different views is important to maintain the model consistency. When the model is
structured hierarchically, the traceability between specifications at different levels helps to
verify the refinement correctness.

4. Refactoring/Refinement Rules
We distinguish the methods that specify the rules of refinement or refactoring for their
specifications, and those that do not restrict the modeler and leave the refinement process to
the modeler’s discretion.

2.2.2 Modeling Methods Overview
We consider in detail the following modeling methods:

UML2.0 and its extension SysML;
BPMN
DEMO
OPM
ADORA

UML 2.0 [77] is a de-facto standard for software development. UML proposes 13

diagram types that enable modeling various system aspects. These diagrams are divided in
three groups: structure, behavior, and interaction diagrams. Structure diagrams include:

• Class diagram
• Component diagram
• Composite structure diagram
• Deployment diagram
• Object diagram
• Package diagram +

Behavior diagrams are:

20

• Activity diagram +
• State Machine diagram +
• Use case diagram +

Interaction diagrams relate a system structure defined in the structure diagrams with its
behavior, specified in behavior diagrams. These diagrams include:

• Communication diagram
• Interaction overview diagram
• Sequence diagram
• UML Timing Diagram

There is a semantic relationship between the UML diagrams of different types, i.e. they

are complementary. Some diagrams in addition have a hierarchical structure (they are marked
with ‘+’ in the list). For example, a state machine diagram defines state machines and
submachines; activities are composed of activity nodes that can be also activities, etc.

Different UML diagrams are complementary but self-contained, which implies that any
relationships between the elements in different diagrams have no semantic effect on the
model. Traceability in UML can be expressed using traceability relationships. An
implementation of traceability typically depends on the tool. IBM Rational software architect
[87], for example, provides diagrams and table views of related model elements, broken
relationships between model elements, and implied dependencies between model elements.
UML 2.0 specification [77] does not address explicitly the traceability issue.

UML defines an abstraction relationship between its model elements. This relationship in
UML can be used to model stepwise refinement. No explicit refinement rules or classification
of refinements is specified in the original UML documentation. It is left to the discretion of
the UML practitioners or tools, implementing UML.

The official list of UML-based modeling tools is available at http://uml-
directory.omg.org/vendor/list.htm. At the time of this work, there are more than 40 products.

Systems Modeling Language (SysML) [79] was developed by OMG and based on UML.

SysML targets the design of large industrial systems (e.g. aircraft, power plants, etc). It
defines nine diagram types; four of them are inherited from UML.

SysML defines blocks as modular units of system description. Blocks group both
structural and behavioral features (properties, states, operations) to describe a system of
interest. The Block Definition Diagram in SysML defines features of a block and
relationships between blocks. The Internal Block Diagram in SysML captures the internal
structure of a block. Blocks can be decomposed into parts that are also blocks.

Business Process Modeling Notation (BPMN) [78] provides a visual notation and

formalism for business process model development. This notation is mostly focused on the
representation of a system’s behavior and proposes a variety of model elements for its
realistic specification. BPMN specifies one diagram type called business process diagram
(BPD). In a BPD, two hierarchies can be captured: by using combinations of swim lanes, a
hierarchical structure of organizations can be modeled; and by using combinations of BPMN
processes, sub-processes, and tasks, organization behavior can be modeled with different
levels of details.

Traceability between tasks and activities in BPD is explicit and maintained by the
sequence and message flows (connections).

Modeling expanded sub-processes can be considered as a functional refinement of the
business process model. BPMN defines rules for sub-process definition to guarantee that it is
consistent with the main process. They can be considered as refinement rules. Swim lanes

21

specify the process participants. Therefore, the definition of multiple lanes for one pool is
equivalent to the organizational refinement.

At the time of this work, there are 44 existing and 4 planned implementations of BPMN.
The complete list of tools is available at http://www.bpmn.org/ .

Design & Engineering Methodology for Organizations (DEMO) [29] is an EA framework

based on the organizational theory called Language/Action Perspective. The DEMO
methodology takes its theoretical origin from the works of Habermas on communicative
action [49]. This methodology provides a set of methods for capturing and visualizing
business processes and the actors involved in the activities comprising these business
processes. DEMO defines its organizational levels based on a communication paradigm.
Functional levels are defined in DEMO based on the view of business processes as
transactions.

DEMO specifies four aspect models (construction, process, state, and action models) and
five diagram types for these models (actor - transaction diagram, actor - bank diagram,
process - structure diagram, objects - fact diagram, action - rule specification).

The construction model specifies the construction of the organization in terms of the
transactions, actors, information banks, and information links between them. The process
model and the state model are considered as the next detailing level of the construction model
– they describe each transaction as a set of states and transitions. The action model specifies
the action rules and can be seen as the second detailing level of the construction model.
Traceability between modeled aspects is captured in DEMO using cross-model tables.

DEMO defines functional and constructional decompositions as techniques for dealing
with the complexity of the modeled system. Decompositions can be seen as corresponding
refinement types.

Object-Process Methodology (OPM) [34][35] proposes a method for the complete

integration of the systems' states and behaviors within a single graphical model. OPM defines
one diagram type for its models called object process diagram (OPD). The system model in
OPM is represented by a collection of OPDs structured as a directed acyclic graph with the
top-level system diagram in its root. This diagram is considered at detail level zero. Each
node of this graph is an OPD, which specifies in more detail a process from the higher level
OPD (a zoomed-in process). Relationships between diagrams can be defined explicitly by
specifying a control flow.

OPM defines the abstracting and refining of its specifications as subtypes of the process
called scaling. There are three modes of refinement in OPM: in-zooming, unfolding, and
expressing. OPM defines the rules for refining/abstracting processes.

In OPM, there exist three types of hierarchies, defined with respect to the first three
fundamental structural relations: aggregation-participation, exhibition-characterization, and
generalization-specialization. These hierarchies are equally applicable to objects and to
processes.

The object-oriented modeling method for software called ADORA (Analysis and

Description of Requirements and Architecture) is presented in [44][45]. Models in ADORA
are composed of hierarchically structured abstract views. ADORA defines a base view and
four aspect views for its models (structural, behavior, user, and context views). The base
view specifies the hierarchical structure of the objects of the modeled system. Aspect views
are generated by combining the base view with the information that is relevant for the
selected aspect. All views are integrated in one coherent model.

22

The mechanism of hierarchical decomposition is applied to views. A view transition in
ADORA is a sequence of steps that guarantees the well-formedness of a new view. View
transitions for structural, behavioral, and user aspect views are specified [113] and can be
considered as refinement rules. View transitions enable an explicit traceability between
model elements [113]. ADORA defines a formal refinement calculus semantic for the
structural, behavioral, and user views.

2.2.3 A Comparison of Modeling Methods
We have analysed the methods from 2.2.2 based on the classification framework defined in
2.2.1. A summary of this evaluation is presented in Table 2-2.

Table 2-2

Method 1.Diagram
types

2.Model
structure

3.Traceability 4.Refactoring/ refinement
rules

UML
2.0

13 diagram
types

Hierarchical for
some (not all)
diagrams

Can be modeled using
traceability relationship,
implicit; no semantic
impact is specified

Structural refinement: can
be modeled using
realization relationship,
implicit;
Behavioral refinement:
implicit.

SysML 9 diagram
types

Hierarchical for
some (not all)
diagrams

Explicit requirements
traceability; relations
between blocks

Structural, behavioral
refinement: using block
decomposition

BPMN 1 diagram
type

Hierarchical:
pools/lanes;
process/ sub-
process

Explicit for tasks and
activities using sequence
and message flows;

Behavioral refinement:
defined by sub-process
modeling;
Structural refinement: can
be modeled using pools –
lanes combination.

DEMO 5 diagram
types

Hierarchical Explicit, using cross-
model tables

Behavioral and structural
refinements: using
functional and
constructional
(de)composition

OPM 1 diagram
type

Hierarchical Explicit for processes
using a control flow.

Behavioral and structural
refinements: in the form of
in-zooming, unfolding, and
expressing

ADORA Base view +
aspect views

Hierarchical Explicit, using view
transitions

Behavioral and structural
refinements: using
hierarchical decomposition;

Our analysis shows that most of the methods consider behavioral and structural

refinement for their models, however semantics of refinement (criteria of refinement validity)
and refinement rules are often left for an implementation of the method.

23

2.3 Visual Modeling Tools and their Support of Model Refinement and
Refinement Verification

Modeling methods are largely based on theoretical paradigms; they may exist in a form of the
guidelines, and may have no tool support. Modeling tools, compared to methods, are concrete
applications. Some of the tools are grounded on modeling methods (e.g. UML, BPMN),
whereas the others may have no underlying theory but a set of best practices. Modeling tools
usually provide an additional functionality to the methods, such as simulation and
verification.

Model simulation and verification require details about dynamic and static constraints of
a modeled system that are often omitted in the visual model. Therefore, semantics of the
visual modeling language needs to be extended. For these purposes, visual models are often
annotated with expressions written in other languages, e.g. OCL annotations for UML
diagrams.

In this section we consider visual modeling tools which implement some of the modeling
methods listed above.

2.3.1 Classification Framework for Modeling Tools
To answer the question, “How different modeling tools support model analysis and
refinement verification?”, we define the following classification framework:

1. A Source Language
We classify modeling tools by modeling languages that they support or modeling methods
they implement. We call these languages or methods source languages, as the model
expressed in this language is used as a source for further processing and analysis.

2. A Constrain Specification Language
Apart from the source language, we distinguish two other types of languages that (if defined)
characterize the modeling tool: a constraint specification language and a target language.
The constraint specification language is a language for annotating visual models in order to
extend their semantics and increase their precision.

3. Migration to another Language
Some modeling tools use their own means to simulate or verify their models; other tools
provide a translation of their models to other (target) languages and profit from the
simulation and verification tools, developed for those languages.

4. A Target Language
The target language is an executable or verifiable specification language. Visual
specifications, written in a source language and annotated with expressions written in a
constraint specification language are mapped to the target language for further simulation
and/or verification.

5. Simulation is a capability of a modeling tool to simulate or execute the model.

6. Well-Formedness and Consistency Checking is a capability of a modeling tool to check
if the model is well-formed (a correct instance of its meta-model) and consistent
(semantically non-contradictory).

24

7. Refinement Support is a capability of a modeling tool to provide an assistance in at least
one of the following refinement–related activities:

• the support of incremental model development, when different parts of a model can be
iteratively refined;

• the control of refinement consistency, when specific rules are implemented to prevent
the model from incorrect refinement;

• the refinement synchronization, when the rest of the model is synchronized (adjusted)
with respect to the refined model part;

• the refinement verification, when the refined model is proven a correct refinement of
the initial model with respect to the formal definition of refinement correctness.

2.3.2 Modeling Tools Overview
Four commercial tools and seven tools developed in academia (or originated from it) have
been selected for our analysis. We find the analyzing of both groups of tools important,
because the former group reflects the current needs of practitioners, whereas the latter
illustrates the research innovations in the area.

For our analysis we have selected the tools that facilitate model simulation, analysis and
refinement support.

Commercial tools:
No Magic - MagicDraw (UML2.0, SysML, BPMN, DoDAF) - www.magicdraw.com/
Telelogic - SystemArchitect (BPMN, DoDAF) -
www.telelogic.com/products/systemarchitect/index.cfm
Metastorm - ProVision (BPMN, Six Sigma, Zachman, TOGAF, DoDAF, UML) -
www.metastorm.com/products/mpea.asp
Intalio - Designer (BPMN) - www.intalio.com/products/designer/

Research prototypes and research based tools:
ArgoUML (UML)
RoclET (UML, OCL)
UML2Alloy (UML, OCL)
BPMN2PNML (BPMN)
OPCAT (OPM)
ADORA (ADORA)
DEMOS (ER)

MagicDraw is a business modeling tool, developed by No Magic Inc.[67]. MagicDraw
UML 15.0 is the latest version of the product by the time of this work. This tool supports
UML 2, BPMN notations, and provides a plugin for SysML.

MagicDraw supports OCL constraints for its model elements. OCL syntax is validated
automatically. The tool supports model decomposition and provides the automated check of
model completeness and correctness. Model versioning can serve for refinement support: one
can see the changes made between two different versions of a model. To the best of our
knowledge, MagicDraw does not provide means to keep track and to validate these changes
with respect of the initial model (what we call refinement verification).

Telelogic System Architect is a tool for business and enterprise architecture modeling

[104]. This tool supports BPMN and provides facilities for planning, modeling, and execution
of business process specifications. System Architect has its own simulator for process

25

specifications, called System Architect Simulator II. System Architect complements another
Telelogic tool called TAU G2 supporting UML2.0 visual modeling.

Metastorm ProVision [86] is a tool for business process modeling and analysis that

supports (among the others) BPMN notation for the processes. The tool includes both Monte
Carlo and discrete event simulators to define scenarios and perform process simulation.
Scenario-based simulation shows how the process will behave under specific conditions.

Intalio Designer [56] is an Eclipse-based integrated development environment for BPMN

business processes. It is a part of Intalio BPMS 4.0. Intalio designer supports the static
process validation and automatic process code generation. Refining processes into sub-
processes in Intalio Designer is performed using the in-line sub-process drill-down approach.

ArgoUML [4] is an open source UML modeling tool. ArgoUML provides OCL constraint

modeling for its diagrams. ArgoUML supports syntax and type checking of OCL constraints
using the Dresden OCL toolkit [37]. ArgoUML implements design critics feature to supervise
the modeling process and to correct the modeler’s activity. The tool does not mention
explicitly its refinement capabilities; however we consider design critics potentially
beneficial for the refinement support.

RoclET [94] is an open source tool for analysis of UML/OCL specifications. The current

version of RoclET supports UML 1.5 class and objects diagrams and provides a parser/
typechecker for annotated OCL 2.0 constraints. RoclET supports the refactoring of UML
class diagrams and automatic synchronization of attached OCL constraints. Baar and
Marcovi [5] introduce a proof technique for the semantic preservation of refactoring rules
for UML class diagrams and OCL constraints. Evaluation of invariants, pre-, and
postconditions for object diagrams is also provided by the tool.

UML2Alloy [13] is a tool for the analysis of discrete event systems modeled in UML.

This tool provides an interactive interface to translate UML diagrams annotated with OCL
constraints into Alloy specifications. UML2Alloy tool accepts XMI serializations of UML
models developed in some UML modeling tool (e.g. Magic Draw 9.5, ArgoUML). The tool
generates text files with Alloy specifications that can be analyzed in Alloy Analyzer 4.0 [3].

The BPMN to Petri net transformer (BPMN2PNML)[17] is a tool that generates Petri Net

Markup Language (PNML) [43][83] specifications from BPMN models for further static
analysis. The tool accepts XMI serializations of BPMN models generated by existing BPMN
modeling tools (e.g. ILOG BPMN Modeler tool). The semantic analysis of BPMN models
can be conducted by importing generated PNML specification into the Petri net-based
verification tool ProM [33][84]. This tool allows for the verification of the two following
properties of BPMN models: the absence of dead tasks, and the absence of improper process
completion, which means that any process instance eventually reaches proper completion.
Further details can be found in [30].

The Object-Process CASE Tool (OPCAT) [35][80] is a tool for the development and

simulation of OPM system specifications. OPCAT provides an abstraction/refinement
mechanism in the form of in-zooming/out-zooming, unfolding/folding and expression/
suppression of the states. OPCAT's simulation capability enables an animated running of a
system model, a testing of its functionality against the requirement specifications, and a
debugging of them at the model level [36].

26

DEMOS [26] is a modeling tool for the EP modeling language [60]. This tool is developed

within the project of Declarative Approaches to Software Complexity [25]. The EP-model is
a declarative executable model for engineering object-based systems. EP-models model both
static and dynamic aspects of a system in a single diagram. The executable part of EP-model
is specified in the form of Java code snippets that annotate model elements. DEMOS tool is
implemented as an Eclipse plug-in and provides:

• graphical editing of applications using the EP model,
• background code generation, and
• immediate feedback on syntactical validity of models and user-supplied code.

A recent work of the authors defines the abstract syntax, static semantics, and dynamic
semantics of the EP modeling language in Alloy [59].

The ADORA tool [2] implements the modeling method ADORA. This tool was
successfully applied for the creation, validation and evolution of behavioral requirements
models [46]. ADORA defines a stepwise incremental process of behavior specification,
where a behavioral model is refined in each step by specifying partial behaviors. The tool
simulates partial system behaviors documented in message sequence charts. The modeler can
then generalize these partial behaviors and revalidate the resulting behavior by simulating it
against previously recorded behavior. Model revalidation at each step stands for the
refinement consistency control.

The ADORA tool simulates models regardless of their degree of formality and
completeness. If the information needed for the simulation is missing, the tool interrupts the
simulation and the modeler provides the required information interactively.

2.3.3 A Comparison of Modeling Tools
Table 2-3 presents a summary of our comparative analysis. One of the difficulties we met
conducting this analysis was related to the fact that commercial tools rarely disclose their
technical details or underlying heuristics. Thus, it is often difficult to position them within
our classification framework. Whereas tools developed in an academia are usually based on
scientific publications, which clearly explain the theoretical foundations, and potential
benefits for the user. However, some of these tools exist only as research prototypes.

This is reflected in the summary table, which is incomplete. We use a question mark ‘?’ if
we are unable to make a judgment about the tool based on the information available.

27

Table 2-3
Tool

1. Source language

2.C
onstraint Specification

L
anguage

3.M
igration to another language

4.T
arget language

5.Sim
ulation

6.W
ell-form

edness/ C
onsistency

checking

7.R
efinem

ent support

Magic
Draw

UML,
BPMN,
SysML

OCL No - No Yes Model
decomposition/
model differencing;
No verification

System
Architect

BPMN ? ? Language supported
by native Simulator
II tool

Yes Yes ?

ProVision BPMN,
UML,
etc

? ? Languages
supported by native
Monte-Carlo /
discrete event
simulator tools

Yes Yes ?

Intalio
Designer

BPMN ? Yes BPEL Yes Yes In-line drill-down
modeling of
activities

ArgoUML UML OCL No No No Yes Design critics

RoclET UML OCL No - No Yes Refactoring;
verification of
semantic
preservation

UML2
Alloy

UML OCL yes Alloy No Yes No

BPMN2
PNML

BPMN Yes Petri Net – PNML Yes Yes ?

OPCAT OPM OPL No - Yes Yes In-zooming,
unfolding, state
expression.

DEMOS EP Java Yes Java Yes Yes Functional
decomposition

ADORA ADORA No No - Yes Yes Stepwise
refinement;
refinement
consistency control
by revalidation
/regression
simulation

28

The SEAM Method
Our work defines the formal semantics and the theory for refinement and refinement
verification for the SEAM method [108]. The SEAM method was designed to model
enterprises and can be used to model software systems. SEAM defines one diagram type for
its specifications. The SEAM ontology is based on the second part of the RM-ODP [92]
specification. Based on this standard, the main modeling concepts of SEAM such as property,
state, and action are defined [108].

SEAM defines a model of a system as a set of system specifications structures within two
hierarchies: a hierarchy of organizational levels, and a hierarchy of functional levels. The first
hierarchy incrementally reveals a system’s construction, whereas the second hierarchy
addresses an incremental specification of system’s functionality.

SEAM explicitly models the traceability between model elements across functional and
organizational levels using traceability relations.

The transition of model from one hierarchical level to another is formalized in SEAM as a
refinement (contribution of this work). Two main classes of refinement are defined in SEAM:
an organizational refinement, which addresses the incremental specification of a system
structure, and a functional refinement, which addresses the incremental specification of
behavior of the system.

Several prototypes of SEAM-based applications have been recently developed. The
SeamCAD tool [66] is a framework for SEAM graphical modeling. SEAM to Java is a
prototype of SEAM model transformation application that translates visual SEAM
specifications to Java programs. This application is based on ATL - Atlas Model
Transformation language [55] and is developed as a plug-in under Eclipse [39]. SEAM to
Java accepts as input a SEAM model in XML format and generates another XML that
corresponds to the target Java model. Using XSLT [105] script, the executable Java code is
obtained. SEAM to AsmL is a prototype tool that translates SEAM applications to AsmL -
the Abstract State Machine Language [15][11] for further simulation and verification with
AsmL verification tool [95].

As a part of this Ph.D thesis, a prototype of SEAM to Alloy translator was developed. This
translator is based on the XSLT script and allows for the generation of Alloy models from
SEAM specifications, documented in XML. The XML file with a SEAM specification is
obtained from the EMF (Eclipse Modeling Framework)-based SEAM Editor. The mapping
rules from SEAM to Alloy are explained in Chapter 6.

As future work, we plan an implementation of the Seam to Jahob translator that will
provide us with the possibility of verifying specification refinement using the Jahob
verification system [63].

In Tables 2-4, 2-5, we evaluate the SEAM method based on the frameworks we applied
for the other modeling methods and tools:

29

Table 2-4

Method 1.Diagram
types

2.Model structure 3.Specification
traceability

4.Refactoring,
refinement

SEAM 1 Hierarchical
(functional +
organizational
hierarchies)

Explicit, via
whole/composite
relationships

Structural refinement:
explicit; results in a
transition to the next
org. level;
Behavioral refinement:
explicit; results in a
transition to the next
functional level.

Table 2-5

Tool 1.Source
language

2.C
onstraint

S
pecification

L
anguage

3.M
igration to

another
language

4.T
arget

language

5.Sim
ulation

6.W
ell-

form
edness/C

onsistency
checking

7.R
efinem

ent
support

Seam
to Java

SEAM Java Yes Java Yes No No

Seam
to
AsmL

SEAM ASM yes AsmL Yes Yes No

SEAM
to
Alloy

SEAM FOL/Alloy Yes Alloy No Yes Refinement
verification

SEAM
to
Jahob
(future
work)

SEAM FOL/Alloy
+ Java

yes Jahob Yes Yes Refinement
verification

30

31

Chapter 3

The SEAM Method

In this chapter, we introduce the SEAM method for Enterprise Architecture modeling and the
SEAM visual modeling language. SEAM considers marketing segments, organizations, IT
systems and IT applications as systems, structured in organizational levels of an enterprise
model. The SEAM ontology is based on the second part of the RM-ODP [92] specification.
Based on this standard, the main modeling concepts of SEAM such as property, state, and
action have been defined [108]. This work contributes in a definition of the additional
concepts necessary for the formal verification of SEAM visual specifications: preconditions,
postconditions, invariants, and updates.

SEAM specifies various model elements and different ways to combine them in a
diagram. A modeler may choose her own strategy in order to enhance the traceability of
concepts across levels and to improve the model transparency.

To specify a system structure, SEAM defines a working object and two views of it:
- a working object as a whole;
- a working object as a composite.
To specify a system behavior, SEAM defines properties and three action types:
- a localized action;
- a joint action;
- a distributed action;
two views of a property:
- a property as a whole;
- a property as a composite;
 two views of each action:
- an action as a whole;
- an action as a composite; and
 two ways of action specification:
- declarative action specification;
- imperative action specification.

Sections 3.1-3.2 of this chapter describe SEAM model elements, their views and

specification styles. Section 3.3 presents a metamodel of SEAM, which specifies its abstract
syntax. As a contribution of this work, the SEAM metamodel is extended with new model
elements. Section 3.4 presents the the semantics of SEAM model elements and specifies their
graphical notation.

3.1 The SEAM Specification of a System

In a SEAM specification, a system is represented by a working object. The working object
can be seen as a whole where its construction is hidden or as a composite that reveals its
components. The views as a whole and as a composite belong to two adjacent organizational
levels.

32

Example 3-1. Figure 3-1 illustrates a SEAM specification of a system, modeled as a
working object W. W is shown as a whole (denoted W[w]) in Fig. 3-1(a), and as a composite
(denoted W[c]) 3 – in Fig. 3-1(b,c).

A working object as a composite specifies system components (also modeled as working
objects) and a joint action (JA) [38] or a distributed action (DA) between these components.

Figure 3-1: a) a SEAM working object W as a whole; b) W as a composite with component working
objects S1 and S2 and a joint action JA seen as a whole; c) W as a composite with components S1 and S2
and a distributed action DA seen as a whole.

A working object as a whole has properties and may specify localized actions (LA).
Properties represent the data that the working object stores or operates with. A collection of
all properties of the working object determines a state of this working object. A localized
action changes the state of the working object by updating its properties.

Each action and property in SEAM can be seen as a whole where its construction is hidden
or as a composite, where the components (component actions and component properties
respectively) are shown.

The term ‘joint action’ in SEAM was taken from [38]. A joint action describes a

collaboration of the components of a working object. This action changes states of these
components by updating their properties (Fig. 3-1(b)).

Diagrams in Fig. 3-1(a,b) illustrate the following: To perform the localized action LA at W
(as a whole), the collaboration JA[w] of component working objects S1 and S2 is required.
JA[w] modifies a property P at S1 and a property P1 at S2.

 Working object decomposition (a transition from a whole to a composite) requires that the
properties of the parent working object are distributed between component working objects.
Localized actions for the component working objects can be omitted.

A working object as a composite specifies a distributed action between components of the

working object (Fig. 3-1(b)). The keyword Distributed stands for a distribution of

3 We use indexes w (_w or [w]) or c (_c or [c]) to specify SEAM elements as a whole or as a composite
respectively

33

responsibilities between components, answering the question, “Who does what?” The
responsibilities are modeled as localized actions.

 In contrast to localized and joint actions, distributed action does not update the properties
of a working object directly. This action changes the states of the working object by invoking
localized actions of its components (Fig. 3-1(c)).

 Diagrams in Fig. 3-1(a,c) illustrate the following: To perform the localized action LA at W,
the collaboration DA[w] of component working objects S1 and S2 is required. S1 participates in
DA[w] by performing a localized action LA1[w]. LA1 changes a property P; similarly, S2 performs a
localized action LA2[w], which changes a property P1.

Action specifications ‘as a whole’ and ‘as a composite’ correspond to the terms ‘action’
and ‘activity’ of RM-ODP [92].

To specify the communication between component working objects or component actions

of one working object, SEAM uses shared properties and input/output parameters.
A shared property is a property that does not belong to a specific component working

object; shared properties represent the common knowledge maintained by the system. Input
and output parameters are properties that specify the information flow from one working
object (or action) to another.

 In contrast to shared properties that can be perceived as global variables of a system,
SEAM also defines local variables for its actions. A local variable is a property that belongs
to a concrete working object and is defined by an action of this working object. The lifecycle
of a local variable is related to an action (for other properties, it is related to a working
object): the local variable exists only during the action execution.

We distinguish primitive and compound properties in SEAM. A primitive property can be

considered as an alias for an operational (primitive) data type (e.g. int, string, boolean, etc.).
The compound property is defined by a set of component properties and references to
properties using property associations and property compositions.

34

Table 3-1 illustrates the relationships between concepts in SEAM. The 10 columns specify
main SEAM elements and one of their views - as a whole or as a composite. The rows
specify the same elements plus shared properties, parameters, and local variables.

Table 3-1
 WO Property LA JA DA

 1 2 3 4 5 6 7 8 9 10

 W
ho

le

co
m

po
si

te

w
ho

le

co
m

po
si

te

W
ho

le

C
om

po
si

te

w
ho

le

co
m

po
si

te

W
ho

le

C
om

po
si

te

whole x WO

composite x

whole x R xr r r r r Property

composite x R xr r r r r

whole x r xr r r LA

composite x r xr r r

whole x r xr JA

composite x r xr

whole x r xr DA

composite x r xr

Parameters
In/Out

 x x x x x x x x

Shared
properties

 x x x x x x

Local
variables

 x x x x x x

An ‘x’ in a row-column intersection means that the ‘column’ element can specify (or own)

the ‘row’ element. (Graphically, this is equivalent to having a relation with a black-diamond
between elements).

An ‘r’ in row-column intersection means that the ‘column’ element can be related to the
‘row’ element. (Graphically, this is equivalent to having a simple relation between elements).

For example, a working object seen as a whole (column 1) can specify properties,

localized actions, and input/output parameters; LA (localized action) seen as a composite
(column 6) can specify component localized actions seen as a whole or as a composite,
input/output parameters, shared properties, and local variables; it can be also related to other
localized actions and properties. A property as a whole (column 3) cannot specify any other
elements; it can be related to other properties.

35

3.2 Declarative vs. Imperative Action Specifications in SEAM

Actions in SEAM can be modeled declaratively or imperatively.
Declarative specifications describe the state of the working object prior to the action

execution – pre-state - and the state of this working object upon the action termination – post-
state. The pair (pre-state, post-state) describes the overall effect of the action and
characterizes the external behavior of the working object.

Declarative specifications define an action contract - a triple (precondition, invariant,
postcondition) - and leave the detail of implementation of this contract unspecified.
Imperative specifications, in contrast, encourage the modeler to commit to an explicit
scenario of an action execution.

Imperative specifications make explicit the intermediate effects of the action by defining
the sequence of states the working object goes through during the action execution. This
sequence of states is also called the internal behavior of the working object.

A declarative specification is beneficial when a modeler has a limited knowledge about the
system and develops an abstract system specification. Once the action contract is extended
with the concrete scenario of its realisation (a sequence of intermediate states), the
specification becomes imperative.

For declarative specifications there exists a frame problem [14]. This problem appears
when more than one implementation of the specification corresponds to its contract. To avoid
erroneous implementations, the specification should explicitly indicate the properties that
must remain unchanged after the action termination. This is done using frame conditions.

In contrast to declarative specification, imperative specification does not allow unspecified
updates and stipulates that “what was not explicitly updated is unchanged”.

SEAM action A, seen as a whole, specifies a state change as a single transition from pre-

state to post-state. Therefore the view as a whole corresponds to a declarative action
specification.

SEAM action A, seen as a composite, specifies actions A1..At that should be executed to
accomplish A. Action A here is called a parent action and A1..At are called component
actions. A declarative specification of an action seen as a composite is useful when the
modeler wants to ignore the order of component actions.

An imperative action specification introduces the ordered set of the intermediate states for
this action.

Table 3-2 presents the elements of action specifications (rows) and shows the visibility of
these elements in different action specifications (columns). A specification, in which less
elements are visible is called more abstract, when compared to a specification where more
elements are visible. For example, the most abstract specification is a declarative
specification of a localized action seen as a whole.

36

Table 3-2

LA JA DA LA JA DA

 W

ho
le

co
m

po
si

te

W
ho

le

co
m

po
si

te

w
ho

le

C
om

po
si

te

w
ho

le

C
om

po
si

te

w
ho

le

co
m

po
si

te

w
ho

le

C
om

po
si

te

Preconditions x x x x x x x x

Invariants x x x x x x x x

Postconditions x x x x x x x x

Update x x x x

IN/OUT parameters x x x x x x x x x x x x

shared properties x x x x x

Local variables x x x x x x x x x x x x

Visible x x x x x x x x

Component
actions

(*Localized
actions for

DA) Ordered x x x x

Intermediate states

D
ec

la
ra

ti
ve

Im

pe
ra

tiv
e

x x x x x x

3.3 The SEAM Metamodel (Abstract Syntax)

SEAM modeling language defines one diagram type for system specifications. The SEAM
diagram is a graphical specification of a system.
Figure 3-2 presents a SEAM metamodel specified as a UML [77] class diagram.

The recursive definition of the SEAM abstract syntax is presented below.

As a contribution of this work, the following elements have been added to the SEAM

modeling language:
- A distributed action;
- Input/output parameters, shared properties, and local variables for actions;
- Action-to-property relations and their specializations;
- Action-to-action relations and their specializations;
- Distributed-to-localized action relations.

(These elements are denoted in bold in the syntax definition below.)

working_object = wo_whole | wo_composite
wo_whole = property {property} {localized_action}
property = primitive_property| compound_property
compound_property = {property, p_composition} {property, p_association}
localized_action = la_whole | la_composite
la_whole = {AP-relation} {input_par}{output_par}{local_var}
la_composite = localized_action {localized_action}{AA-relation}{input_par}{output_par}
 {shared} { local_var}
wo_composite = working_object, wo_composition {working_object, wo_composition}

37

 joint_action | distributed_action
joint_action = ja_whole | ja_composite
ja_whole = {AP-relation}{input_par} {output_par}{shared} { local_var }
ja_composite = joint_action {joint_action}{AA-relation}{input_par} {output_par}
 {shared} { local_var }
distributed_action = da_whole | da_composite
da_whole = {DALA-relation}{input_par} {output_par}{shared} { local_var }
da_composite = distributed_action {distributed_action}{AA-relation}{input_par}

 {output_par} {shared} { local_var }

The well-formedness rules are out of the scope of this work.

Figure 3-2: SEAM metamodel

38

The extension of the SEAM metamodel is resulted in a possibility to specify formal
semantics for the other model elements in SEAM, including:

- A working object as a whole and as a composite;
- An action (localized, joint, distributed) as a whole or as a composite;
- A property and property-to-property relations;
- A working object-to-property relation.

Formal semantics of SEAM will be discussed in the next chapter.

3.4 The SEAM Semantics and Graphical Notation (Concrete Syntax)

The metamodel in Fig. 3-2 illustrates the SEAM model elements and relations between them
- the abstract syntax of SEAM specifications. In this section, we specify a concrete syntax of
SEAM specifications. The concrete syntax describes how model elements can be depicted
and put together in SEAM diagrams.

The SEAM modeling language defines the following graphical elements:

 A working object (WO);
 A WO-composition;
 A property;
 A property composition;
 A property-to-property (PP-) relation;
 A working object-to-property (WOP-relation);
 An action;
 An action-to-action (AA-) relation;
 An action-to-property (AP-) relation;
 A distributed-to-localized action (DALA-) relation.

The following sections address these graphical elements as well as their semantics in detail.

3.4.1 Working Object
The boundary of a SEAM diagram is always specified by a working object (WO) that
represents the system of interest; other model elements (component working objects,
properties, actions, etc) are depicted inside this working object – ‘box in the box’.

SEAM uses a ‘porter arrow’ pictogram to specify a working object (Fig. 3-3(a)). When it
is necessary to emphasize the nature of the working object – other pictograms are used (Fig.
3-3(b)).

Figure 3-3: SEAM working object: a) general representation b) specific pictograms.

39

A working object can be modeled as a whole or as a composite. A working object as a
composite (indicated by ‘_c’ or [c] in the pictogram) specifies component working objects
of the same or a different kind. These component working objects are depicted inside the
parent working object and are connected to it using a composition relation (Fig. 3-4). The
source of the working object composition (marked with a black diamond) is called ‘parent’;
the destination is called ‘component’.

Figure 3-4: Working object composition: a) composition relation with multiplicity and instance
expressions; b) Example: a car as a composite specifies 4 Wheels: w1..w4.

3.4.2 Property
Working object as a whole (indicated by ‘_w’ or [w] in the pictogram) specifies properties.
Properties are depicted with rectangles (Fig. 3-5(a)). For primitive properties their primitive
type (e.g. ‘string’, ‘int’, ‘boolean’, etc.) is indicated under the property name.

The properties hosted by a working object are placed inside the pictogram, representing
this working object and are connected to it using a working object to property (WOP) –
relation (or host relation) as illustrated in Fig. 3-5(b).

A property (if compound) can be associated with another property (or group of
properties), which is hosted by the same working object. This is depicted using a property
association (Fig. 3-5(c)).

A property (if compound) can have component properties. The component properties are
connected to their parent property using a composition relation. The source of this relation
(marked with a black diamond) is called ‘parent’; the destination(s) is called ‘component’.
Two versions of graphical representation are presented in Fig. 3-5(d).

Properties hosted by different working objects can be connected using a trace (Fig. 3-5
(e). In the example, the trace specifies that properties ProductID and DesiredProductID are
the same.

40

Figure 3-5: SEAM property: a) graphical notation; b) host relation c) property association;
d) composition; e) trace.

3.4.3 Action
To specify a behavior of a working object, SEAM defines localized, joint, and distributed
actions (Fig. 3-6). These actions are depicted by rounded rectangles with indicated action
name, type, and view.

The action type can be one of the following: LA for a Localized Action, JA for a Joint
Action, or DA for a Distributed Action. The action view specifies the action modeled as a
whole or as a composite (indicated by ‘_w’ or [w] and ‘_c’ or [c] respectively).

For an action seen as a composite, component actions are placed inside the pictogram
representing this action. The border of the parent action is depicted using a dashed line. Fig.
3-6(b) illustrates a joint action as a composite with two component joint actions.

Figure 3-6: SEAM action specification.

3.4.4 Action- to-Action (AA-) Relations
A control flow between component actions of an action seen as a composite is specified in
SEAM using action-to-action (AA-) relations. The notation is based on BPMN (Business

41

Process Modeling Notation) [78]. Fig. 3-7 shows the control flow of a localized action AAA
seen as a composite.

SEAM specifies the following AA-relations:
 Start – to define an entry point of an action as a composite;
 End – to define an exit point of an action as a composite;
 Transition – to define a sequential composition between component actions;
 Conditional transition – to define a transition that happens if a certain condition holds;
 Fork (AND, OR, XOR) – to specify a branching of process (parallel or alternative

execution of component actions);
 Merge (AND, OR, XOR) – to specify a synchronization (AND) or concurrency (OR,

XOR).

Figure 3-7: Localized action AAA seen as a composite with component localized actions BB and CC The
control flow is specified using the following AA-relations (in their order of appearance from the left to the
right) : Start, AND-Fork, AND-Merge, End. Intermediate system states are not shown.

Figure 3-8 illustrates the SEAM graphical notation for AA-relations and the corresponding BPMN
notation.

Figure 3-8: SEAM action-action (AA-) relations vs. BPMN elements (events and gateways). Taken from
www.bpmn.org

42

Table 3-3 presents AA-relations and their semantics in more detail. Textual notation on
the left specifies the action ordering. Diagrams on the right stand for imperative action
specifications.

Table 3-3
AA-relation name
and description

SEAM Graphical
notation

AA-relation name
and description

SEAM Graphical
notation

Start(A1) – A1 is an
action start;

AndFork(A1,{A2,A3})-
A1 is followed by A2
and A3, executing in
parallel;

End(A1) – A1 is an
action end;

AndMerge({A1,A2},A3
) – A3 starts after both
A1 and A2 terminate
(synchronization);

Transition(A1,A2) – a
sequential composition
of A1 and A2 (A2
follows A1);

OrFork(A1,{A2,A3})-
A1 is followed by A2,
or by A3, or by both of
them executing in
parallel (inclusive);

ConditionalTransition
(A1,A2,C) – A2 folows
A1 if C holds;

OrMerge({A1,A2},A3)
-A3 starts after either
one of A1, A2 or both
terminate
(concurrency);

ConditionalTransition
(A1,{A2,A3},C)- A1 is
followed by A2 if C
holds and by A3
otherwise;

xOrFork
(A1,{A2,A3})})- A1 is
followed by A2, or by
A3, but not by both of
them (exclusive);

 xOrMerge({A1,A2},
A3)- A3 starts after
either one of A1, A2,
but not both terminate
(concurrency);

Similarly to Inclusive/Exclusive Merge and a Parallel Join gateways in BPMN (Fig. 3-8),

Or- and xOr- Merge relations in SEAM specify a concurrent action execution; whereas
AndMerge specifies a synchronisation. In this work, we do not consider concurrency in
SEAM specification. This is a topic for future work.

Current graphical notation provides no information about the intermediate states. Fig. 3-9
illustrates the (prospective) notation, in which intermediate states of the imperative
specification are shown.

Figure 3-9: Proposed graphical notation for AA-relations where intermediate states are shown; a) an
imperative specification of a parallel fork; b) an imperative specification of a transition.

43

3.4.5 Action-to-Property (AP-) Relations

Figure 3-10: SEAM action-to-property (AP-) relations a) relation types; b) An action (local) invariant vs.
a system (global) invariant.

The following action-to-property (AP-) relations are defined in SEAM (Fig. 3-10 (a)):

‘Pre:’ – for precondition;
‘Post:’ – for postcondition;
‘Inv:’ – for invariant;
‘U:’ – for update statement.

AP-relations are depicted by arrows, annotated with corresponding precondition,
postcondition, invariant, or update expressions.

A precondition is a condition (or state) of the working object where the action can be
triggered; a postcondition specifies the states of the working object after the action
termination; an invariant is a logical expression that must hold before, after, and during the
action execution.

We distinguish between action invariants, which are modeled using action to property

relations and hold for a particular action, and system invariants, which hold for all the actions
of this working object.

Figure 3-10(b) illustrates a local invariant Inv of action BB and a global invariant S.Inv
that must hold for any action of S.

A triple (preconditions, postconditions, invariants) is also called the action contract; an
update statement explicitly defines how this contract is fulfilled.

Precondition, postcondition and invariant expressions are logical expressions. In SEAM
diagrams, these expressions annotate corresponding AP-relations. We write these expressions
in a subset of the Alloy specification language [59].

Update statements typically stand for a change of a value of a given property and are
written using assignment expressions: ‘property_old := property_new’.

Definition of AP-relations in SEAM is one of the contributions of this work. Syntax and
semantics of AP-relation expressions is explained in more detail in Section 4.3.5 of the next
chapter.

44

3.4.6 Localized vs. Joint vs. Distributed actions
SEAM defines three types of actions (localized, joint and distributed action). These actions
are distinguished by the way they change a state of a working object.

- A localized action (Fig. 3-11(a)) changes the state of a working object seen as a
whole by modifying its properties.

- A Joint action (Fig. 3-11(b)) changes the state of a working object seen as a
composite by modifying properties of its component working objects.

- A distributed action (Fig. 3-11(c)) changes the state of a working object seen as a
composite by invoking localized actions of its component working objects.

X Y

Pre:...

S[c]

Post:...

X Y

Pre:...

LA_AA_w

S[w]

Post:...

S1[w] S2[w]
X Y

S[c]
S1[w] S2[w]

Y
<OUT>

Post:...
X

<shared>
Pre:...

X
<shared>

(a) (b) (c)

1|y_out 1|x_in

JA_AA_w

DA_AA_w

LA_BB_w LA_CC_w

Figure 3-11: Localized vs. Joint vs. distributed Action.

3.4.7 Shared Properties, Input and Output Parameters, Local Variables
SEAM uses action shared properties, input and output parameters, and local variables to
specify a flow of data in its specifications.

Shared properties are shown in SEAM diagrams as properties with a stereotype <shared>.
A shared property represents a common knowledge that is maintained by a working object as
a composite (Fig. 3-12(a); it can also specify a flow of data between component actions (Fig.
3-12(b).

Figure 3-12: Shared property

By definition, if a property is ‘shared’ – it is visible to several working objects and can be

modified by actions of these working objects. It can be considered as a global variable.
Alternatively, a SEAM action may specify local variables. A local variable p:P of an action
AA (Fig. 3-13) is an instance of a property P, which is created by AA and exists only during
the execution of AA. A local variable is modeled using a directed relation with multiplicity
and a black diamond on the action’s side.

Note that the instance p:P in Fig. 3-13 is defined in the context of action AA and is
disjoint from the instances p1, p2,.. defined in the context of working object S.

45

1|p

AA

P

*|p1,p2..
S

Figure 3-13: Action local variable

Shared and local variables are useful for modeling persistence of business objects.

Input and output parameters are shown in SEAM diagrams as properties with a stereotype

<IN> or <OUT> (Fig. 3-14). These parameters are used to specify the data coming into the
system or leaving the system while performing the action; they can be also a subject of action
precondition and postcondition.

Typically, input parameters are associated with the action precondition (i.e. an input is
something that should be received by the system to trigger the action). However, input
parameters can be also received by the system in an intermediate action state. Thus, inputs
are NOT always a part of the observable external behavior (i.e. a part of the precondition).
Similarly, output parameters are often identified with action postconditions (i.e. an output is
something that is produced by the system upon the action termination). However, output
parameters can be also produced by the system in an intermediate action state (as a part of
internal behavior). In this case, the output parameter is not a part of the action postcondition.

Figure 3-14: Input and output parameters.

3.4.8 Relations with Multiplicities
A working object composition, a property association, a property composition, and an action-
to-local variable relation (ALocalVar) are relations with multiplicities in SEAM. They
contain multiplicity and instance expressions in the form:

M '|' IM

A multiplicity expression shows how many instances of a property of a given type are
considered by this relation; an instance expressions provide a list of names of these instances.

M is a multiplicity expression; it has the following format:

M = # | #..#|#..*|*

- a nonnegative integer constant 0,1,2...;
#..# - an interval with constant lower and upper bounds;
#..*- an interval with an undefined upper bound;
* - an interval 0..*.

46

IM is an instance expression; it has the following format:

IM = <inst.name>[, <inst.name>]

IM defines a set p1..pM of allocated instance names. The size of this set is defined by the

multiplicity expression M and is equal to the difference between the lower and the upper
bound of an interval specified by M. If the upper bound is undefined – indexed list of names
can be used. For example, let multiplicity expression M be “0..*” then we define an instance
expression IM as an indexed list of names {namei}, where i=0..*

47

Chapter 4

Formal Semantics for SEAM Specifications

To rigorously reason about visual specifications, we define a formal semantics for SEAM.
This semantics is based on the set theory and first-order logic (FOL). It enables the mapping
of a SEAM specification to other specification languages, i.e. Alloy [59], Jahob [63] for
further validation.

In Chapter 3, the SEAM method was introduced. This work extends the SEAM modeling
language with concepts of action-to-property relations, action-to-action relations, and
distributed actions. In this chapter we define the formal semantics for the following concepts
of SEAM modeling language:

- SEAM working object as a whole with its

 Properties

 Localized action (as a whole or as a composite) [optional]

- SEAM working object as a composite with its

 Component working objects

 Joint action (as a whole or as a composite) or

 Distributed action (as a whole or as a composite)

- Action-to-property (AP-) relations for joint and localized actions seen as a whole and
its specializations:

 Precondition

 Postcondition

 Invariant

 Update statement

- Distributed-to-localized action (DALA-) relations for distributed actions seen as a
whole

- Action-to-action (AA-) relations for localized, joint, and distributed actions seen as a
composite;

- Imperative and declarative action specifications;

As a consequence of formalization, new modeling concepts are explicitly specified in SEAM:

 State of a working object as a whole

 State of a working object as a composite

 Primitive property

 Compound property

 State of a primitive and a compound property

48

Based on formal semantics, we are able to define refinement relations between SEAM
specifications, for example, we say that:

- A SEAM working object modeled as a composite is a refinement of a corresponding
SEAM working object modeled as a whole;

- A joint or a distributed action specified for the SEAM working object as a composite is
a refinement of a localized action, specified for the corresponding working object as a
whole;

- A SEAM (localized, joint, distributed) action modeled as a composite is a refinement
of a corresponding SEAM (localized, joint, distributed) action modeled as a whole;

- A SEAM action modeled imperatively is a refinement of a corresponding action
modeled declaratively.

These refinement relations and the notion of their correctness are presented in Chapter 5.

The outline of this chapter is the following: Section 4.1 is a short introduction of first-
order logic (FOL); we present a syntax, semantics, and introduce the notion of satisfiability
and validity of FOL formulas – concepts fundamental for verification. In Sections 4.2 and 4.3
we present the formalization of SEAM modeling concepts in set theory and FOL. In Section
4.4 we discuss imperative and declarative modeling of behavior in SEAM; In Section 4.5 we
present how creation and deletion of an object can be modeled with SEAM.

4.1 First-Order Logic

First-order logic (FOL) is a system of formal reasoning also known as first-order predicate
calculus [18]. In this section we present a short introduction to FOL. For more details, see
[18].

The FOL Syntax

The basic terms of FOL are constants a, b, c, .. and variables x, y, v,…Complex terms are
constructed using functions of a different arity. Functions are denoted by symbols f, g, h,.. in
FOL. An n-ary function f takes n terms as arguments: for example a function f(x, y) is a
binary function applied to variables x and y. A function with arity 0 is a constant. Predicates
in FOL are denoted by symbols p, q, r,… An n-ary predicate p takes n terms as arguments. A
predicate can be seen as a function with a codomain {true, false}. An n-ary predicate applied
to n terms is called an atom in FOL. An atom or its negation (¬) is a literal. FOL also
defines logical connectives (↔→∨∧ ,,,) and quantifiers (∃∀,) that can be applied to literals
to produce a FOL formula. FOL formulas evaluate as ‘true’ or ‘false’.

The recursive definition of the FOL syntax is presented as follows:
term = function(term{, term}) | constant | variable
predicate = predicate(term{,term})
atom = true| false| predicate
literal = atom | ¬ atom
formula = literal | quantifier variable . formula | formula connective formula |connective
formula

connective = ¬|→|↔| ∨ | ∧

quantifier = ∃∀ |

49

variable = x | y | z |..
constant = a | b | c |..
function = f | g | h |..

Symbol ‘.’ is an application of a quantifier. In this work, we often use the Alloy notation [59]
to specify FOL expressions for SEAM. The Alloy specification language uses the symbol ‘|’
instead of ‘.’ to denote an application of a quantifier.

Example 4-1: zzyyxxzyx ⋅=⋅+⋅∃ .,, is a formula where =+⋅ ,, are binary functions on
integers. In Alloy, we write this formula as follows: some x,y,z | x*x + y*y = z*z

The FOL Semantics

In [18], FOL semantics is defined in terms of interpretations. An interpretation I:(DI, αI) in
FOL is a pair, where DI is the interpretation domain, and αI is the assignment. The
interpretation domain DI is a finite or infinite set of objects (e.g. integers, SEAM properties,
SEAM working objects, etc). The assignment αI maps FOL constants and variables to
elements of DI, and FOL functions and predicates to functions and predicates over elements
of DI .

Based on these semantics, satisfiability and validity properties can be introduced:
A formula F is satisfiable if and only if there exists an interpretation I:(DI, αI) such that F

evaluates to ‘true’ on I. A formula F is valid if and only if it is satisfiable for all
interpretations I.

One approach to prove that a formula F is satisfiable is to construct an interpretation I, i.e.
to find a configuration of values from DI that evaluates F to ‘true’. This approach is
implemented by the Alloy Analyser [3]. Validity of a formula in the Alloy Analyzer is
checked by contradiction: from the definition of validity, F is valid if and only if the negation
of F (¬F) is unsatisfiable.

Another approach to prove a satisfiability or validity of a formula is based on logical
inference. This approach is implemented by theorem provers, including the Jahob verification
system [115][63].

In this work, we reduce the problem of refinement verification for visual SEAM
specifications to the proof of validity of a corresponding FOL formula. We explain how to
write such a formula for SEAM specifications in Chapter 5. In Chapter 6, we illustrate the
technique of refinement verification using the Alloy Analyzer and the Jahob verification
system.

4.2 Intuition for Set-Theoretical Interpretation of SEAM Modeling
Concepts

We represent SEAM model elements as sets and relations between them. Table 4-1 illustrates
a set-theoretical interpretation of SEAM model elements.

The elements of sets are static, whereas the relations between them can be seen as a matter
of change. The change of property value can be specified by relations between sets.

50

Table 4-1.
SEAM element Graphical notation Set –theoretical interpretation
Working object

Set W

Property

Set P

WO composition

Relation between two sets:
;1WWrWOcomp ×⊆

Property
composition and
property to
property (PP-)
relation

Relation between two sets:
AgePersonrcomp ×⊆ (is equivalent to

IntPersonrcomp ×⊆);

CompanyPersonrassoc ×⊆

Working object to
property relation
(host relation)

Relation between two sets:
YearCarrhost ×⊆ (is equivalent to

IntCarrhost ×⊆);

Multiplicity
expressions and
instance
expressions of
SEAM relations:

For relation r, multiplicity expression is a
cardinality of r:

{ } nrqpQqPp

QPr

≤∈∈≤∈∀
×⊆

),(|0|

;

Instance expression is a list of names of
relation instances:

112221111

`212111

.,..,.;.

;,...),(,),(,..),(,),(

121

+

+

===

⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

=

m

r

m

r

m

rr

qrpqrpqrp

qpqpqpqpr

k

43421321321321

Example 4-2: Figure 4-1 illustrates a compound property, Account, which has a component
property, Balance. A property composition relation between Account and Balance can be
formulated as follows: BalanceAccountrcomp ×⊆ (is equivalent to IntAccountrcomp ×⊆).

A multiplicity expression ‘1’ of this relation denotes that every account has exactly one value
of balance (balanceValue) which is an integer (Fig.4-1(a)); We can also say that every
element of Account set is related to exactly one element of Balance set (called balanceValue)
which is an Integer (Fig.4-1(b)):

{ } 1),(|| =∈∈∈∀ compruebalanceValaBalanceuebalanceValAccounta

An instance expression ‘b’ of relation r specifies that for some account a1 the value of its
balance is calculated as a1.b and it is equal 1500 (Fig. 4-1(b)):

1500.1 =ba ;
To change the balanceValue means to ‘redirect’ relation b from one element at Balance set to
another, as shown in Fig. 4-1 (b).

51

Figure 4-1: a) SEAM notation; b) Set – relations notation; ‘a value change’ is modeled as a redirection of
a corresponding relation.

Fig. 4-2 and 4-3 present the SEAM notation and its set-theoretical interpretation

respectively.
Fig. 4-3(a) illustrates a SEAM working object W seen as a whole, properties Px, Py, Pz,

and relations x, y, z, r between these elements; Fig. 4-3(b) illustrates a set-theoretical
interpretation of SEAM working object W seen as a composite, its component working
objects W1, W2, properties Px, Py, Pz, and relations c, t, x, y, z, r between these elements. In
Fig. 4-2(b) and 4-3(b) the property Py refers to the same set of objects (interpretation
domain) in reality.

Figure 4-2: a) working object W seen as a whole; b) working object W seen as a composite.

Figure 4-3: a) working object W seen as a whole (see also Fig. 4-2-a); b) working object W seen as a
composite (see also Fig. 4-2-b);

52

4.3 Formalization of SEAM Model Elements in FOL

4.3.1 Working Object
A working object seen as a whole (denoted Ww) describes a system by a number of
properties mPP ,..,1 and a localized action LA.

),,..,(1 LAPPW mw = (4.1)

Localised action LA describes the functionality of the working object. This localized

action can be modeled as a whole (denoted LAw) or as a composite (denoted LAc). For the
localized action seen as a whole no component actions are shown; the localized action as a
composite, in contrast, reveals component actions and possibly their order.

A working object seen as a composite (denoted Wc) describes a system’s construction by

a number of component working objects ,.., 21 WW seen as a whole and a joint action JA or a
distributed action DA. We formalize it as follows:

),..,(

);,..,(

1

1

DAWW

JAWW

c

c

=
=

 (4.2)

JA and DA can be modeled as a whole (denoted JAw , DAw) or as a composite (denoted JAc ,
DAc).

A working object in SEAM is represented by a set in a set-theoretical interpretation (Table
4-1). However, this working object is so precisely defined that often it explicitly refers to
only one instance in the reality – the company, the IT system, the IT application, etc.
Therefore, we are able to reason on the instance level using the notion of sets. In the text, we
often use the term ‘working object’ and omit the word ‘instance’ to refer to the system of
interest.

Working objects, representing components (components of components and so on) of this
working object may have an arbitrary number of instances (elements of the same set). A
number of instances for each of component working objects is specified by a multiplicity
constraint of a working object composition relation.

4.3.2 Property and State
SEAM property iP is specified in FOL as a set whose elements are instances of this

property.
A state X of a working object seen as a whole is defined by a tuple of state variables:

),..,(
11 mnppV = (4.3)

The state is computed by assigning state variables to values in the domain DI. Components

nmnnm PppPpp :,..,;..;:,..,
11 111 are instances of properties this working object hosts; DI is an

interpretation domain of a working object. DI is a non-empty set of values of property
instances

mnpp ,..,
11 . | DI| denotes the cardinality of DI.

To compute the state Σ∈X of the working object W means to interpret V on DI , i.e. to
map nmpp ,..,11 to their values in DI ;

The assignment αI maps variables nmpp ,..,11 to elements of DI :

},..,'',..,11{:
11 truepSmithpp nmiI j

aaaα (4.4)

Using the assignment, we denote the state X as follows:

53

])[],..,[(),..,(1111 nmIInm ppppstateX αα== (4.5)

To model an interaction of working objects with the environment, we specify input
parameters kII ,..,1 and output parameters lOO ,..,1 . Property instances nmpp ,..,11 , inputs

, and outputs are state variables of a working object:
),..,,,..,,,..,(

111 111 lkm nnn ooiippV = (4.6)

A state space of a working object defines all possible interpretations of V in DI.

A state X of a working object seen as a composite is a tuple ()kXXX ,..,1= whose
components are states of (instances of) component working objects.

We distinguish primitive and compound properties in SEAM (Fig. 4-4). Each instance of

a primitive property has a value, which is a single element of its interpretation domain. This
value is a state of this instance:

In Fig. 4-4(a), a property Age is a primitive property (a subset of integers {0..200}). Here
a:Age specifies an instance of the property Age and has a value in the range 0..200. We can
write: }200..0{)(∈astate . {0..200} is the interpretation domain of the property Age.

Figure 4-4: a) a primitive property; b) a compound property with two references on primitive properties.

Interpretation domain DI of a compound property is defined by a Cartesian product of

interpretation domains of its component properties and properties it refers to:
A compound property Address in Fig. 4-4(b) references two primitive properties: s: Street

and n:Number. A pair (s,n) defines a state of addr:Address. We write:
NumberStreetnaddrsaddrstateaddrstate ×∈=).,.()(, which is equivalent to:

}200..1{]30[)(×∈ Stringaddrstate
Host relations, property associations and property compositions are defined in SEAM as

SEAM relations with multiplicities based on relation-partition algebra [41] and a theory of
multi-relations [40]. To specify the cardinality of a host relation, property association, or
property composition relation, a multiplicity expression is used.

4.3.3 Host Relations, Property Associations, and Property Compositions
The Relation Partition Algebra (RPA) by Feijs and van Ommering [41] defines part-of and
use relations as special types of binary relations. The theory of multi-relations by Feijs and
Krikhaar [40] defines formalism, suitable for reasoning about relation multiplicities.

54

We combine these theories and formalize: (1) SEAM host relations and property
compositions as part-of relations with multiplicities; (2) SEAM property associations as use
relations with multiplicities.

Multi-relation m(x,y)= n (Fig.4-5(a)), defined in [40], specifies n occurrences of the binary
relation),(yx , where Xx∈ and Yy ∈ .

SEAM multi-relations part-of and use (Fig. 4-5(b,c)) between properties P and Q, and P
and T, specify 'relations with multiplicities' between elements x:P, y:Q, z:T of corresponding
properties.

yx
1
n
...

m(x,y) = n

xn1

Q...P
y

partinf(P,Q) = n1

partsup(P,Q) = n2

xn

n1 ≤ n ≤ n2

zr1

T
zr

...P
x

useinf(P,T) = r1

usesup(P,T) = r2

r1 ≤ r ≤ r2

(a) (b) (c)
yx n QP

r1..r2|zr1..zr2
TP

n1..n2| xn1,..,xn2

P
n1..n2| xn1,..,xn2

Q

or

Figure 4-5: SEAM relations with multiplicities. a) binary multi-relation; b) SEAM property composition
represented as a ’part-of’ relation: ’P is a part of Q’. This is also valid for SEAM host relations; c) SEAM
property association as a ’use’ relation: ’P uses T’.

SEAM multi-relations part-of and use are defined by a pair of functions:

)),(),,((supinf QPpartQPpart and)),(),,((supinf TPuseTPuse , representing cardinalities of

these relations:

),()},(),(|:{),(|:

);,()},(),(|:{),(|:

supinf

supinf

TPuseTPusetpTtTPusePp

QPpartQPpartqpPpQPpartQq

≤∈≤∀

≤∈≤∀
 (4.7)

These functions return an upper (sup) and a lower (inf) bound of an interval:
;:,,, supinfsupinf ∞∪→Ρ×Ρ Nuseusepartpart

∞≤≤≤

∞≤≤≤

supinf

supinf

0

;0

useuse

partpart
 (4.8)

A part of relation),(QPpart can be read as ‘P is a part of Q’; A use relation),(TPuse can
be read as ‘P uses T’; here P, Q, T are SEAM properties.

Figure 4-6: SEAM relations annotated with multiplicity and instance expressions. a) A host relation and
a property composition modeled as part-of relations; b) A property association modeled as use relation;
c) Well-formedness of host and property composition relations. T,W,Q are free floating properties.

55

Figure 4-6-a illustrates a property composition between P and Q modeled as a part-of
relation:

1supinf),(,0),(MQPpartQPpart == (4.9)
Eq. (4.9) can be read as follows: There exist at most M1 instances of P for each instance of Q.
x1,..,xM1 specifies a list of component property names in SEAM. In a set-theoretical
interpretation, x1,..,xM1 specifies a list of names of relations between elements of P and Q.

Property composition relations in SEAM are functional and cycle-free. Functionality

means that the property P can be a part of, at most, one compound property:

RQRPpartQPpartRQP =⇔>∧>Ρ∈∀ 0),(0),(|
~

,, supsup (4.10)

Ρ~ is a set of all properties of a working object.

A property composition relation is cycle-free, i.e. property P cannot be a direct (or

indirect) parent of itself (i.e. there is no path of one or more legs that starts at P and leads
back to P) as defined in [41]:

∅=Ρ∈∀ +),(|
~

PPpartP (4.11)

),(PPpart+ is a transitive closure.

We define a transitive closure),(21 PPpart+ on Ρ~ as a sequence of elements Ρ∈~
iQ , i = 1..n

such that P1 = Q1 and),(),(..),(21221 PPpartPQpartQQpart n
n =oo . Symbol ‘o ’ denotes a

relation composition;),(21 PPpartn is an n-step path from P1 to P2.

Figure 4-6(a) illustrates a SEAM host relation between a working object Spec1and a

property Q: 1)(;)(infsup == QpartMQpart - there exist at most M instances of Q in Spec1.

Similarly to a property composition, a host relation in SEAM is functional, i.e. property Q
can be a part of at most one working object.

A maximum and minimum number of instances of property P (denoted)(max PInst ,

)(min PInst) in a working object can be calculated as follows:

∑ ∑

∑∑

Ρ∈∀

∞

=

++

∞

=

+

Ρ∈∀

+

=⋅+=

=⋅+=

~ 1
infinfinfinfinfmin

1
supsup

~
supsupsupmax

),(),(),()()(

;),(,)(),()()(

Q n

n

n

n

Q

partQPpartQpartQPpartPpartPInst

partQPpartQpartQPpartPpartPInst

 (4.12)
An association between properties P and T specifies the fact that the property P

references (uses) property T. Figure 4-6-b illustrates an association between properties P and
T modeled as a use relation: 0),(;),(inf2sup == TPpartMTPpart - there exist at most M2

references on T for each instance of P.
A property association relation is non-functional, i.e property T can be referenced by

multiple compound properties:

0),'(0),('|
~

',, supsup >∧>∧≠Ρ∈∃ TPuseTPusePPPPT (4.13)

A property association relation can be cyclic, i.e property T can be referenced by itself:
∅≠Ρ∈∃ +),(|

~
TTuseT (4.14)

56

A maximum number of references to T in the working object (denoted Refmax(P)):
()),()(max)(Re supmaxmax TPusePInstTf ii

Pi

⋅= (4.15)

Pi is a property that references T.

Specification Consistency
Example 4.2: Specification illustrated in Fig. 4-6 (b) defines a working object with
properties P and T where each instance of P refers some instances of T. We can calculate how
many instances of T can be demanded by a system as Refmax(T) = 2MM × . The maximum
number of instances of T is Instmax(T)=M1

If M1 < 2MM × - we have an insufficient declaration of T that cannot cover its demand.
Typically, this problem is a subject of dynamic testing; however, based on the proposed
formalism, insufficient instance declaration can be detected during the static analysis, prior to
code generation and execution.

We formulate the following criterion of specification consistency.

Definition 4.1.
A specification of a working object as a whole is consistent if:

 all host relations and property compositions are functional and cycle-free;
 instance declaration of all properties is sufficient (covers its potential demand):

)()(Re|
~

maxmax PInstPfP ≤Ρ∈∃

Specification consistency is a part of the static semantic of the model; it can be also included
into the well-formedness rules for the SEAM models4.

4.3.4 Action
A behavior of a working object is represented in a SEAM diagram by an action A that can be
modeled as a whole (denoted Aw) or as a composite (denoted Ac). In this section we provide a
general formalism for actions in SEAM. Specific action types (localized, joint, and
distributed actions) are discussed in the following sections.

Action as a Whole
Action A seen as a whole (Aw) is a tuple),,,,,(OIAAAA postupreinv . I and O denote input and

output parameters of action A. These parameters specify the information entering and leaving
the working object during the action execution. I and O belong to the set of state variables V
of the working object. Postcondition postA is a condition that a working object meets after the

action termination. Precondition preA specifies a condition that must hold prior to the action

execution: If A is started in a state satisfying preA , it is guaranteed to terminate in a state

satisfying postA

Precondition and postcondition are modeled as predicates over state space Σ :

},{:

},,{:

falsetrueA

falsetrueA

post

pre

→Σ×Σ

→Σ
 (4.16)

4 Static semantics of SEAM, including a definition of well-formedness rules for SEAM models is addressed in
the Ph.D thesis of Lam-Son Le [tbd].

57

A precondition of the action A specifies a set of states of a working object, where A can be
triggered. A postcondition of the action A defines a relation between the states of a working
object before and after this action respectively.

Invariant invA is a condition that holds before, after, and during the action execution. It
constraints action pre-states, post-states, and intermediate states. Fig. 4-7 illustrates how
action precondition, postcondition and invariant constraints the state space of a working
object. The region labeled Apre is the set of states that satisfy the action precondition; the
region labeled Apost is the set of states of the action A, where the postcondition holds; the
region labeled Ainv is the set of states, which includes pre-states, post-states, and possible
intermediate states of A.

Figure 4-7: Representation of an action precondition, postcondition, and invariant as constraints over the
state space .

Any state of a working object must satisfy its global invariants invS . Invariants are formalized as
predicates over state spaceΣ :

},{:, falsetrueAS invinv →Σ (4.17)

Action A defines a transition of the working object from state X to state 'X (pre-state and post-
state respectively). Action semantics is provided by an FOL-formula },{: falsetrueA →Σ×Σ . We
specify the SEAM action using logical implication between precondition and postcondition:

)',()()',(XXAXAXXA postpre

def

→= (4.18)

If at a given state X the precondition Apre of the action A holds, then the working object will be
transferred to a state 'X , for which the postcondition of A - postA - holds.

For actions with invariants we write:

)'()'()',()()()()',(XSXAXXAXAXAXSXXA invinvpostpreinvinv

def

∧∧→∧∧= (4.19)

If at a given state X the precondition Apre of the action A, and the invariants invinv AS , hold, then the

working object will be transferred to a state 'X , for which the postcondition postA and invariants

invinv AS , hold.

Action specifications often contain frame conditions. These conditions are originated from the
frame problem of declarative specifications [14]: This problem appears when more than one
implementation of the specification corresponds to its contract. Frame conditions constrain the
number of such possible implementations by specifying the variables that are supposed to remain
'unchanged' during the action execution. We consider frame conditions in SEAM as a special case of
action postconditions, as they must hold upon the action termination. We conjoin a frame
condition)',(XXA frame with a postcondition to obtain the following action specification:

58

)'()'()',()',()()()()',(XSXAXXAXXAXAXAXSXXA invinv
frame

postpreinvinv

def

∧∧∧→∧∧=

(4.20)

If the action is specified by input parameters I and output parameters O, then we specify the action as
follows:

),',,(),(),,',(OXIXAIXAOIXXA postpre

def

→= (4.21)

Here action postcondition relates pre-state, post-state, input, and output parameters of the
action.
If at a given state X the working object receives an input I such as the precondition Apre of the
action A holds, then the working object will be transferred to a state 'X and generate an output O,
for which the postcondition of A - postA - holds.

Action input and output parameters can be considered as state variables.
Note that if the precondition does not hold – the post state 'X is arbitrary.

In Eq. (4.21) we consider input I and output O as parts of the observable external behavior

(i.e. the input is received in the pre-state and is necessary to trigger the action; the output is
produced in the post-state). Note that this is not always a case: inputs and outputs can make a
part of the internal (not necessarily observable) action behavior, i.e. they may appear in the
intermediate action states.

Successful Action
Action specifications in Eq. (4.18) - (4.21) are defined as predicates that evaluate as 'false' only when
the state transition is incorrect, i.e. when X satisfies Apre, but 'X does not satisfies postA . Therefore,

such predicate evaluates to 'true' not only when the action makes a correct state transition, but also
when Apre is not satisfied (i.e. no action is executed).

Now we specify a predicate that evaluates to 'true' if the action executes and makes a correct
transition and as 'false' otherwise. We call this predicate a successful action specification. An
action is successful if its precondition holds and its postcondition realizes. We write the
expression for successful action from Eq.(4.17) as follows:

)',()()',(XXAXAXXA pre

def
success ∧= (4.22)

Eq. (4.22) is equivalent to)',()(XXAXA postpre ∧

Update Statement
In Eq.(4.18)-(4.21) partial action specifications are defined: these specifications do not show
how the transition from a pre-state to a post-state is carried out. This transition can be
explicitly specified using an update statement (or statements).

Example 4.3: An action contract defined by a triple (precondition, invariant, postcondition)
can be implemented in many ways. Let us consider a working object W having a property x: Int
(Fig. 4-8). We define an action },{: falsetrueIntIntA →× with the following contract:
(xxAtruexA postpre >< ':;;0:). Here and later in the text we denote by x, y, z,… values of

variables before the action execution and, respectively, by x‘, y’, z’,… values of the same
variables after execution of an action.

59

Figure 4-8: Working object W seen as a whole with a localized action A and its contract: (x>o, true, x’>x).
Action invariant is not specified, i.e. Ainv = true.

An action contract specifies that starting at a pre-state, where x<0, the action A switches the state of
the system such that in a post-state x’>x. ‘
We write the action specification where the transition from the pre-state X = state(x) = x to the post-
state 'X =state(x) = x’ is explicit: ())',())('()(xxAxAxxA postupre ∧=→

Au is an update statement. All the update statements below can correctly specify a transition from
X to 'X :

 x’ := -x
 x’ := -x + 1
 x’ := - x + 2
 …

We define an update statement as a function that explicitly specifies how the state of a
working object is switched during the action: Σ→Σ:uA

We distinguish two types of update statements: assignments and assumptions. An
assignment update binds a variable to a (new) value: v := s; An assumption update specifies a
condition that, if holds, guarantees that some formula F is satisfied: if c then F.

An action specification with an update statement is written as follows:

))',())('(|'()(|)',(XXAXAXXXAXXXA postupre

def

∧=∃→∀= (4.23)

For functional updates we can also write:

))(,()(|)',(XAXAXAXXXA upostpre

def

→∀= (4.24)

Eq. (4.23)-(4.24) specifies that If at a given state X the precondition Apre of the action A holds, then

the working object will be transferred to a state)(' XAX u= , for which the postcondition of A -

postA - holds.

Weakest Precondition and Hoare Triple
We can specify Dijkstra’s Weakest Precondition [18] for the action A. The weakest
precondition of an action A (denoted),(upost AAwp) defines a set of states, such that when the

action A is started on a state X satisfying),(upost AAwp , and the update statement uA is

executed on X to produce the state 'X , then 'X meets the action postcondition postA [18].

This is illustrated in Fig. 4-9: The region labelled postA is the set of states that satisfy action

postcondition; the region labelled),(upost AAwp is the set of states of the working object that

satisfy the weakest precondition. Every state X on which the execution of the update
statement uA leads to a state 'X in the postA region must be in the),(upost AAwp region. This

is the reason the precondition),(upost AAwp is called weakest. By definition, any other

60

precondition can only reduce the set of states X on which the execution of the update
statement uA leads to postA being satisfied.

Figure 4-9: Weakest precondition

For a sequence of update statements

nuu AA ;..;
1

(operator ';' denotes the sequential

composition) we denote the weakest precondition as);..;,(
1 nuupost AAAwp . For the action

postcondition postA to hold after executing the sequence of update statements
nuu AA ;..;

1
, the

weakest precondition must hold on an initial state of A. This weakest precondition defines the
set of states

preAΣ as follows:

()
111

;..;),,();..;,(
−

=
nnn uuupostuupost AAAAwpwpAAAwp (4.25)

The postcondition postA holds if it holds after the last update statement. The weakest

precondition 1),(−= n
postupost AAAwp

n
can be considered as a postcondition of a

sequence
11

;..;
−nuu AA of update statements.

The verification condition for the sequence of update statements is:
);..;,(

1 nuupostpre AAAwpA → (4.26)

The validity of this condition implies that when the precondition Apre holds, then after the
execution of the sequence of updates of A, the postcondition Apost holds.
This verification condition is denoted by the Hoare Triple [18]:
{ } { }postuupre AAAA

n
;..;

1
 (4.27)

Example 4.4: Consider Example 4.3 with the contract: xxAxA postpre >=<= ';0 and the

update statement Au : x’ := -x.
We write the verification condition from (4.27):
{ } { }

);:','(0

:':'0

xxxxwpx

xxxxx

−=>→<
>−=<

We compute this as follows:
):','(xxxxwp −=>

xx >−⇔ - by substituting x' with its assignment xx −=:' ;
xx −<⇔ ;

We obtain: xxx −<→< 0 , which is valid.

A specification that defines a contract (precondition, invariant, postcondition) and omits
update statements is called partial. A specification that defines several update statements and
the order of their execution is called imperative. Update statements (and their order) can be
considered as an implementation of an action contract.

61

Preconditions, postconditions, update statements, and invariants relate actions and properties of a
working object. In SEAM graphical specifications, preconditions, postconditions, and update
statements are modeled using action-property relations with annotations.

Action as a Composite
The action A seen as a composite (denoted Ac) is a tuple),,..,,,,(21 posttpreinv AAAAAA .

This action specification is a detailed specification of a corresponding action seen as a whole
- Aw. tAAA ,..,, 21 are component actions of Ac .These actions make the action structure
explicit. (Recall that in Aw only the external behavior, specified by the action contract, is
visible.) In the next chapter we consider the action, modeled as a composite, as a refinement
of the same action, modeled as a whole.

Ac can be specified declaratively, or imperatively. A declarative specification shows the

effect of the action application – a transition from a pre-state to a post-state. It conceals the
intermediate states and omits the specification of a control flow - the order of component
actions occurrence. An imperative specification reveals the intermediate states resulted from
ordered execution of component actions. An action control flow is modeled in SEAM using
action-action relations.

 Ac is a t-ary predicate ρ applied to the set of component actions A1..At:

()t

def

c AAXXA ,..,)',(1ρ= (4.28)

We call ρ the ordering function. If an action as a composite is modeled declaratively, then
the ordering function ρ is not specified, i.e. all combinations of component actions are
possible. We express such an action as follows:

U
O

t

def

c AAXXA ΟΟ= ..)',(1 (4.29)

Here O stands for some ordering between two component actions. The specification in Eq.
(4.29) is difficult to formulate for many component actions and different ordering types.

If component actions in Eq. (4.29) operate on disjoint states (i.e. do not affect each other),
these actions are called independent.

Actions A1..At are independent if and only if for each state variable pij of a working object
there is at most one component action Ak, tk ≤≤1 that modifies this state variable during the
execution of Ac .

Independent component actions A1..At can be executed in parallel. In this case, the action

seen as a composite will be expressed as a conjunction of its component actions:

t

def

c AAXXA ∧∧= ..)',(1 (4.30)

Here all the component actions make a transition from the same pre-state X to the same post-
state 'X :

)',(..)',()',(1 XXAXXAXXA t

def

c ∧∧= (4.31)

For an action, modeled imperatively, we specify the intermediate states 11,.., −tXX and
obtain the following formula:

62

)',(..),(|,..,)',(11111 XXAXXAXXXXA ttt

def

c −− ∧∧∃= (4.32)

In Eq.(4.32) specification of intermediate states defines the order in which the component

actions will be executed. This means that the execution of some action),(kji XXA switches

the state of a working object and enables other action(s) lA , for which a precondition at kX

holds:)(| kll XAA
pre

∀ .

4.3.5 Action-to-Property (AP-) relations
Action to property (AP-) relations in SEAM diagrams are used for the explicit modeling of
action contracts and update statements. AP-relations in SEAM diagrams are annotated with
the corresponding expressions (the graphical notation for AP-relations was defined in section
3.4.5.).

The expressions for preconditions, invariants, and postconditions are logical expressions
(predicates). We use the Alloy syntax [59] for these expressions in SEAM diagrams. For
further validation and refinement verification, we define the mapping rules for the translating
SEAM specifications to Alloy specifications (these rules are presented in Chapter 6). Thus,
using the Alloy specification language in graphical specifications facilitates these mapping
rules.

Table 4-1 lists the Alloy constructs used for annotating SEAM AP-relations.

Table 4-1

Alloy expression SEAM
all a:X|F
no a:X|F
some a:X|F
lone a:X|F
one a:X|F

Quantification over property instances. It expresses the following:
‘for * instances of a property X F holds’. Here * means:
all – ‘all’;
no – ‘no’;
some – ‘at least one’;
lone – ‘at most one’;
one – ‘exactly one’;
F here is a logical expression that usually includes instances of X. For example we
write: all p:Person | (p.age>0)

F1||F2
F1 or F2

Logical disjunction or ‘inclusive or’. Specifies that either F1 or F2 or both are satisfied;

F => ..
F => ..else ..

Logical implication. Is used for guarder update specification: ‘if F then …’, or ‘If F
then .. else ..’

F1 && F2
F1 and F2

Logical conjunction. Specifies that both F1 and F2 are satisfied;

!F Negation. Specifies that F must not hold.
A in X A:X
A !in X

Subset. Specifies that a property instance (or group of instances) A belongs to (or does
not belong to) a set defined by a property X.

= < >
<= >= !=

Operations of comparison: ‘equal to’, ‘less then’, ‘greater then’, ‘less or equal’, ‘greater
or equal’, ‘not equal’

+ - Algebraic operations

For update statements, we use expressions written in Java language.

Example 4.5: Consider the action SellProduct specified as illustrated in Fig. 4-10. The
expression: [one p:Product | p.id = requested_ID] is a selection of a property instance that
will be updated by the action. Here, it is a selection of a product with a given id from the set
of products.

63

An update statement expressed as an assignment p.quantity’:=p.quantity - 1 defines how the
selected instance will be modified by the action. Here, the quantity of a selected product will
be reduced by 1.

Product Quantity
1|quantity

ID
1|id

SellProduct

ProductID
<IN>

1|requested
_ID

U:[one p:Product | p.id = requested_ID]
p.quantity’:=p.quantity-1

Figure 4-10: Update statement expressed as a selection condition followed by the assignment expression.

4.3.6 Action-to-Action (AA-) relations
Action-to-action (AA-) relations in SEAM connect component actions and define their order of
execution. SEAM specifies AA - relations using a subset of graphical elements defined in Business
Process Modeling Notation (BPMN) [78]. AA- relations defined in SEAM are:

 Start
 End
 Transition
 Conditional transition
 Fork (AND, OR, XOR)
 Merge (AND, OR, XOR)

Forking and merging of a control flow are defined using BPMN data-based or event-based gateways.

The semantics of SEAM action-action relations can be expressed using combinations of logical
connectives:

- ‘ ¬A ‘ - a negation ‘not A’;
- ‘A1 ∨ A2’ - a disjunction ‘A1 or A2’ ;
- ‘A1 ∧ A2’- a conjunction ‘A1 and A2’;
- ‘A1 →A2’- an implication ‘A1 implies A2’.

The graphical notation of SEAM AA-relations is presented in Table 3-3 of the previous
chapter; FOL semantics for these relations is presented in Table 4-2.

An AA-relation is specified by a pair (src, dst), where src is a source action(s) of this relation and
dst is its destination action(s).

A Start relation defines an entry point for an activity (a sequence of component actions, specified
for some actions seen as a composite, Fig. 4-11); it has no src action. A destination action of a Start
relation is the action, which will be executed first. This action is related to a parent action as
follows:)()(1 XAXA

preprec → ;

64

Figure 4-11: AA-relations

An End relation specifies a terminating point for a sequence of actions; it has no dst. A source

action An of the End relation illustrated in Fig. 4-10 is related to a parent action as follows:
)',()',(XXAXXA

postpost cnn → ;

Table 4-2: FOL-Semantics of AA-relations in SEAM
SEAM FOL:

Start(A1))...,(11 XXA

End(A1))',(... 11 XXA

Transition(A1,A2))..,(),(| 3222112 XXAXXAX ∧∃

ConditionalTransition
(A1,A2,C))..,()(),(| 32222112 XXAXCXXAX →∧∃

ConditionalTransition
(A1,{A2,A3},C)

() ()()),()(),()(),(| 423232222112 XXAXCXXAXCXXAX →¬∨→∧∃

AndFork(A1,{A2,A3}) ()),(),(),(| 4233222112 XXAXXAXXAX ∧∧∃

AndMerge({A1,A2},A3) ()),(),(),(| 4333223113 XXAXXAXXAX ∧∧∃

OrFork(A1,{A2,A3})

()
() ()),(),(),(),(),(

),(),(|,,

863762611533311

422211632

XXAXXAXXAXXAXXA

XXAXXAXXX

∧∧∨∧

∨∧∃

OrMerge({A1,A2},A3)
()

() ()),(),(),(),(),(

),(),(|,,

873722711643422

533311743

XXAXXAXXAXXAXXA

XXAXXAXXX

∧∧∨∧

∨∧∃

XOrFork (A1,{A2,A3})
()

()),()(),(

),()(),(|

52322211

422232112

XXAXAXXA

XXAXAXXAX

pre

pre

∧¬∧

∨∧¬∧∃

XOrMerge({A1,A2},A3)
()

())(),(),(

)(),(),(|,

23643432

4352321142

XAXXAXXA

XAXXAXXAXX

pre

pre

¬∧∧

∨¬∧∧∃

SEAM transition relation specifies a sequential composition of actions, when after the
termination of one action, another action is triggered. We formalize a transition from action
A1 to action A2 as a conjunction of predicates specifying actions:

),(),(| 3222112 XXAXXAX ∧∃ (4.33)

here 2X is an intermediate state between A1 and A2; it is a post-state of A1 and a pre-state of
A2.

Using Eq. (4.18), we rewrite Eq. (4.33) as follows:

65

 () ()),()(),()(| 32222211112 XXAXAXXAXAX postprepostpre →∧→∃ (4.34)

If update statements uu AA 21 , are specified – we write the following expression for action
transition:

() () ()2112122221111112)())(,()())(,()(| XXAXAXAXAXAXAXAX uupostpreupostpre =∧→∧→∃

(4.35)
Recall the discussion about successful action specification: the expression for action
transition in Eq. (4.34)-(4.35) will be evaluated to ‘true’ even if one of its actions is not
successful (i.e. when '')(11 falseXA pre = or '')(22 falseXA pre =). We call a transition

successful when the preconditions of both A1 and A2 are satisfied:
),()(),()(| 32222211112 XXAXAXXAXAX prepre ∧∧∧∃ (4.36)

SEAM conditional transition relation specifies a sequential composition of actions A1 and A2,
assuming that a condition C holds:

),()(),(| 32222112 XXAXCXXAX →∧∃ (4.37)
Note that if C does not hold, then the transition results in an arbitrary state.

By analogy with the successful transition in Eq.(4.36), we write the successful conditional
transition:

),()()(),()(| 322222211112 XXAXAXCXXAXAX prepre ∧∧∧∧∃ (4.38)

A conditional transition can be specified as an ‘exclusive OR’ - XOR fork. This means that if
C holds, then action A2 is triggered, else action A3 is triggered:

() ()()),()(),()(),(| 423232222112 XXAXCXXAXCXXAX →¬∨→∧∃ (4.39)

A fork relation in SEAM specifies a split of the control flow, when after a termination of
an action, several actions can be triggered. A fork relation has one source action (src) and a
set of destination actions (dst).

A merge relation in SEAM is the opposite of the fork relation. It specifies a join of
different branches in the control flow, when several actions should terminate before another
action is triggered. A merge relation can be used for modeling synchronization or
concurrency. This relation is specified with a set of source actions (src) and one destination
action (dst).

We distinguish AND (parallel), OR (inclusive OR), and XOR (exclusive OR) fork and

merge relations in SEAM.
 AND fork defines a parallel execution of a set of actions, specified in a dst parameter.
 AND merge stands for synchronization: all the actions specified in a src parameter of AND
merge relation must terminate at the same post-state;
OR fork specifies a nondeterministic performance: any combination of actions from the dst
set can be triggered. As a result, several different traces of intermediate states can be
produced;
OR merge specifies a concurrency.
XOR fork and XOR merge are exclusive choices, when only one action from the dst set (the
src set for merge) executes.

66

We use logical connectives and their combinations to connect component actions within a parent
action seen as a composite. This is shown in Table 4-2. This table complements Table 3-3 where the
visual SEAM syntax of AA-relations is presented.

4.3.7 Distributed Action and Distributed to Localized Action (DALA-) Relations
In contrast to SEAM localized and joint actions, a distributed action does not affect the
properties of a working object directly. It specifies an interaction between component
working objects and an invocation of the localized actions of these component working
objects:

()kd

def

LALAXXDA ,..,)',(1ρ= (4.40)
Distributed action does not specify its own precondition, postcondition, and invariants.

If a distributed action is modeled declaratively, then the ordering function ρd is not
specified, i.e. localized actions can be triggered in any order:

U
O

k

def

LALAXXDA ΟΟ= ..)',(1 (4.41)

Here O stands for some ordering between two localized actions. Eq. (4.41) specifies all
possible combinations of action invocations.

If localized actions in Eq. (4.41) operate on disjoint states (i.e. do not affect each other),
these actions are independent and can be executed in parallel. We represent a declarative
specification of a distributed action by a conjunction of these localized actions:

)',(..)',()',(1 XXLAXXLAXXDA k

def

∧∧= (4.42)

Here all localized actions make a transition from the same pre-state X to the same post-
state 'X .
 For a distributed action, modeled imperatively, we specify the intermediate states

11,.., −kXX and obtain the following formula:

)',(..),(|,..,)',(11111 XXLAXXLAXXXXDA kkk

def

−− ∧∧∃= (4.43)

We use distributed-to-localized action relations (DALA-relations) in SEAM diagrams to
specify the localized actions, bound by a given distributed action, and their order of
invocation.

In the next chapter, we consider a distributed action of a working object seen as a
composite as a refinement of a localized action of the same working object seen as a whole.

4.4 Imperative vs. Declarative Specifications

A declarative action specification defines a single transition of a working object from a pre-
state to a post-state and does not show the intermediate states.

An imperative specification of an action introduces the ordered set of the intermediate

states for this action. Each intermediate state may correspond to:
- a post-state of some component action (for an action as a composite);
- a post-state of a localized action executed as a part of a distributed action;
- an update of a single property (for a localized or a joint actions as a whole).

67

)',(..),(|,..,)',(11 1 XXAXXAXXXXA rr ttttt

def

c ∧∧Σ∈∃= (4.44)

Here rtt XX ,..,1 present intermediate states. Each intermediate state can be associated with
a time t during specification simulation. By this, actions can be ordered. For example, let the
intermediate state 1tX be a post state of an action),(11 tXXA , and a pre-state of an action

),(1 itti XXA . Here we say that A1 precedes Ai. If 1tX is a pre- state of two actions Ai, Aj, then

both of these actions are available at 1tX and can be executed in parallel.
Imperative action specifications are useful when simulation and dynamic verification

(testing) is required. A specification simulation usually involves a translation to some
imperative language (e.g. Java).

4.5 Instance Creation and Deletion: Local Variables

The creation and deletion of an instance of a component working object, a property, or a
reference to a property can be seen as a part of a dynamic behavior of a system. To create a
new instance means to specify a binding between an instance name and a value in its
interpretation domain. New instance name is a name, defined by the instance expression and
not yet allocated to any other instance. Instance deletion respectively releases this binding.

Figure 4-12: a) Creation of a new element in a list using a local variable; b) Creation of an element
modifies an instance counter Mcurrent

Figure 4-12(a) illustrates a creation of a new instance of a property P in a list listP. listP

specifies an ordered set of instances of P; each instance can be addressed by its position in a
list, for example listP[1]. Instance creation is carried out using a local variable newP. This
local variable exists only during the execution of CreateP: this is shown (1) graphically - by a
relation with a black diamond between the action CreateP and the property P; (2) using a
quantification ‘one newP’ (this is equivalent to newP∃), which is local to the action.

The result of an action CreateP, expressed by its postcondition specifies that a local
variable newP is not in listP and it is in listP’. Here listP and listP’ define the state of a
system before and after the action CreateP, respectively.

In the specification of a postcondition, we use the Alloy notation: operator ‘in’ is a binary
predicate that returns ‘true’ if a left hand side of this operator is a subset of right hand side of
it. The notation newP in listP is equivalent to listPnewP ⊆ ; quantifier ‘one’ is an existential
quantifier: one newP which is equivalent to newP∃ .

In SEAM specifications, creation or deletion operations also modify a current number
Mcurrent of instances of a given object. This number is usually restricted by a multiplicity
expression (Fig. 4-12 (b)). Mcurrent can be seen as an instance counter. Its minimum and

68

maximum values are defined by a multiplicity constraint. For the model in Fig. 4-12 it is:
∞≤≤ currentM0 . The fact that the instance newP becomes an (Mcurrent+1)th element in the listP

– i.e. increases the instance counter value by 1 - is not explicit in Fig. 4-12 (a).

The deletion of an instance can be specified in a similar way (Fig. 4-13). To delete an
instance that corresponds to a certain condition c:

(1) We specify a local variable oldP: one oldP | c(oldP)
(2) We state that such a variable exists in listP but does not exist in listP’.

Here listP and listP’ define the state of a system before and after the action DeleteP
respectively.

Instance deletion decreases the instance counter value by 1.

Figure 4-13: a) Deletion of an ‘old’ element from the list; b) Deletion of an element modifies an instance
counter Mcurrent

69

Chapter 5

Transformations of Refinement in SEAM and
Refinement Verification

To reason about alignment between SEAM visual specifications, we identify the relationships
between these specifications with a transformation of refinement as defined in Model-Driven
Engineering (MDE). As MDE does not provide a formal notion of correctness for these
transformations, it is challenging to specify a verification procedure for them.

Refinement and refactoring are also defined in software engineering; they specify the

transformations of programs. Compared to MDE, refinement correctness in software
engineering is formally defined and can be validated using formal methods.

Formal semantics for visual specification increases the precision of these specifications.

Based on this, we can specify the criteria of refinement correctness for visual specifications
by an analogy with refinement correctness, defined for programs.

In software engineering, formal methods allow us to formulate a refinement correctness of
a program as a first-order logic formula and to validate this formula. Along these lines, we
represent SEAM visual specifications and relationships between them as first-order logic
formulas and reduce the problem of refinement verification to a problem of validation of the
first-order logic formula.

In Section 5.1 we discuss the transformations of refinement and refactoring. In Section 5.2

we make an overview of simulation techniques for refinement verification. We present in
more details data refinement [51], forward simulation as a method to prove its correctness,
and ASM refinement method [16] based on generalized forward simulation.

Modification, creation, or deletion of model elements in a diagram leads to a specification
refinement. In sections 5.3 – 5.7 we specify different forms of refinement in SEAM. We
formulate the criteria of correctness for each form of refinement in terms of forward
simulation (as defined in [51][27][112]) or in terms of generalized forward simulation (as
defined in [16]).

5.1 Refinement vs. Refactoring

In software engineering, a technique for transforming an existing code (its internal structure)
without changing its external behavior is known as refactoring [42][69].

We specify the external behaviour of a system, executing an action A, as a pair of system
states ', XX before and after the execution of A. Refactoring preserves this pair for each
execution of the action A and its refactoring Arefact such that whenever the action Arefact starts
at X and terminates at 'X , there exists a corresponding run of the action A, which also
starts at X and terminates at 'X . We formulate this as follows:

70

)'X ,X()'X ,X(| 'X ,X AArefact ⇒Σ∈∀ (5.1)

Eq. (5.1) is a criterion of refactoring correctness. Various refactoring types are specified in
www.refactoring.org and in the literature. Automated refactoring is supported by a number of
tools and environments for automated software development, such as IDEA by IntelliJ,
Eclipse, NetBeans, Visual Studio, etc.

Refinement [111] is a general technique that specifies a stepwise development of the
program by adding details or eliminating nondeterminism. As opposed to refactoring,
refinement can change an observable behavior of a model (including its external behavior),
thus it specifies a wider class of transformations than refactoring does (www.refactoring.org).
Adding or removing a field or a method of a class are examples of refinement, but they are
not refactorings.

Refinement can be seen as a transformation which preserves the corresponding external
behavior:

)','()',(|'

),()',(|,',

caaa
init

a

carefineaaccc

XXRXXAX

XXRXXAXXX

∧Σ∈∃

⇒∧Σ∈Σ∈∀
 (5.2)

Formula (5.2) denotes that whenever the refined action Arefine starts at cX and terminates at

'cX , there exists a corresponding run of the action A, which starts at the corresponding state

aX , related to cX by R , and terminates at a state 'aX , which is also related to 'cX by R.
The initial action specification is also called abstract; respectively, the refined action

specification is called concrete. Therefore, we use indexes ‘a’ and ‘c’ to specify states of the
abstract and concrete specification in Eq. (5.2).

R is a refinement relation. It defines a relation between observable system states of the
concrete and abstract specifications: },{: falsetrueR ac →Σ×Σ . A refinement relation can be

specified as a function acR Σ→Σ: that maps each state of the concrete specification to
exactly one state of the abstract specification.

Refactoring can be considered as a special case of refinement: If a state space of the
concrete (refined) specification is the same as a state space of the abstract (initial)
specification, i.e. ac Σ=Σ , and R is defined as an identity function: R: XXRX =Σ∈∀)(| ,

then the definition of refinement correctness from (5.2) transforms to the definition of
refactoring correctness from (5.1).

In this work, we use program refinement as semantics for all transformations defined for
SEAM specifications. A model development process in SEAM can be also considered as a
stepwise refinement of graphical specifications [96].

5.2 Simulation Techniques: the State of the Art

The verification of concurrent systems is largely based on the use of simulation techniques
[65]. By simulation we understand a correspondence between the states of two systems,
abstract and concrete; here the concrete system is considered an implementation and the
abstract system is its specification. The simulation proof is based on the establishing of this
correspondence. The fact that a simulation exists between two systems shows that any
behavior of one system can be exhibited (simulated) by the other system.

Along these lines, we consider two visual system specifications, where one is refining the
other. The refinement correctness can thus be verified. The proof of refinement correctness is
based on the establishing of a refinement relation between the abstract and concrete system
specifications, and on the demonstration that this relation is a simulation.

71

A large number of different types of simulations is presented in the research literature; we
consider only several of them: forward simulations, backward simulations, hybrid
simulations (i.e. forward-backward and backward-forward simulations) [65][112][50],
refinement mappings [1], and the proof method called generalized forward simulation
[16][98].

Here we illustrate how different simulations can be used to verify data refinement. In
software engineering, data refinement is a special case of refinement where one data type in
program is refined by the other. Later we show that many forms of refinement in SEAM can
be also considered as data refinements. Thus, the simulation techniques for the verification of
data refinement (e.g. forward simulation) can be used to verify certain forms of refinement in
SEAM.

Data refinement. A data type X can be defined by a state space Σ and an indexed
collection of operations Iioi :,: Σ→Σ . Where I is an indexing set.

A program P(X) on data type X can be seen as a sequence of operations from the indexed
set performed on X. In data refinement, we replace an abstract data type by a more concrete
data type in a program while preserving its algorithmic structure. Abstract operations are
similarly replaced by corresponding concrete operations [72].

Simulation proof of data refinement correctness is based on forward or backward
simulation (often specified as functional relation). This relation is established for each pair of
corresponding operations. We say that data refinement has a (1-1)-refinement proof schema.
To verify that data type A is a correct refinement of data type B, values produced at each step
of a program's execution are considered.

Forward simulation for verification of data refinement:
If data types A and B share the same indexing set I, a forward simulation from A to B is a
relation BAR Σ→Σ: over states of A and B, which satisfies:

- If)(0 Astarts ∈ , then ∅≠∩)()(0 BstartsR , where AAstart Σ⊆)(, BBstart Σ⊆)(are sets

of initial states of A and B respectively; here)(0sR defines an image of s0 – a start state of

A – on the state space BΣ . The expression ∅≠∩)()(0 BstartsR means that some states
in this image are start states of B.

- For all i:I, if an operation oiA performed on A such that 'ss
Ai

o→ and)(sRu ∈ , then

there exists a state)'(' sRu ∈ such that it is a resulting state of the corresponding operation oiB

performed on B: 'uu
Bi

o→ . Expression 'ss
Ai

o→ denotes a transition from s to s’ in A as a

result of the operation oiA; respectively, 'uu
Bi

o→ is a corresponding transition in B.

The first condition relates respective initial states; the second condition matches the effect
of each step in A with a corresponding forward step in B.

Backward simulation for verification of data refinement:
If data types A and B share the same indexing set I, a backward simulation from A to B is a
total relation BAR Σ→Σ:~ over states of A and B that satisfies:

- If)(0 Astarts ∈ , then)()(0
~ BstartsR ⊆ . Compared to forward simulation, backward

simulation requires that all states in the image of s0 in BΣ are start states of B;

72

- For all i:I, if an operation oiA performed on A such that 'ss
Ai

o→ and)'(' ~ sRu ∈ , then

there exists a state)(~ sRu ∈ such that it is an initial state of the corresponding operation oiB

performed on B: 'uu
Bi

o→

The first condition relates respective initial states; the second condition matches the effect of
each step at A with a corresponding backward step in B.

There are also cases where a combination of backward and forward simulations is required
(a complete proof method): A is behavioraly equivalent to B if there is some C such that there
exists a forward simulation R from A to C and the backward simulation R~ from C to B [65].

Forward-backward and backward-forward simulations combine in a single relation both a
forward and a backward simulation. For more details, read [65].

The refinement mappings introduced in [1] are another proof method for refinement
verification. Refinement mapping from a lower level specification S1 to a higher level
specification S2 is defined as a mapping from a state space of S1 to a state space of S2. If S1
implements S2, then by adding auxiliary – history and prophecy - variables to S1 the
existence of a refinement mapping (and subsequently, refinement correctness) can be
guaranteed. The connection between history variables and forward simulations and also
between prophecy variables and backward simulation is shown in [65].

Generalized forward simulation:
The ASM-refinement method [15][16] defines the method of refinement verification based
on forward simulation. The simulation proof specified in [98] is called a generalized
forward simulation: it generalizes forward simulations from [65][112] by allowing arbitrary
diagrams, i.e. providing a (m-n)-refinement proof schema.

ASM-refinements are verified using an informal notion of commuting diagrams. Instead
of matching the results of execution of corresponding operations oiA, oiB - considered in
forward and backward simulation methods for data refinement - ASM splits the programs of
an abstract and a concrete specifications into (finitely or infinitely) many
‘subcomputations’(of finite length) and matches the results of these subcomputations. The
idea is to verify that each pair of subcomputations preserves a so-called coupling invariant.
The coupling invariant may be equal to the refinement relation R between specification state
spaces.

5.2.1 Data Refinement with Forward Simulation: (1, 1) - refinement schema
We adopt the notion of data refinement from [51][72][50][101][102] and consider forward
simulation, presented in [50][112] as a technique to validate refinement correctness.

Definition of refinement correctness
Let us consider a working object Wa, specified on the state space aΣ with an action aA , and a

working object Wc, specified on the state space cΣ with an action cA .

Definition 5.1.
Given a refinement relation between state spaces, Wc is called a correct refinement of Wa if
and only if for each run of the },{: falsetrueR ca →Σ×Σ concrete action Ac of Wc, which

73

starts at ccX Σ∈ and terminates at ccX Σ∈' , there exists a run Aa of Wa, which starts at

aaX Σ∈ such that),(ca XXR holds and terminates at 'aX , such that)','(ca XXR holds.

This definition can be expressed with the following formula:

()
)','()',(|'

)',(),(||',

};,{:

caaaaaa

ccccaaaccc

ca

XXRXXAX

XXAXXRXXX

falsetrueR

∧Σ∈∃

⇒∧Σ∈∀Σ∈∀

→Σ×Σ

 (5.3)

if refinement relation is a function acR Σ→Σ: , we rewrite (5.3):

() ();)')'(()',(|')',())((

||',

;:

acaaaaacccac

aaccc

ac

XXRXXAXXXAXXR

XXX

R

=∧Σ∈∃⇒∧=

Σ∈∀Σ∈∀

Σ→Σ

 (5.4)

This is equivalent to:

))'(),(()',(ccaccc XRXRAXXA ⇒ (5.5)

Data refinement verification by forward simulation is reduced to a proof of validity of (5.3) - (5.5).

The data refinement schema for SEAM specifications is illustrated in Fig. 5-1, where Wc is a
concrete specification and Wa is the abstract specification. cA and aA are concrete and abstract

actions respectively. “Wc correctly refines Wa” means that whenever cA makes a transition from

cX to cX ' , aA is also making a transition from aX to aX ' and these states are related by R as
defined in (5.3)-(5.5).

Figure 5-1: The (1,1)-refinement for SEAM specifications

The proposed formal semantics allow for a validation of SEAM specifications as well as a validation
of their refinements (i.e. a transition from one specification to another).

5.2.2 ASM Refinement: (m,n) – Refinement Schema
Forward simulation for data refinement preserves the corresponding pre- and post- states, the
external behaviour of a working object. We use the definition 5.1 to express the refinement
correctness between two SEAM actions modeled declaratively, where only corresponding
pre- and post- states of these actions are observable. When the analysis of intermediate
action states is required, we use the generalized (m,n)-refinement schema, specified by ASM-
refinement method.

The ASM Refinement Method
In [16][98], the Abstract State Machine (ASM) refinement method is presented. The ASM
refinement method generalises the notion of refinement for an arbitrary number of transitions
(called run segments) between an initial (pre-) and a final (post-) states of a transition system.

74

We call a refinement schema, defined by this method, an (m,n)-refinement schema. The
number of run segments for an abstract and a concrete system in the (m,n)-refinement schema
can be different. This generalized notion of refinement takes into consideration the
intermediate system states. We use the (m,n)-refinement schema defined by the ASM
refinement method as semantics for refinement between SEAM specifications modeled
imperatively.

The ASM refinement method specifies a run as a sequence of states that starts from the

initial state. Runs can be finite and infinite. A finite run terminates at a final state after a
number of transitions (run segments) have been performed. Each run segment transits the
system to an intermediate state (respectively, the last segment transits the system to its final
state). A state is final if it has no successor state.

In SEAM, by a run we understand an execution of an action (or a set of actions) by a
working object. It starts at a pre-state, terminates at a post-state, and may include
intermediate states. For a SEAM (localized, joint, or distributed) action seen as a composite
and modeled imperatively, intermediate states are post- and pre- states of component actions;
for a SEAM distributed action modeled imperatively, intermediate states are post- and pre-
states of the localized actions bound by this declarative action.

The ASM refinement method specifies a relation R* between states of interest of an

abstract and a concrete transition systems. States of interest are specification states that we
want to preserve after refinement. They include an initial state, a final state, and a number
(not necessarily all) of intermediate states: these states represent a particular interest in a
specification analysis. We formulate R* for SEAM specifications as a relation between the
states of interest of the abstract and the concrete working objects respectively:

},{:* ** falsetrueR ac →Σ×Σ , where cc Σ⊆Σ* , aa Σ⊆Σ* (5.6)

The ASM method gives definitions of partial and total refinement correctness. A partial
correctness is defined for the terminating abstract and refined runs. It stipulates that the
refinement is partially correct if the terminating refined run produces the same result (with
respect to the relation R*) as the terminating abstract run. It is a weak definition of
correctness because it accepts the possibility of simulating a terminating abstract run by a
non-terminating concrete run. In other terms, if the concrete run is non-terminating, we
cannot reason about the refinement correctness.

A total correctness stipulates that a refinement is [totally] correct with respect to the
relation R* when it is partially correct and for each non-terminating (infinite) refined run
there exists an infinite abstract run. The generalized forward simulation, presented in [98], is
a technique for validating a correctness of ASM-refinement.

In this work we assume that all actions specified in SEAM are terminating actions.

Therefore, we provide only a definition of partial refinement correctness for SEAM
specifications. We address in our future work the refinement correctness for possibly infinite
action runs.

Definition of Refinement Correctness
The (m,n)-refinement schema can be considered as a generalized (1,1)-refinement schema
from the previous section. First, we provide a definition of the correct (m,n)-refinement for
SEAM specifications. It preserves the external behavior of a working object, i.e. its pre- and
post-states. Then we proceed with a refinement correctness for (m,n)-refinement that takes
into account the intermediate states (the internal behavior of a working object).

75

Let us consider a working objects Wa, specified on the state space aΣ with an action aA , and a

working object Wc, specified on the state space cΣ with an action cA . cc Σ⊆Σ* and aa Σ⊆Σ* are

sets of states of interest of corresponding working objects.

Definition 5.2 [preservation of the external behavior]
Given a refinement relation between states spaces },{**:* falsetrueR ca →Σ×Σ , Wc is called
a correct refinement of Wa if and only if for each run of the concrete action Ac of Wc, which

starts at ccX *Σ∈ and terminates in n steps at ccX *' Σ∈ , there exists a run Aa of Wa, which

starts at aaX *Σ∈ such that),(* ca XXR holds and after a number of steps m, Aa terminates

at 'aX where)','(* ca XXR holds .

If the intermediate states are not shown, Definition 5.2 corresponds to the Definition 5.1 and
can be expressed by the following formula:

()
)','(*)',(|*'

)',(),(*|*|*',

};,{**:*

caaaaaa

ccccaaaccc

ca

XXRXXAX

XXAXXRXXX

falsetrueR

∧Σ∈∃

⇒∧Σ∈∀Σ∈∀

→Σ×Σ

 (5.7)

Fig. 5-2 illustrates the (m,n)-refinement schema that preserves the external behavior,

adopted for SEAM specifications. Wc is a concrete specification and Wa is the abstract
specification of a working object. cA and aA are concrete and abstract actions respectively. The

concrete specification makes n steps from its initial state cX to the final state cX ' , whereas an

abstract specification makes m steps from aX to aX ' . Initial and final specifications states are related
with R*.

Figure 5-2: The (m,n)-refinement for SEAM specifications: preservation of the external behavior

When a refinement is carried out, the preservation of both external and internal behavior of
the system might be required. By the internal behavior we understand a sequence of
intermediate states of the working object. The following definition specifies the correctness
of the (m,n)-refinement the preserves the sequences of intermediate states.

Definition 5.3 [preservation of the external and the internal behavior]
Given a refinement relation between state spaces },{**:* falsetrueR ca →Σ×Σ , Wc is called a
correct refinement of Wa if and only if for each run of the concrete action Ac of Wc defined

76

by the ordered sequence of states, including the initial and the terminating states:
() ()ccic

cicci
cicici XXXXXXXX nnn

'|*,,..,,
0110

=∧=Σ∈
−

, such that i0 i1 . . . in is a

monotone sequence of natural numbers; there is a run Aa of the abstract action of Wa, also
defined by the ordered sequence of states:

() ()caja
ajaajajajaj XXXXXXXX

mmm
'|*,,..,,

0110
=∧=Σ∈

−
, such that j0 j1 . . . jm is a

monotone sequence of natural numbers; and for every k the states of the abstract and concrete
specifications aajcci kk

XX *,* Σ∈Σ∈ the refinement relation),(*
ciaj kk

XXR holds.

We write the following formula to express the definition above:

()() ()

() () () ()
() ()
() ⎟

⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜
⎜
⎜

⎝

⎛

Σ∈Σ∈∀

∧≤≤≤∧≤≤≤

∧=∧=∧=∧=

Σ∈Σ∈∃

∧∧Σ∈∃⇒∧

Σ∈Σ∈∀

→Σ×Σ

−−

),(*|*,*,

......

''

|*,,..,,,*,,..,,

)','(*)',(|*')',(),(*

|,*',

;},{:*

1010

00

110110

ciajaajcci

mn

caja
ajccic

ci

aajajajajcci
cicici

acaaaaacccac

aaccc

ac

kkkk

mn

mmnn

XXRXXk

jjjiii

XXXXXXXX

XXXXXXXX

XXRXXAXXXAXXR

XXX

falsetrueR

 (5.8)

The first part of the expression at Eq.(5.8) defines a refinement correctness that preserves the external
behavior as in the definition 5.2. The second part of this expression specifies the correspondence
between the intermediate states of the abstract and the concrete specification.

Refinement verification by generalized forward simulation is reduced to a proof of validity of (5.8)
for the (m-n)-refinement.

Fig. 5-3 illustrates the (m,n)-refinement schema that preserves the external and the internal

behavior. Wc is a concrete specification and Wa is the abstract specification of a working object. cA

and aA are concrete and abstract actions respectively. The concrete specification makes n steps of

interest from its initial state cc XX =0 to the final state cn XX c '= , whereas an abstract specification

makes m steps of interest from aa XX =0 to am XX a '= . States of interest are related with R*.

Figure 5-3: The (m,n)-refinement for SEAM specifications: preservation of the external and the internal
behavior

77

In SEAM, by a refinement we understand a set of modifications applied to a SEAM visual
specification. The result of a refinement is a transition of the specification to the next
functional or organizational level.

Refinement verification aims at checking that a refined specification (obtained as a result
of a refinement) preserves the external (or the external and the internal) behavior of an initial
specification. This can be done by forward (or generalized forward) simulation, using the
refinement schemas defined above.

A refinement verification procedure can be applied under the assumption that both the

initial and the refined specifications are well-formed and consistent. A specification is well-
formed if it conforms to the syntax of a modeling language. This is typically controlled by a
modeling tool. A specification consistency is related to its semantics.

5.3 Specification Consistency

Formal semantics provided for visual specifications allow for the validation of the
specification consistency: this analysis can detect overconstrained specifications. A
specification is overconstrained if it contains contradictory preconditions, invariants, or
postconditions. For example, a specification with a postcondition

)'()'()',(axaxXXApost <∧>= is inconsistent. This postcondition cannot be satisfied, i.e.

the action A cannot be successfully executed.
In Chapter 4 we define a successful action as an action, whose precondition holds and,

postcondition is satisfied. We denote this action as the first order formula:

)',()()',(XXAXAXXA pre

def
success ∧= (5.9)

Eq. (5.9) is equivalent to:
def

success XXA =)',()',()(XXAXA postpre ∧ .

If there exists a pair of states (', XX), such that Eq.(5.9) evaluates to ‘true’, then this
formula is satisfiable. Satisfiability indicates that the specification is not overconstrained.

Underconstrained specifications represent another class of semantically incorrect

specifications. These specifications can be also called ‘incomplete’, as they do not restrict the
unwilling (or meaningless) state transitions. In contrast to overconstrained specifications,
underconstrained specifications cannot be detected automatically. It is a designer who should
guarantee that the specification is adequate and complete.

5.4 Functional and Organizational Refinement in SEAM

Refinement in SEAM specifies a transition of a working object from one hierarchical level
(n) where this working object is called ‘abstract’, to another hierarchical level (n+1) where
more details about the working object construction and/or functionality is provided. This
working object is called ‘concrete’. We say that the concrete specification refines the
abstract specification. A relation between state spaces of the concrete and the abstract
working objects is called a refinement relation.

78

Functional + Organizational

refinement

Figure 5-4: a) Functional and organizational refinements in SEAM; b) SEAM hierarchical levels increase
from top to bottom (for the organizational levels) and from left to right (for functional levels); any
specification at a higher level must be a correct refinement of any specification at a lower level.

The design process in SEAM is carried along two axes: the organizational level hierarchy

and the functional level hierarchy. Therefore, we define two classes of refinement for SEAM
specifications: a functional refinement and an organizational refinement (Fig. 5-4(a)).

The functional refinement in SEAM defines a set of modifications that results in more
precise specification of a behavior of a working object. The term ‘functional’ refers to a
transition of this working object from one functional level, where some property and/or some
action is presented as a whole, to another functional level, where this property and/or action
is presented as a composite. Functional refinement can be made by either modifying, or
creating, or eliminating any actions, properties, and relations between them. It is illustrated in
Fig. 5-5 – 5.7.

The organizational refinement in SEAM defines a set of modifications that results in a
more precise specification of a construction of a working object. The term ‘organizational’
refers to a transition from one organizational level, where the working object is presented as a
whole, to another organizational level, where this working object is presented as a composite.
Organizational refinement is made by the specifications of component working objects and
collaborations between them. It is illustrated in Fig. 5-8.

The refinement of both the construction and behavior of a working object in one

refinement step is called functional + organizational refinement. This is often seen in
practice. However, in SEAM, we are interested in modeling traceable concepts, whose
origins are explicit. This means that every ‘diagonal’ step in SEAM model hierarchy, which
stands for functional + organizational refinement, must be equivalent to one ‘horizontal’ step
(functional refinement) followed by one ‘vertical’ step (organizational refinement) or to one
‘vertical’ step followed by one ‘horizontal’ step (Fig. 5-4 (a)). Semantically, each functional
refinement step stands for a definition of concepts (action or property or both) and each
organizational refinement step defines the construction, suitable to hosting these concepts and
operating with them.

Fig. 5-4 (b) illustrates a SEAM model represented by a set of specifications at different

functional and organizational levels:
- Specification b is a functional refinement of a;
- Specification c is an organizational refinement of a;

79

- Specification d is a functional refinement of c, (it must be also a correct refinement of a
and b);

- Specification f is obtained as a functional refinement of e, which refines c;
- Specification f must be also a correct refinement of a, b, c, and d.

Plain arrows stand for functional or organizational refinement steps; dashed arrows stand for
functional + organizational refinement.

NOTE: when we say that one specification is a refinement of the other, this does not

necessarily mean that the former is obtained from the latter by adding details: both
specifications can be created independently and, in general, can be specified in different
modeling languages. The expression ‘is a refinement of’’ states that there is a refinement
relation between these specifications. The refinement correctness between specifications can
be verified using definitions from the previous chapter.

Functional and organizational refinements resulte from manipulations with individual

model elements or groups of elements in a SEAM diagram. They may take different forms
depending on the elements modified. In the following sections, we focus on functional and
organizational refinements and their types.

5.4.1 Functional Refinement in SEAM
A functional refinement specifies a transition to the next functional level and may take the
form of property refinement, behavioral refinement, or a combination of property and
behavioral refinements.

A property refinement is illustrated in Fig. 5-5, it comprises:

- A property decomposition (representation of a property by a set of component
properties)- Fig. 5-5(a);

- A definition of a new property - Fig. 5-5(b);
- An elimination of a property from the working object;
- A definition of a new property association, composition, or a working object to

property relation (a host relation) - Fig. 5-5(c);
- An elimination of a property association, composition, or a working object to property

relation (a host relation);
- A modification of a multiplicity expression - Fig. 5-5(d).

80

(b)

Initial Refined

….

Wa

P1
x

P2
y

….

Wc

x

P2
y

P1
P1.1

x1

(a)

Wc

or

….

P1
x

P2
y

P1.1

….

Wc

P1
x

P2
y

Q

z

x1

….

Wc

P1
x

P2
y

m|p2
….

Wc

P1
K

P2
y

(c) (d)

Figure 5-5: Property refinement of a working object as a whole: a) a property decomposition; b) a
definition of a new property; c) a definition of a property to property (PP-) relation; d) a modification of
a multiplicity expression .

Property refinement extends or reduces the state space of the working object seen as a whole.

A behavioral refinement is illustrated in Fig. 5-6 and Fig. 5-7. This refinement is defined for
three types of actions in SEAM and may comprise:
- An action decomposition (a specification of a set of component actions with implicit or

explicit ordering) – Fig. 5-6(a);
- A modification of an action preconditions, postconditions, invariants, and updates (action to

property (AP-) relations) - Fig. 5-6(b);
- A modification of an action input/output parameters – Fig. 5-6(c);
- A definition of a new action - Fig. 5-7(a);
- An elimination of an action;
- A modification of the ordering between actions (action to action (AA-) relations) - Fig. 5-7

(b).

81

Ac

….

A1 A2

Wc

(b)

Ac

….

A1 A2

Wc

(c)

(a)

Initial Refined

Aa

Wa
….

Aa

Wc ….

P
<IN>

P
<IN>

P
<IN>

….

P
<IN>

Aa

…. Q
<IN>

Wc

Figure 5-6: Behavioral refinements of a working object: a) an action decomposition with implicit/explicit
action ordering; b) a modification of action AP-relations (defined for joint and localized actions); c) a
modification of action parameters.

Figure 5-7: Behavioral refinements of a working object: a) a definition of a new action; b) a modification
of the action AA-relations.

5.4.2 Organizational Refinement in SEAM
An organizational refinement specifies a transition to a next organizational level and takes the
following forms:

 A working object decomposition and specification of a joint action between
components – Fig. 5-8(a), which includes:

- A definition of component working objects;
- A distribution of properties of the working object between the components;
- A definition of a joint action and its AP-relations with the properties of its

components;
 A working object decomposition and a definition of a distributed action between

components – Fig. 5-8(b), which includes:
- A definition of component working objects;
- A distribution of properties of the working object between the components;
- A distribution of responsibilities of the working object between the components

(where responsibility of each component is specified by a localized action);
- A definition of a distributed action and its DALA- relations.

82

Figure 5-8: Organizational refinement: a) a joint action specification; b) a distributed action specification.

In the following sections we specify the refinement correctness for each form of
organizational and functional refinements.

5.5 Correctness of Functional Refinement

5.5.1 Property Refinement

Property Decomposition
Refinement by property decomposition is a relation between two working objects Wa and Wc,
where Wa specifies a property Pk as a primitive property, and Wc specifies this property as a
compound property by defining component properties for it. We can also say that in Wa, the
property Pk is seen as a whole, whereas in Wc it is seen as a composite - Fig.5-5(a).

Let us consider a working object Wa seen as a whole, specified on the state space aΣ with a

localized action aLA , and properties P1..Pm, and a working object Wc seen as a whole, specified on the

state space cΣ with a localized action cLA , and properties
skkm PPPP ,..,,,..,

11 .: If Wa defines a

property Pk mk ≤≤1 as a whole and Wc defines the corresponding property as a composite, (i.e. it
specifies for Pk component properties

skk PP ,..,
1

) then we say that Wc refines Wa by property

decomposition.
We write the expression for the abstract and the concrete state spaces as follows:

m

P

kkc

mka

PPPP

PPP

k

s
×××××=Σ

××=Σ
......

....

11

1

43421
 (5.10)

In Section 4.3, we define a state X of a working object by a tuple of state variables of this
working object V and interpretation domain DI. By state variables we understand instances of
properties: nmnnm PppPpp :,..,;..;:,..,

11 111 .

For simplicity, let us consider that working objects Wa and Wc host one instance of each

property. Then the state aX of Wa is defined by a tuple ()mk ppp ,..,,..,1 ; and the state cX of

Wc is defined by a tuple ()mkkk ppppp
l
,..,,..,,,..,

211 .

83

To compute a state of a working object means to interpret V on DI: we write for Wa and
Wc:

state(Wa) = aX = state ()mk ppp ,..,,..,1 ; (5.11)

state(Wc)= cX = state ()mkkk ppppp
l
,..,,..,,,..,

211 .

Considering that mkk pppp ..,,,.., 111 +− are the same for Wa and Wc, we define a refinement
relation R between state spaces of Wa and Wc as a relation values of the property pk:Pk in the
abstract specification and values of the tuple (

lkkk ppp ,..,,
21

) in the concrete specification:

()() },{,..,,,),(
21

falsetrueppppRXXR
lkkkk

def

ca ∈= (5.12)

Similarly, this relation can be defined for an arbitrary number of instances of Pk. We specify
the correctness of property refinement using the definition of correctness for data refinement by
forward simulation (definition 5.1):

Definition 5.4.
Given a refinement relation R as specified in (5.12), Wc is a correct refinement of Wa by
property decomposition if and only if for each run of the concrete action LAc of Wc, which

starts at ccX Σ∈ and terminates at ccX Σ∈' , there exists a run of the abstract action LAa of

Wa, which starts at aaX Σ∈ such that),(ca XXR holds and terminates at 'aX , where

)','(ca XXR holds.

Using the expression at Eq. (5.3) that expresses correctness for data refinement by forward
simulation the expression for correct refinement by property decomposition is written as
follows:

()
)','()',(|'

)',(),(||',

caaaaaa

ccccaaaccc

XXRXXLAX

XXLAXXRXXX

∧Σ∈∃

⇒∧Σ∈∀Σ∈∀
 (5.13)

Definition of a New Property or Property Elimination
Let us consider a working object Wa seen as a whole, specified on the state space aΣ with a localized

action aLA , and properties P1..Pm, and a working object Wc seen as a whole, specified on the state

space cΣ with a localized action cLA and properties ,,..,1 nPP where mn ≠ .
 If n>m, then Wc specifies a functional refinement of Wa by property definition - Fig.5-5(b);
 If n<m then Wc specifies a functional refinement of Wa by property elimination.

Considering that working objects Wa and Wc host one instance of each property, we write

the following expressions for their states:

state(Wa) = aX = state ()mpp ,..,1 ; (5.14)

state(Wc)= cX = state ()npp ,..,1 .

A refinement relation R between state spaces of Wa and Wc is a relation between the
corresponding tuples from (5.14):

() ()() },{,..,,,..,),(11 falsetrueppppRXXR nm

def

ca ∈= (5.15)

84

Correctness of property refinement we specify as a correctness of data refinement by forward
simulation:

Definition 5.5.
Given a refinement relation R as specified in (5.15), Wc is a correct refinement of Wa by
property definition or property elimination if and only if for each run of the concrete action

LAc of Wc, which starts at ccX Σ∈ and terminates at ccX Σ∈' , there exists a run LAa of Wa,

which starts at aaX Σ∈ such that),(ca XXR holds and terminates at 'aX , where

)','(ca XXR .

NOTE 1.
1. The elimination of a property from a working object implies the elimination of all

incoming and outgoing relations of this property in this working object (the opposite is
not true);

2. The definition of a new property P in a working object Wa with a multiplicity m implies a
definition of a host relation between Wa and P with the corresponding multiplicity
expression m;

3. The decomposition of a property P into properties P1, P2 with corresponding
multiplicities m1, m2 implies a definition of a property composition relations between P
and P1, and between P and P2 with corresponding multiplicity expressions m1 and m2.

Definition and Elimination of Property Associations, Property Compositions, and
Host Relations between a Working Object and a Property; and the Modification
of a Multiplicity Expression.
In Section 4.3.3, semantics of property associations, property compositions, and host relations
between a working object and a property was specified as semantics of relations with
multiplicities. Definition and elimination of these relations as well as modification of their
multiplicity expressions affects specification consistency introduced in Chapter 4.

NOTE 2.
The following dependencies between different forms of refinement exist:
1. The definition or elimination of a host relation between a working object and a property

is semantically equivalent to a property definition or elimination;
2. The definition of a property association or a property composition relation is

semantically equivalent to a property decomposition; elimination of these relation is a
reversed process;

3. The modification of a multiplicity expression stands for modification of the number of
instances of a property. This is semantically equivalent to a definition or elimination of a
property in the specification (Fig. 5-9).

Figure 5-9: Property refinement: modification of a multiplicity expression seen as a property definition.

85

Assuming that manipulations with host- and PP- relations do not violate the specification
consistency, the correctness of these refinement forms is reduced to the correctness of data
refinement by forward simulation.

Let us consider a working object Wa seen as a whole (specified on the state space aΣ with a

localized action aLA , and properties mPP ,..,1), and a working object Wc seen as a whole (specified

on the state space cΣ with a localized action cLA and the same set of properties mPP ,..,1). Wc refines
Wa by defining, eliminating, or modifying some of property associations, property compositions,
or host relations specified in Wa.

Definition 5.6. Wc specifies a correct property refinement of Wa if:

(1) The refined specification Wc is consistent by Definition 4.1,
(2) Wc is a correct functional refinement of Wa by definitions 5.4-5.5.

5.5.2 Behavioural Refinement

Modification of Action Parameters

Let us consider a working object Wa specified with an action),,',(aaa OIXXA , and a working

object Wc, specified with an action),,',(ccc OIXXA . Abstract and concrete actions are specified

with different sets of input and output parameters: caca OOII ≠≠ , . We say that Wc is a behavioural

refinement of Wa, where the action cA refines the action aA by modifying input and output
parameters.

As inputs and outputs make a part of the object state space (Section 4.3), then the refinement by
modification of action parameters is reduced to a data refinement. In other terms, to prove refinement
correctness, a refinement relation R between state spaces aΣ and cΣ is needed:

},{: falsetrueR ca →Σ×Σ .
Assuming that only input parameters (or only output parameters) have been refined, we

can specify RIn or ROut, where RIn is a refinement relation between input parameters of abstract and
concrete specifications; ROut is a refinement relation between output parameters of abstract and
concrete specifications. We give the following definition for these refinement relations:

Definition 5.7.
Given refinement relations RIn and ROut between abstract and concrete input and output
parameters, Wc specifies a correct refinement of Wa by modifying action input and output
parameters if and only if for each run of the concrete action Ac of Wc - which starts at some
pre-state X and terminates at some post-state 'X and has an inputs cI and an output cO -

there exists a run Aa of Wa - which starts at X , terminates at 'X - and has an input Ia, such
that),(caIn IIR holds and an output Oa , such that),(caOut OOR holds .

If the input is needed to trigger the action (it is a part of the precondition) and the output is

obtained upon the action termination (a part of the action postcondition), then we can write
the following expression for refinement correctness:

),(),,',(|),,',(),(|,,,', caOutaaaaccccaInacc OOROIXXAOOIXXAIIRIOIXX ∧∃⇒∧∀

(5.16)

86

Modification of an Action Contract and Action Update Statements
Let us consider a working object Wa, specified on the state space Σ with an action Aa defined as

follows:

);'()',()()()',(XAXXAXAXAXXA
invpostpreinv aaaa

def

a ∧→∧=

for Aa modeled as a whole we may specify an update statement:)(' XAX
ua= ;

and a working object Wc, specified on the same state space Σ with an action Ac defined as follows:

);'()',()()()',(XAXXAXAXAXXA
invpostpreinv cccc

def

c ∧→∧=

for Ac modeled as a whole we may specify an update statement:)(' XAX
uc=

If
uupostpostprepreinvinv acacacac AAorAAorAAorAA ≠≠≠≠ Wc is a behavioural refinement of Wa

with the action cA refining the action aA by modifying its contract or update statement.

We specify this form of behavioural refinement using the (m,n)-refinement schema:

 For actions modeled as a whole: m=n=1;
 For actions modeled declaratively we use the definition of correct (m,n)- refinement

preserving the external behavior;
 For actions modeler imperatively we define the states of interests Σ⊆ΣΣ⊆Σ ac *,*

and specify a refinement relation },{**:* falsetrueR ca →Σ×Σ between them. Then
we use the definition of correct (m,n)- refinement preserving the internal and the
external behavior.

Definition 5.8.
Given a refinement relation R, Wc specifies a correct refinement of Wa by modifying its
action contract and update statement if and only if it can be represented as a correct (m,n)-
refinement from Definition 5.2 or 5.3.

If abstract and concrete actions specify update statements uaA , ucA , then for refinement

correctness we require that for the post-states ca XX ',' of the abstract and concrete actions the
following holds:

))(),((*)','(* cucauaca XAXARXXR = (5.17)

Behavioral Refinement Using Transformers
Another way to define the refinement correctness is to leverage the logic of our reasoning by
introducing relations of higher order. We can specify the relations between ‘new’ (refined)
and ‘old’ (initial) invariants, preconditions, postconditions, and update statements as
predicates of higher order - predicate transformers.

acu

acinvpostpre

T

TTT

ΦΣΦΣ

ΡΣΡΣ

a

a

:

;:,,

Here ΡΣ defines a set of predicates on Σ and ΦΣ defines a set of update functions on Σ .
For example, using transformers, we write:

87

invinv acinv AAT =)(

 Where Tinv transforms a predicate
invcA that specifies the invariant of the concrete action to a

predicate
invaA that specifies a corresponding invariant of the abstract action.

Definition 5.9.
Given a refinement relation between action preconditions, postconditions, invariants and

update statements as predicate transformers uinvpostpre TTTT ,,, , Wc specifies a correct

refinement of Wa by modifying its action contract and update statement if and only if the
following holds:

()

()
44444444444444 344444444444444 21

4444444444 34444444444 21

a

invpostpreinv

c

invpostpreinv

A

acinvaacpostacpreacinvaa

A

ccccccccc

aaccc

XATXXATXATXATX

XAXXAXAXA

XXX

)')(()',)(())(())((|'

)'()',()()(

|',

∧→∧Σ∈∃

⇒∧→∧

Σ∈∀Σ∈∀
 (5.18)

For update statements we write:

ccc

aa

A

cuaa

XXA

XXATXA

u

ua

uu

')(

;')()()(

=

==
321

 (5.19)

Substituting cX ' and aX ' in Eq.(5.18) with their expressions from (5.19), we write:

()
())))(()(()))((,)(())(())((

))(())(,()()(

|

acucinvacuccpostacpreacinv

ccccccccccc

aacc

XATATXATXATXATXAT

XAAXAXAXAXA

XX

uinvupostpreinv

uinvupostpreinv

∧→∧

⇒∧→∧

Σ∈∀Σ∈∀
 (5.20)

Action Decomposition
Action decomposition typically takes place when the abstract action Aa is specified as a
whole and its run makes one transition from a pre-state to a post- state, whereas the refined
action Ac executes multiple component actions and makes n>1 transitions from its pre-state to
its post-state.

Let us consider a working object Wa, specified on the state space Σ with an action Aa (Fig. 5-

10(a)). This action is defined as follows:

)'()',()()()',(XAXXAXAXAXXA
invpostpreinv aaaa

def

a ∧→∧= ;

We can also specify an update statement as follows:)(' XAX
ua= ;

A working object Wc is specified on the same state space Σ with an

action),...,()',(1 tc AAXXA ρ= , which is a decomposition of aA with the ordering function ρ
(Fig. 5-10(b,c)).

If the action is specified declaratively and the component actions are independent (they act on
the disjoint sets of properties), we formalize the action at Wc as follows:

88

)',(..)',()',(1 XXAXXAXXA t

def

c ∧∧=
If the action is specified imperatively:

)',(..),(|,..,)',(11111 XXAXXAXXXXA ttt

def

c −− ∧∧∃= ;

To prove that Wc is a correct behavioural refinement of Wa with the action cA refining the

action aA by decomposition, we use the (m,n)-refinement schema as follows:
 For actions modeled declaratively, we use the definition of correct (m,n)- refinement

preserving the external behavior;
 If the concrete action cA is modeled imperatively, we define the states of interests

Σ⊆ΣΣ⊆Σ ac *,* and specify a refinement relation },{**:* falsetrueR ca →Σ×Σ
between them. Then we use the definition of correct (m,n)- refinement preserving the
internal and the external behavior.
The idea is to define the refinement relation R* in a way that intermediate steps of the
concrete action specification reflect the move from a pre-state to a post-state of the
abstract specification. We use the definition of correct (m,n)-refinement preserving
the internal and the external behavior.

 If the abstract action aA is modeled as a whole, the states of interest a*Σ include only

the initial and the final states of aA :

caja

aj

aajaj

XXXX

XX

';

,*,

10

10

==

Σ∈

Figure 5-10: Behavioral refinement: action decomposition

Definition 5.10.
Given a refinement relation *R between the states of interests of abstract and concrete
specifications, Wc specifies a correct refinement of Wa by action decomposition if and only
if it can be represented as a correct (m,n)-refinement from Definition 5.2 or 5.3.

89

Definition of a New Action or Action Elimination
Let us consider a working object Wa, specified on the state space Σ with an

action),...,()',(11 ta AAXXA ρ= , and a working object Wc, specified on the same state space Σ with

an action),...,()',(12 sc AAXXA ρ= , where st ≠ .

If t>s, then Wc is a behavioural refinement of Wa with the action cA refining the action aA by action
elimination;
If t<s, then Wc is a behavioural refinement of Wa with the action cA refining the action aA by new
action definition.

 For actions cA and aA modeled declaratively (i.e. intermediate states are not shown),
we use the definition of correct (m,n)- refinement preserving the external behavior;

 For actions cA and aA modeler imperatively (with explicitly modeled intermediate

states and their order), we define the states of interests Σ⊆ΣΣ⊆Σ ac *,* , and specify

the relation },{**:* falsetrueR ca →Σ×Σ between them.
Then we use the definition of correct (m,n)- refinement preserving the internal and the
external behavior.

Definition 5.11.
Given a refinement relation *R between the states of interests of abstract and concrete
specifications, Wc specifies a correct refinement of Wa by action elimination or by new
action definition if and only if it can be represented as a correct (m,n)-refinement from
Definition 5.2 or 5.3.

Modification of a component Actions’ Ordering
Let us consider a working object Wa, specified on the state space Σ with an

action),...,()',(11 ta AAXXA ρ= , and a working object Wc, specified on the same state space Σ with

an action),...,()',(12 tc AAXXA ρ= . 1ρ and 2ρ define the order of component action

invocation in abstract and concrete actions. If 21 ρρ ≠ , then we say that Wc is a behavioural

refinement of Wa with the action cA refining the action aA by modification of a component
actions’ ordering.

If 1ρ and/or 2ρ specify a formula, we can convert this formula to an equivalent formula in
conjunctive normal form (CNF) and obtain the equivalent expression in the transformed state
space:

)',(..),(|,..,),...,()',(1111111 YYBYYBYYAAXXA sss

def

ta −− ∧∧∃== ρ (5.21)

)',(..),(|,..,),...,()',(1111112 ZZCZZCZZAAXXA lll

def

tc −− ∧∧∃== ρ

For action specifications from Eq. (5.21) we identify the states of interest: yyzz Σ⊆ΣΣ⊆Σ *,* ,

and specify the relation },{**:* falsetrueR zy →Σ×Σ between these states of interest. Then we

use the definition of correct (m,n)- refinement preserving the internal and the external
behavior.

90

Definition 5.12.
Given a refinement relation between transformed state spaces },{**:* falsetrueR zy →Σ×Σ ,

Wc specifies a correct refinement of Wa by modification of a component actions’ ordering
if and only if it can be represented as a correct (m,n)-refinement from Definition 5.3.

5.6 Correctness of Organizational Refinement

Organizational refinement defines a relation between the working object seen as a whole and
the same working object seen as a composite. The specification of a working object as a
composite shows how the component working objects collaborate to implement the behavior,
specified for the parent working object as a whole. We identify the following modeling
activities that result in organizational refinement:

- Definition of component working objects (working object decomposition)
- Distribution of properties of the parent working object between its component

working objects;
- Definition of a joint action as a collaboration between components and its relations to

properties of these components (AP-relations); or
- Definition of a distributed action as collaboration between components and its

relations to localized actions of these components (DALA-relations).

In this section we formalize correctness for each type of organizational refinement.

5.6.1 Working Object Decomposition and Property Distribution
Example 5.1. Figure 5-11 illustrates the organizational refinement, where a working object
Wa (abstract) is refined by a working object Wc (concrete). Wc represents a decomposition of
Wa into working objects S1 and S2. Properties P1 and P2 are distributed between component
working objects.

A property can be fully delegated to one of the component working objects (the property
P2 in Fig. 5-11) or shared by several working objects (the property P1 in Fig. 5-11).
- x, y define multiplicities of properties P1 and P2 in the working object Wa;
- c1, c2 define multiplicities of component working objects S1 and S2 in Wc;
- x1, x2, y1 are multiplicities of properties P1 at S1, P1 at S2 and P2 at S2.

The state of the abstract working object Wa is defined by a tuple of state variables:

)2,..,2,1,..,1(11
)(

yx
W ppppV a = and can be calculated as follows:

)2,..,2,1,..,1(11

)(

yx

W
a ppppstateX

a = .

Here p1i and p2i are instances of the corresponding properties;
The state of the concrete working object Wc is defined by a tuple of state variables:

Figure 5-11: Organizational refinement: property distribution.

91

)2,..,2,1,..,1,1,..,1(
)2()1(

)2(
1

)2(
1

)2(
2

)2(
1

)1(
1

)1(
1

)(

44444 344444 2144 344 21
SS

c

V

S
y

SS
x

S

V

S
x

SW ppppppV =

and can be also seen as a tuple of states of component working objects:

),..,,,..,()2,..,2,1,..,1,1,..,1(
)2(

2
)2(

1
)1(

1
)1(

1
)2(

1
)2(

1
)2(

2
)2(

1
)1(

1
)1(

1

)(S
c

SS
c

SS
y

SS
x

SS
x

SW
c XXXXppppppstateX

c ==
.

Considering c1=c2=1, we write an expression for
)'(W

cX as follows:

)2,..,2,1,..,1,1,..,1(),()2(
1

)2(
1

)2(
2

)2(
1

)1(
1

)1(
1

)2()1()(S
y

SS
x

SS
x

SSSW
c ppppppstateXXX

c == ,

where ;2,1,1)2()2()1(S
k

S
j

S
i ppp are property instances in the component working objects, and

121 ..1,..1,..1 ykxjxi === .

The organizational refinement illustrated in Fig. 5-11 distributes properties correctly if
- all instances of the property P2 are delegated to the working object S2 such as

yyc =⋅ 11 ;
- instances of the property P1 are shared between component working objects S1 and S2

(possibly with duplications) such as xxcxc ≥⋅+⋅ 2211 .

Let us consider a working object Wa seen as a whole, specified on the state space aΣ , and a

working object Wc seen as a composite with component working objects),..,(1 sWW . We define the

multiplicities of each component working object by msm ..1 .
Wc refines Wa by decomposition and property distribution.
Given xi - a number of instances of the property Pi specified in Wa; and jix - a number of

instances of the property Pi specified in the component working object Wj , we calculate the
maximum number of instances of property Pi in Wc as ∑=

j
ijji

W xmPInst)(max
)'(, where mj is

a number of instances of Wj in Wc.
 The state space cΣ of Wc can be seen as a Cartesian product of state spaces of the component

working objects: wswc Σ××Σ=Σ ..1 .

Definition 5.13.
Wc specifies a correct refinement of Wa by decomposition and property distribution if and
only if:
(1) Each property Pi of Wa is delegated to at least one component working object Wj of Wc;
(2) The maximum number of instances of property Pi in Wc is greater or equal to the number

of its instances in Wa:
 ii

W
i xPInstP c ≥∀)(| max

)((5.22)

A refinement relation R , between the states of working objects Wa and Wc, reflects a
permutation (and/or duplication) of state variables in)(cWV compared to)(aWV .

NOTE: The decomposition of a working object W into component working objects W1, W2
with multiplicities m1 and m2 expresses a definition of a working object composition relation
between W and W1 and between W and W2 with multiplicity expressions m1 and m2
respectively;

92

5.6.2 Refinement of a Localized action with a Joint action
Example 5.2. Figure 5-12-a illustrates a specification of a working object Wa as a whole with

a localized action)',()()(
a

a WW
XXLA . a

WW
a

a
XX Σ∈)()(

', are states of Wa before and after the

action. Working object Wc refines Wa by decomposing it into working objects S1 and S2
(Fig. 5-12-b). c1, c2 define multiplicities of component working objects S1 and S2 in Wc.
Properties P1 and P2 are distributed between component working objects S1 and S2; the
configuration of properties is the same as in Example 5.1.

Working object Wc is specified with a joint action)',()()(
c

c WW
XXJA . c

WW
c

c
XX Σ∈)()(

', are

states of Wc before and after the joint action. These states can be expressed as following
tuples:

)',..,',',..,'('

);,..,,,..,(
)2(

2
)2(

1
)1(

1
)1(

1
)(

)2(
2

)2(
1

)1(
1

)1(
1

)(

S
c

SS
c

SW

S
c

SS
c

SW

XXXXX

XXXXX

c

c

=

=

where
)1(S

iX - is a state of the i-th instance of component working object S1, i=1..c1;
)2(S

jX - is
a state of the j-th instance of component working object S2, j=1..c2.

Wa

Wc

S1_w S2_w

P1
x

P2
y

P1
x1

P2
y1

P1
x2

(a) (b)

LA
LApre

LApost
JA

JApre

JApost

LAinv

JAinv

c1 c2

Figure 5-12: Definition of a Joint Action from a Localized Action

Joint action JA modifies the properties of component working objects S1 and S2 to change
the state of parent working object Wc. In other terms, JA implements the localized action LA
defined for the working object Wa seen as a whole in Fig. 5-12(a).

Wc correctly refines Wa with the joint action JA as a whole refining the localized action LA as a
whole if JA preserves the external behavior of the localized action LA.

If localized and joint actions are modeled as composites, then we may be interested in a
preservation of the correspondent internal behavior.

We proceed with the following definition of correct organizational refinement:

Let us consider a working object Wa seen as a whole, specified on the state space aΣ with its

properties P1..Pn and a localized action LA, and a working object cW seen as a composite with

component working objects sWW ,..,1 . Multiplicity of a component working object Wi in Wc is

mi, where i=1..s. Wc is specified on the state space cΣ with a joint action JA. cΣ is a Cartesian

product of state spaces of the component working objects: wswc Σ××Σ=Σ ..1 .

We denote localized action LA as follows:

)'()',()()()',(
)()()()()()()(a

a
aaa

a
a W

inv
WW

post

W

pre

W

inv

def
WW

XLAXXLAXLAXLAXXLA ∧→∧= (5.23)

93

Here a
WW

a
a

XX Σ∈)()(
', are pre- and post- states of the working object Wa carrying out LA.

These states can be calculated by assigning values to the tuples of state variables of Wa as
follows:

)',..,'('

);,..,(

1

1

1
)(

1

)(

mn
W

mn

W

ppstateX

ppstateX

a

a

=

=
 (5.24)

Where nmnnm PppPpp :,..,;..;:,..,
11 111 .

We denote joint action JA of the refined working object Wc as follows:

)'()',()()()',(
)()()()()()()(c

c
ccc

c
c W

inv
WW

post

W

pre

W

inv

def
WW

XJAXXJAXJAXJAXXJA ∧→∧= (5.25)

Here c
WW

c
c

XX Σ∈)()(
', pre- and post- states of the refined working object Wc carrying out

JA. These states are expressed as tuples:

)',..,',..,',..,'('

);,..,,..,,..,(
)()(

1
)1()1(

1
)(

)()(
1

)1()1(
1

)(

1

1

Ws
m

WsW
m

WW

Ws
m

WsW
m

WW

s
c

s

c

XXXXX

XXXXX

=

=
 (5.26)

)(Wi
jX - is a state of j-th instance of component working object Wi, i=1..s, j=1..mi.

Wc refines Wa by decomposition, with the joint action JA refining the localized action LA.

We identify the states of interest: ccaa Σ⊆ΣΣ⊆Σ *,* , which include initial states

)'()(
,

WW
XX and terminating states)'()(',' WW XX of both actions. Then we specify the relation

},{**:* falsetrueR ca →Σ×Σ between these states of interest and use the definition of correct
(m,n)- refinement. First we define refinement the correctness that preserves the external
behavior: This formalization is applicable when both joint action and localized actions are
modeled declaratively. We continue defining the refinement correctness that preserves the
external and internal behavior.

Definition 5.14. [preservation of the external behavior]
Wc specifies a correct refinement of Wa by decomposition, with joint action JA refining
localized action LA if and only if
(1) Wc is a correct refinement of Wa by decomposition and property distribution (Definition

5.13)
(2) given a refinement relation },{**:* falsetrueR ca →Σ×Σ between states of abstract and

concrete specifications, for every run of the joint action JA of Wc, which starts at

c

Wc
X *

)(
Σ∈ and terminates at c

WcX *')(Σ∈ , there exists a run LA of Wa, which starts at

a

Wa
X *

)(
Σ∈ such that:

 ()),..,,..,,..,(,*),(*
)()(

1
)1()1(

1
)()()(

1

Ws
m

WsW
m

WWWW

s

aca
XXXXXRXXR =

holds, and terminates at a
WaX *')(Σ∈ , for which

())',..,',..,',..,'(,'*)','(*)()(
1

)1()1(
1

)()'()(

1

Ws
m

WsW
m

WWWW

s

aa
XXXXXRXXR = holds.

We rewrite the expression for correctness of data refinement by forward simulation from Eq.
(5.3) by using the refinement relation R* defined above and we obtain the expression for
correct organizational refinement as follows:

94

)','(*)',(|'

)',(),(*|,',

)()()()()(

)()()()()()()(

caa
a

a

c
ccaa

c
c

WWWW

a
W

WWWW

a

W

c
WW

XXRXXLAX

XXJAXXRXXX

∧Σ∈∃

⇒∧Σ∈Σ∈∀
 (5.27)

When both localized and joint actions are specified imperatively, preservation of sequences
of intermediate states (an internal behavior) might be required.

Definition 5.15. [preservation of the external and the internal behavior]
Wc specifies a correct refinement of Wa by decomposition, with joint action JA refining
localized action LA if and only if
(1) Wc is a correct refinement of Wa by decomposition and property distribution (Definition

5.13)
(2) given a refinement relation },{**:* falsetrueR ca →Σ×Σ between the states of abstract

and concrete specifications, for every run of the joint action JA defined by the ordered
sequence of states, including initial and the terminating states:

)'()(|*,,..,,)()()()()()()()(

0110

cc
n

ccc
n

c

n

cc WW
i

WW

ic
W

i
W

i

W

i

W

i XXXXXXXX =∧=Σ∈
−

, such that

i0 i1 . . . in is a monotone sequence of natural numbers; there is a run LA of the
abstract action, also defined by the ordered sequence of states:

)'()(|*,,..,,)()()()()()()()(

0110

a
a

m

aaa

m

a

m

aa WW

j

WW

ja

W

j

W

j

W

j

W

j XXXXXXXX =∧=Σ∈
−

, such

that
j0 j1 . . . jm is a monotone sequence of natural numbers;

and for every k and a

W

jc

W

i

a

k

c

k
XX *,*

)()(
Σ∈Σ∈ ,),(*

)()(c

k

a

k

W

i

W

j XXR holds.

()),..,,..,,..,(,*),(*
)()(

1

)1()1(

1

)()()(

1

Ws

mi

Ws

i

W

mi

W

i

W

j

W

i

W

j
skkkk

a

k

c

k

a

k
XXXXXRXXR = (5.28)

5.6.3 Refinement of a Localized Action with a Distributed Action
Example 5.3.
Figure 5-13(a) illustrates a specification of a working object Wa as a whole with a localized

action)',()()(
a

a WW
XXLA ;

Working object Wc refines Wa by decomposing it into working objects S1 and S2 as specified
in the previous example. Properties P1 and P2 are distributed between component working
objects S1 and S2; localized actions LA1 and LA2 are specified for component working
objects.

Working object Wc is specified with a distributed action)',()()(
c

c WW
XXDA . We denote the

distributed action as follows:

))',(),..,',(),',(),..,',((

),..,,,..,()',(

)2()2(

2
)2(

1

)2(

12
)1()1(

1
)1(

1
)1(

11

2211
)()(

2211

21

S
c

S

c
SSS

c
S

c
SS

d

cc

d
WW

XXLAXXLAXXLAXXLA

LALALALAXXDA c
c

ρ

ρ ==
4342143421

95

Figure 5-13: Organizational refinement by definition of a distributed action

Distributed action DA binds localized actions LA1 and LA2 of all instances of component

working objects S1 and S2 in Wc; here)',()1()1(
1

S
i

S
i XXLA - is a localized action LA1

specified for the i-th instance of component working object S1, i =1..c1 .

c
WW

c
c

XX Σ∈)()(
', are the initial and final states of the refined working object Wc that

performs DA. These states are expressed via the states of component working objects as
explained in the previous example.

LA1 and LA2 modify the properties of corresponding component working objects S1 and
S2 and change their states. The state of the parent working object Wc is expressed as a tuple
of states of its component working objects:

);,..,,,..,(
)2(

2
)2(

1
)1(

1
)1(

1
)(S

c
SS

c
SW

XXXXX
c =

where
)1(S

iX - is a state of the i-th instance of component working object S1, i=1..c1;
)2(S

jX - is
a state of the j-th instance of component working object S2, j=1..c2.

In our example, Wa with LA can be considered a specification of a certain behaviour; and

Wc with DA can be considered as an implementation of this behaviour. Here component
working objects participate in the distributed action to accomplish the behavior specified by
the localized action LA. Wc correctly implements Wa if its distributed action DA preserves the
external behavior of LA (for LA modeled declaratively) or its external and internal behavior
(for LA modeled imperatively).

We proceed with the following definition of correct organizational refinement:

Let us consider a working object Wa seen as a whole, specified on the state space aΣ with a

localized action LA, and a working object cW seen as a composite with component working objects

sWW ,..,1 . Multiplicity of component working object Wi in Wc is mi, where i=1..s. Wc is

specified on the state space cΣ with a joint action JA. cΣ is a Cartesian product of state spaces of the

component working objects: wswc Σ××Σ=Σ ..1 .
We specify the localized action LA as follows:

)'()',()()()',(
)()()()()()()(a

a
aaa

a
a W

inv
WW

post

W

pre

W

inv
WW

XLAXXLAXLAXLAXXLA ∧→∧= (5.29)

We specify distributed action DA of the refined working object Wc that binds the localized
actions of component working objects:

96

))',(),..,',(),..,',(),..,',((

)',(
)()()(

1
)(

1
)()(

1
)(

1
)(

11

)()(

1

1

1
1

11 s

s

s
s

ss

c
c

W
m

W
ms

WW
s

W
m

W
m

WW
d

WW

XXLAXXLAXXLAXXLA

XXDA

ρ
=

 (5.30)

Here c
WW

c
c

XX Σ∈)()(
', are states of the refined working object Wc. These states are

expressed as tuples:

)',..,',..,',..,'('

);,..,,..,,..,(
)()(

1
)1()1(

1
)(

)()(
1

)1()1(
1

)(

1

1

Ws
m

WsW
m

WW

Ws
m

WsW
m

WW

s
c

s

c

XXXXX

XXXXX

=

=

)(Wi
jX - is a state of j-th instance of component working object Wi;

)',()()(ii W
j

W
ji XXLA - is a localized action specified for the j-th instance of component

working object Wi, i=1..s, j=1..mi..

Wc refines Wa by decomposition, with the distributed action DA refining the localized action
LA.

We identify the states of interests: ccaa Σ⊆ΣΣ⊆Σ *,* , which include initial states

)()(
, ca WW
XX and terminating states)()(',' ca WW XX of both actions. Then we specify the

relation },{**:* falsetrueR ca →Σ×Σ between these states of interest and use the definition of
correct (m,n)- refinement. First we define the refinement correctness that preserves the
external behavior: This formalization is applicable when the localized action is modeled
declaratively. Second, we define the refinement correctness that preserves the external and
internal behavior.

Definition 5.16. [preservation of the external behavior]
Wc specifies a correct refinement of Wa by decomposition, with distributed action DA
refining localized action LA if and only if
(1) Wc is a correct refinement of Wa by decomposition and property distribution (Definition

5.13)
(2) given a refinement relation },{**:* falsetrueR ca →Σ×Σ between states of abstract and

concrete specifications, for every run of the distributed action DA of Wc, which starts at

c

Wc
X *

)(
Σ∈ and terminates at c

WcX *')(Σ∈ , there exists a run LA of Wa, which starts at

a

Wa
X *

)(
Σ∈ such that:

 ()),..,,..,,..,(,*),(*
)()(

1
)1()1(

1
)()()(

1

Ws
m

WsW
m

WWWW

s

acc
XXXXXRXXR =

holds, and terminates at a
WaX *')(Σ∈ , for which

())',..,',..,',..,'(,'*)','(*)()(
1

)1()1(
1

)()()(

1

Ws
m

WsW
m

WWWW

s

acc
XXXXXRXXR = holds.

We rewrite the expression for correctness of data refinement by forward simulation from Eq.
(5.3) by using the refinement relation R* defined above. We obtain the expression for correct
organizational refinement as follows:

)','(*)',(|'

)',(),(*|,',

)()()()()(

)()()()()()()(

caa
a

a

c
ccaa

c
c

WWWW

a
W

WWWW

a

W

c
WW

XXRXXLAX

XXDAXXRXXX

∧Σ∈∃

⇒∧Σ∈Σ∈∀
 (5.31)

97

For localized and distributed actions, the modeler might require the imperative preservation
of sequences of intermediate states (an internal behavior).

Definition 5.17. [preservation of the external and the internal behavior]
Wc specifies a correct refinement of Wa by decomposition, with distributed action DA
refining localized action LA if and only if
(1) Wc is a correct refinement of Wa by decomposition and property distribution (Definition

5.13)
(2) given a refinement relation },{**:* falsetrueR ca →Σ×Σ between states of abstract and

concrete specifications, for every run of the distributed action DA defined by the ordered
sequence of states, including initial and the terminating states:

)'()(|*,,..,,)()()()()()()()(

0110

cc
n

ccc
n

c

n

cc WW
i

WW

ic
W

i
W

i

W

i

W

i XXXXXXXX =∧=Σ∈
−

, such that

i0 i1 . . . in is a monotone sequence of natural numbers; there is a run LA of the abstract
action, also defined by the ordered sequence of states:

)'()'(|*,,..,,)()()()()()()()(

110

a
a

m

cc
n

a

m

a

m

aa WW

j
WW

ia

W

j

W

j

W

j

W

j XXXXXXXX =∧=Σ∈
−

, such

that
j0 j1 . . . jm is a monotone sequence of natural numbers;

and for every k and a

W

jc

W

i

a

k

c

k
XX *,*

)()(
Σ∈Σ∈ ,),(*

)()(c

k

a

k

W

i

W

j XXR holds.

()),..,,..,,..,(,*),(*
)()(

1

)1()1(

1

)()()(

1

Ws

mi

Ws

i

W

mi

W

i

W

j

W

i

W

j
skkkk

a

k

c

k

a

k
XXXXXRXXR = (5.32)

98

99

Chapter 6

Analysis of SEAM Specifications using
Formal Specification Languages

In Chapter 4 we specify the FOL-based semantics for SEAM. In Chapter 5 we formulate
correctness for different refinement types in SEAM as FOL formulas. The refinement
verification is reduced to a proof of validity of these formulas.

The algorithm for refinement verification involves the following steps:

1. Representation of the abstract specification as an FOL-formula;
2. Representation of the concrete specification as an FOL-formula;
3. Definition of a refinement relation between states of the concrete and the abstract

specifications as an FOL-formula;
4. Checking that abstract and concrete specifications, as well as the refinement relation,

are not overconstrained (i.e. there exists an interpretation of their state variables that
evaluates the corresponding FOL-formula to ‘true’);

5. Application of (1,1)- or (m,n)-schema for refinement correctness as explained in
Chapter 5: This means a specification of forward or generalized forward simulation
between the abstract and the concrete specifications. Refinement correctness is also a
FOL-formula, which is a combination of formulas from 1-3.

6. Validation of refinement correctness.

The validation of an FOL formula can be automated using model checkers and theorem
provers.

In this chapter, we define the technique for an automated validation of refinement
correctness, which is based on two model verification tools: the Alloy Analyzer [3]; and the
Jahob verification system [63][115]. We apply this technique for refinement verification of
SEAM specifications.

The idea behind the automated verification is to translate a SEAM specification to a
(target) specification language, supported by a verification tool.

Technically, we automate the steps 1 and 2 from the algorithm above by defining and
implementing the mapping rules for SEAM specifications to a formal specification language;

Using the verification tool for the target formal specification language, we automate the
steps 4 and 6 of the algorithm above. These two steps are reduced to satisfiability and
validity problems for the corresponding FOL-formulas. These problems can be solved by the
tool.

The identification of a refinement type, specification of a refinement relation, and the
formalisation of the refinement correctness as an FOL-formula (steps 3 and 5 of the
algorithm above) should be done manually, by a designer.

100

In Section 6.1 of this chapter we provide an overview of the approaches to formal
verification based on model checking and formal theorem proving. We examine in detail the
Alloy modeling language and its analyzer, which is an example of a model checker; and the
Jahob verification system, which is an example of a formal theorem prover. In Section 6.2 we
present a simple example of SEAM specification. This specification is verified with Alloy
and Jahob in the following sections: In Section 6.3 we specify a mapping of SEAM to the
Alloy specification language and illustrate the refinement verification in the Alloy Analyzer
tool. In Section 6.4 we present a prototype tool for automated mapping of SEAM
specifications to Alloy. In Section 6.5 we formalize the refinement correctness for SEAM
specifications as a Jahob formula and illustrate the refinement verification in the Jahob
verification system.

6.1 Approaches to Formal Verification

There are two main approaches to formal verification: model checking [20] and a theorem
proving based on logical inference [47] [64]. When a designer specifies refinement
correctness, for example, based on simulations from Chapter 5, these approaches verify this
correctness. Not only refinement correctness, but any other property of a specification can be
verified.

Model checking is an approach for verifying requirements and design for a vast class of
systems, including real-time embedded and safety-critical systems. Model checkers analyze
system models written in some specification language. The fact that the model satisfies a
certain property is expressed as a logical formula. Model checkers often use counterexample-
based algorithms to validate the formula. If a counterexample (a set of values of system state
variables that evaluates the formula to 'false') is found - this formula is invalid. The major
drawback of the model checking is a state explosion problem, which originates from the fact
that for real systems the size of the state space grows exponentially with the number of
processes [21]. To avoid this problem, model checkers validate the formula for the limited
test spaces. Therefore, the validation result is not universal, and related only to this test space
of a model checker. The absence of a counterexample does not imply the formula validity in
model checkers. Some examples of model checkers are: Alloy Analyzer [3], BLAST [52],
SPIN [54].

The second approach is an automated theorem proving based on logical inference. As in

the previous approach, to be processed by a theorem prover, system models are written in
some specification languages; the fact that the model satisfies a certain property is expressed
as a logical formula. The task is to prove the validity of this formula, deducing it from a set of
axioms that exist for the underlying logic (e.g. first-, second-, higher-order logic etc), and
hypotheses made about the system. If the theorem prover manages to construct a proof, then
the formula is valid. The absence of a proof, dually to model checkers, does not necessarily
mean that the formula is invalid - due to the complexity of a proving procedure.

Despite the fact that the automated theorem proving is complex and requires much human
involvement, compared to the model checking, its application is promising: this approach is
not limited by the state explosion problem and can handle the infinite number of states. The
examples of theorem provers for the first-order logic are: [100][99]. The examples of
theorem provers for the higher-order logic are: [48][74][82].

To prove desired properties of specifications, or to verify the correctness of their

refinement, a visual modeling language can benefit from model checkers and automated
theorem provers. In Chapter 4, we introduce our formal semantics for SEAM visual

101

specifications. Based on these semantics, we specify a mapping of SEAM models to (1) the
Alloy specification language for the refinement verification with the Alloy Analyzer tool [3],
(2) the Jahob formulas, written in subset of the Isabelle specification language, or Jahob
programs for proving the refinement correctness in Jahob verification system. Both the Alloy
Analyzer and Jahob verification system support the automated specification analysis.

6.1.1 The Alloy Specification Language and the Alloy Analyzer
The Alloy Analyzer is a tool for the automated analysis of models written in the Alloy
specification language [59]. This tool is an example of a model checker.

Alloy is a declarative specification language developed by the Software Design Group at
MIT. Alloy is a language for expressing complex structural constraints and behaviour based
on first-order logic. The syntax of Alloy is similar to the syntax of OCL – the Object
Constraint Language for UML[76]. However, Alloy is a fully declarative, whereas OCL
combines both declarative and imperative (operational) elements.

Unlike a programming language, a declarative Alloy model describes the effect of
behaviour and does not reveal its mechanism. This modeling technique allows for the
creating and analysis of partial models and is beneficial when a modeler, for example, has a
limited knowledge about the system or develops an abstract system specification.

Given a logical formula and a data structure that defines the value domain for this formula,

the Alloy Analyzer decides whether this formula is satisfiable. Mechanically, the Alloy
Analyzer attempts to find a model instance - a binding of the variables to values - that
makes the formula true. A logical formula may correspond to some property of the modeled
system or its behavior. The current version of Alloy Analyzer is based on the new SAT-
based model finder Kodkod [106].

Analysis with Alloy
We model the actions performed by a system as Alloy formulas. The parameters of these

formulas are values of system state variables before and after the action.
With the Alloy Analyzer, we can (1) validate that the action specification does not contain

contradictory constraints (i.e. it is not overconstrained); (2) validate a refinement between
two specifications: to do so, we specify abstract and concrete action specifications (Aa and Ac)
and a refinement relation R between their states as Alloy predicates. The fact that Ac
correctly refines Aa, given a refinement relation R, is expressed in the Alloy specification
language as an assertion.

Assertions are proven in Alloy by a counterexample, as follows: An assertion is valid if
and only if it is satisfiable by every model instance (see Chapter 3 for semantics of FOL). If
there is at least one model instance that falsifies this assertion, then the assertion is invalid.
Such an instance is called a counterexample. If the analyzer finds no counterexample, then
the assertion may be valid. The assertion validity is limited by the test space of model
instances, considered by the analyzer.

To prove refinement correctness (i.e. to validate it for all possible model instances), the
same assertion can be examined by theorem provers. If the proof of validity is constructed
than the assertion is valid without a limitation. We use the Jahob verification system [63] to
make a formal proof of refinement correctness.

6.1.2 The Jahob Verification System
Jahob is a data structure verification system [63][115]. Jahob combines the techniques from
static analysis, decision procedures, and theorem proving. The Jahob system analyzes

102

programs written in a subset of Java and annotated with specification constructs. The main
idea is to verify that the program is consistent with its specification.

The input language for Jahob is a subset of Java, extended with annotations. These
annotations contain formulas written in a subset of higher-order logic (HOL) of the Isabelle
theorem prover [74][82] and represent a program specification.

Based on this architecture, a Jahob program can be compiled, tested, and executed using
existing Java tools; and it can be statically verified to satisfy important data structure
consistency properties. Jahob reduces the verification problem to deciding on the validity of
HOL formulas; these formulas are used as an input for the Jahob form decider, which carries
out the proof of validity (Fig. 6-1).

Specification constructs in Jahob are written in special comments : /*: this is a special
comment */. These constructs mainly contain formulas denoting a predicate on a program
state or a relationship between the current and a previous program state.

Similarly to a state of a working object in SEAM, the program state in Jahob is specified
by the values of the program’s variables. Jahob distinguishes two types of program variables:
Standard Java variables called concrete variables, and variables defined as a part of Jahob
specification called specification variables. Specification variables do not affect program
execution and exist for verification purposes.

To specify a program behavior, Jahob uses procedure contracts [71] that contain:
• A precondition, stating the state of the procedure upon its invocation;
• A frame condition, listing the components of state that may be modified by the procedure,
meaning that the other state components remain unchanged;
• A postcondition, describing the state of the procedure at the end of its invocation.
To constrain the data structure of a program, apart from procedure contracts, Jahob can
specify program invariants.

Given the invariants and procedure contracts, the Jahob system statically analyzes the
program implementation to ensure that (1) it preserves data structure consistency properties,
and (2) each procedure conforms to its specification.

When analyzing a procedure p, Jahob assumes that the precondition of p holds and checks
that p satisfies its postcondition and the frame condition. Dually, when analyzing a call to
procedure p, Jahob checks that the precondition of p is satisfied, assuming that the frame
condition and the postcondition of p hold.

From Jahob programs, the Jahob verification system first generates logical constraints
(proof obligations) in higher-order logic and then proves their validity using a form decider.
Jahob attempts to prove these proof obligations using various specialized reasoning
procedures. Although some procedures may fail in deciding formula validity, the others may
succeed.

Fig. 6-1 illustrates an architecture of the Jahob verification system. This system may
accept for verification both Jahob specifications (Java programs annotated with Jahob
expressions) and Jahob formulas (expressions, written in a subset of Isabelle specification
language). Jahob specifications are first pre-processed and transformed into Jahob formulas.
Then the formulas are validated by using various decision procedures (e.g. Isabelle, SPASS,
E, etc). Jahob formulas can be entered for validation directly by using the Jahob formDecider
tool.

103

(b) Jahob formula

(a) Jahob specification

Figure 6-2: Jahob Verification system: (a) a Jahob specification is an input for the Jahob verification
system. It is a program, written in a subset of Java and annotated with Jahob expressions. This
specification is transformed later into Jahob formula; (b) a Jahob formula is a ‘ready to prove’
expression that is an input for the formDecider

Analysis with Jahob
1. The possibility of using directly the Jahob form decider (formDecider) allows us to

verify a refinement of SEAM specifications without writing Jahob programs, but specifying
Jahob formulas.

FormDecider is a command-line tool for proving formulas (Fig. 6.1(b)). We map an FOL
formula that expresses the refinement correctness for SEAM specifications to a Jahob
formula and pass the latter to the Jahob formDecider. FormDecider attempts to decide
formula validity. The result is supposed to approve or refute the result obtained earlier with
the Alloy Analyzer.

Technically, we specify Jahob formulas from corresponding formulas in Alloy. The
mapping between Alloy and Jahob formulas is introduced later in this section.

2. SEAM specifications with explicit update statements can be translated to Jahob

specifications - Java programs annotated with Jahob expressions – for further verification
with Jahob verification system (Fig. 6-1(a)). The mapping of SEAM action contracts to Jahob
specification constructs, and the mapping of SEAM update statements to Java statements are
two main parts of this approach. The representation of a SEAM specification as a Jahob
program permits us to formally prove that the action implementation (the update statements)
is consistent with its specification (the action contract). We expect to develop this approach
in the future.

6.2 The 'XYZ' Example

In this section we introduce a simple example and use this example in the following sections
to specify the mapping rules of SEAM to Alloy and then to Jahob for further verification.

104

Fig. 6-2 illustrates the SEAM specification of a working object M seen as a whole (M_w)
with three primitive properties X, Y, Z. A localized action doMath of the working object specifies the
operation on the instances of these properties (integer values). One instance of each property is
specified in the model: x:X, y:Y, z:Z. This is done using host relations with multiplicity and instance
expressions. We define the state of the working object M by a tuple of state variables:),,(zyxV = ;
The state is calculated as a binding of these state variables and their values:

),,(zyxstateX = .
The localized action doMath (denoted as LAdoMath in Fig. 6-2) is specified with the
following contract:

)'()'(:

;':

;:

yxzzyxyLAdoMath

xxLAdoMath

trueLAdoMath

post

frame

pre

++=∧+=
= (6.1)

Figure 6-2: Specification of a working object M as a whole, with a localized action doMath (LAdoMath)
and three properties: x:X, y:Y, z:Z. A frame condition specifies the variables that rest unchanged after
the action.

The action specifies a transition from a pre-state X to a post-state 'X . The pre-state and

the post-state are defined by values of state variables x, y, z before the action execution and
after the action termination respectively. We denote this as follows:

statepostzyxstateX

stateprezyxstateX

−−==

−−==

)',','()z y, x,('

),,()z y, x,(
 (6.2)

The precondition of this action ‘true’ means that the action is available (i.e. can be
triggered) at any state of the system.

The postcondition defines relations between values of x, y and z before and after the
action. The fact that the value of x is not changed by the action is expressed by a frame
condition.

We write the action specification as a formula:

)'()'()'()',',',,,(

)',(

'

xxyxzzyxytruezyxzyxLAdoMath

XXLAdoMath

XX

def

=∧++=∧+=→=

=

43421321
 (6.3)

This is equivalent to:)'()'()'()',(xxyxzzyxyXXLAdoMath
def

=∧++=∧+== .

105

Preconditions, postconditions, frame conditions, and invariants (if any) are specified as
annotations for action-property relations in SEAM specifications. These annotations are
expressed in a subset of the Alloy language.

6.3 Mapping to Alloy

6.3.1 Model Elements
A SEAM working object seen as a whole (Ww) and the properties of this working object Pi
are represented in Alloy as sets and denoted by signatures.

We specify the working object M_w from our example (Fig. 6-2) in Alloy as:
 sig M_w{...}

An Alloy signature can be considered as a class in the object-oriented paradigm.

Property instances nmpp ,..,11 are relations of a type iw PW → , having Ww as its domain

and the set iP as its range. The expression Ww.p returns a value from its range P. Alloy
relations can be seen as analogy of fields in the object-oriented paradigm.

SEAM uses relations with multiplicities to specify host relations, composition relations
and property to property (PP-) relations (Section 3.4). These relations are annotated with
expressions of the form M '|' IM where M = # | #..#|#..*|*; and IM = <inst.name>[,
<inst.name>].

M is a multiplicity expression; IM – an instance expression. Instance names nmpp ,..,11 ,
define the names of relations in Alloy. M specifies a number of such relations. Table 6-1
illustrates the most useful expressions of the form M '|' IM in SEAM and their mapping to
Alloy [59]:

Table 6-1

Alloy:

1|a a: one X

0..1|a a: lone X

1..3|a,b,c a,b,c: one X

*|b b: set X

SEAM relations with multiplicities are shown in Fig. 6-3:
Fig. 6-3(a) illustrates a single instance. We denote it in Alloy as: a: one A
Fig. 6-3(b) illustrates an unbounded set of undistinguishable instances: b : set B
Fig. 6-3(c) illustrates a finite (bounded) set of distinguishable instances: c1,c2,c3 : one C

Figure 6-3: SEAM multiplicities

106

Properties A, B, C in Fig. 6-3 are primitive properties; they specify sets of integers: for
example, each instance of A has a value that is a relation of type IntA → . In Alloy, we
specify these properties as follows:
sig A {value : one Int}
sig B {value : one Int}
sig C {value : one Int}

we simplify the notation for primitive properties:
a : one Int
b : set Int
c1,c2,c3 : one Int

We provide a specification for the working object M_w from our example as follows:
sig M_w{
x,y,z: one Int
}

Client Name
1|n

ID1|id

Address

Street

NPA
1|npa

1|s
1..2|a1,a2

,,,

Figure 6-4: SEAM compound property

Example 6.1. Considering a data structure illustrated in Fig. 6-4, we specify compound properties
Client and Address by the following Alloy signatures:
sig Client {
id : one ID,
n: one Name,
a1, a2: one Address}

sig Address {
s : one Street,
npa : one NPA}

SEAM actions are mapped to Alloy predicates. Action parameters are mapped to the parameters of
these predicates.

Preconditions, postconditions and invariants of a SEAM action are specified as annotated action to
property (AP-) relations in SEAM diagrams.

In our example (Fig. 6-2), we obtain the action specification by combining corresponding annotation
expressions as follows:

)',()',()()',(XXLAdoMathXXLAdoMathXLAdoMathXXLAdoMath frame
postpre

def

∧→= (6.4)

If an action precondition, postcondition, or invariant is specified by several annotated AP-relations in
the diagram, then the corresponding action condition is represented in Alloy as a conjunction of

107

annotation expressions. If an action precondition is not specified - we consider that this action
is available at each state of the working object. This can be denoted as : Apre = true.

In Fig. 6-2, two AP-relations are stereotyped with a keyword Post:. Thus, the action postcondition

is a conjunction of the annotating expressions: LAdoMathpost = (y' = y + x) ∧ (z' = z + (y + x)).

The Alloy specification language is based on first-order logic, which allows us to map the

action specification from Eq.(6.4) to an Alloy predicate as follows:

pred LAdoMath[x,y,z:one Int, x',y',z':one Int]{ -)',(XXLAdoMath
//true => - precondition)(XLAdoMathpre

 y' = y + x &&
 z' = z + (y + x) &&

- postcondition),(XXLAdoMathpost

 x = x'
}

- frame condition),(XXLAdoMathframe

Logical conjunction ''∧ is expressed by the operator 'and' or '&&' in Alloy. Table 6-2 illustrates the
logical connectives and quantifiers of FOL and correspondent Alloy symbols, used in this work.

Table 6-2
FOL Alloy:

FXaFXaFXaFXa |:|:|:|: 1∃∃¬∃∀ all a:X|F no a:X|F some a:X|F one a:x|F

∨ ||,or

⇔↔, <=>

→ =>

∧ &&, and
¬ !

:∉∈⊆ in !in :
= < > = < >

Successful Action
With the Alloy Analyzer we can verify the consistency of a SEAM action by checking if this action
specification is not overconstrained (see Section 5.3). This is done by checking the satisfiability of
the formula that expresses the successful action in Eq. (5.9).

For the successful action LAdoMath in Fig. 6-2 we write:

)',()',()(XXLAdoMathXXLAdoMathXLAdoMath frame
postpre ∧∧ (6.5)

The satisfiability of this formula means that there exists at least one binding of the properties
to values such that the action precondition holds and its postcondition is satisfied. To verify
satisfiability of Eq.(6.5), we translate this formula to the Alloy predicate and run this
predicate in the Alloy Analyzer:

Action precondition of LAdoMath in the example is ‘true’ (i.e. it always holds). Thus,
technically, specification of LAdoMathc and specification of the successful action
LAdoMath_succ are the same.

We run the predicate in the Alloy Analyzer using the command run with the predicate name and
other (optional) parameters5:

5 See the Alloy Analyzer documentation on http://alloy.mit.edu/ for the details

108

run LAdoMath_succ

6.3.2 Functional Refinement: from an Action as a Whole to an Action as a
Composite

We continue working on the example, presented in Section 6.2 and illustrate the mapping of
the refined SEAM specification illustrated in Fig. 6-5 to Alloy.

SEAM diagram in Fig. 6-5 specifies the working object M seen as a whole with the

localized action doMath seen as a composite (LAdoMathc). This specification is a functional
refinement of the specification presented in Fig. 6-2: The computation presented by action
LAdoMath in Fig. 6-2 is decomposed into two subcomputations, one modifying the property
y, and another one modifying the property z. These subcomputations are component
localized actions LAaddToY1 and LAaddToY1.

Figure 6-5: Specification of a working object M as a whole, with a localized action doMath seen as a
composite. LAdoMathc is modeled declaratively.

First, we consider a declarative specification of LAdoMathc: we do not specify the order of
component actions and do not show the intermediate states of action execution.

Component actions LAaddToY1 and LAaddToZ1 are independent. Therefore, we write the
following expression for the localized action doMath seen as a composite from Eq.(4.30):

)',',',,,()',',',,,(

)',',',,,(_)',(_

11 zyxzyxLAaddToZzyxzyxLAaddToYtrue

zyxzyxdeclarLAdoMathXXdeclarLAdoMath c

def

c

∧→
== (6.6)

Component localized actions are specified with the following formulas:

() ()xyyxxtrue

zyxzyxLAaddToY

+=∧=→
=

''

)',',',,,(1 (6.7)

This is equivalent to: () ()xyyxxzyxzyxLAaddToY +=∧== '')',',',,,(1

() ()yxzzxxtrue

zyxzyxLAaddToZ

++=∧=→
=

''

)',',',,,(1 (6.8)

This is equivalent to: () ()yxzzxxzyxzyxLAaddToZ ++=∧== '')',',',,,(1

Preconditions for both component actions of LAdoMathc are 'true'.

109

Similarly to LAdoMath seen as a whole, we map LAdoMathc and its component actions to
Alloy predicates:
pred LAdoMath_c_declar[x, y, z, x', y', z': one Int]{
//true =>
LAaddToY1[x, y, z, x', y', z'] &&
LAaddToZ1[x, y, z, x', y', z']
}

pred LAaddToY1[x, y, z, x', y', z': one Int]{
 x'= x &&
 y' = y + x
}

pred LAaddToZ1[x, y, z, x', y', z': one Int]{
 x'= x &&
 z'= z + x + y }

NOTE: Despite the fact that the action LAaddToY1 does not change the value of z, and the
action LAaddToZ1 does not change the value of y - we do not specify this as a frame
condition. The declarative specification Eq.(6.6) specifies two actions LAaddToY1 and
LAaddToZ1 executed within one state transition, where both z and y are changed. Therefore, a
frame condition would lead here to the action inconsistency.

The imperative specification of LAdoMathc is illustrated in Fig. 6-6. The SEAM diagram
specifies the order of component actions - the control flow- using SEAM action-action (AA)
relations. In our example actions are composed sequentially, using SEAM transition (see
Section 4.3).

M_w
Y

<Int>

1|y

X
<Int>

1|x

LAdoMath_c

Post: x’=x

Z
<Int>

1|z

LAaddToY2 LAaddToZ2

x, y, z

xyz x’y’z’

xt, yt, zt x’, y’, z’
xyz x’y’z’

1|xt

Pre: true

1|yt

1|ztPost: y’ = y+x
Post: z’=z

Pre: true

Post: y’=y Post: z’= z+y+x
Post: x’=x

Local
variables

M_w
Y

<Int>

1|y

X
<Int>

1|x

LAdoMath_c

Post: x’=x

Z
<Int>

1|z

LAaddToY2 LAaddToZ2

x, y, z

xyz x’y’z’

xt, yt, zt x’, y’, z’
xyz x’y’z’

1|xt

Pre: true

1|yt
1|ztPost: y’ = y+x

Post: z’=z

Pre: true

Post: y’=y Post: z’= z+y+x

Post: x’=x

Action
contract

(a) (b)
Figure 6-6: Specification of a working object M as a whole, with a localized action doMath seen as a

composite. LAdoMath_c is modeled imperatively, with an intermediate state),,(tttt zzxstateX = .

Local variables ttt zzx ,, specify the intermediate state of the action as a composite. a) Local variables are

emphasized; b) action contract is emphasized.

SEAM defines several types of AA-relations: Start, End, Transition, Conditional transition, Fork
(AND, OR, XOR), Merge (AND, OR, XOR). In Section 4.3.6 we have introduced the FOL
semantics of these relations. In Table 6-3 we present the semantics of these relations in Alloy.

110

Table 6-3
SEAM Alloy:
Start(A1) A1(x,x1)
End(A1) A1(x1,x')
Transition(A1,A2) A1(x1,x2) && A2(x2,x3)
ConditionalTransition (A1,A2,C) A1(x1,x2) && C => A2(x2,x3)
ConditionalTransition (A1,{A2,A3},C) A1(x1,x2) && C => A2(x2,x3) else A3(x2,x4)
AndFork(A1,{A2,A3}) A1(x1,x2) && (A2(x2,x3) && A3(x2,x4))

AndMerge({A1,A2},A3) (A1(x1,x3) && A2(x2,x3)) && A3(x3,x4)
OrFork(A1,{A2,A3}) (A1(x1,x2) && A2(x2,x4)) ||

(A1(x1,x3) && A3(x3,x5)) ||
(A1(x1,x6) && A2(x6,x7) && A3(x6,x8))

OrMerge({A1,A2},A3) (A1(x1,x3) && A3(x3,x5)) ||
(A2(x2,x4) && A3(x4,x6)) ||
(A1(x1,x7) && A2(x2,x7) && A3(x7,x8))

XOrFork (A1,{A2,A3}) (A1(x1,x2) && !A3pre(x2) && A2(x2,x4)) ||
(A1(x1,x2) && !A2pre(x2) && A3(x2,x4))

XOrMerge({A1,A2},A3) (A1(x1,x2) && A3(x2,x5) && !A3pre(x4)) ||
(A2(x3,x4) && A3(x4,x6) && !A3pre(x2))

The action LAaddToY2 seen as a whole specifies a transition of a working object M from a

pre-state X to an intermediate state tX . We write:

),,()z y, x,(tttt zyxstateX == - intermediate state (6.9)

Here),,(ttt zyx is a tuple of values of state variables x, y, z ‘in the middle of’ the action
execution (Fig.6-6).

The action LAaddToZ2 seen as a whole specifies a transition of a working object M from

tX to a post- state 'X . We write the following expression for the action LAdoMathc:

)',',',,,(),,,,,(

|:,:,:

)',',',,,(_

22 zyxzyxLAaddToZzyxzyxLAaddToY

ZzYyXxtrue

zyxzyximperLAdoMath

tttttt

ttt

def

c

∧
∃→

=
 (6.10)

Component localized actions are specified with the following formulas:

() () ()zzxyyxxtrue

zyxzyxLAaddToY

=∧+=∧=→
=

'''

)',',',,,(2 (6.11)

() () ()xyzzyyxxtrue

zyxzyxLAaddToZ

++=∧=∧=→
=

'''

)',',',,,(2 (6.12)

NOTE: The specifications of component localized actions in Eq. (6.10), (6.11) are different
from those in Eq. (6.7), (6.8): In Eq. (6.11), (6.12) we specify the frame conditions on the
variables z and y.

We map LAdoMathc and its component actions to Alloy:

111

pred LAdoMath_c_imper[x, y, z, x', y', z': one Int]{
//t - local time
//true =>
(some x_t, y_t, z_t : Int |
LAaddToY2[x, y, z, x_t, y_t, z_t] &&
LAaddToZ2[x_t, y_t, z_t, x', y', z'])
}
pred LAaddToY2[x, y, z, x', y', z': one Int]{
 x'= x &&
 z'= z &&
 y'= y + x
}
pred LAaddToZ2[x, y, z, x', y', z': one Int]{
 x'= x &&
 y'= y &&
 z'= z + x + y
}

The imperative and declarative specifications of localized action doMath, seen as a
composite, are related. The imperative specification refines the declarative specification as it
reduces nondeterminism. We can check the refinement between these specifications. We call
the declarative specification ‘abstract’ and the imperative specification ‘concrete’ and specify
the refinement relation between abstract and concrete states),(ac XXR . We express the
refinement correctness as the following Alloy assertion:

assert Declar_Imper{
all xc, yc, zc, x'c, y'c, z'c, xa, ya, za: one Int |
(LAdoMath_c_imper[xc, yc, zc, x'c, y'c, z'c] &&
(xa = xc) && (ya = yc) && (za = zc))=> //R(Xc,Xa)
(some x'a, y'a, z'a: Int |
LAdoMath_c_declar[xa, ya, za, x'a, y'a, z'a] &&
(x'a = x'c) && (y'a = y'c) && (z'a = z'c)) //R(X’c, X’a)
}

The Alloy Analyzer validates this assertion using a counterexample-based algorithm; it
explores a limited test state space and looks for an example that invalidates the assertion. Not
discovering such a counterexample, it concludes that the assertion may be valid.

Refinement Verification
We formalize the refinement correctness for the working object M performing action

LAdoMathc (the concrete specification) refining the working object M performing action
LAdoMath seen as a whole (the abstract specification). LAdoMathc is a functional refinement
by action decomposition of the action LAdoMath. The correctness of this refinement is
formulated in Definition 5.10. As we do not introduce new properties, the state spaces of the
abstract and the concrete specifications are the same, and the refinement relation between
these state spaces is an identity function. We specify the refinement relation with the
following Alloy predicate:

pred R_LAC_to_LAW[xc, yc, zc, xa, ya, za: one Int]{
 (xc = xa) &&
 (zc = za) &&
 (yc = ya)
}

Here the tuple (xc,yc,zc) specifies a state of the concrete specification, and a tuple (xa,ya,za)
specifies a state of the abstract specification.
We specify the criterion of refinement correctness from Definition 5.10 with the following
assertion in Alloy:

112

assert LAW_LAC{
 all xa, ya, za, xc, yc, zc, xc', yc', zc': Int |
 (LAdoMath_c_imper[xc, yc, zc, xc', yc', zc'] &&
 R_LAC_to_LAW[xc, yc, zc, xa, ya, za]) =>

 (some xa', ya', za' : Int |
 LAdoMath_w_declar[xa, ya, za, xa', ya', za']&&
 R_LAC_to_LAW[xc', yc', zc', xa', ya', za'])
 }
check LAW_LAC

The localized action seen as a whole does not specify the intermediate states, therefore we
verify only the correspondence of external behavior of LAdoMath and LAdoMathc.

We check the validity of this assertion in the Alloy Analyzer using the command check
with the assertion name and other (optional) parameters6:

check LAW_LAC

6.3.3 Organizational Refinement: from a Working Object as a Whole to a
Working Object as a Composite

Fig 6-7 illustrates the working object M seen as a composite (Mc). For Mc we specify
component working objects A and B and a joint action doMath (denoted: JAdoMath) that
represents collaboration between these component working objects.

Figure 6-7: Specification of a working object M as a composite (denoted Mc) with a joint action doMath
(denoted JAdoMath) seen as a whole. A and B are component working objects of M.

The properties of M are distributed between A and B such that X and Y are presented in
both A and B (duplicated), and Z is ‘fully delegated’ to A.

The specifications of component working objects A, B, and their parent working object Mc

are mapped to Alloy as follows:

6 See the Alloy Analyzer documentation on http://alloy.mit.edu/ for the details

113

1. Component working objects are mapped to Alloy signatures. Host relations of
component working objects specify relations between working objects and properties.
These relations are annotated with multiplicity/instance expressions of a form M'|'IM. We
map these relations to the fields of an Alloy signature as specified in Table 6-1:

sig A{
Ax,Ay,Az: one Int
}
sig B{
Bx,By: one Int}

2. Parent working object Mc is mapped to Alloy signature M_c. WO composition relations

of Mc specify relations between this working object and its component working objects.
These relations are annotated with multiplicity/instance expressions of a form M'|'IM. We
map these relations to the fields of an Alloy signature as specified in Table 6-1:

sig M_c{
a: one A,
b: one B
}

Mc is the organizational refinement of Mw, with JAdoMath refining LAdoMath.

We can show that Mc correctly refines Mw by decomposition and property distribution by
Definition 5.13:
All properties of Mc are delegated to component working objects. Based on Eq. (5.22) we
write:

;1)()(

);(2)(

);(2)(

max
)(

max
)(

max
)(

max
)(

max
)(

max
)(

==

>=

>=

ZInstZInst

YInstYInst

XInstXInst

MM

MM

MM

c

c

c

 (6.13)

Figure 6-7 presents a declarative specification of JAdoMath: We do not specify in which

order the properties of component working objects are modified and do not show the
intermediate states of action execution. We define shared properties shared_x:X, shared_y:Y
for the working object to maintain the common knowledge of Mc.

The state of the working object Mc is represented by a tuple of states of its component

working objects:),(
)()()(BAM

XXX c = , where each component working object is
characterised by its state variables, and

()

),(

;,,
)(

)(

yxstateX

zyxstateX
B

A

=

=

State variables of A and B are disjoint. To distinguish them, we use prefixes as follows:

()
),(

;,,
)(

)(

ByBxstateX

AzAyAxstateX
B

A

=

=
 (6.14)

We write the following expression for the joint action doMath:

114

() ()()

() () () ()
() () () () By' =shared_y Ay' =shared_y Bx shared_x Ax =shared_x

 Ay +Ax + Az =Az' Bx +By =By' Bx =Bx' Ax =Ax'

|:_,:_

',',',',',,,,,_

))','(),,((_)',(_)()()()(

∧∧=∧
∧∧∧∧

∃
→

=
==

YysharedXxshared

true

ByBxAzAyAxByBxAzAyAxdeclarJAdoMath

XXXXdeclarJAdoMathXXdeclarJAdoMath BABAdef

 (6.15)

We map this formula to the Alloy predicate as follows:
pred JAdoMath_w_declar[Ax, Ay, Az, Ax', Ay', Az', Bx, By, Bx', By': one Int]{
//true =>
 Ax'= Ax &&
 Bx'= Bx &&
 By'= By + Bx &&
 Az'= Az + Ax + Ay &&
some shared_x, shared_y: Int |
(shared_x = Ax &&
Bx = shared_x &&
shared_y = Ay' &&
shared_y= By')}

Refinement Verification
We formalize the refinement correctness for the working object Mc with the action

JAdoMath (the concrete specification) refining the working object Mw with the action
LAdoMath (the abstract specification). By Definition 5.14, this is an organizational
refinement by decomposition, with a joint action refining a localized action. We specify the
refinement relation between state spaces with the following Alloy predicate:

pred R_JA_to_LA[Ax_t, Ay_t, Az_t, Bx_t, By_t: one Int, // model concrete
 xa_t, ya_t, za_t : one Int] // model abstract
{
 (Ax_t= xa_t) &&
 (Az_t= za_t) &&
 (Ay_t= ya_t)
}

Here (Ax,Ay,Az,Bx,By) is a tuple of state variables of the working object Mc, and
(xa,ya,za) is a tuple of state variables of the working object Mw (‘a’ – for ‘abstract’). We
specify the formula for correct refinement with the Alloy assertion and check this assertion in
the Alloy Analyzer.

assert LA_JA{
 all Ax, Ay, Az, Ax', Ay', Az', Bx, By, Bx', By': Int , xa, ya, za: Int |
 (JAdoMath_w_declar[Ax, Ay, Az, Ax', Ay', Az', Bx, By, Bx', By'] &&
 R_JA_to_LA[Ax, Ay, Az, Bx, By,xa, ya, za]) =>

 (some xa', ya', za': Int |
 R_JA_to_LA[Ax', Ay', Az', Bx', By', xa', ya', za'] &&
 LAdoMath_w[xa, ya, za, xa', ya', za'])
 }
check LA_JA

The joint action seen as a whole does not specify the intermediate states, therefore we

verify only the correspondence of external behavior of JAdoMath and LAdoMath. In
Appendix A, we provide a listing of Alloy specifications for the ‘XYZ’ example. This listing
contains other simple refinement verification exercises and comments on them.

115

6.4 Automated SEAM to Alloy Translation

We explore the possibility of automating the translation of SEAM specifications to Alloy and
we build a technique based on XSLT[105] transformation. This technique is illustrated in Fig.
6-8.

Figure 6-8: Automated SEAM to Alloy transformation.

Based on the SEAM metamodel from Chapter 3, we create the Simple Seam Editor - a EMF-
based Eclipse application [39] that simulates a back-end of a tool for SEAM graphical
modeling7. This application allows for creating SEAM hierarchical models using textual
interface, and stores them in XML format.

Figure 6-9 illustrates the interface of the Simple Seam Editor. On the left pane, a SEAM
model is created using a hierarchical tree-structure.

Figure 6-9: A screenshot of the Simple Seam Editor application

7 Currently, an official tool for SEAM visual modeling - SeamCAD tool [66] - is under development. The
metamodel, presented in this work, and some important elements, required for the model analysis, are not yet
adopted by this tool. Due to this limitation, the application, simulating a tool back-end, was created.

116

The root object is a model that contains one working object that represents a system. Using a
contextual menu, new sibling and/or child elements can be added to a current element. This is
defined by a SEAM metamodel. On the bottom of the screen, element properties are listed in
the property pane. These properties (e.g. name, parent element, condition expression, etc.) are
also specified for each element based on the SEAM metamodel. Values of these properties
are defined by a designer.

Figure 6-10 shows the model pane in detail and illustrates how the model of the XYZ
example from Section 6.2 corresponds to the SEAM graphical specification of this example.

The second part of the automated translation is an XSLT script that transforms XML files,

created in the Simple Seam Editor into Alloy specifications.
The XSLT transformation of the SEAM model stored as an XML file, results in a

formatted textual file that can be stored as *.als (native file type for Alloy) and opened in the
Alloy Analyzer. This file contains a data structure and a specification of SEAM actions,
extracted from SEAM working object specification and mapped to Alloy as it is specified in
the Section 6.3.

117

M_w

Y
<Int>

1|y

X
<Int>

1|x

LAdoMath

Post: y' =
y_pre + x_pre

Post:: x' = x_pre

Z
<Int>

1|z

.Post: z' =
z_pre + (y_pre + x_pre)

M_c

Y
<Int>

1|Ay

X
<Int>

1|Ax

JAdoMath

Z
<Int>

1|Az

1|a

A

Y
<Int>

1|By

X
<Int>

1|Bx

1|b

B

X
<Int>

Y
<Int>

1|shared_y

1|shared_x

Inv:

Inv:

Inv:

Inv:

Pre:

Pre:

Post:

Post:

Pre: true

 Figure 6-10: A model pane of the Simple Seam Editor application

Refinement relations and assertions for refinement verification should be provided
manually: the specification of a refinement relation between models is a designer's choice. To
simplify this task, we consider an implementation of automated alignment assistant – a
supplementary function of the SEAM modeling tool SeamCAD [66] - as a part of our future
work. This assistant will identify a refinement type based on designer's activities and will
help the modeler to define the refinement relations and refinement verification procedures.

By providing an automated mapping of a SEAM specification to Alloy, we facilitate the

analysis process; though, understanding of the Alloy model by a designer remains
indispensable for interpreting results of this analysis. Verification in Alloy, if successful,
approves the correctness of the design process; however, when it fails - the designer has no
further support from the tool to find out the reason of the failure. The lack of interpretation of
the verification result is one of the main drawbacks of this method.

118

XM
L

re
pr

es
en

ta
tio

n
of

th
e

SE
AM

 m
od

el

XS
LT

Tr

an
sf

or
m

at
io

n

Al
lo

y

 Figure 6-11: A screenshot of an XSLT transformation of a SEAM model to Alloy under Eclipse.

Figure 6-11 illustrates an XML file, representing a SEAM model before the processing,

the XSL script for processing, and a resulting Alloy file. The Alloy plug-in under Eclipse
allows us to make all the steps - a model creation, its transformation, and analysis - in the
common Eclipse environment.

6.5 Mapping to Jahob

We specify two approaches to a formal verification of SEAM specifications by using the Jahob
verification system: The first approach uses the Jahob formDecider to validate formulas for
refinement correctness; the second approach aims at verification of consistency of SEAM
specifications.

In the first approach, a Jahob formula that expresses the refinement correctness is written based on
SEAM action specifications. This formula can also be generated from the Alloy code. We validate the
obtained Jahob formula with the Jahob form decider (Fig. 6-1(b)).

The second approach is based on the mapping of SEAM specifications to Jahob programs. Jahob
programs are further converted to Jahob formulas to be used with the formDecider (Fig. 6-1(a)).

6.5.1 From an Alloy Specification to a Jahob Formula
Jahob formulas use Isabelle notation as a semantic and syntactic basis. In this section we explain how
a Jahob formula can be generated from the Alloy code and illustrate this with XYZ example.

Jahob Formula as a Lambda-expression
A Jahob formula consists of two parts: the first part contains the definitions of SEAM abstract and

concrete actions Aa, Ac, and a refinement relation R; the second part states the refinement correctness,
expressed using the definitions from the first part. Jahob formula is a lambda expression of lambda
calculus [9]. A recursive definition of a lambda expression is the following:

119

expression = name | lambda-function | function application
name = function name | variable name
lambda-function = λ name . expression
function application = expression expression

In a Jahob formula, SEAM actions and a refinement relation are formulated as lambda functions.

For example, for a SEAM action A, expressed as a FOL formula)',()()',(xxAxAxxA postpre →= ,

where x and x’ are values of state variables before and after the action, we can write the following
lambda function:

)',()(. xxAxAxyA postpre →= λ (6.16)

Here preA and postA can also be lambda functions.

To formulate the refinement correctness, we define (1) the abstract action specification Aa, (2) the
concrete action specification Ac, and (3) the refinement relation R between the abstract and the
concrete specifications as lambda-functions. We connect these functions as follows:

[]scorrectnesrefinementRAA ca →=∧=∧= ...)(...)(...)(λλλ (6.17)
The refinement correctness follows from the conjunction of lambda-functions. Refinement

correctness can be written using the expressions defined in sections 5.5 and 5.6. Some modifications
of syntax, compared to definitions in Chapter 5, are required:

- symbol ‘|’ is replaced by ‘.’;
- an application of a FOL formula or predicate is written: A(x1, x2,…, xn); application of a

corresponding lambda functions is written: A(x1) (x2)… (xn) or A x1 x2… xn.

We write a lambda expression for a SEAM specification W’ with concrete action Ac correctly refines
the specification W with abstract action Aa given a refinement relation R, as follows:

() ()())')('()')((.'))(()')((.' caaaaacacccacc

defdef
c

def
a

XXRXXAXXXRXXAXXX

RAA

∧∃→∧∀

→∧∧
(6.18)

In Eq.(6.16) defdef
c

def
a RAA ,, are definitions of corresponding lambda-functions.

Using the syntax of Jahob formulas, we write:
Aa & Ac & R --> (ALL Xc Xc_,Xa . (Ac(Xc)(Xc_) & R(Xa)(Xc) & R(Xa)(Xc_)) -->
EX Xa_ . Aa(Xa)(Xa_)& R(Xa)(Xc_))

Note that the syntax of Jahob does not accept “ ‘ ” symbol in a variable name. We replace it by “p”
(which stands for ‘post’).

From an Alloy specification to a Jahob formula
Table 6-4 illustrates the correspondence between the Alloy syntax and the syntax of Jahob formulas.

120

Table 6-4
Alloy Jahob formula
x‘ Xp
//comment text (* comment text *)
pred A [x, y, z, x’, y’, z’: one Int]{..}
//predicate specification

A = (% x y z xp yp zp)
(*lambda function specification *)

A[x,y] //predicate call A(x) (y) (*lambda function call *)
=> -->
&& &
All ALL
Some EX

In Alloy, we separately specify the predicates for abstract and concrete action specifications, plus

the predicate that expresses a refinement relation between them. Then we express the refinement
correctness as an assertion:

pred Aa [x, x’: one Int]{..}
pred Ac [y, y’: one Int]{..}
pred R [x, y: one Int]{..}
assert A2_refines_A1{all x,y,y’ | R(x,y)&& A2(y,y’) => A1(x,x’)&& R(x’,y’)}

An analogous Jahob formula starts with a conjunction of lambda function definitions, which

specify SEAM actions and a refinement relation. These definitions are followed by an expression of a
correct refinement:
Aa = (% x xp. )) & //function definition (abstract action)
Ac = (% y yp. )) & //function definition (concrete action)
(R = (% x y.)) --> //function definition (refinement relation)
ALL x y yp. Ac(y)(yp) & R (x)(y) -->
EX xp. Aa(x)(xp) & R (xp) (yp)) //function application (correctness)

The XYZ Example in Jahob
We map the Alloy code for XYZ example to Jahob formulas by using the rules for specification of
lambda expressions and the syntax correspondence from Table 6-4. Than validate these formulas
with the Jahob form decider. The code below illustrates the mapping of the Alloy predicate for the
localized action doMath seen as a whole to the lambda function:

Alloy Predicate LAdoMath: Lambda function LAdoMath:

pred LAdoMath[x,y,z:one Int, x',y',z':one Int]{

 y' = y + x &&
 z' = z + (y + x) &&
 x = x'
}

(LAdoMath = (% x y z xp yp zp.

yp = x + y &
zp = z + (y + x) &
xp = x))

In Section 6.3.2 the functional refinement for XYZ example is specified in Alloy. We consider the

localized action doMath (Fig. 6-2) an abstract action, and the localized action doMathc modeled
imperatively (Fig.6-6) – a concrete action.

The listing below specifies the Jahob formula that expresses refinement correctness between the
abstract and the concrete actions:

121

File: final_law_laci.form

(* action LAdoMath_w *)
(ActionAbstract = (% x y z xp yp zp.

yp = x + y &
zp = z + (y + x) &
xp = x)) &

- Localized action as a whole;

(* component actions *)
(LAaddToY2 = (% x y z xp yp zp.
xp = x &
zp = z &
yp = y + x)) &

(LAaddToZ2 = (% x y z xp yp zp.
xp = x &
yp = y &
zp = z + x + y))&

- Component localized actions

(* LAdoMath_composite - imperative *)
(ActionConcrete = (% x y z xp yp zp.
EX x_t, y_t, z_t.
LAaddToY2 x y z x_t y_t z_t &
LAaddToZ2 x_t y_t z_t xp yp zp))&

- Localized action as a composite;

- Application of component actions

(*Refinement verification*)
(* refinement relation *)
(RefinementRelation = (% xc_t yc_t zc_t
xa_t ya_t za_t.
 xc_t = xa_t &
 zc_t = za_t &
 yc_t = ya_t)) -->

- Refinement relation

(*assert LAW_LAC *)
((ALL xa ya za xc yc zc xcp ycp zcp.
(ActionConcrete xc yc zc xcp ycp zcp &
 RefinementRelation xc yc zc xa ya za) -->
(EX xap yap zap.
 ActionAbstract xa ya za xap yap zap &
 RefinementRelation xcp ycp zcp xap yap
zap))

- Refinement correctness

- Application of functions defined above in the form:
()

)','()',(|'

)',(),(|,',

acaaaaa

cccacaaccc

XXRXXAX

XXAXXRXXX

∧Σ∈∃

⇒∧Σ∈Σ∈∀

The values of xa, ya, za and xap, yap, zap define the pre-state and the post-state of the abstract
action; The values of xc, yc, zc and xcp, ycp, zcp define the pre-state and the post-state of the
concrete action.

This formula is used for a verification of functional refinement with the Jahob form decider. Jahob
formulas are stored in a textual file *.form. To verify the formula, the Jahob form decider is called:

~/Alloy-Jahob$../jahob/bin/formDecider.opt final_law_laci.form -usedp e isa z3
The command –usedp followed by a list of parameters specifies the decision procedures that will

be used to prove the formula.
Executing the command above with specified decision procedures we obtain the formula validity

proven by E:

===
E proved 1 out of 1 sequents. Total time : 0.1 s
===

122

In Appendix B, we provide listings of several Jahob formulas that are used to verify
refinement in the XYZ example. These formulas are obtained from the corresponding Alloy
code in Appendix A. All the results obtained with Alloy Analyzer, are confirmed by Jahob.

6.5.2 From a SEAM Specification to a Jahob Program
We specify SEAM actions as untyped lambda functions. The verification of complex data types is
possible with the Jahob verification system by specifying a Jahob program.

An approach, where SEAM specifications with explicit update statements are translated to
Java programs annotated with Jahob specification constructs and verified using Jahob
verification system, is a part of our future work. There are two main tasks to anticipate:

- A mapping of SEAM action contracts (FOL formulas) to Jahob specification
constructs;

- A mapping of SEAM update statements to Java statements.
At the time of this writing, a student project on the translation of SEAM specifications

with explicitly modeled update statements into a subset of Java has been completed [tbd].
This project is resulted in a prototype tool for the automated SEAM to Java translation. This
tool is developed on the platform of ATL (Atlas Model Transformation) tool [55].

A representation of a SEAM specification as a Java program permits us to simulate this
specification on the Java platform. A representation of SEAM specification as a Jahob
program will enable us to formally prove that the action implementation (the update
statements) is consistent with its specification (the action contract).

For the moment, we do not have a theory to interpret the verification results and to provide the

recommendations on specification improvement for designers. We address this topic in our future
work.

123

Chapter 7

Practical Impact: Application of the
Developed Theory in Practice

In this chapter we focus on the practical contribution of this thesis. We illustrate our
technique of refinement verification presented in the previous chapter with two examples:

The On-LineBook Store example shows different customizations and designs of the book
store sale process. The verification of developed business process specifications against each
other, or against a higher level specification, guarantees that all specifications are
behaviorally compatible and correspond to the same strategic goal of the company. This
example is presented in Section 7.1;

The Gas Incident Service case study shows a service specification at one level and its
planned implementation by a group of IT applications on the other. A formal verification of
a service specification against its planned implementation serves as a proof that the service is
implemented correctly. This example is presented in Section 7.2;

In both cases the problem is reduced to a verification of refinement between two
specifications and solved using the algorithm defined in Chapter 6: We provide the SEAM
diagrams, the Alloy specifications obtained from these diagrams, and we illustrate the
refinement verification with the Alloy Analyzer.

In Section 7.3 we present results of the inquiry conducted among practitioners. We
discussed the research results of this dissertation with experts who meet the problem of
Business/IT alignment in practice. This inquiry provided us with valuable feedback and
helped us to prioritize the directions of our research in future.

7.1 High-Level Design and Analysis of Business Processes: The On-Line
Book Store Example

Problem description:

Aligning business processes with business strategy is an important preoccupation in modern
organizations. This alignment is made simpler if an adequate level of abstraction for business
process representation is used. A business process can be defined as “a set of partially
ordered activities aimed at reaching a well-defined goal.” [61]. The keyword partial alludes
to the problem of defining, ahead of time, the exact order in which the activities will be
executed. Indeed a business process may be subjected to many conditions in which this order
cannot be identified at design time. The exact sequence of activities is therefore quite
impossible to predict [61]. Even a simple sale process has been shown to incorporate optional
execution orders depending on, among other aspects, cultural and legal considerations [90].
The example given in [90] describes an on-line book store that needs to adapt its sale process
to local customs in different countries. The sequence of execution between payment and
order fulfilment needs to be adapted to different local preferences. In the United States for
example, payment by credit card is most often required before goods are shipped. In some

124

European countries, e.g. Switzerland, customers are used to paying for goods after they have
been received.

Organizations have a marked tendency to limit their interpretations of their environment
[109]. These interpretations constrain their business processes at the early phases of their
design [73]. Modeling techniques, such as BPMN [78] and use cases [58], also encourage
modeling details at an early stage. As a result, in many cases, an organization will commit to
one of the execution paths (e.g. paying before sending the goods) and later, handle the second
one (sending the goods before receiving the payment) as an exception. The number of
exceptions, however, often results in tangled processes containing many exceptions. This has
two related consequences. First of all, the alignment between the strategy of the organization
(i.e. selling on-line) and its detailed business processes is not apparent. Second, the flexibility
of the processes themselves [91] is limited because they become difficult to manage and
change.

We propose a technique that complements imperative business process specifications with
declarative specifications. This declarative specification enables designers to describe the
actions that a business process needs to contain, but not their sequence. It omits the
specification of the control flow between the actions thus keeping the process design
independent from constraints imposed by an environment in which this process will be
implemented. The control flow, often specific to a given environment, is later modeled in an
imperative specification. Our technique includes checking the conformance of the imperative
and the declarative specifications.

Our technique can improve the alignment of the business process with the business
strategy of an organization by giving a synthesis of a set of business processes (abstracting
the control flow) and maintain a rigorous relationship with the detailed process. Flexibility
may also be enhanced because alternative paths are modeled as separate business processes
conforming to an overall process, thereby helping organizations to tailor them to different
environments without losing the overall view.

We illustrate our technique with the example of an On-Line Book Store: The company
wants to design a global view on its sale process in order to maintain the alignment between
the different customizations of this process for different countries and to simplify the design
of these customizations. We illustrate a business process redesign task using the same
example and show how declarative specifications help designers to understand the relation
between the redesigned process and the initial one.

We formalize the concepts of the SEAM modeling language using first-order logic with
the Alloy specification language [59]. This enables us to check our models using the Alloy
Analyzer [3].

7.1.1 A Business Process Specification in SEAM
A SEAM working object, as a composite, specifies a distributed action (DA) between
components of the working object (Chapter 3). The distributed action can be considered as a
declarative specification of a business process within a working object. It defines the actions
to be performed by component working objects, but does not prescribe the order in which
these actions will be performed. Many execution paths are valid for a given distributed
action. The selection of one of them is the business process designer’s choice. When a
designer commits to a concrete control flow, the specification is no longer declarative; it is
transformed into a traditional imperative business process model. We call it a customization.

125

7.1.2 Example: A Sale Process for the On-Line Book Store
In this section we illustrate the declarative business process specifications with the example
of a sale process for an On-Line Book Store. We also clarify the relationships between these
declarative specifications and traditional imperative business process models.

 The On-Line Book Store Description

The On-Line Book Store (BS) is a company that collaborates with a publisher (P), and a
bank (B) to sell books to customers. BS manages requests from customers via the Internet. A
sale begins when a customer logs into www.BS.com using an id (customerID) and requests a
book using a book id (bookID). If the requested book is available in the publisher’s
inventory and if the customer’s rating in the data base of the bank is good then the sale is
successful. The successful sale terminates when the book is delivered by the publisher to the
customer and the payment for the book is received by the bank from the customer.

If the ordered book is not available or the customer’s rating is not good, we assume that no action
is executed (the cash and the inventory remain unchanged).

 The Successful Sale: Process Design

The company wants to design different customizations of its sale process for different countries by
maintaining a global view of this process.

For the sake of simplicity, we limit our discussion to the specification of the successful sale. We do
not specify the case where the payment is not received or the book is not delivered.

Localized Action sellOk

In Fig. 7.1 the On-Line Book Store value network is modeled as a working object seen as a whole
- SVN_w. The successful sale process is modeled as a localized action LAsellOk of this working
object. LAsellOk specifies the strategic goal of the value network: To perform a sale by guarantying
that if a book is available and if a customer has a good rating then this book will be delivered and
paid by the customer.

Action-property relations are used on the diagram in Fig.7-1 to specify pre- and post-conditions of
LASellOk. In a legend for Fig.7-1 we present a formal specification of pre- and post-conditions for
LASellOk written in the Alloy specification language.

Figure 7-1: Localized Action SellOk.

126

Distributed Action DAsellOk
To relate the strategic goal of the value network with the specification of a business process that

supports this goal, we represent the On-Line Book Store value network as a collaboration between the
bank, the publisher and the book store – the participants in the value network. In Fig. 7-2 the On-Line
Book Store value network is modeled as a working object seen as a composite - SVN_c. The SEAM
distributed action DAsellOk in Fig.5 specifies how the responsibilities in a successful sale are
distributed between the value network participants. The bank, the publisher and the book store are
modeled as working objects seen as wholes. The responsibilities are modeled as localized actions of
the corresponding working objects: for example, the fact that the bank checks the customer’s rating is
modeled by localized action checkRating within the B working object.

To specify the communication between the book store, the bank and the publisher, we define
additional actions preocessRequest and getID, and properties cID, bID in Fig. 7-2. These actions and
properties serve for information exchange between working objects and are not specific to the
successful sale process; we show them without shading and place the relations between them and
another actions and properties as dashed lines.

SVN_c

BS

1|p

Book

Requested_id
<Int>

Id
<Int>

Quantity
<Int>

1|id

1|quantity

0..*|inventory

1|requested_id

Cash
<int>

1|cash

B P

1|b

Customer
Info

0..*|customerDB Id
<Int>

Rating
<Int>

1|id

1|rating

Requested_id
<Int>

1|requested_id

Book_id
<Int>1|book_id

Customer_id
<Int>1| cusimer_id

DAsellOk

process
Request

getID
getID

getPayment

checkRating

Check
Availability deliverBook

cID

bID

B. Pre: customer has a good rating

C. Post: payment received

A. Pre: book is available

D.Post: book is delivered

Book

Customer
Info

For all sharedBook:one Book, sharedCustomer: one CustomerInfo holds:
C. p_deliverBook[p_bInventory,

p_requestedID, sharedBook,
sharedCustomer]

A. p_checkAvailability[p_bInventory,
p_requestedID, sharedBook]

PRE POST
B.b_checkRating[b_customerDB,
b_requestedID, sharedCustomer]

D.b_getPayment[b_cash,
sharedCustomer]

1|bs

Figure 7-2: Distributed Action DAsellOk.

In our example, sharedBook and sharedCustomer are shared properties. They represent the

information used by the bank, the publisher, and the book store to manage their tasks within
the successful sale process of the value network.

The Process Customization

The distributed action DAsellOk is a declarative business process specification that
defines the conditions and the results of the process but does not impose any constraints on
how this process will be conducted in a particular environment.

Considering that the On-Line Book Store wants to pursue international markets, namely
US and European markets (including Switzerland), different process customizations have to
be designed [90].

127

In the US, most on-line orders are paid by a credit card and shipped only after the payment is
received. A customization of the sale process for the US market is illustrated in Fig.7-3 (a). This
customization is modeled as a BPMN business process diagram (BPD).

In countries such as Switzerland most mail order companies and on-line stores have
traditionally trusted customers enough to deliver ordered goods without an obligation to pay
in advance. A payment form is shipped with the purchase and customers can then use it to
pay for their purchases in a post office or through their bank [90]. For the Suisse market, the
sell process should be customized allowing for the delivery prior to (or simultaneously with)
the payment procedure as illustrated in Fig. 7-3 (b).

Figure 7-3: On-Line Book Store value network performing Sale:

a. the process customization for US;
b. the process customization for Switzerland

The distributed action DAsellOk relates business process customizations illustrated in

Fig. 7-3 with the strategic goal of the On-Line Book Store value network, specified as a
localized action in Fig. 7-1.

The Successful Sale: Process Redesign

The second business process modeling task that can benefit from an additional declarative
specification layer is a business process redesign. A decision of the company to redesign its
business process (or processes) can be based on different internal or external factors, e.g. the
emergence of new technologies or new products, the change of a political situation, the
competitive landscape etc. Considering our example, let’s imagine that the On-Line Book
Store discovered that its shipment service suffers from chronic delays and is found
unsatisfactory by the customers. The On-Line Book Store decides to maintain its own
inventory and to provide the shipment service by itself, instead of outsourcing this service to
the publisher.

Although the strategic goal of the value network remains the same, the value network
itself is reorganized and, as a consequence, a business process redesign is required. The
redesign of a successful sale can be rigorously modeled using a declarative specification that

128

reflects a new distribution of responsibilities between participants of the reorganized value
network. We specify a new (redesigned) distributed action for sellOk in Fig. 7-4. In this
specification, the book inventory modeled as a set of books, and the localized actions
checkAvailability and deliverBook become a part of the BS working object specification.
Working object P that represents the publisher in our specification is removed.

Figure 7-4: Distributed action for redesigned sale.

The distributed action DAsellOK in Fig.7-4 is consistent with the localized action

LAsellOk in Fig.4 because the latter specifies only the work to be done - but not the
distribution of this work. This illustrates an integration of two declarative specifications of
the sale process: the initial one and the redesigned one.

Based on the redesigned distributed action, new process customizations for the US and
Switzerland are modeled in Fig. 7-5. The redesigned distributed action DAsellOk relates the
business process customizations illustrated in Fig. 7-5 with the strategic goal of the On-Line
Book Store value network, specified as a localized action in Fig. 7-1.

129

Figure 7-5: On-Line Book Store value network performing Sale:

a. the process customization for US (redesigned);
b. the process customization for Switzerland (redesigned)

7.1.3 Validation of Declarative Business Process Specifications in Alloy
A transition from the localized action specified for the working object seen as a whole to the
distributed action specified for the same working object seen as a composite is a form of
organizational refinement, defined in Section 5.7.3.

Specification of Localized and Distributed Actions SellOk Using Alloy

We model SEAM actions as Alloy predicates. In SEAM, an action defines a transition of a
working object from one state (pre-state) to another (post-state). The SEAM action
specification uses a pre-state and a post-state as parameters. We use indexes _pre, _post, and
_prepost to model parameters of the Alloy predicate:
- all parameters indexed with _pre correspond to the properties of the working object

before the action and define a pre- state of this working object X ;
- all parameters indexed with post- correspond to the properties of the working object after

the action happens and define the post-state 'X of this working object;
- index _prepost specifies parameters that are not modified by the action. These

parameters correspond to the properties that make a part of both X and 'X .
We write the following Alloy specifications of pre- and post- states for localized action
LAsellOk in Fig.7-1:

bInventory_pre: one Inventory,
customerDB_prepost: one CustomerDB,
customerID_prepost: one Int,
bookID_prepost: one Int,

cash_pre: one Int; X

bInventory_post: one Inventory,
customerDB_prepost: one CustomerDB,
customerID_prepost: one Int,
bookID_prepost: one Int,

cash_post: one Int 'X

130

The Alloy code below specifies the LAsellOk localized action as a corresponding Alloy
predicate. Lines 1-7 in this code correspond to the action’s precondition; lines 8-14 – to its
postcondition. The predicate LAsellOk holds when its precondition implies its postcondition.

pred LAsellOk [bInventory_pre, bInventory_post: one Inventory,
customerDB_prepost: one CustomerDB,
customerID_prepost, bookID_prepost, cash_pre, cash_post: one Int] {
1. (all requested_book: Book, buyer: CustomerInfo|

2. ((requested_book.id = bookID_prepost) and
3. (requested_book in bInventory_pre.content) and
4. (requested_book.quantity>0) and
5. (buyer.id = customerID_prepost) and
6. (buyer in customerDB_prepost.content) and
7. (buyer.rating > 0)) =>
8. ((one b_post: Book |
9. (b_post.id = requested_book.id) and
10. (b_post.quantity= requested_book.quantity- 1) and
11. (bInventory_post.content = bInventory_pre.content -

requested_book + b_post) and
12. //(customerToDeliver.id = bookDeliveredToID)
13. (cash_post = cash_pre + 1))
14. // (buyer.id = paymentFromID)

))}

The specification of the localized action LAsellOk in Alloy can be read as follows:
For all buyers and requested books (line 1): the precondition of LAsellOk holds if the values
of their id fields are equal to the values of bookID and customerID respectively (lines 2,5),
and the requested book exists in the inventory (line 3), and is available (line 4), and a buyer
exists in the customer DB (line 6), and has a good rating (line 7). The postcondition
expresses that there exists a book_post (line 8) that corresponds to the requested book (line
9) and its quantity is equal to the quantity of the requested book decreased by one (line 10),
and the book inventory after the action (bInventory_post) is equivalent to the inventory
before this action (bInventory_pre) with the requested book substituted by the book_post (line
11), and the cash value after the action is augmented by one unit (line 13). We also need to
specify that the requested book is delivered to the proper buyer, and that the payment is
received from the proper customer (lines 12, 14). For the sake of simplicity we do not model
it in this example.

The working object SVN_c from the SEAM specification in Fig.7-1 is specified with its
three component working objects: the bank (B), the publisher (P) and the book store (BS).
The localized actions of component working objects are modeled as the following Alloy
predicates:
pred p_checkAvailability[..]{..} – the publisher checks if the requested book is
available;
pred b_checkRating[..]{..}- the bank checks if a rating of the customer is good;
pred p_deliverBook[..]{..} – the publisher delivers the book to the customer;
pred b_getPayment[..]{..}- the bank receives payment from the customer.

The following predicates specify communication between the book store, the bank, and the
publisher, as do so the corresponding localized actions in Fig. 7-2:

131

pred bs_processRequest[..]{..}- the book store gets request and externalizes the
requested book id and the customer id for the rest of the network.
pred p_getID[..]{..} – the publisher gets the requested book id;
pred b_getID[..]{..}- the bank gets the customer id.

 The distributed action DAsellOk binds the localized actions of the component working
objects. The Alloy code below specifies the DAsellOk distributed action as an Alloy
predicate. Lines 1-7 in this code correspond to the precondition of a localized action
LAsellOk from the listing above; lines 8-9 – to its postcondition.

pred DAsellOk[p_bInventory_pre, p_bInventory_post: one Inventory,
p_requestedID_prepost: one Int,
b_customerDB_prepost: one CustomerDB, b_requestedID_prepost: one Int,
b_cash_pre, b_cash_post: one Int,
bs_customerID_prepost, bs_bookID_prepost: one Int]{
1. (one cID,bID: Int |
2. bs_processRequest[bs_bookID_prepost, bs_customerID_prepost, bID,cID]

and
3. p_getID[bID, p_requestedID_prepost] and
4. b_getID[cID, b_requestedID_prepost]) and
5. all sharedBook:one Book, sharedCustomer: one CustomerInfo|
6. (p_checkAvailability[p_bInventory_pre, p_requestedID_prepost,

sharedBook] and
7. b_checkRating[b_customerDB_prepost, b_requestedID_prepost,

sharedCustomer]) =>
8. (p_deliverBook[p_bInventory_pre,

p_bInventory_post,p_requestedID_prepost,sharedBook, sharedCustomer] and
9. b_getPayment[b_cash_pre,b_cash_post, sharedCustomer])}

Prefixes p_, b_, bs_ in the names of predicates specifying localized actions and in the names
of predicate parameters specifying properties refer to the component working objects these
localized actions or properties belong to (e.g. p_bInventory specifies the book inventory,
which is the property of the publisher).

7.1.4 Validation of Refinement from LA to DA Using Alloy Analyzer 4.0
To relate the designed business process of successful sale to the strategic goal of the On-Line
Book Store, we have to guarantee:

1) The correct refinement from the localized action LAsellOk to the distributed action
DAsellOk;

2) The correct mapping between the declarative specification DAsellOk and the
imperative business process specifications (i.e. BPMN diagrams) that specify process
customizations.

To check if the distributed action DAsellOk correctly refines the localized action
LAsellOk in our example, we use the definition of refinement correctness from Definition
5.16. We write an Alloy assertion that specifies the correct refinement from abstract to
concrete specification:
assert DA_LA{

all acc XXX ,', |

(R_LA_to_DA (ac XX ,)and DAsellOk(cc XX ',)) =>

some aX ' | LAsellOk(aa XX ',)and R_LA_to_DA(ac XX ',')}

132

Here aacc XXXX ',,', stand for pre- and post- states at concrete and abstract
specifications respectively. R_LA_to_DA is a refinement function that relates state spaces
of the SVN_w and SVN_c. We provide the complete specification of this refinement
function:

pred R_LA_to_DA[p_bInventory_t: one Inventory, p_requestedID_t:
one Int, b_customerDB_t: one CustomerDB, b_requestedID_t: one Int,
b_cash_t: one Int,
bs_customerID_t, bs_bookID_t: one Int,
// concrete
bInventory_t: one Inventory,
customerDB_t: one CustomerDB, customerID_t, bookID_t, cash_t: one
Int // abstract
]{
p_bInventory_t = bInventory_t
p_requestedID_t = bookID_t
b_customerDB_t = customerDB_t
b_requestedID_t = customerID_t
b_cash_t = cash_t
bs_customerID_t = customerID_t
bs_bookID_t = bookID_t
} R[

ac XX ,]

From Declarative to Imperative Business Process Specification

The mapping between SEAM distributed actions, modeled declaratively, and imperative
business process diagrams modeled in BPMN can be done in two steps:

First, we define a control flow for the SEAM distributed actions modeled declaratively.
This is equivalent to the specification of intermediate states, caused by the execution of
individual localized action, and the order of their occurrence.

The second step is a mapping of the obtained imperative specifications to BPMN. This
mapping and its automation is a part of our future work.

The conformance of the imperative specification with the declarative specification in SEAM can
be formally verified in Alloy by using the same approach as for refinement verification and by
assuming that the imperative action specification is nothing but a correct refinement of this action,
specified declaratively.

7.2 Specification and Alignment Verification of Services in ITIL: The
Gas Incident Service Case Study

Problem description:

The Information Technology Infrastructure Library (ITIL) [57] is a collection of good
practices for the management of IT services. The perceived value of ITIL is the improvement
of the relationship between the business and its IT service providers. The relationship
between a business and its internal IT department is defined with the use of of Service Level
Agreements (SLA). Similar agreements define the relationships between sub-departments of
the IT department (Operational Level Agreements, OLA) and between the IT departments
and their external providers (Underpinning Contract, UC). For the IT department to be able to
live up to its obligations defined in the SLA, it has to make sure that the SLA is
implementable with the existing and envisioned infrastructure and with its OLAs and UCs. In

133

this paper we propose a formal method for specifying the alignment between and SLA and a
set of OLAs.

We illustrate our method with a concrete ITIL project currently in progress. This project is

done for the public utility of Geneva: SIG (http://www.sig-ge.ch/). SIG provides, among other
services, water, gas, and electricity to Geneva residents. One of the important services is the
management of gas incidents, i.e. leaks from gas machinery or pipes. The IT department of
SIG provides support for this service. The expectation of the gas department and the
possibilities afforded by the IT department are captured in an SLA. In this project, the utility
company, the consulting company Itecor and the EPFL University have partnered to apply
the SEAM method for the definition of the SLA.

Though we are inspired by the real example, we have substantially simplified the actual
processes. In particular, all process definitions and quantities, e.g. intervention time, are
illustrative only. To account for the fact that the example is an academic illustration only, we
use the name City Industrial Service to refer to the utility company.

7.2.1 Case Study: Gas Incident Service
In this section, we model a case study that specifies a security service for gas leaks (‘gas
incident service’), provided by the City Industrial Service (CIS) and supported by the IT
system GasIncident. We consider the service description as follows: [The gas incident service has]
to neutralize a gas leak reported by a witness, guaranteing that if the incident site is not secured
within 45 minutes from the time of the registration of the witness’ call by a CIS operator, then an
emergency call is made to the local Fire Brigade.

Service Specification

In Fig. 7-6, we specify the Service Level Agreement (SLA), which represents the service
specification.

The IT system IT_GasIncident_w is a service provider in our example (the postfix ‘w’
means that the system is represented as a whole). The process of securing an incident is
modeled as an action LA_GasIncidentService of this IT system. This action specifies the
service, provided by CIS.

To support the incident processing, we define an incidentList property for the IT system.
The incidentList represents a set of records of incident cases. The fields of an Incident record
are set during the incident processing.

Action-property relations in Fig. 7-6 explicitly specify the action contract (precondition,
postcondition, invariant)

For example, the condition ‘if the incident is not secured after 45 minutes from the time of the
registration of the call, then the emergency signal (out_emergency) is generated’ is expressed as a
following postcondition expression:
((newInc.t3 - newInc.t1 <= 45) and (out_emergency=0)) or
((newInc.t4 = newInc.t1 + 45) and (out_emergency=1))

134

Figure 7-6: SEAM specification of the service LA_GasIncidentService (ITIL SLA)

Service specification, illustrated in Fig. 7-6 is declarative. This specification defines the action

contract but does not show how this contract will be implemented.

Service Construction

In Fig. 7-7, we specify the Operational Levels Agreements (OLA)s. The service is
implemented by several applications; each application provides its ‘part of the service’.
Concretly, IT_GasIncident_c (the postfix c means that the system is represented as a
composite), which describes the planned construction of the IT_GasIncident_w has three
component applications: (1) SAP_App, the SAP application, which processes the data from
the help desk and provides the CIS operator with the GPS coordinates of the site; (2) the
ECS_App application (Emergency Call Service), which provides an automated call service to
the local fire brigade; and (3) GasIncident_App application that coordinates the incident
processing, triggers the call to the fire brigade afterwards and maintains the incident record in
the incident list. Specifications of the services offered by these applications correspond to
Operational Levels Agreements (OLAs). Note that Underpinning Contracts (UCs) would be
specified in a similar manner. Underpinning contracts specificity services offered by third
parties.

The action DA_GasIncidentService1 specifies how the responsibilities in the incident
securing are distributed between the applications. It is, therefore, called a distributed action.
The distributed action DA_GasIncidentService1 is a declarative process specification that
defines the conditions and the results of the process, but it does not impose any constraints on
how this process has to be conducted in a particular environment.

135

Figure 7-7: Service implementation modeled as SEAM distributed action

The GasIncidentProcess action specifies the responsibility of the GasIncident_App
application and is also modeled declaratively: the set of tasks this action performs is listed,
but no control flow is defined.

The SEAM specification of LA_GasIncidentService in Fig. 7-6 corresponds to the SLA; the
SEAM specification of DA_GasIncidentService1 (as a distributed action) in Fig. 7-7 shows
the planned construction of this SLA by a collaboration of three applications: SAP_App,
ECS_App, and GasIncident_App. An OLA is defined for each application. The transition
from the specification of the SLA (Fig. 7-6) to the specification of the multiple OLAs (Fig. 7-
7) is a result of the organizational refinement (Section 6.3.3).

7.2.2 Validation of a Service and its Construction in Alloy
Specification of SLA using Alloy

To proceed with the specification analysis and alignment verification, we map the SEAM visual
specifications to Alloy. Figure 5 illustrates the result of the translation of the LA_GasIncidentProcess
(Fig.1) to Alloy specification language.

In mapping the SEAM specification to the Alloy specification language, the annotations made to
the diagrams are used to specify the action in Alloy.
Similarly to the previous example, we use indexes _pre, _post, and _prepost to model
parameters of the Alloy predicate. We alco use prefixes in_ and out_ to specify input and
output parameters of the action.

incidentList_pre: set Incident,

locationList_prepost: set GEOInfo X

in_call:one WitnessCall,

in_securedTime: one Int I

out_emergency: one Int,

out_incident: one Incident O

incidentList_post: set Incident,

136

locationList_prepost: set GEOInfo,

in_call:one WitnessCall 'X

In the listing below, lines 1-2 defines the Alloy signature that specifies the action, line 3

specifies the action precondition, and lines 4-13 specify the action postcondition. No
invariant is defined.

1. pred LA_GasIncidentService [incidentList_pre, incidentList_post: set
Incident, locationList_prepost: set GEOInfo, in_call:one WitnessCall,
in_securedTime: one Int,
2.out_emergency: one Int, out_incident: one Incident] {
3. ((in_call.t >0) and (in_securedTime >0)) =>
4. (one newInc: Incident | //local var. newInc
5. (!(newInc in incidentList_pre)) and //Added to the list:
6. (incidentList_post = incidentList_pre + newInc) and
//Initial values from the witness call:
7. (newInc.t1 = in_call.t) and (newInc.info = in_call.d) and
//GPS data is obtained from the Address
8. (one loc: GEOInfo | (loc in locationList_prepost) and
9. (loc.a = in_call.a) and (newInc.siteInfo = loc)) and
//secured time as an income call from the technician
10. ((newInc.t3 = in_securedTime))and
 //either the site is secured within 45 min or emergency sent
11. (((newInc.t3 - newInc.t1 <= 45) and (out_emergency=0)) or
12. ((newInc.t4 = newInc.t1 + 45) and (out_emergency=1))) and
13. (out_incident = newInc))}

newInc is a local variable introduces in the action LA_GasIncidentService to create a new instance of
the incident and to add it later on to the list. (See Section 4.5 about instance creation in SEAM).

The Alloy specification of a GasIncidentService localized action, modeled as a predicate
LA_GasIncidentService can be read as follows:

Given a system, with its state specified by the incidentList and a locationList, and input
parameters in_call, in_securedTime, and output parameters out_incident, and
out_emergency (line 1,2): the precondition of LA_GasIncidentService holds if the witness call
in_call with non-negative time is registered, and a non-negative securization time in_securedTime
was obtained (line 3). The postcondition expresses that upon the action termination there will
be created a record of incident newInc such that this record is not in the list incidentList_pre
(line 4-6), and the fields of this record are received from the witness call in_call and the
technician call in_securedTime (line 7-10) and if the incident is not secured after 45 minutes from
the time of the registration of the witness call then the emergency signal (out_emergency) is generated
(line 11), and the created incident record is an output parameter of the system – out_incident
(line 13).

The working object IT_GasIncident_c from the SEAM specification in Fig.7-7 is specified
with its three component working objects: SAP_App, ESC_App, and GasIncident_App. The
localized actions of component working objects, defining OLAs, are modeled as the
following Alloy predicates:

pred LocalizeAddress[locationList_prepost: set GEOInfo,
in_address: one Int, out_location: one GEOInfo]{
//post
one loc: GEOInfo |
(loc in locationList_prepost) and (loc.a = in_address) and (out_location =
loc)}

137

Getting an address as an input, the SAP_App retrieves a site location from the GEOInfo
database;

pred CallFB[mList_pre, mList_post: set EmergencyMsg, in_inc: one Incident,
in_emergency: one Int, out_m: one EmergencyMsg]{
//pre
(in_emergency = 1) =>
//post: create an outgoing emergency call and add it to the list
(one out_m: EmergencyMsg | (out_m.inc = in_inc) and
(mList_post = mList_pre+out_m)) else (mList_post = mList_pre)}

Getting an emergency signal as an input, the ESC_App generates a phone call to a fire
brigade;

pred GasIncidentProcess [incidentList_pre, incidentList_post: set Incident,
in_call: one Int, in_siteInfo: one GEOInfo, in_onSite,in_secured: one Int,
in_info: one Int, out_emergency: one Int, out_incident :one Incident]{
 one shared_incident: Incident |
 (OpenIncident[incidentList_pre, incidentList_post,
in_call,in_siteInfo, in_info, shared_incident]and
 GetTechOnSite[in_onSite,shared_incident] and
 GetSiteSecured[in_secured, shared_incident] and
 InciCallFB[out_emergency, shared_incident] and
 CloseIncident[shared_incident]and

(out_incident = shared_incident))}

The GasIncident_App manages the process, having a whitness call and information from
operator as input parameters.

The GasIncidentProcess localized action is specified as a composite with component actions
OpenIncident, GetTechOnSite, GetSiteSecured, InciCallFB, and CloseIncident, they define
responsibility of the IncidentGas application within the service in detail.

The distributed action DA_GasIncidentService specifies how localized actions of SAP, ECS,
and GasIncident applications are bound together to provide the implementation of the
GasIncidentService. The Alloy code below specifies the DA_GasIncidentService distributed
action as an Alloy predicate.

pred DA_GasIncidentService[incidentList_pre, incidentList_post: set
Incident, locationList_prepost: set GEOInfo, mList_pre, mList_post: set
EmergencyMsg,
 in_call: one WitnessCall, out_emergencyCall: one EmergencyMsg,
in_securedTime: one Int]{

some shared_siteInfo: GEOInfo, shared_inc: Incident,
 shared_emergency:Int |
LA_GasIncidentProcess_w[incidentList_pre, incidentList_post,
in_call.t, in_call.d, shared_siteInfo, in_securedTime,
shared_emergency, shared_inc] and
LocalizeAddress[locationList_prepost,in_call.a, shared_siteInfo] and
CallFB[mList_pre, mList_post, shared_inc, shared_emergency,
out_emergencyCall]}

138

7.2.3 Validation of Refinement from SLA (Modeled as SEAM Localized Action)
to OLAs (Modeled as SEAM Distributed Action) Using Alloy Analyzer 4.0

Based on the Alloy semantics for SEAM specifications, defined in Chapter 6, we transform
the visual SEAM specifications of the SLA or the OLA/UC (SLA and OLAs+UCs in Fig. 7-
8) to the corresponding programs written in Alloy formal specification language (P1 and P2
in Fig. 7-8). We can verify the refinement correctness between the Alloy models using the
Alloy Analyzer tool (http://alloy.mit.edu/).

SE
A

M

R
ef

in
em

en
t A

lloy

V
erification

Alloy Analyzer

Figure 7-8: Refinement verification

To relate the service specification modeled as a localized action – that corresponds to the

SLA - with its implementation modeled as a distributed action – that combines the OLAs - ,
we have to guarantee the correct refinement from the localized action
LA_GasIncidentService to the distributed action DA_GasIncidentService. Similarly to the
previous example, we use the definition of refinement correctness from Definition 5.16. We
write an Alloy assertion that expresses the correct refinement from abstract to concrete
specification

assert DA_LA{

all cacacc OIIXXX ,,,,', |

(R_Input(ac II ,)&& R_LA_to_DA (ac XX ,)&& DAsellOk(cc XX ',)) =>

some aa OX ,' | LAsellOk(aa XX ',)&& R_LA_to_DA(ac XX ',')&& R_Output(ac OO ,)}

Here aacc XXXX ',,', stand for pre- and post- states at concrete and abstract specifications

respectively; acac OOII ,,, stand for input and output parameters of concrete and abstract
specifications. . R_LA_to_DA is a refinement relation that relates state spaces of the
IT_GasIncident_w and IT_GasIncident _c. R_Input and R_Output are relations between
input and output parameters respectively. We provide the complete specification of this
relations:

pred R_LA_to_DA[incidentList_t: set Incident, locationList_t: set GEOInfo,
mList_t: set EmergencyMsg, // model concrete
incidentList1_t: set Incident, locationList1_t: set GEOInfo]{ // model
abstract
 (incidentList_t= incidentList1_t) and
 (locationList_t= locationList1_t)}

pred R_Input[in_call: one WitnessCall, in_call1: one WitnessCall,
in_securedTime, in_securedTime1: one Int]{
in_call = in_call1 and
in_securedTime = in_securedTime1}

139

pred R_Output[out_emergencyCall: EmergencyMsg, out_Incident: one Incident,
out_emergency: one Int]{
(out_emergency = 1) &&
(out_emergencyCall.inc = out_Incident)}

assert DA_LA{
all incidentList_pre: IDB, mList_pre: MSG, in_call: WitnessCall,
in_securedTime: Int, incidentList1_pre: IDB, in_call1: WitnessCall,
in_securedTime1: Int, incidentList_post: IDB, mList_post: MSG,
locationList_prepost: GEO, locationList1_prepost: GEO|

 all cacacc OIIXXX ,,,,', |

(DA_GasIncidentService[incidentList_pre.v, incidentList_post.v,
locationList_prepost.v, mList_pre.v, mList_post.v, in_call,
out_emergencyCall, in_securedTime] &&

 DAsellOk(cc XX ',)

R_LA_to_DA[incidentList_pre.v, locationList_prepost.v, mList_pre.v,
incidentList1_pre.v, locationList1_prepost.v] &&

 R_LA_to_DA (ac XX ,)

R_Input[in_call, in_call1, in_securedTime, in_securedTime1])=>

 R_Input(ac II ,)

(some incidentList1_post: IDB, out_emergencyCall: EmergencyMsg,
out_Incident: Incident, out_emergency:Int|

 some aa OX ,' |

LA_GasIncidentService_w[incidentList1_pre.v, incidentList1_post.v,
locationList1_prepost.v, in_call1, in_securedTime1, out_emergency,
out_Incident] &&

 LAsellOk(aa XX ',)

R_LA_to_DA[incidentList_post.v, locationList_prepost.v, mList_post.v,
incidentList1_post.v, locationList1_prepost.v] &&

 R_LA_to_DA(ac XX ',')

R_Output[out_emergencyCall, out_Incident, out_emergency])}

 R_Output(ac OO ,)

7.3 Practical Feedback

To reason about a practical value of our research, we have conducted an inquiry among
experts in the domain who meet the problem of business/IT alignment in practice. During this
inquiry, we propose that the experts read one of our recent research papers that illustrate the
practical examples above. To state their opinion about our technique, we propose that the
experts answer the following questions:

1. Whether the problem discussed in the paper is encountered in practice?
2. What do you think about the usefulness of the method presented in the paper for a

practitioner? Please, explain your answer.

140

3. How do you think the validation / verification technique presented in the paper can
help you (your company)? Please, describe the advantages and disadvantages that you can
expect.

The list of experts:

1. Ian F. Alexander
2. Ilia Bider
3. Alexander Samarin
4. Thomas Langenberg
5. Donald C. Gause

Below, we summarise the results of our inquiry.

Summary
1. Experts:
- All the experts participating in our inquiry have years of experience in consulting. The

areas of their expertise range from SAP consulting in IT to solutions in enterprise
architecture and requirements engineering;

- Four of the experts are active in the research community;
- Three of the experts have their own consulting companies;
- One expert is a full academic professor.

2. Modeling methods and tools used in practice:
- All the experts use visual modeling techniques to develop their solutions, and to

communicate them with the customers. The following tools were named by the
experts: Intalio BPM suite, IBM WebSphere Integration Developer, Enterprise
Architect for UML, i*, and Microsoft Power Point.

- Most of the experts also admitted that they use their own methods and tools, created
for specific problems.

3. Problem soundness:

All the experts confirmed that the alignment of business processes with business
strategy (as described in Section 7.1) and the alignment between a service level
agreement (SLA) and the operational level agreements (OLAs) (as described in
Section 7.2) are important problems for their organizations.

4. The usefulness of the presented method:

(below we provide the excerpts from the answers)
- The proposed method is useful as a methodological base for discussing problems and

finding solutions. It could help to create accurate service specifications for clients;
- The method sounds useful because it considers the complimentary of declarative and

imperative techniques. The synergy of these two techniques (complimented by some
guidance how to combine them) will certainly create more flexible business process
models.

- The evaluation of each alternative solution and the validation that this solution does
not violate the requirements is a typical problem. Though, having a technique with
which one can evaluate proposed solutions could save project resources and would be
a useful instrument for a consultant;

- It is hard to imagine a computer design problem that would not benefit from a
refinement tool that is capable of recognizing and correcting inconsistencies between

141

high-level business and systems requirements and implementation instructions
(functional specifications).

5. Advantages:
- By expressing the relationships between actions and data graphically, it is highly

expressive, making it clear what is needed when.
- The proposed technique may serve for a consultant to verify solutions against

requirements and also to evaluate and to compare these solutions.
- Any formal verification is very useful in daily practical work because such

verification can bring highly demanded, objective, and scientifically proven reasoning
into a modern enterprise environment with all its political tensions and power games
(where it is almost impossible to have something willingly accepted and followed by
everyone).

6. Disadvantages/Concerns
- The scalability of the method is questionable: the technique was nicely illustrated with

the “toy” example, however a big concern is about how such a notation may scale up
for large problems; the number of relationships may increase rapidly with the number
of both actions and pieces of data, which could make the diagrams hard to read. It
could also make a formal proof of correctness long; but as this is supported by the
Alloy Analyzer tool, this should not be a problem.

- The complex graphical notation plus the use of formal methods prevents this
technique from being used for communication with a client.

- The industrialisation of the approach would involve training for requirements
practitioners, tooling, and reasonable assurance to both the company and the client
that the approach is workable in practice (on a real problem, and by practitioners).

- The utilization of this technique will introduce a new step in the project development
process, which is promising but time and money consuming. It could be difficult to
communicate a profitability of this technique to the customer.

- It is difficult to imagine the use of formal methods of verification/validation in any
foreseeable future.

7. Suggested improvements:
- A popular version and texts in methodological style should be written, e.g. manuals,

etc.
- Making full use of the methodology will require an introduction of it in a tool that

helps to design processes/support systems;
- The visual notation needs some enhancements before meeting non-experts;
- Several realistic projects in the field have to be accomplished using this technique to

demonstrate its scalability and potential profitability for a customer;
- There might be some possibilities for promoting formal verification/ validation,

provided they are incorporated in some tool, e.g.:
o As a sales argument for the tool
o To provide guarantees in cases of extremely importance for the customers (e.g.

SOX compliance).

The results of the conducted inquiry are valuable feedback for this work and help us to
prioritize the directions of this research for the future.

142

143

Chapter 8

Conclusion

In this dissertation we have defined the formal semantics for SEAM language that permit us
to validate the alignment between models, specified in SEAM.

We have achieved four main advantages for visual SEAM specifications:

1. The SEAM extension with AP-relations and AA-relations and their semantics. This
extension allows for the explicit modeling of a system behavior as a change of a
system state;

2. The formalization of relations between SEAM Visual Specifications as Refinements.
This formalization allows for the utilization of theories that already exist in software
engineering and are dedicated to rigorous program development;

3. The formalization of SEAM concepts in first-order logic (FOL). This formalizartion
allows us to be able to reduce the problem of refinement verification in visual models
to a problem of validity of an FOL-formula;

4. The definition of a language migration and refinement verification using formal
specification languages. This migration allows for the utilization of tools (i.e. the
Alloy Analyzer, the Jahob verification system) for automated verification of
refinement.

We have illustrated our technique of refinement verification with two examples: In the first

example, we consider the problem of alignment verification in the context of business
process modeling; the problem presented in the second example discusses the alignment in
context of service specification and design.

Using formal semantics for SEAM specifications, we have defined declarative and
imperative process specifications. We use combinations of these specifications:

- to integrate different customizations and redesigns of a business process; and
- to specify services at different levels of abstraction;

We have shown how a refinement theory can be applied to validate the alignment between

the processes (e.g. business processes, services), specified at different abstraction levels.

We have illustrated how Alloy, a light weight specification language, can be used to verify

the alignment. We have also explored the alternative method of alignment verification, based
on the Jahob verification system.

Our contribution establishes a bridge between the formal methods of Software Engineering
and practical problems in the area of Business/IT alignment (i.e. the verification of alignment
between process specifications and their implementations).

144

8.1 Future Work

The problem the alignment of Business and IT is gaining an importance. Various methods
and tools have been developed in this domain in order to support the modeler in creating the
models and making these models transparent, traceable, and aligned. In conducting this
research, we have pursued the goal of bringing the visual specifications to such a level of
precision that they become self-contained means for system validation. To do so, we have
extended the visual notation with formal concepts and textual annotations. By defining the
formal semantics for visual SEAM specifications, we were able to create a technique for
mapping these specifications to the verifiable code. The main directions of our future work
are:

(1) To decrease the visible complexity of the method by providing documentation,
guidelines and by implementing the front-end of the technique in the form of an application.
This should hide the complexity from the user (see for example [13]).

(2) Further exploration of opportunities given by formal semantics in SEAM;
(3) Further exploration of opportunities given by refinement formalization for SEAM

visual specifications.

8.1.1 Complexity Reduction, Usability
Documentation. At the time of this writing, this PhD dissertation is the most complete
documentation of the technique created. To enhance the usability of the method,
documentation, focused on the practical application of the technique (e.g. a tutorial) would be
very useful.
The SEAM graphical notation.
The development of a simpler notation that can be used both in an education process with an
academic audience (i.e. students, research community), and in practice with a business
audience (as a technique for business workshops) is the major goal in the future.
The automated alignment assistant. We consider an implementation of the automated
alignment assistant – a supplementary function of the SEAM modeling tool SeamCAD [66].
This assistant will identify a refinement type based on the modeler’s activities; depending on
the refinement type, the assistant may propose that the modeler specify the states of interest
and define a refinement relations between them.

8.1.2 Formal Semantics
Deterministic vs. nondeterministic.
Formal semantics for SEAM and, in particular, a possibility of specifying a system
declaratively, opens an interesting discussion about nondeterministic specifications and the
way to specify and validate them. By a nondeterministic specification, we understand a
specification whose behavior is not explicit. For example, different actions can be triggered
by a ‘random choice’ or action parameters can be randomly chosen from some range of
allowed values. Formal semantics provides a mechanism to specify nondeterminism for
SEAM models.

Formal semantics allows us to design and implement various applications for the
simulation and animation of SEAM visual specifications.
From a visual specification to an executable code. During this work, we have developed
several tool prototypes for generating executable and verifiable specifications from SEAM
visual models. The improvement of these prototypes, their testing, and documentation is one
of the tasks in the future.

145

SEAM to Jahob is an application that we plan to develop based on the theory created in
this dissertation. This tool will help the modeler to animate her specifications by simulating
them in Java; providing the Jahob specification constructs will give us an opportunity to
formally prove that the implementation corresponds to its specification.
Scalability. The technique we created was tested on realistic, but small problems.
Considering the integral complexity of the SEAM extended notation, plus the complexity of
the verification procedure, the scalability of our technique on a real-size problem is
questionable for the moment. By improving both the notation and the transformation
procedure, we expect to make our technique scalable.

8.1.3 Refinement
From an executable code to a visual specification. For the moment, the lack of interpretation of
(negative) verification results is a serious drawback of this technique: when the refinement is
incorrect, the only recommendation that can be given to the modeler is: ‘Change the specification and
repeat the verification!’. Several sources of the verification failure can be listed: the refined
specification is incorrect; the refinement relation is incorrect; the assertion about refinement is
incorrect; the proof technique failed to construct a proof; the validation technique failed; etc. To
identify the reasons for failure based on the verification results (error messages, traces, etc. received
from verification tools) and to provide recommendations on how to solve the problem is an important
task that makes a topic for the future research. Heuristics
Refinement propagation
Significant efforts in future might be invested in the further exploration and development of
the refinement propagation technique [96] based on refinement theory for SEAM
specifications:

In contrast to techniques where a refinement is first proposed and then proved to be
correct, some techniques allow for the calculation of a refinement step based on the
refinement laws. The refinement calculus is an underlying theory. This calculation assures
refinement correctness ’by construction’, and enables the reduction of proof obligations.

We believe that refinement by calculation [72] can be beneficial for the practical
application in the context of visual modeling. By exploring the refinement types, specified in
Chapter 5, we found relations between them in the form “refinementX implies refinement”.
This implication we call a propagation of refinement. With refinement correctness criteria
defined, a sufficient part of the calculations can be done without a modeler’s involvement.

146

147

Bibliography

[1] Abadi, M., Lamport, L.: The Existence of Refinement Mappings, Theoretical Computer

Science, v. 82, n.2, pp.253-284 (1991).

[2] Adora: http://www.ifi.uzh.ch/rerg/research/projects/adora/tool/

[3] Alloy Analyzer 4.0, http://alloy.mit.edu/alloy4/

[4] Argo UML: http://argouml.tigris.org/

[5] Baar, T., Markovi , S.: A Graphical Approach to Prove the Semantic Preservation of

UML/OCL Refactoring Rules, Irina Virbitskaite and Andrei Voronkov, editors.
Perspectives of Systems Informatics, 6th International Andrei Ershov Memorial
Conference, PSI 2006, Proceedings, LNCS 4378, pp. 70-83, Springer (2007).

[6] Baar, T., Markovi , S., Fondement, F., Strohmeier, A.: Definition and Correct

Refinement of Operation Specifications, In B. Meyer, A. Schiper, J. Kohlas, editors,
Dependable Systems: Software, Computing, Networks, volume 4028 of Lecture Notes in
Computer Science, pages 127-144, Springer (2006).

[7] Back, R.-J.: On the Correctness of Refinement Steps in Program Development. Abo

Akademi, Department of Computer Science. Ph.D. Thesis. Helsinki, Finland (1978).

[8] Back, R.-J.: Incremental software construction with refinement diagrams. In Broy,

Gunbauer, H. and Hoare, editors, Engineering Theories of Software Intensive Systems,
NATO Science Series II: Mathematics, Physics and Chemistry, pages 3–46. Springer,
Marktoberdorf, Germany (2005).

[9] Barendregt, H.P.: The lambda calculus, its syntax and semantics. North Holland,

ISBN-13: 978-0-444-87508-2 (1984).

[10] Barendregt, H.P.: Functional Programming and Lambda Calculus. Handbook of

Theoretical Computer Science, Volume B: Formal Models and Sematics (B), 321-363
(1990).

[11] Barnett, M., Grieskamp, W., Gurevich, Y., Schulte, W., Tillmann, N., Veanes, M.:

Scenario-oriented Modeling in AsmL and its Instrumentation for Testing //UML use
cases testing using AsmL

[12] Beizer, B.: Software Testing Techniques. 2nd ed., New York, NY, USA, Van Nostrand

Reinhold Co., 550 p. (1990).

[13] Bordbar, B., Anastasakis, K.: UML2Alloy: A tool for lightweight modelling of Discrete

Event Systems. International Conference in Applied Computing. Volume 1., Algarve,
Portugal, IADIS Press, 209-216 (2005).

148

[14] Borgida, A., Mylopolous, J., Reiter, R.: ...And Nothing Else Changes: The Frame

Problem in Procedure Specifications. In Proceedings of ICSE-15, pages 303–314. IEEE
Computer Society Press, (1993).

[15] Börger, E., Stark, R.: Abstract State Machines. A Method for High-Level System Design

and Analysis. Springer-Verlag, Berlin Heidelberg New York (2003).

[16] Börger, E.: The ASM Refinement Method, Formal Asp. Comput. 15(2-3): 237-257

(2003).

[17] http://is.tm.tue.nl/staff/rdijkman/cbd.html#transformer.

[18] Bradley, A. R., Manna, Z.: The Calculus of Computation: Decision procedures with

Applications to Verification, Springer, ISBN-10: 3540741127 366p. (2007).

[19] Brown, A.: An introduction to Model Driven Architecture, IBM, available at:

http://www-128.ibm.com/developerworks/rational/library/3100.html

[20] Clarke, E.M., Emerson, E.A., Sistla, A.P.: Automatic verification of finite state

concurrent systems using temporal logic, ACM Trans. on Programming Languages and
Systems, 8(2), pp. 244–263, (1986).

[21] Clarke, E.M., Grumberg, O., Jha, S., Lu, Y., Veith, H.: Progress on the state explosion

problem in model checking. In Informatics, 10 Years Back, 10 Years Ahead, volume
2000 of LNCS, pages 176--194, (2001).

[22] Clarke, E.M., Orna Grumberg Jr., Peled, D. A.: Model Checking, MIT Press, ISBN 0-

262-03270-8. (1999).

[23] Cornelio, M.: Refactorings as Formal Refinements - PhD thesis, Universidade de

Pernambuco, (2004).

[24] Dardenne, A., van Lamsweerde A., and Fickas, S.: Goal Directed Requirements

Acquisition, Science of Computer Programming, Vol. 20, No. 1-2, pp. 3–50, (1993).

[25] Project page:
http://se2c.uni.lu/tiki/tiki-index.php?pt=Research%20Groups$MDE:%20Model-
Driven$Foundations$DASCOM&page=DascomOverview

[26] DEMOS on-line documentation: http://se2c.uni.lu/demos/documentation/

[27] Derrick, J., Boiten, E.: Refinement in Z and Object-Z. Springer, (2001).

[28] Dietz, J. L. G.: DEMO: towards a discipline of Organisation Engineering. (1999).

[29] Dietz, J.L.G.: Enterprise Ontology –Theory and Methodology. Springer, New York,

ISBN: 3-540-29169-5. (2006).

149

[30] Dijkman, R. M., Dumas, M., Ouyang, C.: Formal Semantics and Analysis of BPMN
Process Models, preprint version, QUT | ePrints Archive,
http://eprints.library.qut.edu.au/ (2007).

[31] Dijkstra, E. W. Notes on structured programming. In Structured Programming.

Academic Press (1971).

[32] Department of Defense, USA: DoD Architecture Framework Version 1.5, 2007.

[33] van Dongen, B., Alves de Medeiros, A.K., Verbeek, H.M.W., Weijters, A.J.M.M., van

der Aalst, W.M.P.: The ProM framework: A new era in process mining tool support. In
G. Ciardo and P. Darondeau, editors, Application and Theory of Petri Nets 2005, volume
3536 of Lecture Notes in Computer Science, pages 444–454. Springer, (2005).

[34] Dori, D.: Object-Process Methodology, A Holistic Systems Paradigm, Springer Verlag,

(2002).

[35] Dori, D., Reinhartz-Beger, I., and Sturm, A.: OPCAT - A Bimodal CASE Tool for

Object-Process Based System Development. Proceedings of 5th ICEIS, Angers, France,
(2003).

[36] Dori, D.: SODA: Not Just a Drink!, mbd-mompes, pp. 3-14, Fourth Workshop on

Model-Based Development of Computer-Based Systems and Third International
Workshop on Model-Based Methodologies for Pervasive and Embedded Software
(MBD-MOMPES'06), (2006).

[37] http://dresden-ocl.sourceforge.net/aboutproject.html

[38] D'Souza, D. F., Wills, A. C.: Objects, Components, and Frameworks With UML: The

Catalysis Approach, Addison-Wesley, (1998).

[39] Eclipse – an open development platform www.eclipse.org

[40] Feijs, L.M.G., Krikhaar R.L.: Relation algebra with multi-relations. Intern J. Computer

Math., (1998).

[41] Feijs, L.M.G., van Ommering, R.C: Relation partition algebra - mathematical aspects of

uses and part-of relations. Science of Computer Programming 33 (1999).

[42] Fowler, M.: Refactoring: Improving the Design of Existing Code, Addison-Wesley,

Object Technology Series, ISBN 0201485672 , (1999).

[43] Girault, C., Valk, R.: Petri Nets for Systems Engineering, Springer, 607p. (2002).

[44] Glinz, M., Berner, S., Joos, S., Ryser, J., Schett, N., Xia, Y.: The ADORA Approach to

Object-Oriented Modeling of Software, Lecture Notes in Computer Science, (2001).

[45] Glinz, M., Berner, S., Joos, S.: Object-oriented modeling with ADORA, Inf. Syst., v.27,

n 6, Elsevier Science Ltd., pp. 425—444 (2002).

[46] Glinz, M., Seybold, C., Meier S.: Simulation-Driven Creation, Validation and Evolution

of Behavioral Requirements Models. Proceedings of the Dagstuhl-Workshop

150

Modellbasierte Entwicklung eingebetteter Systeme. Informatik-Bericht 2007-01, TU
Braunschweig, Germany. 103-112. (2007).

[47] Gordon, M. J. C., Melham, T. F.: Introduction to HOL: a theorem proving environment

for higher order logic, Cambridge University Press New York, NY, USA. (1993).

[48] Gordon, M. J. C.: From LCF to HOL: a short history; Proof, Language, and Interaction,

by G. Plotkin (Editor), Colin P. Stirling (Editor), Mads Tofte (Editor). MIT Press,
(2000).

[49] Habermas, J.: The Theory of Communicative Action: Reason and Rationalization of

Society. Polity Press, Cambridge. (1984).

[50] He, J., Hoare, C., Sanders, J.: Data refinement refined. ESOP 86 Lecture Notes in

Computer Science 213 187–196 (1986).

[51] Hoare, C.A.R.: Proofs of correctness of data representation. Acta Informatica (1972).

[52] Henzinger, T.A., Jhala, R., Majumdar, R., Sutre, G.: Software Verification with Blast. In

Proceedings of the 10th SPIN Workshop on Model Checking Software (SPIN 2003),
LNCS 2648, Springer-Verlag, pages 235–239, (2003).

[53] Hilbert, D., and Ackermann, W.: Principles of Theoretical Logic (English translation).

Chelsea. (1950). The 1928 first German edition was titled Grundzüge der theoretischen
Logik.

[54] Holzmann, G. J.: The SPIN Model Checker: Primer and Reference Manual, Addison-

Wesley Professional, (2003).

[55] Inria: ATL - The ATLAS model transformation language

http://ralyx.inria.fr/2006/Raweb/atlas/uid26.html

[56] Intalio Designer: www.intalio.com

[57] ITIL: Office of Government Commerce, ITIL Service Strategy, TSO, London, (2007).

[58] Jacobson, I., Christerson, M., Jonsson, P., Overgaard, G.: Object-Oriented Software

Engineering: A Use Case Driven Approach, (ACM Press) Addison-Wesley, (1992).

[59] Jackson, D.: Software Abstractions: Logic, Language, and Analysis, MIT Press.

Cambridge, MA. ISBN 0-262-10114-9 (2006).

[60] Kelsen, P.: A Declarative Executble Model for Object-Based Systems Based on

Functional Decomposition. Technical Report TR-LASSY-06-06, ISBN 2-919940-12-0,
(2006).

[61] Khomyakov, M., and Bider, I.: Achieving Workflow Flexibility through Taming the

Chaos”. OOIS 2000 - 6th international conference on object oriented information
systems. Springer, 2000, pp.85-92. Reprinted in the Journal of Conceptual Modeling,
(2001).

[62] Kleppe, Warmer, J., Bast., W.: MDA Explained, The Model-Driven Architecture:

Practice and Promise. Addison Wesley (2003).

151

[63] Kuncak, V.: Modular Data Structure Verification, Ph.D. thesis, Department of Electrical
Engineering and Computer Science, Massachusetts Institute of Technology (2007).

[64] Loveland, D.W.: Automated theorem proving: A logical basis (Fundamental studies in

computer science), sole distributor for the USA and Canada, Elsevier North-Holland
(1978).

[65] Lynch, N. A., Vaandrager, F. W. : Forward and Backward Simulations: I. Untimed

Systems Inf. Comput. 121(2): 214-233 (1995).

[66] Lê, L.S.; Wegmann, A.: SeamCAD: Object-Oriented Modeling Tool for Hierarchical

Systems in Enterprise Architecture, 39h IEEE Hawaii International Conference on
System Sciences. (2006).

[67] MagicDraw http://www.magicdraw.com/

[68] Markovic, S.: Model refactoring using transformations. PhD dissertation, Thèse EPFL,

no 4031 (2008).

[69] Mens, T., Tourwe, T.: A survey on software refactoring, Transactions on Software

Engineering, IEEE Computer Society Press, (2004).

[70] Mens, T., van Gorp, P.: A Taxonomy of Model Transformation. ENTCS (2006).

[71] Meyer, B.: Eiffel – The Language. Prentice-Hall, Englewood Cliffs, (1992).

[72] Morgan, C., Gardiner, P.H.B.: Data Refinement by Calculation Oxford University,

Programming Research Group, (1989).

[73] Narasipuram, M.M., Regev, G., Kumar, K., Wegmann, A.: Business Process Flexibility

through the Exploration of Stimuli, accepted for publication, International Journal of
Business Process Integration and Management (IJBPIM), (2008).

[74] Nipkow, T., Paulson, L. C. and Wenzel, M.: Isabelle/HOL: A Proof Assistant for Higher-

Order Logic, volume 2283 of LNCS. Springer-Verlag, (2002).

[75] OMG: MDA Guide Version 1.0.1 (2003). Available at:

http://www.omg.org/docs/omg/03-06-01.pdf

[76] OMG: UML 2.0 OCL Specification – OMG Final Adopted Specification. OMG

Document ptc/03-10-14, (2003).

[77] OMG: Unified Modeling Language: Superstructure, version 2.1.2. (2007).

[78] OMG: Business Process Modeling Notation (BPMN) Version 1.0, OMG Final Adopted

Specification, (2006).

[79] OMG: Systems Modeling Language (OMG SysML™), V1.0 (2007).

[80] OPCAT: http://www.opcat.com/

152

[81] The Open Group Architecture Framework TOGAF – 2007 Edition, The open group,
http://www.opengroup.org/togaf/ (2007).

[82] Paulson, L.: Isabelle: A Generic Theorem Prover”, Springer, (1994).

[83] The Petri Net Markup Language (PNML) http://www2.informatik.hu-

berlin.de/top/pnml/about.html

[84] Prom: http://is.tm.tue.nl/~cgunther/dev/prom/

[85] Pons, C.: Heuristics on the definition of UML refinement patterns. In SOFSEM, pages

461–470, (2006).

[86] Metastorm, Pro Vision www.metastorm.com/products/mpea.asp

[87] Rational Software Architect:
http://www-306.ibm.com/software/awdtools/architect/swarchitect/index.html

[88] Reeves, S., Streader, D.: Comparison of Data and Process Refinement, In Proc. of 5th

International Conference on Formal Engineering Methods, ICFEM 2003, volume 2885
of Lecture Notes in Computer Science, pages 266–285. Springer, (2003).

[89] Reeves, S., Streader, D.: Stepwise Refinement of Processes , Proceedings of the

International Workshop on Formal Aspects of Component Software (FACS 2005),
Electronic Notes in Theoretical Computer Science (2006).

[90] Regev, G., Wegmann, A.: Regulation Based Linking of Strategic Goals and Business

Processes, Proceedings of the 3rd BPMDS Workshop on Goal-Oriented Business
Process Modeling, GBPM'02, London, September (2002).

[91] Regev, G., Soffer, P., Schmidt, R.: Taxonomy of Flexibility in Business Processes,

proceedings of the seventh workshop on Business Process Modeling, Design and
Support (BPMDS’06), (2006).

[92] RM-ODP: Reference model of open distributed processing part 1. Draft International

Standard (DIS). Helsinki, Finland. (1995).

[93] de Roever, W.-P., Engelhardt, K.: Data Refinement: Model-Oriented Proof Methods and

their Comparison, (with the assistance of Jos Coenen, Karl-Heinz Buth, Paul Gardiner,
Yassine Lakhnech, and Frank Stomp); Cambridge University Press, (1998).

[94] RoclET: http://www.roclet.org/

[95] Rychkova, I., Wegmann, A.: A Method for Functional Alignment Verification in

Hierarchical Enterprise models. In proceedings of A workshop on Business/IT
Alignment and Interoperability in conjunction with CAiSE'06, (2006).

[96] Rychkova I., Wegmann A. : Refinement propagation. Towards automated construction

of visual specifications, proceedings of International Conference on Enterprise
Information Systems (ICEIS), (2007).

[97] Sessions, R.: A Comparison of the Top Four Enterprise-Architecture Methodologies,

MSDN, Enterprise Architecture, (2007).

153

[98] Schellhorn, G.: Verification of ASM Refinements Using Generalized Forward

Simulation, J. Universal Comput. Sci. (J.UCS) 7 (11) (2001).

[99] Schulz, S.: E - A Brainiac Theorem Prover. Journal of AI Communications 15 (2/3):

111-126. (2002).

[100] SPASS: An Automated Theorem Prover for First-Order Logic with Equality

http://spass.mpi-sb.mpg.de/

[101] Spivey, J.M.: The Z notation: A reference manual. Prentice Hall (1989).

[102] Spivey, J.M: Understanding Z: A Specification Language and its Formal Semantics,

Cambridge University Press, (2008).

[103] Strassmann, P.A.: What is Alignment? Alignment is The Delivery of the Required

Results. Edited excerpt from The Squandered Computer Published in Cutter IT Journal,
(1998).

[104] System Architect: Telelogic
 http://www.telelogic.com/Products/systemarchitect/systemarchitect/index.cfm

[105] Tidwell, D.: XSLT, 2nd Edition, O’Reilly, (2008).

[106] Torlak, E., Jackson, D.: Kodkod: A Relational Model Finder. Tools and Algorithms

for Construction and Analysis of Systems (TACAS '07), (2007).

[107] UML2Alloy: http://www.cs.bham.ac.uk/~bxb/UML2Alloy/index.php

[108] Wegmann, A.: On the Systemic Enterprise Architecture Methodology (SEAM),

International Conference on Enterprise Information Systems (ICEIS), (2003).

[109] Weick, K. E.: The Social Psychology of Organizing, second edition, McGraw-Hill.

(1979).

[110] Wikipedia http://en.wikipedia.org/wiki/Business/IT_alignment

[111] Wirth, N.: Program development by stepwise refinement. Communications of the

ACM, 14:221–227. (1971).

[112] Woodcock, J., Davies, J.: Using Z: Specification, Refinement and Proof. Prentice Hall

(1996).

[113] Xia, Y., Glinz, M.: Extending a Graphic Modeling Language to Support Partial and

Evolutionary Specification. 11th Asia-Pacific Software Engineering Conference, IEEE
Computer Society (2004).

[114] Zachman, J. A.: The Zachman framework for Enterprise Architecture

http://www.zifa.com/, http://www.zachmaninternational.com/index.php/home-
article/article/13#thezf

[115] Zee, K., Kuncak,V., Rinard, M.C.: Full Functional Verification of Linked Data

Structures, PLDI (2008).

154

155

Appendix A

Alloy Specification of the XYZ Example
 //====================Model Abstract================================= // =============M_W with 3 attributes (x, y, z) // =============y = y + x; z = z + y (sequence of statements) // =============Two actions: // ============= - LAdoMath_w (all changes done at one transition) // ============= - LAdoMath_c_d (changes done separately on y and z - declarative) // ============= - LAdoMath_c_i (changes done on y , then on z - imperative) //=== //======================================= //==== WO as a whole //=================================== lone sig M_w{ x, y, z : one Int } //==================================== //==== LAdoMath_whole //==================================== pred LAdoMath_w_d[x, y, z, x', y', z': one Int] { // true => ((y' = y + x) && (z' = z + (y + x)) && (x = x')) } //run LAdoMath_w_d for 5 //successful action doMath pred LAdoMath_s[x, y, z, x', y', z': one Int] { (y' = y + x) && (z' = z + (y + x)) && (x = x') } //=== //============ Activity components //=== pred LAaddToY2[x, y, z, x', y', z': one Int]{ x'= x && z'= z && y'= y + x } pred LAaddToZ2[x, y, z, x', y', z': one Int]{ (x'= x) && (y'= y) && (z'= z +x+y) } pred LAaddToY1[x, y, z, x', y', z': one Int]{ x'= x && y' = y + x } pred LAaddToZ1[x, y, z, x', y', z': one Int]{ x'= x && z'= z + x+y } //==================================== //==== LAdoMath_composite - declarative //====================================

156

pred LAdoMath_c_d[x, y, z, x', y', z': one Int]{ // true => LAaddToY1[x, y, z, x', y', z'] && LAaddToZ1[x, y, z, x', y', z'] } //run LAdoMath_c_d //==================================== //==== LAdoMath_composite - imperative //==================================== pred LAdoMath_c_i[x, y, z, x', y', z': one Int]{ //t - local time stamp // true => (some x_t, y_t, z_t : Int | LAaddToY2[x, y, z, x_t, y_t, z_t] && LAaddToZ2[x_t, y_t, z_t, x', y', z']) } //run LAdoMath_c_i assert Declar_Imper{ all xc, yc, zc, x'c, y'c, z'c, xa, ya, za: one Int | (LAdoMath_c_i[xc, yc, zc, x'c, y'c, z'c] && (xa = xc) && (ya = yc) && (za = zc))=> (some x'a, y'a, z'a: Int | LAdoMath_c_d[xa, ya, za, x'a, y'a, z'a] && (x'a = x'c) && (y'a = y'c) && (z'a = z'c)) } //check Declar_Imper //== //=======Refinement check //== //Given 2 specifications - abstract Ma and concrete Mc; Mc obtained from Ma by a refinement; //Actions Ac and Aa are defined for both specifications as relations between states at pre and post: // Aa = Aa(Ma, Ma') && Ac = Ac(Mc, Mc'). //Formal refinement verification states the following: // given a refinement relation R which // makes a correspondence between Mc and Ma, such as : Ma_t = R(Mc_t) then the refinement is correct under the following // condition: For All Mc, Mc' | Ac(Mc, Mc') => Aa(R(Mc), R(Mc')) //Must be read: if a step happenes in a concrete specification, there will be also a step in the abstract specification. //In particular case, we specify refinement function R as a predicate that is R(Mc -> Ma) -> boolean //And refinement correctness condition is reformulated as follows: // For All Xa,Xa',Xc,Xc' | (Ac(Xc,Xc') && R(Xc ->Xa) && R(Xc'->Xa')) => Aa(Xa, Xa')) //=== // REFINEMENT: Localized action as a whole is refined to a composite //== R - refinement relation ; //== xa - stands for model abstract; xc - for refined model , //== or model concrete (both models represent the system as a whole) //== pred R_LAC_to_LAW[xc_t, yc_t, zc_t, xa_t, ya_t, za_t: one Int]{ (xc_t= xa_t) && (zc_t= za_t) && (yc_t= ya_t) } assert LAW_LAC{ all xa, ya, za, xc, yc, zc, xc', yc', zc': Int | (LAdoMath_c_d[xc, yc, zc, xc', yc', zc'] &&

157

 R_LAC_to_LAW[xc, yc, zc, xa, ya, za]) => (some xa', ya', za' : Int | LAdoMath_w_d[xa, ya, za, xa', ya', za']&& R_LAC_to_LAW[xc', yc', zc', xa', ya', za']) } //check LAW_LAC //================================== //========= WO as a composite //================================== // M_C with 2 components: A and B // A with 3 attributes: X, Y, Z // B with 2 attributes: X, Y // y = y + x; z = z + y // Two actions: // - JAdoMath_w // - DAdoMath_w //================================= //===== Components //================================= lone sig A{ Ax, Ay, Az: one Int } lone sig B{ Bx, By: one Int } lone sig M_c{ a: one A, b: one B } //==================================== //===== JointAction - declarative //==================================== pred JAdoMath_w_d[Ax, Ay, Az, Ax', Ay', Az', Bx, By, Bx', By': one Int] { // true => Ax'= Ax && Bx'= Bx && By'= By + Bx && Az'= Az + Ax + Ay && some shared_x, shared_y: Int | (shared_x = Ax && Bx = shared_x && shared_y = Ay' && shared_y= By') } //run JAdoMath_w_d for 5 //==================================== //===== JointAction - imperative //==================================== pred JAdoMath_w_i[Ax, Ay, Az, Ax', Ay', Az', Bx, By, Bx', By': one Int] { some shared_x, shared_y: Int | (Ax = shared_x && Bx = shared_x && Ay' = shared_y && By' = shared_y) && some Ax_lt, Ay_lt, Az_lt, Bx_lt, By_lt : Int| ((Ax_lt= Ax) && (Bx_lt= Bx) && (Ax'= Ax_lt) && (Bx'= Bx_lt) &&

158

(By_lt= By + Bx) && (By'= By_lt) && (Ay_lt= Ay) && (Ay_lt= Ay +Ax) && (Az_lt= Az) && (Az'= Az_lt + Ay_lt + Ax_lt)) } //run JAdoMath_w_i for 5 assert JImper_Jdeclar{ all Axc, Ayc, Azc, Axc', Ayc', Azc', Bxc, Byc, Bxc', Byc', Ax, Ay, Az, Bx, By: Int | (JAdoMath_w_i[Axc, Ayc, Azc, Axc', Ayc', Azc', Bxc, Byc, Bxc', Byc'] && Axc = Ax && Ayc = Ay && Azc = Az) => (some Ax', Ay', Az', Bx', By': Int | JAdoMath_w_d[Ax, Ay, Az, Ax', Ay', Az', Bx, By, Bx', By'] && Axc' = Ax' && Ayc' = Ay' && Azc' = Az') } check JImper_Jdeclar //=== // REFINEMENT: System is refined from w to c; Localized action is refined to a Joint Action //==== R - refinement relation; //=== pred R_JA_to_LA[Ax_t, Ay_t, Az_t: one Int, // model concrete xa_t, ya_t, za_t : one Int] // model abstract { (Ax_t= xa_t) && (Az_t= za_t) && (Ay_t= ya_t) } //==================================== assert LAw_JAd{ all Ax, Ay, Az, Ax', Ay', Az', Bx, By, Bx', By', xa, ya, za: Int | (JAdoMath_w_i[Ax, Ay, Az, Ax', Ay', Az', Bx, By, Bx', By'] && R_JA_to_LA[Ax, Ay, Az, xa, ya, za]) => (some xa', ya', za': Int | R_JA_to_LA[Ax', Ay', Az', xa', ya', za'] && LAdoMath_w_d[xa, ya, za, xa', ya', za']) } //check LAw_JAd assert LAc_JAd{ all Ax, Ay, Az, Ax', Ay', Az', Bx, By, Bx', By': Int , xa, ya, za: Int | (JAdoMath_w_d[Ax, Ay, Az, Ax', Ay', Az', Bx, By, Bx', By'] && R_JA_to_LA[Ax, Ay, Az, xa, ya, za]) => (some xa', ya', za': Int | R_JA_to_LA[Ax', Ay', Az', xa', ya', za'] && LAdoMath_c_d[xa, ya, za, xa', ya', za']) } //check LAc_JAd assert LAc_JAi{ all Ax, Ay, Az, Ax', Ay', Az', Bx, By, Bx', By': Int , xa, ya, za: Int | (JAdoMath_w_i[Ax, Ay, Az, Ax', Ay', Az', Bx, By, Bx', By'] && R_JA_to_LA[Ax, Ay, Az, xa, ya, za]) => (some xa', ya', za': Int | R_JA_to_LA[Ax', Ay', Az', xa', ya', za'] && LAdoMath_c_i[xa, ya, za, xa', ya', za']) } //check LAc_JAi - to check

159

Figure A-1: Specification of a component working objects A and B with their localized actions
aLAdoMath and bLAdoMath. //================================= //===== Actions for A (Fig. A-1-a) //================================= pred aLAdoMath_w[Ax, Ay, Az, Ax', Ay', Az': one Int]{ //true => (Ax'= Ax && Az' = Az + Ax + Ay) } //================================= //===== Actions for B (Fig. A-1-b) //================================= pred bLAdoMath_w[Bx, By, Bx', By': one Int]{ //true => (Bx'= Bx && By'= By + Bx) } //=== //===== Distributed Action - declarative (Fig. A-2) //=== pred DA_w_d[Ax, Ay, Az, Ax', Ay', Az', Bx, By, Bx', By': one Int] { bLAdoMath_w[Bx, By, Bx', By'] && aLAdoMath_w[Ax, Ay, Az, Ax', Ay', Az'] && some sharedX, sharedY one Int | Bx' = sharedX && Ax'=sharedX && Ay' = sharedY && By'=sharedY } //run DA_w_d for 10

160

Figure A-2: Specification of a distributed action DAdoMath. //=== // REFINEMENT: Joint action is refined to a Distributed Action //=== pred R_DA_to_JA[Axc_t, Ayc_t, Azc_t, Bxc_t, Byc_t, //model concrete Axa_t, Aya_t, Aza_t, Bxa_t, Bya_t: one Int]{ //model abstract (Axc_t = Axa_t) && (Ayc_t = Aya_t) && (Azc_t = Aza_t) } //valid for DAdoMath_w_d JAdoMath_w_d, JAdoMath_w_i assert JA_DAD{ all Axc, Ayc, Azc, Axc', Ayc', Azc', Bxc, Byc, Bxc', Byc', Axa, Aya, Aza, Bxa, Bya : Int | (DA_w_d[Axc, Ayc, Azc, Axc', Ayc', Azc', Bxc, Byc, Bxc', Byc'] && R_DA_to_JA[Axc, Ayc, Azc, Bxc, Byc, //model concrete Axa, Aya, Aza, Bxa, Bya]) => some Axa', Aya', Aza', Bxa', Bya': Int | (R_DA_to_JA[Axc', Ayc', Azc', Bxc', Byc', //model concrete Axa', Aya', Aza', Bxa', Bya'] && JAdoMath_w_i[Axa, Aya, Aza, Axa', Aya', Aza', Bxa, Bya, Bxa', Bya']) } check JA_DAD //=== // REFINEMENT: System is refined from w to c; Localized action is refined to a Distributed Action //=== pred R_DA_to_LA[Ax, Ay, Az, Bx, By, xa, ya, za: one Int]{ Ax= xa && Az= za && Ay= ya } //valid for DAdoMath_w_d , LAdoMath_w_i , LAdoMath_w_d, LAdoMath_c_i, LAdoMath_c_d

161

 assert LA_DAD{ all Ax, Ay, Az, Ax', Ay', Az', Bx, By, Bx', By', xa, ya, za: Int | (DA_w_d[Ax, Ay, Az, Ax', Ay', Az', Bx, By, Bx', By'] && R_DA_to_LA[Ax, Ay, Az, Bx, By, xa, ya, za]) => (some xa', ya', za' : Int | R_DA_to_LA[Ax', Ay', Az', Bx', By', xa', ya', za'] && LAdoMath_c_i[xa, ya, za, xa', ya', za']) } //check LA_DAD to check

162

163

Appendix B

Jahob Formulas for the XYZ Example

1. File: final_law_lacd.form

This formula validates the fact that the localized action as a composite modeled declaratively
correctly refines the localized action as a whole:

 (* action LAdoMath_w *)
(ActionAbstract = (% x y z xp yp zp.

yp = x + y &
zp = z + (y + x) &
xp = x)) &

(* component actions *)
(LAaddToY1 = (% x y z xp yp zp.
xp = x &
yp = y + x)) &

(LAaddToZ1 = (% x y z xp yp zp.
xp = x &
zp = z + x + y))&

(* LAdoMath_composite - declarative *)
(ActionConcrete = (% x y z xp yp zp.

LAaddToY1 x y z x_t y_t z_t &
LAaddToZ1 x_t y_t z_t xp yp zp))&

(*Refinement verification*)
(* refinement relation *)
(RefinementRelation = (% xc_t yc_t zc_t xa_t ya_t za_t.
 xc_t = xa_t &
 zc_t = za_t &
 yc_t = ya_t)) -->

(*assert LAW_LAC *)
((ALL xa ya za xc yc zc xcp ycp zcp.
(ActionConcrete xc yc zc xcp ycp zcp &
 RefinementRelation xc yc zc xa ya za) -->
(EX xap yap zap.
 ActionAbstract xa ya za xap yap zap &
 RefinementRelation xcp ycp zcp xap yap zap))

2. File: final_law_laci.form

This formula validates the fact that the localized action as a composite modeled imperatively
correctly refines the localized action as a whole modeled declaratively:

(* action LAdoMath_w *)
(ActionAbstract = (% x y z xp yp zp.

yp = x + y &
zp = z + (y + x) &
xp = x)) &

164

(* component actions *)
(LAaddToY2 = (% x y z xp yp zp.
xp = x &
zp = z &
yp = y + x)) &

(LAaddToZ2 = (% x y z xp yp zp.
xp = x &
yp = y &
zp = z + x + y))&

(* LAdoMath_composite - imperative *)
(ActionConcrete = (% x y z xp yp zp.
EX x_t, y_t, z_t.
LAaddToY2 x y z x_t y_t z_t &
LAaddToZ2 x_t y_t z_t xp yp zp))&

(*Refinement verification*)
(* refinement relation *)
(RefinementRelation = (% xc_t yc_t zc_t xa_t ya_t za_t.
 xc_t = xa_t &
 zc_t = za_t &
 yc_t = ya_t)) -->

(*assert LAW_LAC *)
((ALL xa ya za xc yc zc xcp ycp zcp.
(ActionConcrete xc yc zc xcp ycp zcp &
 RefinementRelation xc yc zc xa ya za) -->
(EX xap yap zap.
 ActionAbstract xa ya za xap yap zap &
 RefinementRelation xcp ycp zcp xap yap zap))

3. File: final_laci_lacd.form

This formula validates the fact that the localized action as a composite modeled imperatively
correctly refines the same action modeled declaratively:

(* component actions *)
(LAaddToY1 = (% x y z xp yp zp.
xp = x &
yp = y + x)) &

(LAaddToZ1 = (% x y z xp yp zp.
xp = x &
zp = z + x + y))&

(* LAdoMath_composite - declarative *)
(ActionAbstract = (% x y z xp yp zp.

LAaddToY1 x y z x_t y_t z_t &
LAaddToZ1 x_t y_t z_t xp yp zp))&

(* component actions *)
(LAaddToY2 = (% x y z xp yp zp.
xp = x &
zp = z &
yp = y + x)) &

165

(LAaddToZ2 = (% x y z xp yp zp.
xp = x &
yp = y &
zp = z + x + y))&

(* LAdoMath_composite - imperative *)
(ActionConcrete = (% x y z xp yp zp.
EX x_t, y_t, z_t.
LAaddToY2 x y z x_t y_t z_t &
LAaddToZ2 x_t y_t z_t xp yp zp))&

(* refinement relation *)
(RefinementRelation = (% xc_t yc_t zc_t xa_t ya_t za_t.
 xc_t = xa_t &
 zc_t = za_t &
 yc_t = ya_t)) -->

(*assert declar_imper *)
((ALL xa ya za xc yc zc xcp ycp zcp.
(ActionConcrete xc yc zc xcp ycp zcp &
 RefinementRelation xc yc zc xa ya za) -->
(EX xap yap zap.
 ActionAbstract xa ya za xap yap zap &
 RefinementRelation xcp ycp zcp xap yap zap))

4. File: final_dad_laci.form

This formula validates the fact that the distributed action as a whole modeled declaratively
correctly refines the localized action as a composite modeled declaratively / imperatively:

(* component actions *)
(LAaddToY2 = (% x y z xp yp zp.
xp = x &
zp = z &
yp = y + x)) &

(LAaddToZ2 = (% x y z xp yp zp.
xp = x &
yp = y &
zp = z + x + y))&

(* LAdoMath_composite - imperative *)
(ActionAbstract = (% x y z xp yp zp.
EX x_t, y_t, z_t.
LAaddToY2 x y z x_t y_t z_t &
LAaddToZ2 x_t y_t z_t xp yp zp))&

(* WO as a composite = A + B (see Fig. A-1) *)
(* Actions for A:)
(aLAdoMath_w = (% Ax Ay Az Axp Ayp Azp.
Axp = Ax &
Azp = Az + Ax + Ay)) &

(* Actions for B:)
(bLAdoMath_w = (% Bx By Bxp Byp.
Bxp = Bx &
Byp = By + Bx))&

(* Distributed action - declarative *)
(ActionConcrete = (% Ax Ay Az Axp Ayp Azp Bx By Bxp Byp.

166

aLAdoMath_w Ax Ay Az Axp Ayp Azp &
bLAdoMath_w Bx By Bxp Byp &
EX x_shared, y_shared.
Bxp = x_shared & Axp = x_shared &
Ayp = y_shared & Byp = y_shared))&

(* refinement relation *)
(RefinementRelation = (% x_t y_t z_t Ax_t Ay_t Az_t.
 Ax_t = x_t &
 Az_t = z_t &
 Ay_t = y_t)) -->

(*assert LA_DAD *)
((ALL Ax Ay Az Axp Ayp Azp Bx By Bxp Byp x y z.
(ActionConcrete Ax Ay Az Axp Ayp Azp Bx By Bxp Byp &
 RefinementRelation Ax Ay Az x y z) -->
(EX xp yp zp.
 ActionAbstract x y z xp yp zp &
 RefinementRelation xp yp zp Axp Ayp Azp))

To validate the refinement of the localized action as a composite modeled declaratively and
the distributed action, the abstract action definition should be replaced with one from the
previous examples. The rest of the formula will not change.

5. File: final_jad_dad.form

This formula validates the fact that the distributed action as a whole modeled declaratively
correctly refines the joint action modeled declaratively:

(* Joint action JAdoMath_w - declarative *)
(ActionAbstract = (% Ax Ay Az Axp Ayp Azp Bx By Bxp Byp.
Axp = Ax & Bxp = Bx &
Byp = By + Bx &
Azp = Az + Ax + Ay &
EX shared_x shared_y.
(shared_x = Ax & Bx = shared_x &
shared_y = Ayp & shared_y= Byp)))&

(* WO as a composite = A + B (see Fig. A-1) *)
(* Actions for A:)
(aLAdoMath_w = (% Ax Ay Az Axp Ayp Azp.
Axp = Ax &
Azp = Az + Ax + Ay)) &

(* Actions for B:)
(bLAdoMath_w = (% Bx By Bxp Byp.
Bxp = Bx &
Byp = By + Bx))&

(* Distributed action - declarative *)
(ActionConcrete = (% Ax Ay Az Axp Ayp Azp Bx By Bxp Byp.
aLAdoMath_w Ax Ay Az Axp Ayp Azp &
bLAdoMath_w Bx By Bxp Byp &
EX x_shared, y_shared.
Bxp = x_shared & Axp = x_shared &
Ayp = y_shared & Byp = y_shared))&
(* refinement relation *)
(RefinementRelation = (% x_t y_t z_t Ax_t Ay_t Az_t.
 Axc_t = Axa_t &

167

 Azc_t = Aza_t &
 Ayc_t = Aya_t)) -->

(*assert JA_DAD *)
((ALL Axc Ayc Azc Axcp Aycp Azcp Bxc Byc Bxcp Bycp Axa Aya Aza
Bxa Bya.
(ActionConcrete Axc Ayc Azc Axcp Aycp Azcp Bxc Byc Bxcp Bycp &
 RefinementRelation Axc Ayc Azc Axa Aya Aza) -->
(EX Axap Ayap Azap Bxap Byap.
 ActionAbstract Axa Aya Aza Axap Ayap Azap Bxa Bya Bxap Byap &
 RefinementRelation Axcp Aycp Azcp Axap Ayap Azap))

NOTE: Axa – stands for the value of variable x of the component working object A of the
abstract specification; Axc – stands for the value of variable x of the component working
object A of the concrete specification;
Correspondingly, Axap and Axcp are values of these variables after the action termination.

168

169

Appendix C

Practical Feedback

Ian F Alexander
Company: Scenario Plus (UK)
Director (consultant, trainer, author)

 - What is your expertise in business/IT alignment? (based on your past projects)

I have worked as a requirements specialist since 1994, running my consultancy and training
company Scenario Plus. Clients have included Ericsson, DaimlerChrysler, The Post Office,
London Underground and many others. I am the lead author of Writing Better Requirements,
Addison-Wesley 2002, and Scenarios, Stories, Use Cases, Wiley 2004. My publications are
available at http://easyweb.easynet.co.uk/~iany/consultancy/papers.htm

 - Do you use any modeling techniques for your projects? (i.e. UML, BPMN, other.)

I use a wide range of modelling techniques including goal modelling, scenario analysis,
context modelling, and rationale modelling. I have personally developed stakeholder analysis
techniques and extended the use of negative scenario analysis with “misuse cases”. I have
not found most kinds of UML diagram especially helpful, but make use of them (e.g. class
diagrams, activity diagrams) from time to time.

 - Do you use any software for automated modeling / documentation / analysis in your
projects?

Scenario Plus for Use Cases was originally conceived as a tool which would animate (step
through) a scenario AND/OR tree to generate specific scenarios which could be used directly
as test cases. Now I use a range of Scenario Plus tools to edit diagrammatic models (goal
models, rationale models, etc), as well as Enterprise Architect for UML models, and DOORS
to automate traceability in requirements documentation.

2. Validation:

 - Whether the problem discussed in the paper is encountered in practice?

Yes. There is no doubt that many SLAs are poorly written and result in poor service to the
business.

-Here I would refer not only to the fact that the SLA can be poorly written: What I really
wanted to address in my work, is the fact that even from the initially well written SLA one
can get the poorly constructed service, which will violate this SLA. Do you think this is a
sound problem?

Yes, certainly. Traceability is a major problem in industry – it is horribly tedious to apply,
and always error-prone.

170

 - What do you think about the usefulness of the method presented in the paper for a
practitioner? Please, explain your answer.

Firstly the specification is remarkably clear and easy to read, despite being in an unfamiliar
notation.
 Secondly, by expressing the relationships between actions and data graphically, it is
highly expressive, making it clear what is needed when.
 These properties of the approach make it an attractive new possibility for practical use. It
appears far more likely to be practical than the majority of formal methods from research
projects.

 A possible concern is about how such a notation may scale up for large problems; the
number of relationships may increase rapidly with the number of both actions and pieces of
data, which could make the diagrams hard to read. It could also make formal proof of
correctness long, though as this is supported by the Alloy Analyzer tool that should not be a
problem.

 - How do you think the validation / verification technique presented in the paper can help
you (your company)? Please, describe the advantages and disadvantages that you can
expect.

In principle the techniques could help to create accurate service specifications for clients. The
industrialisation of the approach would involve training for requirements practitioners,
tooling, and reasonable assurance to both the company and the client that the approach is
workable in practice (on a real problem, and by practitioners).

Ilia Bider
Company: IbisSoft (Sweden)
Director R&D

 - What is your expertise in business/IT alignment? (based on your past projects)

Organizational change through introduction of business process support systems

 - Do you use any modeling techniques for your projects? (i.e. UML, BPMN, other.)

Yes (others)

 - Do you use any software for automated modeling / documentation / analysis in your
projects?

We use (and develop) tools for getting IT support system from (or at the same time as)
process specification.

2. Validation:

 - Whether the problem discussed in the paper is encountered in practice?

Personally, I have not encountered them in my practice. Nevertheless, I can easily imagine
who have this kind of problems, one example being vendors of software systems with
business processes built-in in them, for example CRM vendors, WEB-shopping systems

171

vendors, etc. They need to be able to adjust their systems to each customer needs.

 - What do you think about the usefulness of the method presented in the paper for a
practitioner? Please, explain your answer.

It could be quite useful as a methodological base for discussing problems and finding
solutions. To achieve this, a popular version and texts in methodological style should be
written, e.g. manuals, etc. Making full use of the methodology will require introduction of it
in a tool that helps to design processes/support systems.

 - How do you think the validation/verification technique presented in the paper can help you
(your company)? Please, describe the advantages and disadvantages that you can expect.

I cannot see direct use of them in our current practice. I can imagine using them as a
methodological framework, if we come across an appropriate task in the future.

As far as formal methods are concerned, I do not think we will use formal methods of
verification/validation in any foreseeable future. As an explanation of my response, I would
like to draw a parallel with formal verification/ validation of computer programs. The domain
is quite old, but I have never seen it being used in the development of business applications,
at a maximum people use formal testing methods. As I understand, these are used for very
critical applications, like in a space ship sent by NASA to Mars, or in high volume low
margin cases, like hardware built-in programs. In the latter case the vendors cannot afford
serious faults in a program, and high volume of production can justify investment in formal
methods and tools. In addition, their programs, normally, have well-defined formal
specifications.

I cannot see any signs of the two situations above in the market of BPM/process support
tools. What is more, tools vendors might not be much interested in formal staff. Considerable
share of their income is coming from tuning/adjustment of their tools to the customers needs.
In this area, customers are charged on the consulting basis, i.e. per hour, and the vendors are
quite happy with that. I cannot se why they suddenly would like to invest in formal
validation/verification.

Nevertheless, there might be some possibilities to promote formal verification/ validation,
provided they are incorporated in some tool, e.g.:

• As a sales argument for the tool
• To provide guarantees in cases of extremely importance for the customers (e.g. SOX

compliance).

In general, I believe that there is only one way to answer the question of practical
applicability of a method of this kind – to implement it as an own toolkit for process design,
or as an ad on to somebody’s else toolkit. Thus the authors need to develop and market their
own stuff, or sell the idea to an existing toolkit vendor. Another option is to wait until
somebody will pick it up, but it may take a long time.

Alexander Samarin
Company: Teamlog S.A. (Suisse)
Enterprise solutions architect

172

- What is your expertise in business/IT alignment? (based on your past projects)

Many years of active participation in architecting and implementing flexible enterprise
solutions.

- Do you use any modeling techniques for your projects? (i.e. UML, BPMN, other.)

BPMN and some proprietary methods

- Do you use any software for automated modeling / documentation / analysis in your
projects?

IBM WebSphere Integration Developer, Oracle SOA suite, Intalio BPM suite

2. Validation:

- Whether the problem discussed in the paper is encountered in practice?

Use of declarative specifications for complex dynamic systems is very attractive [1] and very
challenging at the same time. Higher flexibility and higher potentials for optimisation are
coming together with higher difficultly, especially, for non-experts for creating such
specifications.
Experience shows that always we have to find a balance between different techniques for
coordination of business activities – some aspects/fragments of a business process are better
to express with an imperative technique and others are better to express with a declarative
technique.
A practical example of the problem of customisation has been encountered at a client from
the international standardisation. The core business process at this client is a well-defined
sequence of step-by-step enrichments (commenting, balloting, technical editing, translating,
etc.) of a complex document. We found that it would be better if each document would have
its own sequence. So, we wanted to customize a template for each instance. We didn’t find an
easy way to implement this with modern tools.

- What do you think about the usefulness of the method presented in the paper for a
practitioner? Please, explain your answer.

From a practitioner point of view, the method sounds useful and promising because it
considers complimentary of declarative and imperative techniques. Synergy of these two
techniques (complimented by some guidance how to combine them) will certainly create
better more flexible business process models.

- How do you think the validation / verification technique presented in the paper can help you
(your company)? Please, describe the advantages and disadvantages that you can expect.

Any formal verification is very useful in daily practical work because such a verification can
bring highly demanded objective and scientifically proven reasoning into modern enterprise
environment with all its political tensions and power games (where it is almost impossible to
have something willingly accepted and followed by everyone).
So far, I think that the visual notation needs some enhancements before meeting non-experts.
For example, some traditional modelling artefacts (e.g. events and roles) are expected by the

173

users. Also some diagramming style should be recommended to improve explicitness of
diagrams and their structuring for better “executability”.

 [1] “DecSerFlow: Towards a Truly Declarative Service Flow Language” by W.M.P. van der
Aalst and M. Pesic

Thomas Langenberg
Company: Accenture (Germany)
2 years of experience, SAP Consultant, Project manager

 - What is your expertise in business/IT alignment? (Based on your past projects)

Implementation of SAP BW for large corporations (I was working with Siemens, Deutsche
Telecom, Otto Versand). I was customizing the predefined SAP solutions for controlling and
performance monitoring units of financial departments within the client organization.

 - Do you use any modeling techniques for your projects? (i.e. UML, BPMN, other.)

Standard document formats accepted in financial departments are typically Microsoft Word,
Excel, and PowerPoint. Therefore, all as-is and to-be modeling of the work flow and
processes during my projects was done in MS Power Point. Based on my experience,
presentations are very efficient for the client (who is typically not used to any modeling
standard). I was using the ad-hoc graphical notation, similar to BPMN.

 - Do you use any software for automated modeling / documentation / analysis in your
projects?

 Power Point presentations for discussing and documenting projects; no further analysis.

2. Validation:

 - Whether the problem discussed in the paper is encountered in practice?

The projects I was involved in aimed at substituting an existing system for financial
monitoring by a more efficient and productive system, such as SAP. These projects usually
contain two parts:
1. Initial configuration of a system, using a standard SAP solution. The goal of this part is to
make a quick solution for the customer that will work as a substitute of the old system;
2. When the initial configuration is built, we switch to the system optimization. This typically
involves customization and reorganization of components within the standard solution and
aims at improving, for example, the speed and responsiveness of the system. Customization
includes re-programming of some components, and their interconnection.

In context of such projects, the problem of verification that the customized system performs
as well the standard solution or provides at least the same functionality as an old system is
important.

 - What do you think about the usefulness of the method presented in the paper for a
practitioner? Please, explain your answer.

174

Based on my experience, standard development process (typically presented as Requirements
specification, Development, Testing, and Deployment) is never linear. Many iterations are
usually required during a development phase. There are several reasons to it: the
requirements keep changing; many different stakeholders are involved proposing their own
solutions; many political interests must be taken into account. Each iteration of the
development process is costly and time consuming.
Evaluation of each alternative solution and validation that this solution does not violate the
requirements is a typical problem. Though, having a technique with which one can evaluate
proposed solutions could save project resources and would be a useful instrument for a
consultant.

- How do you think the validation / verification technique presented in the paper can help you
(your company)? Please, describe the advantages and disadvantages that you can expect.

As I see it, the proposed technique may serve for a consultant to verify solutions against
requirements and also to evaluate and to compare these solutions. This is definitely an
attractive instrument. However I consider several main challenges in adopting such
technique:
1. The complex graphical notation plus the use of formal methods prevents this technique
from being used for communication with a client. (Based on my experience, only a small part
of the organization, mainly from the IT department, uses and understands UML or other
modeling techniques). Therefore, the proposed technique can be used only by a trained
consultant, in the project back-office.
2. The utilization of this technique will introduce a new step in the project development
process, which is promising but time and money consuming. As time is essential during the
project, it can be difficult to communicate a profitability of this step to the customer. Several
successful projects in a field, accomplished using this technique and illustrating its
profitability can help. Therefore, some statistics might be needed prior to a commercial use.

Donald C. Gause
Company: Savile Row LLC (USA) - Principal and Consultant
Thomas J. Watson School of Engineering, Binghamton University, State University of
New York – Research Professor

- What is your expertise in business/IT alignment? (based on your past projects)

The preponderance of my work deals with the application of generic requirements
processes developed as a result of observing common problems and lost opportunities in
practice.

Recent professional and consulting activities include:
Requirements, design, and process consultant to global banking community on projects

involving:
Gap analysis and cross-functional system development for the replacement of divisional

legacy systems; Formal design reviews of requirements and specifications for systems under
development; Post-release user reviews of systems and design processes of recently released
systems; Advising management teams in the enhancement of information flow and
productive innovation within and across banking functions; etc.

 Advised a number of commercial and government organizations in concept, function and
requirements development for:

175

Traumatic brain injury treatment management system; Traumatic brain injury full-care
delivery information system; FDA drug approval protocol system; etc.

Directed a corporate task force in the development of advanced computer concepts and
strategic plans for next generation cars and trucks.

Advised directors in the integrated development of the business plan, business
requirements, feature and function development and design risk analysis for a new Internet
start-up company.

- Do you use any modeling techniques for your projects? (i.e. UML, BPMN, other.)

My work focuses on the non-functional requirements short of functional specification and
implementation but does include use scenarios and test cases.

I have worked with systems in which Parnas’s structured decision tables, Jackson’s
problem frames, Yu’s i*, Petri nets and UML have been used for algorithm specification. I
have had graduate professional student projects in which APL was used as a meta-language
to describe the final system with the advantage that the executable meta-language was used to
test and refine the algorithm before final implementation was achieved in assembler
language. I have also designed evolutionary programs capable of improving their
performance with experience thus demonstrating their ability to define their own required
modification and structure based on ill-defined goals as well as explicit goals. These
approaches are based on genetic and neural network models.

- Do you use any software for automated modeling / documentation / analysis in your
projects?

I have used software of my own design to document the requirements elicitation process
described above and to test for consistency and completeness based on binary context
matrices defining pair-wise relationships between users, attributes, and constraints.

2. Validation research:

- Whether the problem discussed in the paper is encountered in practice?

The problem discussed in this paper is a fundamental problem in design and implementation
of software systems. It is, in fact, a fundamental problem in the design of computer
solutions, in general (hardware and software), as it has grown more advantageous to delay
decisions determining the allocation of required functionality to software, firmware, or
hardware until the full functionality has been defined. This is particularly true in the design
of imbedded process control systems (manufacturing, vehicular stabilizing, traffic, robotic
control) as well as with the implementation of distributed computing systems designed to
take advantage of highly parallel algorithms (genetic and evolutionary programs, neural
networks, reconstructability and cluster analysis).

- What do you think about the usefulness of the method presented in the paper for a
practitioner? Please, explain your answer.

It is hard to imagine a computer design problem that would not benefit from a refinement
tool that is capable of recognizing and correcting inconsistency between high-level business
and systems requirements and implementation instructions (functional specifications). Many
factors contribute to our increasing needs to apply effective specification refinement, a few of

176

which are: 1) we are building larger, more complex systems to be used by more diverse user
populations, 2) these systems must integrate into even larger systems, 3) systems usability
has become a stronger differentiating factor in increasingly competitive markets, 4) because
of these three factors, many critical contextual factors cannot be recognized until the product
has been released and unintended consequences are discovered giving rise to continual
change activity.

The main concern I have with the EPFL white paper8 is that I have not seen enough
evidence that the proposed method has been properly validated.

- How do you think the validation, verification technique presented in the paper can help you
(your company)? Please, describe the advantages and disadvantages that you can expect.

Advantages:
 - Assuming that your claims are correct in all process assumptions you have based your
study on, the technique will certainly be beneficial to designers, clients, and end users alike.
The one aspect assures this is the fact that this substantially enhances design visibility to each
of the targeted constituents enabling the users to say, “No, that’s not what I mean.” Rather
than, “No, that’s not what I meant.” This is what we are all striving for.

Potential problems:
- Your technique was nicely illustrated with the “toy” example because of admitted

difficulty in describing a more complex (realistic) case in SEAM. And yet, SEAM is
described as being a visual tool.

- I have the advantage of being relatively ignorant of the SEAM visual representation
schema and, as such, wonder if there might not be a serious difficulty in scaling up to
more typically complex design problems. I have no doubt that people working with
SEAM on a daily basis find the notation to be elegant in its simplicity but doubt that the
end- users (and many other critical but computer notationally disadvantaged users) will
find SEAM to be the visually accessible tool that provides enhanced visibility to all.

- How critical is ITIL to the success of this approach? I raise this point from a commercial
perspective because, as I understand it, members of the potential ITIL market have
criticized the product because of the need to purchase expensive system books and the
zeal with which the ITIL backers express themselves with respect to their product. One
member of the potential customer community felt that his ITIL contact was more full of
zeal than the pragmatics of his problem.

- As a last point, what can this SEAM-based model system do that UML, i*, Petri nets or
other current meta-languages not do? What does it do better than any of these meta-
languages?

8 Donald C. Gause is mentioning the paper, which shortly illustrates the research result of this dissertation using
the SIG example from Section 7.2.

177

List of Figures

Figure 1-1: Refinement verification by simulation .. 10
Figure 1-2: a) Working object as a whole (org. level 1, func. level 1), specified with a
property and a localized action. Properties represent the data the working object stores or
operates with. A localized action changes the state of the working object by modifying its
properties; b) Working object as a composite (org. level 2, func. level 1) specified with its
component working objects and a joint action between them. ... 11
Figure 1-3: Working object as a whole (org. level 1, func. level 2), specified with a property
seen as a composite and a localized action seen as a composite. .. 11
Figure 2-1: Classification of model transformations in context of Visual modeling............... 14
Figure 2-2: Refinement verification of visual specifications as a refinement verification of
corresponding programs - specifications written in a formal specification language. 18
Figure 3-1: a) a SEAM working object W as a whole; b) W as a composite with component
working objects S1 and S2 and a joint action JA seen as a whole; c) W as a composite with
components S1 and S2 and a distributed action DA seen as a whole. 32
Figure 3-2: SEAM metamodel ... 37
Figure 3-3: SEAM working object: a) general representation b) specific pictograms............. 38
Figure 3-4: Working object composition: a) composition relation with multiplicity and
instance expressions; b) Example: a car as a composite specifies 4 Wheels: w1..w4. 39
Figure 3-5: SEAM property: a) graphical notation; b) host relation c) property association; d)
composition. …….. .. 40
Figure 3-6: SEAM action specification….. 40
Figure 3-7: Localized action AAA seen as a composite with component localized actions BB
and CC The control flow is specified using the following AA-relations (in their order of
appearance from the left to the right) : Start, AND-Fork, AND-Merge, End. Intermediate
system states are not shown. .. 41
Figure 3-8: SEAM action-action (AA-) relations vs. BPMN elements (events and gateways).
Taken from www.bpmn.org.. .. .41
Figure 3-9: Proposed graphical notation for AA-relations where intermediate states are
shown; a) an imperative specification of a parallel fork; b) an imperative specification of a
transition... 42
Figure 3-10: SEAM action-to-property (AP-) relations a) relation types; b) An action (local)
invariant vs. a system (global) invariant. ... 43
Figure 3-11: Localized vs. Joint vs. distributed Action. .. 44
Figure 3-12: Shared property .. 44
Figure 3-13: Action local variable 45
Figure 3-14: Input and output parameters. ... 45
Figure 4-1: a) SEAM notation; b) Set – relations notation; ‘a value change’ is modeled as a
redirection of a corresponding relation. ... 51
Figure 4-2: a) working object W seen as a whole; b) working object W seen as a composite 51
Figure 4-3: a) working object W seen as a whole (see also Fig. 4-2-a); b) working object W
seen as a composite (see also Fig. 4-2-b). .. 51
Figure 4-4: a) a primitive property; b) a compound property with two references on primitive
properties. .. 53

178

Figure 4-5: SEAM multi-relations. a) binary multi-relation; b) SEAM property composition
represented as a ’part-of’ relation: ’P is a part of Q’. This is also valid for SEAM host
relations; c) SEAM property association as a ’use’ relation: ’P uses T’.................................. 54
Figure 4-6: SEAM relations annotated with multiplicity and instance expressions. a) A host
relation and a property composition modeled as part-of relations; b) A property association
modeled as use relation; c) Well-formedness of host and property composition relations.
T,W,Q are free floating properties. .. 54
Figure 4-7: Representation of an action precondition, postcondition, and invariant as
constraints over the state space ... 57
Figure 4-8: Working object W seen as a whole with a localized action A and its contract:
(x>o, true, x’>x). Action invariant is not specified, i.e. Ainv = true. ….................................. 59
Figure 4-9: Weakest precondition .. 60
Figure 4-10: Update statement expressed as a selection condition followed by the assignment
expression... 63
Figure 4-11: AA-relations .. 64
Figure 4-12: a) Creation of a new element in a list using a local variable; b) Creation of an
element modifies an instance counter Mcurrent... 67
Figure 4-13: a) Deletion of an ‘old’ element from the list; b) Deletion of an element modifies
an instance counter Mcurrent. .. 68
Figure 5-1: (1,1)-refinement for SEAM specifications.. 73
Figure 5-2: (m,n)-refinement for SEAM specifications: preservation of the external behavior75
Figure 5-3: (m,n)-refinement for SEAM specifications: preservation of the external and the
internal behavior... 766
Figure 5-4: a) Functional and organizational refinements in SEAM; b) SEAM hierarchical
levels increases from top to bottom (for the organizational levels) and from left to right (for
functional levels); any specification at higher level must be a correct refinement of any
specification at lower level... 78
Figure 5-5: Property refinement of a working object as a whole: a) a property decomposition;
b) a definition of a new property; c) a definition of a property to property (PP-) relation; d) a
modification of a multiplicity expression .. 80
Figure 5-6: Behavioral refinements of a working object: a) an action decomposition with
implicit/explicit action ordering; b) a modification of action AP-relations (defined for joint
and localized actions); c) a modification of action parameters. .. 81
Figure 5-7: Behavioral refinements of a working object: a) a definition of a new action; b) a
modification of the action AA-relations... 81
Figure 5-8: Organizational refinement: a) a joint action specification; b) a distributed action
specification. .. 82
Figure 5-9: Property refinement: modification of a multiplicity expression seen as a property
definition. .. 84
Figure 5-10: Behavioral refinement: action decomposition .. 88
Figure 5-11: Organizational refinement: property distribution.. 90
Figure 5-12: Definition of a Joint Action from a Localized Action... 92
Figure 5-13: Organizational refinement by definition of a distributed action 95
Figure 6-1: Jahob Verification system: (a) a Jahob specification is an input for the Jahob
verification system. It is a program, written in a subset of Java and annotated with Jahob
expressions. This specification is transformed later into Jahob formula; (b) a Jahob formula is
a ‘ready to prove’ expression that is an input for the formDecider.. 103
Figure 6-2: Specification of a working object M as a whole, with a localized action doMath
(LAdoMath) and three properties: x:X, y:Y, z:Z. A frame condition specifies the variables
that rest unchanged after the action.. 104

179

Figure 6-3: SEAM multiplicities.. 105
Figure 6-4: SEAM compound property ... 106
Figure 6-5: Specification of a working object M as a whole, with a localized action doMath
seen as a composite. LAdoMathc is modeled declaratively... 108
Figure 6-6: Specification of a working object M as a whole, with a localized action doMath
seen as a composite. LAdoMath_c is modeled imperatively, with an intermediate

state),,(tttt zzxstateX = . Local variables ttt zzx ,, specify the intermediate state of the action
as a composite. a) Local variables are emphasized; b) action contract is emphasized. 109
Figure 6-7: Specification of a working object M as a composite (denoted Mc) with a joint
action doMath (denoted JAdoMath) seen as a whole. A and B are component working objects
of M. ... 112
Figure 6-8: Automated SEAM to Alloy transformation .. 115
Figure 6-9: A screenshot of the Simple Seam Editor application .. 115
Figure 6-10: A model pane of the Simple Seam Editor application …. 117
Figure 6-11: A screenshot of an XSLT transformation of a SEAM model to Alloy under
Eclipse. ... 118
Figure 7-1: Localized Action SellOk. .. 125
Figure 7-2: Distributed Action DAsellOk. ... 126
Figure 7-3: On-Line Book Store value network performing Sale: a) the process customization
for US; b) the process customization for Switzerland ... 127
Figure 7-4: Distributed action for redesigned sale. .. 128
Figure 7-5: On-Line Book Store value network performing Sale: a). the process
customization for US (redesigned); b). the process customization for Switzerland
(redesigned) .. 129
Figure 7-6: SEAM specification of the service LA_GasIncidentService (ITIL SLA)........... 134
Figure 7-7: Service implementation modeled as SEAM distributed action........................... 135
Figure 7-8: Refinement verification ... 138
Figure A-1: Specification of a component working objects A and B with their localized
actions aLAdoMath and bLAdoMath... 159
Figure A-2: Specification of a distributed action DAdoMath. ….. 160

180

181

List of Abbreviations

c, _c, [c] - view as a composite
DA - distributed action
EA - Enterprise Architecture
FOL - First-Order Logic
HOL - Higher-Order Logic
In - input parameter
Inv - invariant
JA - joint action
LA - localized action
Out - output parameter
Post - postcondition
Pre - precondition
RM-ODP - Reference Model for Open Distributed Processing
RPA - Relation Partition Algebra
SE - Software Engineering
SEAM - Systemic Enterprise Architecture Methodology
w, _w, [w] - view as a whole
WO - working object

182

183

List of Publications

1. Declarative Specification and Alignment Verification of Services in ITIL.

Irina Rychkova, Gil Regev and Alain Wegmann. First International Workshop on
Dynamic and Declarative Business Processes (DDBP 2008), Munich, Germany.

2. Using Declarative Specifications In Business Process Design. Rychkova Irina, Regev
Gil, Wegmann Alain. International Journal of Computer Science & Applications. 2008.

3. High-Level Design and Analysis of Business Processes. The Advantages of Declarative
Specifications Rychkova, I ; Regev, G ; Wegmann, A. Presented at: The Second IEEE
International Conference on Research Challenges in Information Science (RCIS),
Marrakech, Morocco, 3-6 June, 2008. (Best Paper Award)

4. From Business to IT with SEAM: J2EE Pet Store Example. Rychkova, I; Wegmann,
A; Regev, G ; Le, L.-S. Presented at: The 11th IEEE International EDOC Conference,
Annapolis, Maryland U.S.A., 15-19 October 2007.

5. Refinement Propagation. Towards Automated Construction of Visual Specifications.
Rychkova, I; Wegmann, A. Presented at: International Conference on Enterprise
Information Systems (ICEIS), Funchal, Madeira - Portugal, 12-16 june 2007.

6. Formal Semantics for Property-Property Relations in SEAM Visual Language:
Towards Simulation and Analysis of Visual Specifications Rychkova, I; Wegmann,
A; Presented at: Proceedings of the 5th international workshop on Modelling,
Simulation, Verification and Validation of Enterprise Information Systems - MSVVEIS
2007. In conjunction with ICEIS 2007, Funchal, Madeira - Portugal, june 2007.

7. Business-IT Alignment with SEAM for Enterprise Architecture. Wegmann, Alain ;
Regev, Gil ; Rychkova, Irina ; Lê, Lam-Son et al. Presented at: The 11th IEEE
International EDOC Conference (EDOC 2007), Annapolis, Maryland, 15-19 October
2007.

8. Teaching Enterprise and Service-Oriented Architecture in Practice. Wegmann, Alain;
Regev, Gil; de la Cruz, José Diego; Lê, Lam-Son; Rychkova, Irina. Accepted in: Journal
of Enterprise Architecture, vol. 4, num. 3, 2007, p. 15 – 24.

9. An Example of a Hierarchical System Model Using SEAM and its Formalization in
Alloy. Wegmann, Alain ; Lê, Lam-Son ; de la Cruz, José Diego ; Rychkova, Irina et
al. Presented at: 4th International Workshop on ODP for Enterprise Computing
(WODPEC 2007), Annapolis, Maryland, October 15.

10. Early Requirements and Business-IT Alignment with SEAM for Business Wegmann,
Alain; Regev, Gil; Rychkova, Irina; Julia, Philippe et al. Presented at: 15th IEEE
International Requirements Engineering Conference, New Delhi, India, October 15-
19th, 2007.

11. A Method of Functional Alignment Verification in Hierarchical Enterprise Models.
Rychkova, I; Wegmann, A Presented at: Workshop on Business/IT Alignment and
Interoperability (BUSITAL) in conjunction with CAiSE, Luxembourg, june, 2006.

12. A Method and Tool for Business-IT Alignment in Enterprise Architecture. Balabko,
Pavel; Le, Lam Son; Regev, Gil; Rychkova, Irina et al. Presented at: CAiSE`05 Forum,
Porto, Portugal. In: CAiSE`05 Forum, 2005.

13. Operational ASM Semantics behind Graphical SEAM Notation. Balabko, Pavel;
Rychkova, Irina; Wegmann, Alain. Presented at: DAIS/FMOODS Ph.D. workshop,
Paris. In: DAIS/FMOODS Ph.D. workshop, 2003.

184

185

Curriculum Vitae

Irina RYCHKOVA

School of Computer and Communication Sciences
Ecole Polytechnique Fédérale de Lausanne (EPFL)
EPFL - I&C – LAMS,CH - 1015 Lausanne, Switzerland

+41 76 385.2240 (tel.)
Irina.rychkova@gmail.com

Year of birth: 1978

Nationality: Russian
Marital status: Married

PROFESSIONAL INTERESTS

 Business/IT Alignment
 Business Process Modeling and Analysis
 IT Service specification
 Visual Modeling (UML-inspired languages), Simulation, and Analysis

DEGREES & EDUCATION

2003 - 2008

Ph.D., School in Information and Communicational sciences,
École Polytechnique Fédérale de Lausanne (EPFL), Switzerland
(graduation: September 2008)

2002 – 2003 Doctoral School in Information and Communication sciences, École
Polytechnique Fédérale de Lausanne (EPFL), Switzerland

2000 – 2002

M.Sc. (with Honors). Department of Physical and Quantum Electronics.
Moscow Institute of Physics and Technology (MIPT), Russia

1995 – 2000

Engineer diploma (with Honors). School of Information Sciences. Samara
State Aerospace University (SSAU), Russia.

RESEARCH EXPERIENCE

2003 – .. EPFL - I&C – LAMS, research assistant
Project: Semantics and Verification of SEAM visual models.
SEAM is a modeling method for Enterprise Architecture. I develop semantics that allow for
verification of SEAM Visual models on the formal basis. My approach is applied in the context
of Business/ IT alignment, where a system implementation needs to be verified against its
specification. Results are used in the joint project with Itecor company, performed for Service
Industrielle de Genève.

Teaching assistantship, exam expertise, project supervision:
- ESOA (Enterprise and Service-Oriented Architecture) course for Master students (2007 -
2008);
- Programmation I-II (in French) course for Bachelor students (2006);
- Various Master (diploma) and semester projects.

186

PROFESSIONAL EXPERIENCE

07.2008 – 12.2008 adidas group, GlobalIT (Herzogenaurach, Germany). 6 months
internship in IT Architecture. Complexity reduction and IT consolidation is one of the main
initiatives in GlobalIT. I’m working on validation of Business/IT alignment between the Go-to-
market core process of the company and the IT- landscape, supporting this process across
the different devisions of the company. My task is to develop a framework for evaluating the
impact of late changes in product specification. Based on the change impact, IT solution for
change management has to be specified.

2000-2002 Center of Open Systems and High Technologies (Moscow, Russia), project
member
Project: Information system for aviation and engineering services of an airline company.
In collaboration with engineering department of Aeroflot – Russian Air lines, I was designing
and developing integrated services for different company departments. My objectives was to
analyze and to optimize the process based on data mining.

LANGUAGES

French – good communication skills; English (spoken and written) – fluent;
Russian - native; Italian – basic; German - basics.

INTERESTS

Triathlon (Team.Triody.com), cross-country skiing, alpinism, landscape photography and art.

