Formal Semantics for Refinement Verification of
Entreprise Models

THESE N° 4210 (2008)

PRESENTEE LE 31 OCTOBRE 2008

A LA FACULTE INFORMATIQUE ET COMMUNICATIONS
Laboratoire de modélisation systémique
SECTION DES SYSTEMES DE COMMUNICATION

ECOLE POLYTECHNIQUE FEDERALE DE LAUSANNE

POUR L'OBTENTION DU GRADE DE DOCTEUR ES SCIENCES

PAR

Irina RYCHKOVA

Master of Applied Mathematics and Physics, Moscow Institute of Physics and Technology, Russie
et de nationalité russe

acceptée sur proposition du jury:

Dr M. Rajman, président du jury
Prof. A. Wegmann , directeur de thése
Dr T. Baar, rapporteur
F. Bouchet, rapporteur
Prof. V. Kuncak, rapporteur

ECOLE POLYTECHNIQUE

FEDERALE DE LAUSANNE

Lausanne, EPFL
2008

T O%/@/zlm/

Acknowledgments

| would like to sincerely thank my thesis director Professor Alain Wegmann for his
guidance and support during my work at EPFL, and especialy for the energy and time he
dedicated to this dissertation. | very much appreciate the enthusiasm with which he examines
every new idea and his suggestive comments. working with him was always interesting and
motivating. | would also like to thank him for giving me an opportunity to complement my
PhD with a practica experience, and for supporting my internship at adidas-Group. This
experience adds a value to my research results and has a very important impact on my
professional life.

| would like to express my gratitude to Professor Viktor Kuncak, whose ideas helped me
to structure my research matter. | want to especially thank him for being always ready for
discussions: owing to his suggestive remarks, my reasoning has acquired the necessary rigor
and evolved to an approach presented in this dissertation. My greatest thanks | address to the
other members of my PhD cometee: Dr. Thomas Baar, who gave an important feedback on
my work, and Mr. Frederic Bouchet, who contributed to my thesis with valuable industrial
insights, and Dr. Martin Rajman, who kindly accepted the role of the president.

| also like to thank lan F. Alexander (Scenario Plus), Dr. Ilia Bider (IbisSoft), Professor
Donald C. Gause (Savile Row LLC; Binghamton University), Dr. Thomas Langenberg
(McKinsey), Dr. Alexander Samarin (Teamlog S.A.), who dedicated their time to read about
my research and to participate in my inquiry. Their comments helped me better understand
the practical value of my research and to prioritize the directions of the future work.

| am aso grateful to my colleagues at LAMS: Pavel, Andrey, Jose-Diego, and Lam-Son
for the interesting discussions and valuable comments that helped me during my work; |
especialy thank Gil for his knowledge management, his remarkable talent to put things on
their places, and for his English lessons. | also greatly acknowledge the efforts of Angela,
Danielle, and Patricia, who make the complex engine of our research team working
smoothly. My sincere thanks to Holly, who contributed to my dissertation as an English
editor and who, perhaps, would significantly improve this section as well.

In addition, | would like to thank my language professors at EPFL Centre de Langue:
Mme Michele Amiot e¢ Mme Jacqueline Allouch, qui m’ont amenées dans |le monde de

langue la plus belle en Europe.

| wish to thank my friends, who made these six years in Switzerland the unforgettable part
of my life. | thank Kerstin for her optimism, energy, and for being my best training partner
and strategic consultant; Alexei: without him | would have never looked at the world from
the altitude of 4807m; Dmitry, for his passion to photography and his valuable master-classes
in the Alps.

| would like to acknowledge here my dear friends who will always stay for me “the
Doctoral School”: Sarunas, Ivana R., Maciek, Marta, Michal, Kasia, Ivana J, Denis, Natasha,
Gleb, Adriana, Wojtek, Maxim, Dan, and a dozen of others. | thank you guys for making
Lausanne and EPFL home for me, for being the never-exhausting source of fun, for all our
time spent together hiking, skiing, travelling, celebrating, for zillions of scientific and not-
exactly-scientific discussions, lunches, beers, dinners, and simply for being here al thistime!

In addition, | wish to thank my family: my brother-in-law Slava and my parents-in-law
Tatiana and Sergei, who aso contributed to my work with their interesting comments. |
sincerely thank my parents Tamara and Y ouri for all what they gave to me and for supporting

me even through the great distance between Samara and Lausanne.
My last words of gratitude | address to my husband Valentin: during all these years of my

PhD he was always next to me with his advice, valuable comments, encouragements, and his

care.

Vi

Abstract

In this dissertation we investigate how Business/IT aignment in enterprise models can be
enhanced by using a software engineering stepwise refinement paradigm.

To have an IT system that supports an enterprise and meets the enterprise business needs,
management seeks to align business system with IT systems. Enterprise Architecture (EA) is
the discipline that addresses the design of aigned business and IT systems. SEAM is an
Enterprise Architecture method, developed in the Laboratory of Systemic Modeling (LAMS)
a EPFL. SEAM defines a visua language for building an enterprise model of an
organization. In this work, we develop a theory and propose a technique to validate an
alignment between the system specifications expressed in the SEAM language.

We base our reasoning on the idea that each system (an organization, a business system, or
an IT system) can be modeled using a set of hierarchical specifications, explicitly related to
each other. Considering these relations as refinement relations, we transform the problem of
alignment validation into the problem of refinement verification for system specifications: we
consider that two system specifications are aligned if oneis correctly refines the other.

Model-driven engineering (MDE) defines refinement as a transformation between two
visual (or program) specifications, where a specification is gradualy refined into an
implementation. MDE, however, does not formalize refinement verification. Software
engineering (SE) formalizes refinement for program specifications. It provides a theory and
techniques for refinement verification.

To benefit from the formal theories and the refinement verification techniques defined in
SE, we extend the SEAM language with additional concepts (e.g. preconditions,
postconditions, invariants, etc). This extension enables us to increase the precision of the
SEAM visua specifications. Then we define a formal semantics for the extended SEAM
modeling language. This semantics is based on first-order logic and set theory; it allows us to
reduce the problem of refinement verification to the validation of a first-order logic formula.

In software engineering, the tools for the automated analysis of program specifications are
defined. To use these tools for refinement verification, we define a translation from SEAM
visual specificationsto formal specification languages.

We apply, using case studies, our theory and technique in several problem areas to verify:
(1) if a business process design and re-design correspond to high level business process
specifications; (2) if a service implementation corresponds to its specifications. These case
studies have been presented to a group of domain experts who practice business/IT
alignment. Thisinquiry has shown that our research has a potential practical value.

Key words. Business/IT aignment, visual modeling, forma semantics, refinement,
refinement verification, SEAM, Alloy, Jahob.

Résumé

Dans cette these nous éudions comment l'alignement Business/IT dans des modéles
d'entreprise peut étre améliorée en utilisant le ‘raffinement par étapes — un paradigme
développé en génielogiciel.

Pour obtenir un systéme informatique qui répond aux besoins de I'entreprise, la direction
vise aaligner les systemes informatiques avec le métier. L’ Architecture d’ Enterprise (EA) est
ladiscipline qui étudie et développe des théories et méthodes pour cet alignement. SEAM est
une méthode d' architecture d'entreprise, développée dans le Laboratoire de modélisation
systémique (LAMS) a I'EPFL. Dans cette thése, nous développons une théorie et proposons
une technique de validation d’ alignement entre les spécifications exprimées dans le langage
de modélisation SEAM.

Nous fondons notre raisonnement sur I'idée que chague systeme (une organisation, un
systeme dentreprise, ou un systeme dinformation) peut ére modélisé en utilisant un
ensemble de spécifications hiérarchiques, explicitement liés les uns aux autres. En repensant
ces relations comme des ‘relations de raffinement’, nous transformons le probleme de
['alignement entre spécifications au probleme de validation de raffinement entre ces
gpécifications. Nous considérons que deux specifications du systéme sont alignées s ce
raffinement est correct.

Le concept de raffinement est défini en Model-Driven engineering (MDE) comme une
transformation entre deux spécifications visuelles ou une spécification est progressivement
affinée et détaillée jusqu’ au niveau d’'implémentation. Cependant, les régles de la vérification
pour le raffinement ne sont pas formalisées en MDE. Le concept de raffinement pour logiciel
a été formalise en génie logiciel. Le génie logiciel fournit, d'ailleurs, une théorie et des
techniques pour la vérification du raffinement. Pour bénéficier de ces théories et techniques,
nous éendons SEAM avec des concepts de modélisation supplémentaires. Cette extension
nous permet d'augmenter la précision de nos spécifications visuelles. Nous définissons une
semantique formelle pour le langage visuelle de SEAM. Cette sémantique est basée sur la
logique de premier ordre et sur la théorie des ensembles. Elle nous permet de réduire le
probléme de la vérification de raffinement alavalidation d’ une formule de premier ordre.

Pour utiliser les outils danayse automatique des spécifications de logiciels dans le
contexte des specifications visuelles, nous définissons une traduction des spécifications
SEAM dans un langage de spécifications formelle.

Nous appliquons la théorie et les techniques que nous avons développées a plusieurs
domaines. (1) a la vérification des processus métier par rapport aux spécifications
d’ organisation de haut niveau; (2) a la vérification d'une implémentation de service par
rapport a ses spécifications. Ces études de cas ont été présentées a un groupe d'experts du
domaine qui pratiquent |’alignement Business et IT. Cette enquéte a montré que notre
recherche a potentiellement une valeur pratigque.

Mots-clés. alignement Business/IT, spécifications visuelles, sémantique formelle,
raffinement, vérification de raffinement, SEAM, Alloy, Jahob.

Contents

(@ gF=To (= g R o4 oo [Lo § o o R TRR 9
1.1 Business/IT Alignment vs. Stepwise REfINEMENtcccocoviieveeie s 9
1.2 Verification Of REFINEMENE..........ooiiiiieee e e 10
1.3 The SEAM Method for Enterprise ArchiteCture..........ccooveceeeveece s 10
1.4 Alignment Validation vs. Refinement Verification in SEAM ..., 11
1.5 The Structure of thiS DOCUMENTcceriiiriirieieiee s 12
Chapter 2 The Stat@ Of TN AT T ... e 13
2.1 Theoretical Foundations Of thiSWOrK...........cceveiiiiiiienininee e 13
211 Model TransSformMatioNS.........ccoceieereriireieseeie et eneeses 13
2.1.2 Refinement and Refactoring in Software Engineeringcccocevveveseesiennene 15
2.1.3 Refinement and Refinement VerifiCation...........ccooveenenenienenneseesee e 16
214 MOOE VENTICAIONccueeiieieiiiesie st 17
215 Forma Semanticsfor Visual Modeling Languages...........cccceveererieeneeninnennee 18
2.2 Visual Modeling Methods and their Consideration of Refinementccccccevvevveeennens 18
221 Classification Framework for Modeling Methods...........ccocvveeneniincenenene 19
2.2.2 Modeling MethOdS OVEIVIEW.........cccveieiieie et 19
2.2.3 A Comparison of Modeling Methods...........ccccoveienienieinne e 22

2.3 Visual Modeling Tools and their Support of Model Refinement and Refinement
AV A= 1o o] o SRR 23
2.3.1 Classification Framework for Modeling TOOIS.........ccocveveecieveerececeee e 23
232 MOdeling TOOIS OVEIVIEWcc.eoiuiriiiiieieeie ettt 24
2.3.3 A Comparison of Modeling TOOISc.cccuererieneeri e 26
Chapter 3The SEAM MELNOUccoiiiiiieiee e e 31
3.1 The SEAM Specification Of @ SYSLEMccccviiiieieeceeeece e 31
3.2 Declarative vs. Imperative Action Specificationsin SEAMccccviieriiiienenceneens 35
3.3 The SEAM Metamodel (ADSIract SYNLaX)cccveeeeeereiieeseeiieceeseeee e see e seeeeeneens 36
3.4 The SEAM Semantics and Graphical Notation (Concrete Syntax)ccoceeeveerereennens 38
341 WOrKING ODJECE.......ceiieeieceesieeie ettt s e e e neeaeeneeenn 38
R (0] 0= 4 YT PR PRTURTO 39
N S o o] o OSSP P PSPPSR 40
344 Action- to-Action (AA-) REELONSccooiiriiieeeeee s 40
345 Action-to-Property (AP-) REIAiONS.......ccccoeeeeveeiecesece e 43
3.4.6 Localized vs. Joint vs. Distributed aCtions...........cccecereeienieneereeesee e 44
3.4.7 Shared Properties, Input and Output Parameters, Local Variables................... 44
3.4.8 Reations With MUItIPIICITIES......cceeiiieieee e 45
Chapter 4 Formal Semanticsfor SEAM SpeCificationScccccevveveneenivecnveese e 47
v R T = @ (= gl oo o PSP 48
4.2 Intuition for Set-Theoretical Interpretation of SEAM Modeling Concepts..........cc....... 49
4.3 Formalization of SEAM Model ElementSin FOL ..o 52
4.3 1 WOrKing ODJECE........cceeeiee ettt 52
4.3.2 Property and SEALEcceeiirieriieie ettt 52
4.3.3 Host Relations, Property Associations, and Property Compositions................ 53

S S 1N o (o) F 56

4.35 Action-to-Property (AP-) relations.........c.cccceveeieicesieese e 62
4.3.6 Action-to-Action (AA-) FelationS.........ccooeieeieriineeree e e 63
4.3.7 Distributed Action and Distributed to Localized Action (DALA-) Relations.. 66
4.4 Imperative vs. Declarative SPeCIfiCatioNS.........cccueeieerieniiineerie e 66
4.5 Instance Creation and Deletion: Local Variables..........ccoeviviiiiinenesense e 67
Chapter 5 Transformations of Refinement in SEAM and Refinement Verification 69
5.1 Refinement vS. REFACIONNG........ciieiiiieiiee et neennees 69
5.2 Simulation Techniques: the State Of the ATtcceoeeeieee e 70
521 DataRefinement with Forward Simulation: (1, 1) - refinement schema.......... 72
522 ASM Refinement: (m,n) — Refinement Schema...........cccooeeverieeneninneeneeeee 73
5.3 SPeCifiCation CONSISLENCYeeiveeierieeieeieseesteeeeseesiesseesseesteseesreesseeseesseessesseesseensesneessens 77
5.4 Functional and Organizational Refinement in SEAM ... 77
54.1 Functional Refinement in SEAM ... 79
5.4.2 Organizational Refinement in SEAM ... 81
5.5 Correctness of Functional REFINEMENE...........cceiiiiiirinere s 82
551 Property REFINEMENTocooiiiiiee e s 82
552 Behavioural REFINEMENT.........cccooiiiiiiee e 85
5.6 Correctness of Organizational REfINEMENTcooieiiiiiieeie e 90
5.6.1 Working Object Decomposition and Property Distribution............cccccevveneeee. 90
5.6.2 Refinement of aLocalized action with aJoint aCtioncccoceveeveneeneneene. 92
5.6.3 Refinement of aLocalized Action with a Distributed Action...........c.cccceeuenee. 94
Chapter 6 Analysis of SEAM Specifications using For mal Specification L anguages..... 99
6.1 Approachesto Formal VerifiCation.........c.cccveiieienieie e 100
6.1.1 TheAlloy Specification Language and the Alloy Analyzercccccevuenneee. 101
6.1.2 TheJahob Verification SyStemcccceveieeiieeie s 101
6.2 The XY Z' EXAMPIE....c.eieiieee ettt es 103
(OGN \V IF="o] o1 aTe N (o 172N 1 o V2SS 105
6.3.1 MOOE EIEMENES......coiiiiieeii ettt 105
6.3.2 Functiona Refinement: from an Action as a Whole to an Action as a Composite
108
6.3.3 Organizational Refinement: from a Working Object as a Whole to a Working
ODjeCt aS @ COMPOSITE.eieeeiieie ettt sttt s re b e e sseesbeeneesaeens 112
6.4 Automated SEAM t0 AllOy Tranglationcccccceeveeieieeneeie e s 115
6.5 MapPING t0 JAN0Dccuiiieiiiiee e e 118
6.5.1 From an Alloy Specification to aJahob Formula..........cccceeveveneecesceesieenene, 118
6.5.2 FromaSEAM Specification to aJahob Programcccceccveeneniennenninneenn 122
Chapter 7 Practical Impact: Application of the Developed Theory in Practice............ 123
7.1 High-Level Design and Analysis of Business Processes. The On-Line Book Store
L 10 o S 123
7.1.1 A Business Process Specification in SEAMccoooiiiiiniineenecee e 124
7.1.2 Example: A Sale Processfor the On-Line BOOK StOre.........cccceveeveeeeineennene. 125
7.1.3 Validation of Declarative Business Process Specificationsin Alloy 129
7.1.4 Validation of Refinement from LA to DA Using Alloy Anayzer 4.0............ 131
7.2 Specification and Alignment Verification of Servicesin ITIL: The Gas Incident Service
(@S =S (o |V 132
7.21 Case Study: Gas INCIENt SEIVICEcoveeiirierieerieeee e 133
7.2.2 Validation of a Service and its Construction in AllOYcccoeeeevvecrvienieennene. 135
7.2.3 Vadlidation of Refinement from SLA (Modeled as SEAM Localized Action) to
OLAs (Modeled as SEAM Distributed Action) Using Alloy Analyzer 4.0.................. 138

7.3 PraCliCal FEEADACKooee ettt e e e e e eeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeees 139

Sl 00007 TSR PPRPPR 140
Chapter 8 CONCIUSION......ccuiiiiieee et st nrs 143
8.1 FULUNE WOIK ...ttt ettt bbb e 144

8.1.1 Complexity Reduction, USabilitycccoceriiriereniinieneee e 144

8.1.2 FOrmMal SEMANLICS.ccviieeeieieesie ettt 144

8.1.3 REMINEMENT ... et 145
2 1] o] oo =T o] g Y2 147
N 0] 01 [0 | QSRR RPRRR 155

Alloy Specification of the XY Z EXamMPle.......cccceevveieieeieieseere et 155
N 0] 01 [0 [l = SRR 163

Jahob Formulas for the XY Z EXamMPIecc.ccceieeieieseee et 163
N 0] 0 1< [0 | ST ORRRPRRR 169

PractiCal FERADACK.........oouiiieiie e 169
LISE OF FIQUIES ...ttt st sttt b et e st sbe et e s e e s bt e teeneesrs 177
LiSt Of ADDIEVIGLIONS........oiviiiiiiiiieieiee ettt sa e enes 181
LiSt OF PUBIICAIIONS.coiiiiiiieieee et sttt sttt e nns 183
CUITTCUTUM VBBt ettt e et bbbt enes 185

Chapter 1

Introduction

In providing services to stakeholders, many organizations depend heavily on their IT
infrastructure. Insuring that IT does what business needs is a very important issue for
management and is achieved by Business-IT alignment. Business-IT alignment is defined in
[110] as “.. an ongoing process that will optimize the relational mechanisms between the
business and IT organization by working on the IT effectiveness of the organization in order
to maximize the business value from IT.”.

Enterprise Architecture (EA) is the discipline that addresses the design of aligned business
systems and IT systems. Enterprise Architecture methods provide techniques, tools, and
guidelines for building an enterprise model of an organization.

Traditionally, an enterprise model is a set of visual specifications of an organization that
has a hierarchical structure. Each hierarchical level specifies an organization from different
perspectives, e.g. business, organizational, or IT. The main challenge of enterprise modeling
is to insure that the specifications representing an organization at the IT level correspond to
the specifications at the higher levels, where the value for this organization is defined.

1.1 Business /IT Alignment vs. Stepwise Refinement

Enterprise models are mostly represented in graphica form that we call visual specifications.
The main advantage of visual specifications is that they enable discussion about the model
among different stakeholders. However, the lack of precision and formally-defined semantics
makes a further analysis (such as a comparison of different versions of the model, or an
alignment validation between models) complicated, if at all possible.

Software Engineering (SE) provides an underlying theory and a set of techniques for
program specification analysis. Program specifications, similarly to visual specifications, are
used to describe systems: their construction and functionality.

Stepwise refinement is a paradigm for semantic program construction, originally proposed
by Dijkstra [31] and Wirth [111]. It is based on the idea that a program can be developed
through a sequence of refinement steps starting from an abstract specification. At each step,
the refined (‘concrete’) specification is proven to be a correct refinement of the *abstract’
specification.

In this dissertation, we make a correspondence between program specifications in SE and
visual system® specifications in order to benefit from theories and tools exist for program
specification analysis.

We explore the idea that, similarly to program specifications, each visual specification can
be seen as a refinement of another visual specification. This describes the organization at a
more abstract organizational level.

! In this work, we will use the generic term system to discuss organizations, business systems, I T systems, and
their alignment.

As a man contribution of this dissertation, we reduce the problem of alignment
verification in enterprise visual specifications to the problem of refinement verification,
defined for program specifications in SE.

1.2 Verification of Refinement

Refinement correctness for programs is validated by establishing simulation relations [65]
between the abstract and concrete specifications. In other terms, the refinement is correct if
the concrete specification simulates the abstract specification.

A simulation relation R (also called a refinement relation) puts into correspondence the
states of abstract and the concrete specifications. The concrete specification is said to be a
correct refinement of the abstract specification when, starting at the corresponding initial
states, both specifications will terminate in the corresponding final states (Fig. 1-1).

Concrete spec.

simulation
Initial Final
states R R ~ states
__ __simulation !3
Abstract spec.

Figure 1-1: Refinement verification by smulation.

The same way, we define semantics for visual system specifications in terms of states and
transitions between them. Therefore, the refinement verification schema, illustrated in Fig.1-
1, is aso valid for visua specifications. We proceed with an automated validation of
refinement, providing a mapping of visual specifications to a formal language, for which
tools for automated analysis aready exist.

1.3 The SEAM Method for Enterprise Architecture

We implement the theory of refinement verification in order to validate the alignment
between systems specified in SEAM [108]. SEAM is an Enterprise Architecture (EA) method
that provides avisual notation for modeling systems, including businessand IT systems.

In SEAM, a system is represented by a working object. A SEAM model of a system
contains a set of specifications of the working object structured in two hierarchies:. an
organizational level hierarchy and afunctional level hierarchy.

A working object, modeled as a whole at one organizational level, can be represented as a
composite on the next organizational level. This maintains the explicit traceability between
organizational levels.

Fig. 1-2 (a) illustrates a working object WODbjectl as a whole; Fig. 1-2 (b) illustrates this
working object on the next organizational level (i.e. seen as a composite).

A working object, as a whole, has properties and localized actions; A working object, as a
composite, has component working objects and joint or distributed actions between them.

10

fwouojecn_c f

WObject1_w WObject2 w\ [WObject3
Data1 e s

LAction1

(a) (b)
Figure 1-2: a) Working object as a whole (org. level 1, func. level 1) is specified with a property and a
localized action. Properties represent data the working object stores or operates with. A localized action
changes the state of the working object by modifying its properties; b) Working object as a composite
(org. level 2, func. level 1) is specified with its component working objects and a joint action between
them.

A property or an action, modeled as a whole at one functional level, can be represented as
a composite on the next functiona level. This maintains the explicit traceability between
functiona levels:

? WObject1_w

Datal @ —— Datal.1

Figure 1-3: Working object as a whole (org. level 1, func. level 2), specified with a property seen as a
composite and a localized action seen asa composite.

1.4 Alignment Validation vs. Refinement Verification in SEAM

This work applies the paradigm of stepwise refinement for SEAM specifications and
describes how SEAM specifications can be aligned and how this alignment can be validated.

To rigorously reason about SEAM specifications and their refinements, we provide a
formal semantics for SEAM specifications and their refinements, based on set theory and
first-order logic (FOL)2 To formalize the criteria of refinement correctness, we use a theory
of data refinement from [72][51][101] and more generalized form of refinement from
[15][16].

Based on the formal semantics, we specify a mapping of SEAM visual specifications to
the specification languages (e.g. Alloy [59], Jahob [63]) for further refinement verification.
We interpret the result of refinement verification as the validity of the alignment between
visual specifications.

The contributions of this dissertation can be summarized as follows:

e Formalization of theinitial set of SEAM modeling concepts using first-order logic;

e Classification of SEAM refinements;

e Identification of the modeling concepts, missing in the current version of SEAM and
required for refinement verification (i.e. action preconditions, postconditions etc.);

e Formalization of theinitial set of SEAM modeling concepts,
Definition of refinement correctness for SEAM using a forward simulation for data
refinement from [72][65] and generalized forward simulation from [16];

2 FOL isa system of formal reasoning also known as a first-order predicate calculus[53][18].

11

e Mapping of SEAM specifications to the Alloy specification language [59] for the
validation of refinement using the Alloy Analyzer tool;

e Mapping of SEAM specifications to the Jahob formulae [63] in order to generate a
formal proof of refinement correctness using the Jahob formDecider.

1.5 The Structure of this Document

In Chapter 2 of this document, we analyze the state of the art. It comprises (a) theoretical
foundations in specification development using refinement, formal refinement verification,
and visual modeling and (b) practica applications of modeling techniques developed in
academia and in the industry.

In Chapter 3 we present the SEAM method. This work extends the original set of SEAM
modeling concepts. In this chapter, we specify the graphical notation and semantics for the
extended SEAM language.

In Chapter 4 we present the formalization of SEAM modeling concepts using first-order
logic (FOL).

In Chapter 5 we classify refinements in SEAM and specify correctness for each
refinement type. We use forward ssimulation for data refinement and generalized forward
simulation, defined in the ASM refinement method, as proof methods for refinement
correctness. We reduce a problem of refinement verification in SEAM to a proof of validity
of a corresponding FOL-formula.

In Chapter 6 we present two techniques for the automated refinement verification in
SEAM: The first technique is based on use of the Alloy Analyzer - a tool for analyzing
models written in the Alloy specification language; the second technique is a formal proof of
refinement correctness in the Jahob verification system.

In Chapter 7 we present the practical impact of the developed theory. In this chapter, we
discuss in detail two examples that illustrate how the achievements of this thesis can be
implemented to verify:

(2) If business process design and re-design correspond to the high level business process
specification (Book Store example);

(2) If service implementation corresponds to its specification (SIG example).

In Chapter 8 we present our conclusion and discuss a future work.

At the beginning of each chapter, we give an overview of the chapter’s content.

For the reader interested in business / IT alignment and the practical aspects of the
proposed theory, we recommend reading Chapter 2: it provides a state of the art. Then read
briefly Chapters 3 and 6, where the SEAM notation and the rules of transformation of SEAM
models to formal specifications are explained. And then proceed with Chapters 7 and 8: they
illustrate our technique on the examples and provide a practical feedback.

For the reader interested in modeling languages and their semantics, we recommend
reading Chapters 2, 3, 4 of this document, then proceed with Chapters 6 and 7.

For the reader interested in forma methods and their implementation, we recommend
reading Chapters 3, 4, 5, 6, and 7 of this document.

12

Chapter 2
The State of the Art

This dissertation reports the results of an interdisciplinary research that involves the
following areas of information science, and computer science: Enterprise Architecture,
Model Driven Engineering, Visua Modeling Languages, and Forma Methods and
Languages.

In the first part of this chapter we make an overview of the work, which describes the
theoretical foundations of this Ph.D:

In Section 2.1 we introduce the term of model transformation as it is defined in Model
Driven Engineering (MDE). In Section 2.2 we provide an overview of the existing theories
and the approaches to refinement verification: model checking and theorem proving. In
Section 2.3 we give a definition of the semantics for visua modeling languages and explain
the role of formal semantics in the process of refinement verification.

In the second part of this chapter, we study how model transformations (namely, model
refactoring and refinement) are (1) specified in different visual modeling methods and (2)
how they are supported by different modeling tools used in Software and
Enterprise modeling:

In Section 2.4 we define a comparative framework for visual modelling upon which we
analyse five methods developed in the area of Enterprise and Software modelling. In Section
2.5 we define a comparative framework for the modeling tools. Tools, compared to methods,
are more user-oriented: some of them (mostly commercial tools) are based on best-practices,
whereas the others (research prototypes developed in an academia) implement the theoretical
methodologies. We analyse four commercial tools and seven tools, developed in academia.
We explore how the automated refinement and the refinement verification are supported by
these tools.

In Section 2.6 we apply the same frameworks to evaluate the SEAM modelling method
and tool.

2.1 Theoretical Foundations of thisWork

2.1.1 Model Transfor mations

Model-Driven Engineering (MDE) is a discipline that defines a set of methods and tools for
the software development, where a model plays a central role. Model evolution and
elaboration in MDE is described as a result of model transformations.

The best known MDE initiative is the Model-Driven Architecture (MDA) software design
approach [75]. MDA describes a model evolvement from abstract specifications to their
implementations (code). The separation of design from architecture is one of the main
principles of MDA. Kleppe et a. [62] provide the following definition of a model
transformation: “ A transformation is the automatic generation of a target model from a
source model, according to a transformation definition. A transformation definition is a set of
transformation rules that together describe how a model in the source language can be
transformed into a model in the target language. A transformation rule is a description of

13

how one or more constructs in the source language can be transformed into one or more
constructsin the target language.”

Source and target models, in model transformation, are expressed in corresponding
languages and are said to be conforming to metamodels. The term metamodel is often
associated with aset of rules and definitions, provided by the modelling language.

[70] proposes the following dimensions for the categorization of transformations:
endogenous/exogenous and horizontal/vertical.

A transformation is endogenous if the source and the target models conform to the same
metamodel (are expressed in the same language). If the source and the target metamodels are
different, then the transformation is exogenous. Exogenous transformations can be also
called translations from one language to another.

A transformation is horizontal if the source and the target model reside at the same
abstraction level. A vertical transformation, respectively, is a transformation, where the
source and the target model reside in different abstraction levels. The taxonomy of model
transformationsis presented in [70].

Visual Specification to
Visual Specification
T1
MM1 ——--- M1 « » P1 ————- MM3
MM1=MM2: MM1#MM3, MM2£MM4:
Refactoring; | TO Synthesis;
Refinement Reverse Engineering;
Language Migration
MM2 ----- M2 <« »> P2 ———- MV4
T2

Visual Specification to Program Specification

Figure 2-1: Classification of model transfor mationsin context of Visual modeling.

In context of visual modeling, we distinguish the transformations of visual specifications
to executable program specifications, and the transformations of visual specifications to
visual specifications. Former transformations are exogenous, latter transformations can be
endogenous (if both models are expressed in the same visual modeling language) or
exogenous (if a language of the target model is different from the language of the source
model).

In Fig. 2-1, transformations T1 and T2 specify transformations from a visual specification
to a program specification — they are exogenous; TO specifies a transformation between two
visual specifications, where one conforms to a metamodel MM1 and another - to a
metamodel MM2. If MM 1 = MM2 then TO is an endogenous transformation.

Examples of transformations are:

— Synthesis of a higher level (more abstract) specification into a lower-level (more
concrete) specification. The result of synthesis of a visua specification is typically a code
generation.

14

- Generation of an abstract specification from its implementation (also called a
reverse engineering). This transformation is the opposite of a synthesis. The result of reverse
engineering istypically avisual specification generated from the program specification.

Synthesis and reverse engineering aim at increasing or decreasing the abstraction level of
amodel; these transformations are vertical transformations (Table 2-1).

- Language migration is an exogenous transformation that specifies a trandation of a
visual (or a program) specification expressed in one language to a visua (or a program)
specification expressed in the other language, keeping the same level of abstraction.
Language migration is a horizontal transformation. (Table 2-1).

In this work, we consider two endogenous transformations: refactoring and refinement.
Both refinement and refactoring specify transformations between two visua (or program)
specifications expressed in the same language. Refinement changes the internal structure of a
specification while keeping the same level of abstraction. Refactoring is a horizontal
transformation. Refinement is a transformation, where a specification is gradually refined
into an implementation [70]. Refinement isavertical transformation.

The design process in SEAM can be seen as a sequence of the transformations of visual
specifications. Based on our classification, the transformations of SEAM specifications are
refinements and/or refactorings.

Table 2-1 summarizes transformation types aong two classifications:
exogenous/endogenous and vertical/horizontal .

Table 2-1 Classification of M odel Transfor mations

HORIZONTAL VERTICAL

(level of abstraction (level of abstraction

does not change) changes)
ENDOGENOUS : .
(MMs = MMt) Refactoring Refinement
EXOGENOUS Lanauage miaration Code Generation,
(MMs MMt) guag 9 Reverse engineering

Model Driven Engineering provides a classification of model transformations, however it
does not provide a theory for reasoning about these transformations. Such a theory can be
found in domain of Software Engineering.

2.1.2 Refinement and Refactoring in Software Engineering

Transformations of refactoring and refinement are also defined in Software Engineering (SE)
to specify transformations of programs.

[42] defines refactoring as “ the process of changing a software system in such a way
that it does not alter the external behavior of the code yet improves its internal structure.”
Refactoring can be considered as a series of atomic behavior-preserving transformations (also
refactorings) which in combination may result in substantial reorganization of the code.
Refactoring does not consider transformations, which change a state space of the model.

In the domain of software modeling, refactorings for UML class diagrams annotated by
OCL constraints are systematized and formalized in [68].

15

Refinement [111] is a more general technique that specifies a stepwise development of the
program by adding details or eliminating nondeterminism. As opposed to refactoring,
refinement can change a state space and an observable behavior of a model (e.g. adding,
removing a field or a method of a class). Thus, refinement specifies a wider class of
transformations then refactoring does (see www.refactoring.org).

In Software Engineering, the criteria of refactoring/refinement correctness are well
specified; therefore these transformations can be verified.

Refinement verification techniques are often used to verify refactoring correctness [23],
[85]. The semantic correctness of the refactorings for UML class diagramsis presented in [6].

In this work, we formalize al types of transformations defined for SEAM visua
specifications as refinements.

2.1.3 Refinement and Refinement Verification

Stepwise refinement is awell-known paradigm for semantic program constructions originally
proposed in [31] and [111]. It is based on the idea that a program can be devel oped through a
sequence of refinement steps starting from an abstract specification. Different notions of
refinement can be found in the literature (see [88] for an overview). Welist only afew.

A method of program construction based on stepwise data refinement together with proof
of refinement correctness was proposed by Hoare [51].

Data refinement and techniques to prove its correctness are presented in [93].

In [15], the Abstract State Machine method of abstract refinable system specifications is
introduced. In [16], the Abstract State Machine refinement method is presented. The ASM
refinement method generalizes the notion of refinement for an arbitrary number of transitions
(run segments) between theinitial and the final specification states.

Refinement verification is largely based on the use of simulation techniques [65]. By the
simulation we understand a correspondence between the states of two systems, where one
system is considered a specification and other — its implementation. The simulation proof is
based on the establishing of this correspondence. The fact that a simulation between two
systems exists shows that any behavior of one system can aso be exhibited (simulated) by
the other system.

The research literature contains a large number of different types of simulations, such as
forward simulation, backward simulation, hybrid simulations (i.e. forward-backward and
backward-forward simulations) [65][112][50][27], refinement mappings [1], and a
generaized forward simulation [15][16][98]. These simulations are differentiated based on
the way they relate system specifications and their implementations: for example, forward
simulation matches each step of the system implementation with a corresponding step
forward of its specification; whereas the backward simulation matches each step of the
system implementation with the corresponding step backward of its specification. The
simulation techniques will be presented in detail in Chapter 5.

In contrast to refinement techniques where an intermediate specification is first proposed
and then proved (for example, by simulation) to be a correct refinement of its antecedent,
there exists a refinement technique based on calculation [72]. The refinement calculus by
Back [7] is an underlying theory of this technique. According to this technique, every
intermediate specification can be calculated from the previous one by using refinement laws.
The application of these laws enables the reduction of proof obligations and assures
refinement correctness.

In the context of visual modeling methods, incremental software construction using
refinement diagrams is proposed in [8]. Here refinement calculus is used as logic for
reasoning on software systems and their evolution. Pons defines in [85] the UML refinement

16

patterns grounded on Object-Z. In [6] refinement for the UML class diagrams and
corresponding OCL contractsis specified.

2.1.4 Mode€ Verification

When amodel (a program or avisua specification) is created or obtained by refining another
model, it is important to validate that it is constructed correctly: for example, that it has a
certain property. This can be done by formal verification.

There are two main approaches to formal verification: model checking [20] and theorem
proving based on logical inference [47] [64].

Model checking is an approach for verifying the requirements and design for a vast class
of systems. A system, specified as a Kripke structure, is checked against some logical
formula that expresses a desired property or requirement of this system. Typically, formal
specification languages are used to specify the system, its properties, and requirements.

A model M of the system can be considered in model checking as a finite state machine
(FSM). A FSM consists of nodes, representing system states, and vertices, presenting
transitions between their states. Desired properties of the system are specified as logical
formulas. To find out whether the model M with the initial state s satisfies some property ¢,
(denoted M, s |= 0) the state space and all transitions of the model are systematically and
exhaustively explored.

The major drawback of the model checking is a state explosion problem, which originates
from the fact that for real systems the size of the state space grows exponentially with the
number of processes [21]. To avoid the state explosion, model checkers implement specific
techniques, such as symbolic algorithms and binary decision diagrams (BDD) [54], bounded
algorithms [3], counter-example guided abstraction refinement [52], and algorithms based on
partial order reduction, or on abstraction.

Model checking approaches largely use the counterexample-based algorithms to validate
properties of a system, specified as logical formulas. Such algorithms explore the system
state space looking for the case, where this formulais violated. This case is called a counter-
example; the occurrence of a counter-example demonstrates that the formula is invalid.
However, the fact that no counterexample is found does not prove the validity of the formula,
because the state space under the exploration is limited.

The second approach is an automated theorem proving based on logica inference.
Within this approach, the fact that the system specification (a model) satisfies a certain
property is expressed as a logical formula. The task is to prove the validity of this formula,
deducing it from a set of axioms that exist for the underlying logic (e.g. first-, second-,
higher-order logic etc), and hypotheses made about the system.

Depending on the underlying logic, the problem of deciding the validity of a theorem
varies from trivia to impossible. Theorem proving for the first-order logic (FOL) is widely
represented in the literature (see for example [100][99]).

Higher-order logic (HOL) operates on predicates and functions of higher order (a higher-
order predicate is a predicate that takes one or more other predicates as arguments). It is more
expressive and appropriate for a wider range of problems then first-order logic. However the
theorem proving procedures for HOL are more complicated [48][74][82].

Despite the fact that automated theorem proving is complex and requires a lot of
involvement from the modeler, its application is promising: this approach is not limited by
the state explosion problem (the main limitation of model checkers) and can handle the
infinite number of states.

17

2.1.5 Formal Semanticsfor Visual M odeling L anguages

To prove the desired properties of specifications, or to verify the refinement correctness of a
visual specification, these specifications should be translated to a forma specification
language, accepted by a model checker or an automated theorem prover. Trandation (or
mapping) rules for avisual specification language can be defined as its formal semantics.

The semantics of avisual language L gives a meaning to the constructs and the expressions
in this language and can be defined in two ways [10]: "(1) By providing a way in which
expressions (and constructs) of L are made (2) By trandating the expressions (and
constructs) of L into expressions of another language that is already known".

Fig. 2-2 illustrates the refinement of a visua specification and its verification. Here M1
and M2 are visua specifications conforming to a source metamodel MMs. TO is a
transformation that specifies a refinement between M1 and M2. We say ‘M2 refines M1'.
Transformations T1 and T2 specify trandations of M1 and M2 to specifications P1 and P2,
written in aformal specification languages and defined by formal semantics. We aso say that
P1 and P2 conform to a target metamodel MMt. Specifications P1 and P2 are formalizations
of M1 and M2 in the target language.

We identify the refinement between M1 and M2 with the refinement between P1 and P2.
For P1 and P2 we can check the refinement correctness using formal verification tools. We
interpret the obtained result for M1 and M2: M2 correctly refines M1 if and only if P2
correctly refines P1.

T1

4 M P1 |

|

MMs k Y MMt

!
TO i
. AL
N M2 P2 F
T2

Figure 2-2: Refinement verification of visual specifications is considered as a refinement verification of
corresponding specifications written in a for mal specification language.

F
refinement
uoIje Il A
-,

refinement

|

There is a gap between visua modeling languages and formal specification languages:
Whereas visual languages are practice-oriented and tend to specify the system avoiding
exhaustive details, formal specification languages demand a high precison in model
definition. This gap makes trandations between specifications complicated. To define formal
semantics for visual specifications, the level of precision of these specifications should be
increased by introducing new elements to the visual modeling language.

2.2 Visual Modding Methods and their Consideration of Refinement

Many modeling frameworks and methods in the domain of enterprise modeling, system
modeling, and software modeling have emerged in the last decades. See for example
[77][78][81][32][114][35][45]. Some of those are discussed and compared in [97]. In this
section we analyze some of the methods that we consider the most relevant to the problem of
refinement verification.

18

2.2.1 Classification Framework for M odeling M ethods

Visua modeling methods in Software and Enterprise modeling can be classified based on the
way they organize their specifications and guide the modeling process: Some methods define
several types of highly specialized diagrams, whereas the others use one diagram type; some
methods keep their diagrams explicitly related (aligned) and provide mechanisms for this
aignment, and the others define loosely coupled sets of specifications, leaving the
relationships between these specifications to amodeler’ s consideration.

These characteristics of modeling methods affect the way these methods support
refinement. We develop the following criteriato classify different modeling methods:

1. Diagram Types
We distinguish the modeling methods that define one diagram type for its specifications and
those that define many specific diagrams (e.g. UML).

2. Modd Structure

We distinguish a plain or hierarchical model structure. A hierarchical structure enables
‘zooming in and out’ into model details by switching hierarchical levels. In the plain model,
the system is represented by a collection of complementary views that capture different
aspects of the system.

3. Traceability

Traceability is a relationship between elements in different specifications, which enables a
designer to carry out an impact analysis. For the model with a plain structure, the traceability
between different views is important to maintain the model consistency. When the model is
structured hierarchically, the traceability between specifications at different levels helps to
verify the refinement correctness.

4. Refactoring/Refinement Rules

We distinguish the methods that specify the rules of refinement or refactoring for their
specifications, and those that do not restrict the modeler and leave the refinement process to
the modeler’ s discretion.

2.2.2 Modeling Methods Overview

We consider in detail the following modeling methods:
UML2.0 and its extension SysML;
BPMN
DEMO
OPM
ADORA

UML 2.0 [77] is a defacto standard for software development. UML proposes 13
diagram types that enable modeling various system aspects. These diagrams are divided in
three groups: structure, behavior, and interaction diagrams. Structure diagrams include:

e Classdiagram
Component diagram
Composite structure diagram
Deployment diagram
Object diagram

o Package diagram +
Behavior diagrams are:

19

e Activity diagram +

« State Machine diagram +

e Usecasediagram +
Interaction diagrams relate a system structure defined in the structure diagrams with its
behavior, specified in behavior diagrams. These diagrams include:

e Communication diagram

 Interaction overview diagram

e Sequence diagram

e UML Timing Diagram

There is a semantic relationship between the UML diagrams of different types, i.e. they
are complementary. Some diagrams in addition have a hierarchical structure (they are marked
with ‘+ in the list). For example, a state machine diagram defines state machines and
submachines; activities are composed of activity nodes that can be also activities, etc.

Different UML diagrams are complementary but self-contained, which implies that any
relationships between the elements in different diagrams have no semantic effect on the
model. Traceability in UML can be expressed using traceability relationships. An
implementation of traceability typically depends on the tool. IBM Rational software architect
[87], for example, provides diagrams and table views of related model elements, broken
relationships between model elements, and implied dependencies between model elements.
UML 2.0 specification [77] does not address explicitly the traceability issue.

UML defines an abstraction relationship between its model elements. Thisrelationshipin
UML can be used to model stepwise refinement. No explicit refinement rules or classification
of refinements is specified in the original UML documentation. It is left to the discretion of
the UML practitioners or tools, implementing UML.

The officia list of UML-based modeling tools is available at http://uml-
directory.omg.org/vendor/list.htm. At the time of this work, there are more than 40 products.

Systems Modeling Language (SysML) [79] was developed by OMG and based on UML.
SysML targets the design of large industrial systems (e.g. aircraft, power plants, etc). It
defines nine diagram types; four of them are inherited from UML.

SysML defines blocks as modular units of system description. Blocks group both
structural and behavioral features (properties, states, operations) to describe a system of
interest. The Block Definition Diagram in SysML defines features of a block and
relationships between blocks. The Internal Block Diagram in SysML captures the internal
structure of ablock. Blocks can be decomposed into parts that are also blocks.

Business Process Modeling Notation (BPMN) [78] provides a visua notation and
formalism for business process model development. This notation is mostly focused on the
representation of a system’s behavior and proposes a variety of model elements for its
realistic specification. BPMN specifies one diagram type called business process diagram
(BPD). In a BPD, two hierarchies can be captured: by using combinations of swim lanes, a
hierarchical structure of organizations can be modeled; and by using combinations of BPMN
processes, sub-processes, and tasks, organization behavior can be modeled with different
levels of details.

Traceability between tasks and activities in BPD is explicit and maintained by the
seguence and message flows (connections).

Modeling expanded sub-processes can be considered as a functional refinement of the
business process model. BPMN defines rules for sub-process definition to guarantee that it is
consistent with the main process. They can be considered as refinement rules. Swim lanes

20

specify the process participants. Therefore, the definition of multiple lanes for one pool is
equivalent to the organizational refinement.

At the time of this work, there are 44 existing and 4 planned implementations of BPMN.
The complete list of toolsis available at http://www.bpmn.org/ .

Design & Engineering Methodology for Organizations (DEMO) [29] is an EA framework
based on the organizationa theory called Language/Action Perspective. The DEMO
methodology takes its theoretical origin from the works of Habermas on communicative
action [49]. This methodology provides a set of methods for capturing and visualizing
business processes and the actors involved in the activities comprising these business
processes. DEMO defines its organizational levels based on a communication paradigm.
Functional levels are defined in DEMO based on the view of business processes as
transactions.

DEMO specifies four aspect models (construction, process, state, and action models) and
five diagram types for these models (actor - transaction diagram, actor - bank diagram,
process - structure diagram, objects - fact diagram, action - rule specification).

The construction model specifies the construction of the organization in terms of the
transactions, actors, information banks, and information links between them. The process
model and the state model are considered as the next detailing level of the construction model
— they describe each transaction as a set of states and transitions. The action model specifies
the action rules and can be seen as the second detailing level of the construction model.
Traceability between modeled aspectsis captured in DEMO using cross-model tables.

DEMO defines functional and constructional decompositions as techniques for dealing
with the complexity of the modeled system. Decompositions can be seen as corresponding
refinement types.

Object-Process Methodology (OPM) [34][35] proposes a method for the complete
integration of the systems' states and behaviors within a single graphical model. OPM defines
one diagram type for its models called object process diagram (OPD). The system model in
OPM s represented by a collection of OPDs structured as a directed acyclic graph with the
top-level system diagram in its root. This diagram is considered at detail level zero. Each
node of this graph is an OPD, which specifies in more detail a process from the higher level
OPD (a zoomed-in process). Relationships between diagrams can be defined explicitly by
specifying a control flow.

OPM defines the abstracting and refining of its specifications as subtypes of the process
called scaling. There are three modes of refinement in OPM: in-zooming, unfolding, and
expressing. OPM defines the rules for refining/abstracting processes.

In OPM, there exist three types of hierarchies, defined with respect to the first three
fundamental structural relations. aggregation-participation, exhibition-characterization, and
generalization-specialization. These hierarchies are equally applicable to objects and to
processes.

The object-oriented modeling method for software called ADORA (Anaysis and
Description of Requirements and Architecture) is presented in [44][45]. Models in ADORA
are composed of hierarchically structured abstract views. ADORA defines a base view and
four aspect views for its models (structural, behavior, user, and context views). The base
view specifies the hierarchical structure of the objects of the modeled system. Aspect views
are generated by combining the base view with the information that is relevant for the
selected aspect. All views are integrated in one coherent model.

21

The mechanism of hierarchical decomposition is applied to views. A view transition in
ADORA is a sequence of steps that guarantees the well-formedness of a new view. View
transitions for structural, behavioral, and user aspect views are specified [113] and can be
considered as refinement rules. View transitions enable an explicit traceability between
model elements [113]. ADORA defines a forma refinement calculus semantic for the
structural, behavioral, and user views.

2.2.3 A Comparison of Modeling Methods
We have analysed the methods from 2.2.2 based on the classification framework defined in

2.2.1. A summary of thisevaluation is presented in Table 2-2.

Table 2-2
Method | 1.Diagram 2.Model 3.Traceability 4.Refactoring/ refinement
types structure rules
UML 13 diagram Hierarchical for | Can be modeled using Structural refinement: can
20 types some (not all) traceability relationship, | be modeled using
diagrams implicit; no semantic realization relationship,
impact is specified implicit;
Behavioral refinement:
implicit.
SysML 9 diagram Hierarchical for | Explicit requirements Structural, behavioral
types some (not all) traceability; relations refinement: using block
diagrams between blocks decomposition
BPMN 1 diagram Hierarchical: Explicit for tasks and Behavioral refinement:
type poolglanes; activities using sequence | defined by sub-process
process/ sub- and message flows; modeling;
process Structural refinement: can
be modeled using pools—
lanes combination.
DEMO 5 diagram Hierarchical Explicit, using cross- Behavioral and structural
types model tables refinements: using
functional and
constructional
(de)composition
OPM 1 diagram Hierarchica Explicit for processes Behavioral and structural
type using a control flow. refinements: in the form of
in-zooming, unfolding, and
expressing
ADORA | Baseview + Hierarchical Explicit, using view Behavioral and structural
aspect views transitions refinements: using
hierarchical decomposition;

Our analysis shows that most of the methods consider behavioral and structural
refinement for their models, however semantics of refinement (criteria of refinement validity)

and refinement rules are often left for an implementation of the method.

22

2.3 Visual Modeling Tools and their Support of Model Refinement and
Refinement Verification

Modeling methods are largely based on theoretical paradigms; they may exist in aform of the
guidelines, and may have no tool support. Modeling tools, compared to methods, are concrete
applications. Some of the tools are grounded on modeling methods (e.g. UML, BPMN),
whereas the others may have no underlying theory but a set of best practices. Modeling tools
usually provide an additional functionality to the methods, such as simulation and
verification.

Model ssmulation and verification require details about dynamic and static constraints of
a modeled system that are often omitted in the visual model. Therefore, semantics of the
visual modeling language needs to be extended. For these purposes, visual models are often
annotated with expressions written in other languages, e.g. OCL annotations for UML
diagrams.

In this section we consider visual modeling tools which implement some of the modeling
methods listed above.

2.3.1 Classification Framework for Modeling Tools

To answer the question, “How different modeling tools support model analysis and
refinement verification?’, we define the following classification framework:

1. A Source Language

We classify modeling tools by modeling languages that they support or modeling methods
they implement. We call these languages or methods source languages, as the model
expressed in thislanguage is used as a source for further processing and analysis.

2. A Constrain Specification Language

Apart from the source language, we distinguish two other types of languages that (if defined)
characterize the modeling tool: a constraint specification language and a target language.
The constraint specification language is a language for annotating visual models in order to
extend their semantics and increase their precision.

3. Migration to another Language

Some modeling tools use their own means to simulate or verify their models; other tools
provide a trandation of their models to other (target) languages and profit from the
simulation and verification tools, developed for those languages.

4. A Target Language

The target language is an executable or verifiable specification language. Visua
specifications, written in a source language and annotated with expressions written in a
constraint specification language are mapped to the target language for further simulation
and/or verification.

5. Simulation is acapability of amodeling tool to simulate or execute the model.
6. Well-Formedness and Consistency Checking is a capability of a modeling tool to check

if the model is well-formed (a correct instance of its metamodel) and consistent
(semantically non-contradictory).

23

7. Refinement Support is a capability of a modeling tool to provide an assistance in at least
one of the following refinement—related activities:
« the support of incremental model development, when different parts of a model can be
iteratively refined;
 the control of refinement consistency, when specific rules are implemented to prevent
the model from incorrect refinement;
« the refinement synchronization, when the rest of the model is synchronized (adjusted)
with respect to the refined model part;
« the refinement verification, when the refined model is proven a correct refinement of
the initial model with respect to the formal definition of refinement correctness.

2.3.2 Modeling Tools Overview

Four commercial tools and seven tools developed in academia (or originated from it) have
been selected for our analysis. We find the analyzing of both groups of tools important,
because the former group reflects the current needs of practitioners, whereas the latter
illustrates the research innovations in the area.

For our analysis we have selected the tools that facilitate model simulation, analysis and
refinement support.

Commercial tools:

No Magic - MagicDraw (UML2.0, SysML, BPMN, DoDAF) - www.magicdraw.com/
Telelogic - SystemArchitect (BPMN, DoDAF) -

www.tel el ogi c.com/products/systemarchitect/index.cfm

Metastorm - ProVision (BPMN, Six Sigma, Zachman, TOGAF, DoDAF, UML) -
www.metastorm.com/products/mpea.asp

Intalio - Designer (BPMN) - www.intalio.com/products/designer/

Resear ch prototypes and resear ch based tools:
ArgoUML (UML)

RoclET (UML, OCL)

UML2AIloy (UML, OCL)

BPMN2PNML (BPMN)

OPCAT (OPM)

ADORA (ADORA)

DEMOS (ER)

MagicDraw is a business modeling tool, developed by No Magic Inc.[67]. MagicDraw
UML 15.0 is the latest version of the product by the time of this work. This tool supports
UML 2, BPMN notations, and provides a plugin for SysML.

MagicDraw supports OCL constraints for its model elements. OCL syntax is validated
automatically. The tool supports model decomposition and provides the automated check of
model completeness and correctness. Model versioning can serve for refinement support: one
can see the changes made between two different versions of a model. To the best of our
knowledge, MagicDraw does not provide means to keep track and to validate these changes
with respect of theinitial model (what we call refinement verification).

Telelogic System Architect is a tool for business and enterprise architecture modeling

[104]. Thistool supports BPMN and provides facilities for planning, modeling, and execution
of business process specifications. System Architect has its own simulator for process

24

specifications, called System Architect Simulator I1. System Architect complements another
Telelogic tool caled TAU G2 supporting UML2.0 visual modeling.

Metastorm ProVision [86] is a tool for business process modeling and analysis that
supports (among the others) BPMN notation for the processes. The tool includes both Monte
Carlo and discrete event ssimulators to define scenarios and perform process simulation.
Scenario-based simulation shows how the process will behave under specific conditions.

Intalio Designer [56] is an Eclipse-based integrated development environment for BPMN
business processes. It is a part of Intalio BPMS 4.0. Intalio designer supports the static
process validation and automatic process code generation. Refining processes into sub-
processes in Intalio Designer is performed using the in-line sub-process drill-down approach.

ArgoUML [4] is an open source UML modeling tool. ArgoUML provides OCL constraint
modeling for its diagrams. ArgoUML supports syntax and type checking of OCL constraints
using the Dresden OCL toolkit [37]. ArgoUML implements design critics feature to supervise
the modeling process and to correct the modeler’s activity. The tool does not mention
explicitly its refinement capabilities; however we consider design critics potentialy
beneficial for the refinement support.

RoclET [94] is an open source tool for analysis of UML/OCL specifications. The current
version of RoclET supports UML 1.5 class and objects diagrams and provides a parser/
typechecker for annotated OCL 2.0 constraints. RoclET supports the refactoring of UML
class diagrams and automatic synchronization of attached OCL constraints. Baar and
Marcovi [5] introduce a proof technique for the semantic preservation of refactoring rules
for UML class diagrams and OCL constraints. Evaluation of invariants, pre-, and
postconditions for object diagramsis aso provided by the tool.

UMLZ2AIlloy [13] is a tool for the analysis of discrete event systems modeled in UML.
This tool provides an interactive interface to transdate UML diagrams annotated with OCL
constraints into Alloy specifications. UML2Alloy tool accepts XMI seriaizations of UML
models developed in some UML modeling tool (e.g. Magic Draw 9.5, ArgoUML). The tool
generates text files with Alloy specifications that can be analyzed in Alloy Analyzer 4.0 [3].

The BPMN to Petri net transformer (BPMN2PNML)[17] is atool that generates Petri Net
Markup Language (PNML) [43][83] specifications from BPMN models for further static
analysis. The tool accepts XMI serializations of BPMN models generated by existing BPMN
modeling tools (e.g. ILOG BPMN Modeler tool). The semantic analysis of BPMN models
can be conducted by importing generated PNML specification into the Petri net-based
verification tool ProM [33][84]. This tool alows for the verification of the two following
properties of BPMN models. the absence of dead tasks, and the absence of improper process
completion, which means that any process instance eventually reaches proper completion.
Further details can be found in [30].

The Object-Process CASE Tool (OPCAT) [35][80] is a tool for the development and
simulation of OPM system specifications. OPCAT provides an abstraction/refinement
mechanism in the form of in-zooming/out-zooming, unfolding/folding and expression/
suppression of the states. OPCAT's simulation capability enables an animated running of a
system model, a testing of its functionality against the requirement specifications, and a
debugging of them at the model level [36].

25

DEMOS [26] is amodeling tool for the EP modeling language [60]. Thistool is devel oped
within the project of Declarative Approaches to Software Complexity [25]. The EP-model is
a declarative executable model for engineering object-based systems. EP-models model both
static and dynamic aspects of a system in a single diagram. The executable part of EP-model
is specified in the form of Java code snippets that annotate model elements. DEMOS tool is
implemented as an Eclipse plug-in and provides:

« graphical editing of applications using the EP model,

» background code generation, and

« immediate feedback on syntactical validity of models and user-supplied code.
A recent work of the authors defines the abstract syntax, static semantics, and dynamic
semantics of the EP modeling language in Alloy [59].

The ADORA tool [2] implements the modeling method ADORA. This tool was
successfully applied for the creation, validation and evolution of behavioral requirements
models [46]. ADORA defines a stepwise incremental process of behavior specification,
where a behavioral model is refined in each step by specifying partial behaviors. The tool
simulates partial system behaviors documented in message sequence charts. The modeler can
then generalize these partial behaviors and revalidate the resulting behavior by simulating it
against previously recorded behavior. Model revalidation at each step stands for the
refinement consistency control.

The ADORA tool simulates models regardless of their degree of formality and
completeness. If the information needed for the simulation is missing, the tool interrupts the
simulation and the modeler provides the required information interactively.

2.3.3 A Comparison of Modeling Tools

Table 2-3 presents a summary of our comparative analysis. One of the difficulties we met
conducting this analysis was related to the fact that commercia tools rarely disclose their
technical details or underlying heuristics. Thus, it is often difficult to position them within
our classification framework. Whereas tools developed in an academia are usually based on
scientific publications, which clearly explain the theoretical foundations, and potential
benefits for the user. However, some of these tools exist only as research prototypes.

Thisis reflected in the summary table, which isincomplete. We use a question mark ‘7 if
we are unable to make a judgment about the tool based on the information available.

26

Table 2-3

Tool w [
(0]0) o ; E
0 Q z ~
=) Sl% IS x :
% a o = o1 = g-
c ~ o > 8) o3 =]
s| 83 g @ | g8 g
® Q ™ 2 3 85
— < 3 o s = % Q
2| 27 2 a| 2| 3 =
g =] S S| “9 g
g 3| 3 & 2 E
o Q Qa -
=] c
& 3
[0)) <
Magic UML, OCL No - No |Yes Mode
Draw BPMN, decompositior/
SysML model differencing;
No verification
System BPMN ? ? Language supported [Yes | Yes ?
Architect by native Simulator
Il tool
Provison [BPMN, | ? ? Languages Yes | Yes ?
UML, supported by native
etc Monte-Carlo /
discrete event
simulator tools
Intalio BPMN ? Yes BPEL Yes | Yes In-line drill-down
Designer modeling of
activities
ArgoUML | UML OCL No No No |Yes Design critics
RoclET UML OCL No - No Yes Refactoring;
verification of
semantic
preservation
UML2 UML OCL yes Alloy No |Yes No
Alloy
BPMN2 BPMN Yes Petri Net — PNML Yes | Yes ?
PNM L
OPCAT OPM OPL No - Yes | Yes In-zooming,
unfolding, State
expression.
DEMOS | EP Java Yes Java Yes | Yes Functional
decomposition
ADORA | ADORA | No No - Yes | Yes Stepwise
refinement;
refinement

consistency control
by revalidation
Iregression
simulation

27

The SEAM Method

Our work defines the formal semantics and the theory for refinement and refinement
verification for the SEAM method [108]. The SEAM method was designed to model
enterprises and can be used to model software systems. SEAM defines one diagram type for
its specifications. The SEAM ontology is based on the second part of the RM-ODP [92]
specification. Based on this standard, the main modeling concepts of SEAM such as property,
state, and action are defined [108].

SEAM defines amodel of a system as a set of system specifications structures within two
hierarchies: a hierarchy of organizational levels, and a hierarchy of functional levels. The first
hierarchy incrementally reveals a system’s construction, whereas the second hierarchy
addresses an incremental specification of system’s functionality.

SEAM explicitly models the traceability between model elements across functional and
organizational levels using traceability relations.

The transition of model from one hierarchical level to another isformalized in SEAM asa
refinement (contribution of thiswork). Two main classes of refinement are defined in SEAM:
an organizationa refinement, which addresses the incremental specification of a system
structure, and a functional refinement, which addresses the incremental specification of
behavior of the system.

Several prototypes of SEAM-based applications have been recently developed. The
SeamCAD tool [66] is a framework for SEAM graphical modeling. SEAM to Java is a
prototype of SEAM model transformation application that trandates visua SEAM
specifications to Java programs. This application is based on ATL - Atlas Model
Transformation language [55] and is developed as a plug-in under Eclipse [39]. SEAM to
Java accepts as input a SEAM model in XML format and generates another XML that
corresponds to the target Java model. Using XSLT [105] script, the executable Java code is
obtained. SEAM to AsmL is a prototype tool that translates SEAM applications to AsmL -
the Abstract State Machine Language [15][11] for further simulation and verification with
AsmL verification tool [95].

Asapart of this Ph.D thesis, a prototype of SEAM to Alloy translator was developed. This
trandator is based on the XSLT script and allows for the generation of Alloy models from
SEAM specifications, documented in XML. The XML file with a SEAM specification is
obtained from the EMF (Eclipse Modeling Framework)-based SEAM Editor. The mapping
rulesfrom SEAM to Alloy are explained in Chapter 6.

As future work, we plan an implementation of the Seam to Jahob trandator that will
provide us with the possibility of verifying specification refinement using the Jahob
verification system [63].

In Tables 2-4, 2-5, we evaluate the SEAM method based on the frameworks we applied
for the other modeling methods and tools:

28

Table2-4

M ethod 1.Diagram | 2.Mod€ structure 3.Specification 4. Refactoring,
types traceability refinement
SEAM 1 Hierarchica Explicit, via | Structural refinement:
(functional + | whole/composite explicit; results in a
organizational relationships transition to the next
hierarchies) org. level;
Behavioral refinement:
explicit; results in a
transition to the next
functional level.
Table 2-5
Tool g con | gy g~ | gogo @~
=g %go 23z a7 2| 3a5s 5 T
g5 ‘8:% §349 éﬁ 3 =4z 2 8%
—_ — c -]
® @ & 83 o = 5 ® Q 3 § 3 2
o B 2. S = & % 3
- =]
Seam SEAM | Java Yes Java Yes No No
to Java
Seam SEAM | ASM yes AsmL Yes Yes No
to
AsmL
SEAM SEAM | FOL/Alloy | Yes Alloy No Yes Refinement
to verification
Alloy
SEAM SEAM | FOL/Alloy | yes Jahob Yes Yes Refinement
to + Java verification
Jahab
(future
work)

29

30

Chapter 3
The SEAM Method

In this chapter, we introduce the SEAM method for Enterprise Architecture modeling and the
SEAM visual modeling language. SEAM considers marketing segments, organizations, 1T
systems and IT applications as systems, structured in organizational levels of an enterprise
model. The SEAM ontology is based on the second part of the RM-ODP [92] specification.
Based on this standard, the main modeling concepts of SEAM such as property, state, and
action have been defined [108]. This work contributes in a definition of the additional
concepts necessary for the formal verification of SEAM visual specifications: preconditions,
postconditions, invariants, and updates.

SEAM specifies various model elements and different ways to combine them in a
diagram. A modeler may choose her own strategy in order to enhance the traceability of
concepts across levels and to improve the model transparency.

To specify a system structure, SEAM defines aworking object and two views of it:

- aworking object asawhole;

- aworking object as a composite.

To specify a system behavior, SEAM defines properties and three action types.

- alocalized action;

- ajoint action;

- adistributed action;

two views of a property:

- aproperty asawhole;

- aproperty asacomposite;

two views of each action:

- anactionasawhole;

- anaction as a composite; and

two ways of action specification:

- declarative action specification;

- imperative action specification.

Sections 3.1-3.2 of this chapter describe SEAM model elements, their views and
specification styles. Section 3.3 presents a metamodel of SEAM, which specifies its abstract
syntax. As a contribution of this work, the SEAM metamodel is extended with new model
elements. Section 3.4 presents the the semantics of SEAM model elements and specifies their
graphical notation.

3.1 The SEAM Specification of a System

In a SEAM specification, a system is represented by a working object. The working object
can be seen as a whole where its construction is hidden or as a composite that reveals its
components. The views as a whole and as a composite belong to two adjacent organizational
levels.

31

Example 3-1. Figure 3-1 illustrates a SEAM specification of a system, modeled as a
working object W. W is shown as a whole (denoted W[w]) in Fig. 3-1(a), and as a composite
(denoted W[c]) ® —in Fig. 3-1(b,c).

A working object as a composite specifies system components (also modeled as working
objects) and ajoint action (JA) [38] or adistributed action (DA) between these components.

Ww] f o
P

1s1 S2[w] ?um

S1w] ¢ 1 P1
P

G)] s
LA1[w] |

Figure 3-1: a) a SEAM working object W as a whole; b) W as a composite with component working
objects S1 and S2 and a joint action JA seen as a whole; ¢) W as a composite with components S1 and S2
and a distributed action DA seen asa whole.

(b)

(a)

A working object as a whole has properties and may specify localized actions (LA).
Properties represent the data that the working object stores or operates with. A collection of
all properties of the working object determines a state of this working object. A localized
action changes the state of the working object by updating its properties.

Each action and property in SEAM can be seen as a whole where its construction is hidden
or as a composite, where the components (component actions and component properties
respectively) are shown.

The term ‘joint action’ in SEAM was taken from [38]. A joint action describes a
collaboration of the components of a working object. This action changes states of these
components by updating their properties (Fig. 3-1(b)).

Diagramsin Fig. 3-1(a,b) illustrate the following: To perform the localized action LA at W
(as awhole), the collaboration JA[w] of component working objects S1 and S2 is required.
JA[w] modifies a property P at S1 and a property P1 at S2.

Working object decomposition (a transition from a whole to a composite) requires that the
properties of the parent working object are distributed between component working objects.
Localized actions for the component working objects can be omitted.

A working object as a composite specifies a distributed action between components of the
working object (Fig. 3-1(b)). The keyword Didributed stands for a distribution of

¥ Weuseindexesw (_w or [w]) or ¢ (_cor[c]) to specify SEAM elements as awhole or as a composite
respectively

32

responsibilities between components, answering the question, “Who does what?’ The
responsibilities are modeled as localized actions.

In contrast to localized and joint actions, distributed action does not update the properties
of aworking object directly. This action changes the states of the working object by invoking
localized actions of its components (Fig. 3-1(c)).

Diagrams in Fig. 3-1(a,c) illustrate the following: To perform the locdized action LA a W,
the collaboration DA[w] of component working objects S1 and S2 is required. S1 participates in
DA[w] by performing alocalized action LA1[w]. LA1 changesaproperty P, smilarly, S2 performsa
localized action LA2[w], which changes a property P1.

Action specifications ‘as a whole' and ‘as a composite’ correspond to the terms *action’
and ‘activity’ of RM-ODP[92].

To specify the communication between component working objects or component actions
of one working object, SEAM uses shared properties and input/output parameters.

A shared property is a property that does not belong to a specific component working
object; shared properties represent the common knowledge maintained by the system. Input
and output parameters are properties that specify the information flow from one working
object (or action) to another.

In contrast to shared properties that can be perceived as global variables of a system,
SEAM also defines local variables for its actions. A local variable is a property that belongs
to a concrete working object and is defined by an action of this working object. The lifecycle
of a loca variable is related to an action (for other properties, it is related to a working
object): the local variable exists only during the action execution.

We distinguish primitive and compound properties in SEAM. A primitive property can be
considered as an dlias for an operational (primitive) data type (e.g. int, string, boolean, etc.).
The compound property is defined by a set of component properties and references to
properties using property associations and property compositions.

33

Table 3-1 illustrates the rel ationships between concepts in SEAM. The 10 columns specify
main SEAM elements and one of their views - as a whole or as a composite. The rows
specify the same elements plus shared properties, parameters, and local variables.

Table 3-1
WO Property LA JA DA
o
i N ™ < Lo O N~ [e] (o)) -
o o = o =
0 8 o & © 8 w g i 8
SR
< < =1 = =1 3 = o]
= 8 = 8 =2 0o = 8 = o0
WO whole X
composite
Property whole X R xr r r r r
composite X R xr r r r r
LA whole X rxr r r
composite X roxr r r
JA whole X r Xr
composite X rxr
DA whole X r Xr
composite X r Xr
Parameters X X X X X X X X
In/Out
Shared X X X X X X
properties
Loca X X X X X X
variables

An ‘X’ in arow-column intersection means that the *column’ element can specify (or own)
the ‘row’ element. (Graphically, thisis equivalent to having a relation with a black-diamond
between elements).

An ‘r’ in row-column intersection means that the ‘column’ element can be related to the
‘row’ element. (Graphically, thisis equivalent to having a simple relation between elements).

For example, a working object seen as a whole (column 1) can specify properties,
localized actions, and input/output parameters; LA (localized action) seen as a composite
(column 6) can specify component localized actions seen as a whole or as a composite,
input/output parameters, shared properties, and local variables; it can be also related to other
localized actions and properties. A property as a whole (column 3) cannot specify any other
elements; it can be related to other properties.

3.2 Declarative vs. Imperative Action Specifications in SEAM

Actionsin SEAM can be modeled declaratively or imperatively.

Declarative specifications describe the state of the working object prior to the action
execution — pre-state - and the state of this working object upon the action termination — post-
state. The pair (pre-state, post-state) describes the overall effect of the action and
characterizes the external behavior of the working object.

Declarative specifications define an action contract - a triple (precondition, invariant,
postcondition) - and leave the detail of implementation of this contract unspecified.
Imperative specifications, in contrast, encourage the modeler to commit to an explicit
scenario of an action execution.

Imperative specifications make explicit the intermediate effects of the action by defining
the sequence of states the working object goes through during the action execution. This
sequence of statesis also called the internal behavior of the working object.

A declarative specification is beneficial when amodeler has alimited knowledge about the
system and develops an abstract system specification. Once the action contract is extended
with the concrete scenario of its realisation (a sequence of intermediate states), the
specification becomes imperative.

For declarative specifications there exists a frame problem [14]. This problem appears
when more than one implementation of the specification corresponds to its contract. To avoid
erroneous implementations, the specification should explicitly indicate the properties that
must remain unchanged after the action termination. This is done using frame conditions.

In contrast to declarative specification, imperative specification does not allow unspecified
updates and stipulates that “what was not explicitly updated is unchanged”.

SEAM action A, seen as awhole, specifies a state change as a single transition from pre-
state to post-state. Therefore the view as a whole corresponds to a declarative action
specification.

SEAM action A, seen as a composite, specifies actions A;..A; that should be executed to
accomplish A. Action A here is called a parent action and A;..A; are called component
actions. A declarative specification of an action seen as a composite is useful when the
modeler wants to ignore the order of component actions.

An imperative action specification introduces the ordered set of the intermediate states for
this action.

Table 3-2 presents the elements of action specifications (rows) and shows the visibility of
these elements in different action specifications (columns). A specification, in which less
elements are visible is called more abstract, when compared to a specification where more
elements are visible. For example, the most abstract specification is a declarative
specification of alocalized action seen as awhole.

35

Table 3-2

LA JA DA LA JA DA
Q Q 2 2 Q 2
3|, 3| |32 2| |g| |3Z
218218 e |8 o|(gslo(8le|s
21E|E|E|R|5 215|8|E|2|5
=18|2[8|%2]0 =lol=]8[=|0
Preconditions X | X | X |X X | X [X |X
Invariants o | X | X | X [X o | X [X | X |[X
" > >
Postconditions ®B|X | x | x |x BIX | X [X |X
Update % %’_ X | X | X |X
IN/OUT parameters Q| X X | X | X Elx Ix [x x| x]x
shared properties X | X | X | X |X
Local variables X | X | x |x |x |X X | X | X |x [x |Xx
Component
actions o
(*Localized | Visible X X | X |X X X | X | X
actions for
DA) Ordered X X | X | X
Intermediate states X | X | X | X | X |X

3.3 The SEAM Metamodel (Abstract Syntax)

SEAM modeling language defines one diagram type for system specifications. The SEAM
diagram isagraphical specification of a system.
Figure 3-2 presents a SEAM metamodel specified asaUML [77] class diagram.

The recursive definition of the SEAM abstract syntax is presented below.

As a contribution of this work, the following elements have been added to the SEAM
modeling language:

- A distributed action;

- Input/output parameters, shared properties, and local variables for actions;

- Action-to-property relations and their speciaizations,

- Action-to-action relations and their specializations,

- Distributed-to-localized action relations.
(These elements are denoted in bold in the syntax definition below.)

working_object = wo_whole | wo_composite

wo_whole = property { property} {localized action}

property = primitive_property| compound_property

compound_property = { property, p_composition} { property, p_association}

localized action = la_whole | la_composite

la whole = {AP-relation} {input_par}{output_par}{local_var}

la_composite = localized_action {localized action}{AA-relation}{input_par }{output_par}
{shared} { local_var}

wo_composite = working_object, wo_composition { working_object, wo_composition}

36

joint_action | distributed_action
joint_action = ja_whole | ja_composite
ja_ whole = {AP-relation}{input_par} {output_par}{shared} { local_var }
ja_composite = joint_action {joint_action}{ AA-relation}{input_par} {output_par}
{shared} { local_var }
distributed_action = da_whole | da_composite
da_whole={DALA-relation}{input_par} {output_par}{shared} { local_var }
da_composite = distributed_action { distributed action}{ AA-relation}{input_par}
{output_par} {shared} { local_var }

The well-formedness rules are out of the scope of thiswork.

1 SEAM_metimedel

e

Figure 3-2: SEAM metamodel

37

The extension of the SEAM metamodel is resulted in a possibility to specify formal
semantics for the other model elementsin SEAM, including:

- A working object as awhole and as a composite;

- Anaction (localized, joint, distributed) as awhole or as a composite;

- A property and property-to-property relations;

- A working object-to-property relation.
Formal semantics of SEAM will be discussed in the next chapter.

3.4 The SEAM Semantics and Graphical Notation (Concrete Syntax)

The metamodel in Fig. 3-2 illustrates the SEAM model elements and relations between them
- the abstract syntax of SEAM specifications. In this section, we specify a concrete syntax of
SEAM specifications. The concrete syntax describes how model elements can be depicted
and put together in SEAM diagrams.

The SEAM modeling language defines the following graphical elements:
= A working object (WO);
= A WO-composition;

A property;

A property composition;

A property-to-property (PP-) relation;

A working object-to-property (WOP-relation);

An action;

An action-to-action (AA-) relation;

An action-to-property (AP-) relation;

A distributed-to-localized action (DALA-) relation.

The following sections address these graphical el ements as well as their semanticsin detail.

3.4.1 Working Object

The boundary of a SEAM diagram is always specified by a working object (WO) that
represents the system of interest; other model elements (component working objects,
properties, actions, etc) are depicted inside this working object — ‘box in the box’.

SEAM uses a ‘porter arrow’ pictogram to specify a working object (Fig. 3-3(a)). When it
IS necessary to emphasize the nature of the working object — other pictograms are used (Fig.

3-3(b)).
Name[w/c]
- Working object as a (a)
whole or as a composite
Name Name Name
(b)

IT system Business system
or organization
Figure 3-3: SEAM working object: a) general representation b) specific pictograms.

Human actor

38

A working object can be modeled as a whole or as a composite. A working object as a
composite (indicated by ‘¢’ or [c] in the pictogram) specifies component working objects
of the same or a different kind. These component working objects are depicted inside the
parent working object and are connected to it using a composition relation (Fig. 3-4). The
source of the working object composition (marked with a black diamond) is called *parent’;
the destination is called ‘ component’.

Carlc]
M|l 1 - Composition (from
® composable element)

[Wheelw]
(a) > (b)

Figure 3-4: Working object composition: a) composition relation with multiplicity and instance
expressions; b) Example: a car asa composite specifies 4 Wheels: wi..w4.

0. 4|W1 Wy

3.4.2 Property

Working object as awhole (indicated by * w’ or [w] in the pictogram) specifies properties.
Properties are depicted with rectangles (Fig. 3-5(a)). For primitive properties their primitive
type (e.g. ‘string’, ‘int’, ‘boolean’, etc.) isindicated under the property name.

The properties hosted by a working object are placed inside the pictogram, representing
this working object and are connected to it using a working object to property (WOP) —
relation (or host relation) asillustrated in Fig. 3-5(b).

A property (if compound) can be associated with another property (or group of
properties), which is hosted by the same working object. This is depicted using a property
association (Fig. 3-5(c)).

A property (if compound) can have component properties. The component properties are
connected to their parent property using a composition relation. The source of this relation
(marked with a black diamond) is called ‘parent’; the destination(s) is called ‘component’.
Two versions of graphical representation are presented in Fig. 3-5(d).

Properties hosted by different working objects can be connected using a trace (Fig. 3-5
(e). In the example, the trace specifies that properties ProductlD and DesiredProductID are
the same.

39

Name - a
<type> Property (a)
Mlm - Host relation

(b)

- (WOP-relation)

- Association 0..1jemployer
1 Ml °
B (PP-relation) | Person | | Company (©)

1|age Age
<int>

Ml - Composition
—e (from composable Person Age or
element) ® age | <int> (d)
Seller[w] Buyer[w]
- Trace Desired
CS— o (PP-relation) ProductiD m ProductD
0..*|catalog T ~1IP N (e)
CO" =7~~~ D

Figure 3-5: SEAM property: a) graphical notation; b) host relation c) property association;
d) composition; €) trace.

3.4.3 Action

To specify a behavior of aworking object, SEAM defines localized, joint, and distributed
actions (Fig. 3-6). These actions are depicted by rounded rectangles with indicated action
name, type, and view.

The action type can be one of the following: LA for a Localized Action, JA for a Joint
Action, or DA for a Distributed Action. The action view specifies the action modeled as a
whole or as a composite (indicated by * W’ or [w] and*_C’ or [c] respectively).

For an action seen as a composite, component actions are placed inside the pictogram
representing this action. The border of the parent action is depicted using a dashed line. Fig.
3-6(b) illustrates a joint action as a composite with two component joint actions.

h “ '!“ (@)

Localized action as a whole Joint action as a whole or Distributed action as a whole
or as a composite as a composite or as a composite

Alternative notation:

JA[Name]_c

Localized action as a whole Joint action as a composite Distributed action as a whole

Figure 3-6: SEAM action specification.

3.4.4 Action- to-Action (AA-) Relations

A control flow between component actions of an action seen as a composite is specified in
SEAM using action-to-action (AA-) relations. The notation is based on BPMN (Business

40

Process Modeling Notation) [78]. Fig. 3-7 shows the control flow of alocalized action AAA

seen as a composite.

SEAM specifiesthe following AA-relations:

= Start—to define an entry point of an action asacomposite;

= End-to definean exit point of an action asacompodte;

= Trandtion—to define asequential composition between component actions,

= Conditiond trandtion —to define atrangtion that happensif a certain condition holds;

= Fork (AND, OR, XOR) — to specify a branching of process (pardld or dterndive

= Merge (AND, OR, XOR) — to specify a synchronization (AND) or concurrency (OR,

execution of component actions);
XOR).
Siw]
]
LA_AAA_c

, LA BB_w
/
\ LA_CC_w

Figure 3-7: Localized action AAA seen as a composite with component localized actions BB and CC The
control flow is specified using the following AA-relations (in their order of appearance from the left to the
right) : Start, AND-Fork, AND-Merge, End. I nter mediate system states ar e not shown.

Figure 3-8 illugrates the SEAM graphica notation for AA-relations and the corresponding BPMN

notation.

SEAM AA-relations

Start Q»

End 4’0

Transiton — »

Conditional Transiton =

yes—
zno+

Transition guards
(fork / merge)

BPMN graphical elements
(www.bpmn.org)

Events:
Start Intermediate End

o O 0O

Gateways:

Data-based <> or @
Event-based

Inclusive Decision/ <C>
Merge (OR)

Parallel Fork/Join <-|>
(AND)

Figure 3-8: SEAM action-action (AA-) relations vs. BPM N elements (events and gateways). Taken from

www.bpmn.org

41

Table 3-3 presents AA-relations and their semantics in more detail. Textual notation on
the left specifies the action ordering. Diagrams on the right stand for imperative action

specifications.

Table 3-3

AA-relaion name SEAM Grgphicd AA-rdaion name SEAM Graphica
and description notation and description notation
Start(Al) — Al is an AndFork(A1{A2,A3})-

action start;

Al is followed by A2
and A3, executing in
parald;

End(Al) — Al is an

=
=9

AndMerge{ A1,A2} A3

action end; Ac) — A3 starts after both Ac
- Al and A2 terminate ‘:}
(synchronization);
Transition(A1,A2) — a Ac OrFork(A1{A2,A3})- A
sequential composition Al is followed by A2, ¢ @
of A1l and A2 (A2 or by A3, or by both of @
follows Al); them executing in L)
parale (inclusive);
Conditional Transition Ac OrMerge({ A1,A2} A3) Ac h
(ALA2,C) — A2 folows -A3 darts after either
Alif Cholds; C’ one of Al, A2 or both @
terminate)
(concurrency);
Conditional Transition xOrFork 4 h
(AL{A2A3},0)- Alis | |"C o312) | | (AL{A2A3})})- AL is | |AC
followed by A2 if C @ followed by A2, or by 0
holds and by A3 A3, but not by both of | |)
otherwise; them (exclusive);
xOrMerge({A1,A2}, (A
A3)- A3 dtarts after Ac
either one of Al, A2, ‘:’
but not both terminate | ()

(concurrency);

Similarly to Inclusive/Exclusive Merge and a Parallel Join gateways in BPMN (Fig. 3-8),
Or- and xOr- Merge relations in SEAM specify a concurrent action execution; whereas
AndMerge specifies a synchronisation. In this work, we do not consider concurrency in
SEAM specification. Thisisatopic for future work.

Current graphical notation provides no information about the intermediate states. Fig. 3-9
illustrates the (prospective) notation, in which intermediate states of the imperative
specification are shown.

Ac Ac
02| [me

Ac d> Ac

X2 | x3
A2
x1 | |x2 x2‘ x4 (@)
> A2 (b)
x1 | X2 X2 ‘x3

Figure 3-9: Proposed graphical notation for AA-relations where intermediate states are shown; a) an
imper ative specification of a parallel fork; b) an imperative specification of atransition.

42

3.4.5 Action-to-Property (AP-) Relations

Siw] | R
Pre: Person ([@———
<expression> ..
%p - Precondition N 1lage
Inv: Age
U: [condition] Allp | p.age > 18 <int>
<expression> - Update
_—
Post: s LA_AA c
<expression> Postcondition _AA_
—_—
Inv:
<expression> - [nvariant
R

S.Inv: All p | p.age >0
(a) (b)

Figure 3-10: SEAM action-to-property (AP-) relations a) relation types; b) An action (local) invariant vs.
a system (global) invariant.

The following action-to-property (AP-) relations are defined in SEAM (Fig. 3-10 (a)):

‘Pre’ —for precondition;

‘Post:” —for postcondition;

‘Inv:’ —for invariant;

‘U:” —for update statement.

AP-relations are depicted by arrows, annotated with corresponding precondition,
postcondition, invariant, or update expressions.

A precondition is a condition (or state) of the working object where the action can be
triggered; a postcondition specifies the states of the working object after the action
termination; an invariant is a logical expression that must hold before, after, and during the
action execution.

We distinguish between action invariants, which are modeled using action to property
relations and hold for a particular action, and system invariants, which hold for all the actions
of thisworking object.

Figure 3-10(b) illustrates a local invariant Inv of action BB and a global invariant S.Inv
that must hold for any action of S.

A triple (preconditions, postconditions, invariants) is also called the action contract; an
update statement explicitly defines how this contract is fulfilled.

Precondition, postcondition and invariant expressions are logical expressions. In SEAM
diagrams, these expressions annotate corresponding AP-relations. We write these expressions
in asubset of the Alloy specification language [59].

Update statements typically stand for a change of a value of a given property and are
written using assignment expressions:. ‘ property_old := property_new’.

Definition of AP-relations in SEAM is one of the contributions of this work. Syntax and
semantics of AP-relation expressions is explained in more detail in Section 4.3.5 of the next
chapter.

43

3.4.6 Localized vs. Joint vs. Distributed actions
SEAM defines three types of actions (localized, joint and distributed action). These actions
are distinguished by the way they change a state of aworking object.
- A locdized action (Fig. 3-11(a)) changes the state of a working object seen as a
whole by modifying its properties.
- A Joint action (Fig. 3-11(b)) changes the state of a working object seen as a
composite by modifying properties of its component working objects.
- A distributed action (Fig. 3-11(c)) changes the state of a working object seen as a
composite by invoking localized actions of its component working objects.

Y
Pre:... T Post:...
1ly_out Pre:..
=

LA AA w
= <oUT> X
Post:... JA_AA_w <shared>

Pre:...
(a) (b)
Figure 3-11: Localized vs. Joint vs. distributed Action.

X

Sc]
St I ‘ ? 31C[w] > 52[w]$ >
* Y

]| <shared> |\

3.4.7 Shared Properties, Input and Output Parameters, Local Variables

SEAM uses action shared properties, input and output parameters, and local variables to
specify aflow of datain its specifications.

Shared properties are shown in SEAM diagrams as properties with a stereotype <shared>.
A shared property represents a common knowledge that is maintained by a working object as
a composite (Fig. 3-12(a); it can also specify a flow of data between component actions (Fig.

3-12(h).

S[c]
S1[w]

X
X <shared>
<shared>

@ (O)

Figure 3-12: Shared property

(b)

By definition, if a property is ‘shared’ —it isvisible to several working objects and can be
modified by actions of these working objects. It can be considered as a global variable.
Alternatively, a SEAM action may specify local variables. A local variable p:P of an action
AA (Fig. 3-13) is an instance of a property P, which is created by AA and exists only during
the execution of AA. A local variable is modeled using a directed relation with multiplicity
and a black diamond on the action’s side.

Note that the instance p:P in Fig. 3-13 is defined in the context of action AA and is
digoint from the instances p1, p2,.. defined in the context of working object S.

s |
*|pl,p2..

P

1lp

Figure 3-13: Action local variable

Shared and local variables are useful for modeling per sistence of business objects.

Input and output parameters are shown in SEAM diagrams as properties with a stereotype
<IN> or <OUT> (Fig. 3-14). These parameters are used to specify the data coming into the
system or leaving the system while performing the action; they can be also a subject of action
precondition and postcondition.

Typicaly, input parameters are associated with the action precondition (i.e. an input is
something that should be received by the system to trigger the action). However, input
parameters can be aso received by the system in an intermediate action state. Thus, inputs
are NOT aways a part of the observable external behavior (i.e. a part of the precondition).
Similarly, output parameters are often identified with action postconditions (i.e. an output is
something that is produced by the system upon the action termination). However, output
parameters can be also produced by the system in an intermediate action state (as a part of
internal behavior). In this case, the output parameter is not a part of the action postcondition.

S[wi/c]

Figure 3-14: Input and output parameters.

3.4.8 Relationswith Multiplicities
A working object composition, a property association, a property composition, and an action-
to-local variable relation (ALocaVar) are relations with multiplicities in SEAM. They
contain multiplicity and instance expressionsin the form:

M| Iy

A multiplicity expression shows how many instances of a property of a given type are
considered by thisrelation; an instance expressions provide alist of names of these instances.

M isamultiplicity expression; it has the following format:
M = # | #. H##.**

- anonnegative integer constant 0,1,2...;

#.# - an interval with constant lower and upper bounds;

#..*- an interval with an undefined upper bound;
* - aninterval 0..*.

45

Im isan instance expression; it has the following format:
Im = <inst.name>[, <inst.name>]

Im defines a set p;..pw of alocated instance names. The size of this set is defined by the
multiplicity expression M and is equal to the difference between the lower and the upper
bound of an interval specified by M. If the upper bound is undefined — indexed list of names
can be used. For example, let multiplicity expression M be “0..*” then we define an instance
expression Iy as an indexed list of names {name}, wherei=0..*

46

Chapter 4

Formal Semantics for SEAM Specifications

To rigorously reason about visual specifications, we define a formal semantics for SEAM.
This semantics is based on the set theory and first-order logic (FOL). It enables the mapping
of a SEAM specification to other specification languages, i.e. Alloy [59], Jahob [63] for
further validation.

In Chapter 3, the SEAM method was introduced. This work extends the SEAM modeling
language with concepts of action-to-property relations, action-to-action relations, and
distributed actions. In this chapter we define the formal semantics for the following concepts
of SEAM modeling language:

SEAM working object as awhole with its

= Properties

» Localized action (as awhole or as a composite) [optional]
SEAM working object as a composite with its

= Component working objects

= Joint action (as awhole or as a composite) or

= Distributed action (as awhole or as a composite)

Action-to-property (AP-) relations for joint and localized actions seen as a whole and
its specializations:

» Precondition

= Postcondition

* |nvariant

» Update statement

Distributed-to-localized action (DALA-) relations for distributed actions seen as a
whole

Action-to-action (AA-) relations for localized, joint, and distributed actions seen as a
composite;

Imperative and declarative action specifications;

As a consequence of formalization, new modeling concepts are explicitly specified in SEAM:

= State of aworking object asawhole

= State of aworking object as a composite

= Primitive property

= Compound property

= State of a primitive and a compound property

47

Based on formal semantics, we are able to define refinement relations between SEAM
specifications, for example, we say that:

- A SEAM working object modeled as a composite is a refinement of a corresponding
SEAM working object modeled as awhole;

- Ajoint or adistributed action specified for the SEAM working object as a compositeis
arefinement of alocalized action, specified for the corresponding working object as a
whole;

- A SEAM (localized, joint, distributed) action modeled as a composite is a refinement
of a corresponding SEAM (localized, joint, distributed) action modeled as awhole;

- A SEAM action modeled imperatively is a refinement of a corresponding action
modeled declaratively.

These refinement relations and the notion of their correctness are presented in Chapter 5.

The outline of this chapter is the following: Section 4.1 is a short introduction of first-
order logic (FOL); we present a syntax, semantics, and introduce the notion of satisfiability
and validity of FOL formulas — concepts fundamental for verification. In Sections 4.2 and 4.3
we present the formalization of SEAM modeling concepts in set theory and FOL. In Section
4.4 we discuss imperative and declarative modeling of behavior in SEAM; In Section 4.5 we
present how creation and deletion of an object can be modeled with SEAM.

4.1 First-Order Logic

First-order logic (FOL) isasystem of formal reasoning also known as first-order predicate
calculus[18]. In this section we present a short introduction to FOL. For more details, see
[18].

The FOL Syntax

The basic terms of FOL are constants a, b, c, .. and variables x, vy, v,...Complex terms are
constructed using functions of a different arity. Functions are denoted by symbolsf, g, h,.. in
FOL. An n-ary function f takes n terms as arguments. for example a function f(x, y) is a
binary function applied to variables x and y. A function with arity O is a constant. Predicates
in FOL are denoted by symbolsp, g, r,... An n-ary predicate p takes n terms as arguments. A
predicate can be seen as a function with a codomain {true, false}. An n-ary predicate applied
to n terms is called an atom in FOL. An atom or its negation (—) is a literal. FOL aso
defines logica connectives (A,v,—,<>) and quantifiers (,3) that can be applied to literas
to produce a FOL formula. FOL formulas evaluate as ‘true’ or ‘false’.

The recursive definition of the FOL syntax is presented as follows:

term = function(term{, term}) | constant | variable

predicate = predicate(termy{ ,term})

atom = true| false| predicate

literal = atom | — atom

formula = literal | quantifier variable . formula | formula connective formula |connective
formula

connective = =|—|—|v | A
quantifier =V |3

48

variable=x|y|z|.
constant=a|b|c]|.
function=f|g|h]|.

Symbol ‘.’ isan application of aquantifier. In thiswork, we often use the Alloy notation [59]
to specify FOL expressions for SEAM. The Alloy specification language uses the symbol ‘|
instead of ‘.’ to denote an application of a quantifier.

Example4-1. 3x,y,z.x-x+Yy-y=2z-zisaformulawhere -,+,=are binary functions on
integers. In Alloy, we writethisformulaasfollows: some x,y,z | x*x + y*y = z*z

The FOL Semantics

In [18], FOL semantics is defined in terms of interpretations. An interpretation I:(Dy,) in

FOL is a pair, where D, is the interpretation domain, and o, is the assignment. The
interpretation domain D, is afinite or infinite set of objects (e.g. integers, SEAM properties,
SEAM working objects, etc). The assignment o; maps FOL constants and variables to
elements of D;, and FOL functions and predicates to functions and predicates over elements
of D, .

Based on these semantics, satisfiability and validity properties can be introduced:

A formula F is satisfiable if and only if there exists an interpretation I: (D, o) such that F
evaluates to ‘true’ on I. A formula F is valid if and only if it is satisfiable for al
interpretations I.

One approach to prove that aformula F is satisfiable is to construct an interpretation |, i.e.
to find a configuration of values from D, that evaluates F to ‘true’. This approach is
implemented by the Alloy Analyser [3]. Vadlidity of a formula in the Alloy Analyzer is
checked by contradiction: from the definition of validity, Fisvalid if and only if the negation
of F (—F) isunsatisfiable.

Another approach to prove a satisfiability or validity of a formula is based on logica
inference. This approach isimplemented by theorem provers, including the Jahob verification
system [115][63].

In this work, we reduce the problem of refinement verification for visual SEAM
specifications to the proof of validity of a corresponding FOL formula. We explain how to
write such a formula for SEAM specifications in Chapter 5. In Chapter 6, we illustrate the
technique of refinement verification using the Alloy Analyzer and the Jahob verification
system.

4.2 Intuition for Set-Theoretical Interpretation of SEAM Modeling
Concepts

We represent SEAM model elements as sets and relations between them. Table 4-1 illustrates
a set-theoretical interpretation of SEAM model elements.

The elements of sets are static, whereas the relations between them can be seen as a matter
of change. The change of property value can be specified by relations between sets.

49

Table4-1.

SEAM element Graphical notation Set —theoretical interpretation
Working object Set W
W
Property P Set P
WO composition W Relation between two sets:
0..2lw11,w12 wocomy W X W1,
W1
Property 1jage Ade Relation between two sets:
composition and </St> lomp © PErsonx Age (is equivalent to
property to 0.1lemployer — | Tyme < PErsonxint);
property (PP-) comp)
relation leoe < PErsonx Company
Working object to Carlw] Relation between two sets:
property rgel ation Year Moy < Car xYear (isequivalent to
(host relation) ‘1|year <Int> . cCarxint);
Multiplicity For relation r, multiplicity expressionisa
expressions and b 0..nlrs, 2,...Mn q cardinality of r:
instance rc PxQ;
expressions of Vpe Pl0< <n
SEAM relations: pe Pl _|{q§Q!(p,q)e i<
Instance expression isalist of names of
relation instances:
F=19(Pu &), (P Gp)s(Py On) (P2 Gy)
r r re r
Pl =0 Pl = 0oses Poi =0

Example 4-2: Figure 4-1 illustrates a compound property, Account, which has a component
property, Balance. A property composition relation between Account and Balance can be
formulated asfollows: r,, ., < Account x Balance (is equivalent tor,, ., < Accountx Int).

A multiplicity expression ‘1’ of this relation denotes that every account has exactly one value
of balance (balanceValue) which is an integer (Fig.4-1(a)); We can aso say that every
element of Account set is related to exactly one element of Balance set (called balanceValue)
which isan Integer (Fig.4-1(b)):

Vae Account |Hba| anceValuee Balance| (a,balanceValue) e rcomH =1

An instance expression ‘b’ of relation r specifies that for some account & the value of its
balanceis caculated asa;.b and it isequa 1500 (Fig. 4-1(b)):

a,.b=1500;

To change the balanceValue meansto ‘redirect’ relation b from one element at Balance set to
another, as shown in Fig. 4-1 (b).

50

Account

@)

Balance
<Int>

Account}

O

a

(b)

Figure4-1: a) SEAM notation; b) Set —relations notation; ‘a value change’ is modeled as a redirection of

a corresponding relation.

Fig. 4-2 and 4-3 present the SEAM notation and its set-theoretical interpretation

respectively.

Fig. 4-3(a) illustrates a SEAM working object W seen as a whole, properties Px, Py, Pz,
and relations X, y, z, r between these elements; Fig. 4-3(b) illustrates a set-theoretical
interpretation of SEAM working object W seen as a composite, its component working
objects W1, W2, properties Px, Py, Pz, and relations ¢, t, X, Y, z, r between these elements. In
Fig. 4-2(b) and 4-3(b) the property Py refers to the same set of objects (interpretation

domain) in redlity.

w

Px
<Int>

2|x1, x2

Py
2ly1,y2 <> |

(@)

w
2|c1,c2 1]t
w1 w2
Px Py
>
2x1,x2 | <t 1yl <> e
Py
>
1ly | <t *— Pz
1|z
(b)

Figure 4-2: a) working object W seen as a whole; b) working object W seen asa composite.

WO composition
relations ¢ and t

AT v r
\ t pa C\
¢ PP -relation r
-tz
ost relations y
(b) and z

Figure 4-3: a) working object W seen as a whole (see also Fig. 4-2-a); b) working object W seen as a
composite (see also Fig. 4-2-b);

51

4.3 Formalization of SEAM Model Elements in FOL

4.3.1 Working Object

A working object seen as a whole (denoted W,,) describes a system by a number of
properties B,.., P, and alocalized action LA.

W, =(P,..,P,,LA) (4.1)

Localised action LA describes the functionality of the working object. This localized
action can be modeled as a whole (denoted LA,) or as a composite (denoted LA.). For the
localized action seen as a whole no component actions are shown; the localized action as a
composite, in contrast, reveals component actions and possibly their order.

A working object seen as a composite (denoted W) describes a system’s construction by
a number of component working objects W,,W,,.. seen as a whole and a joint action JA or a
distributed action DA. We formalize it as follows:

W, =(W,.., JA);

W, = (W,,.., DA)

JA and DA can be modeled as a whole (denoted JA,,, DA,,) or as a composite (denoted JA.,
DA,).

A working object in SEAM is represented by a set in a set-theoretical interpretation (Table
4-1). However, this working object is so precisely defined that often it explicitly refers to
only one instance in the reality — the company, the IT system, the IT application, etc.
Therefore, we are able to reason on the instance level using the notion of sets. In the text, we
often use the term *working object’ and omit the word ‘instance’ to refer to the system of
interest.

Working objects, representing components (components of components and so on) of this
working object may have an arbitrary number of instances (elements of the same set). A
number of instances for each of component working objects is specified by a multiplicity
constraint of aworking object composition relation.

42)

4.3.2 Property and State
SEAM property P is specified in FOL as a set whose elements are instances of this

property.
A state X of aworking object seen as a whole is defined by a tuple of state variables:
V=(p,. P,) 4.3

The dae is computed by assgning state variables to vaues in the doman D, Components
Py s Pum t Bies Poyoees Po - Py @€ instances of properties this working object hosts; D; is an
interpretation domain of a working object. D, is a non-empty set of values of property
instances p, ,.., p,, - | Di| denotes the cardinality of D,

To compute the state X e X of the worki ng object W means to interpret V on D, , i.e. to
map Py, Py 10 their valuesin Dy ;

The assignment oy maps variables p,, .., p,, to elements of D :

a, {p, —1L.,p, —'Smith’,.., p,, > true} (4.9

Using the assignment, we denote the state X as follows:

52

? = State(Prys-es pnm) = (a| [p11] 1 O [pnm]) (4.5)

To model an interaction of working objects with the environment, we specify input
parameters |,,..,1, and output parametersO,,..,O,. Property instances pi;,.., Ppys INPULS
i1, --in,, and outputs o, ..0,, are state variables of aworking object:

V =(Py s Pry sl ey 0y 0,0y) (4.6)

A statespace of aworking object defines all possible interpretations of V in D,.

A state X of a working object seen as a composite is a tupIeY:(Yl,..,Yk) whose
components are states of (instances of) component working objects.

We distinguish primitive and compound properties in SEAM (Fig. 4-4). Each instance of
a primitive property has a value, which is a single element of its interpretation domain. This
value is a state of this instance:

In Fig. 4-4(a), a property Ageis a primitive property (a subset of integers {0..200}). Here
aAge specifies an instance of the property Age and has a value in the range 0..200. We can
write: state(a) € {0..200} . {0..200} isthe interpretation domain of the property Age.

e
1|addr

Tla i Address

Age
<0..200> 1s 1
n

(a) Street Number
<String[30]> <1..200>

(b)

Figure 4-4: a) a primitive property; b) acompound property with two references on primitive properties.

Interpretation domain D, of a compound property is defined by a Cartesian product of
interpretation domains of its component properties and propertiesit refersto:

A compound property Address in Fig. 4-4(b) references two primitive properties. s. Street
and n:Number. A par (sn) defines a state of addr:Address. We write
state(addr) = state(addr.s,addr.n) e Sreet x Number , which is equivalent to:
state(addr) e String[30] x{1..200}

Host relations, property associations and property compositions are defined in SEAM as
SEAM relations with multiplicities based on relation-partition algebra [41] and a theory of
multi-relations [40]. To specify the cardinality of a host relation, property association, or
property composition relation, a multiplicity expression is used.

4.3.3 Host Relations, Property Associations, and Property Compositions

The Relation Partition Algebra (RPA) by Feijs and van Ommering [41] defines part-of and
use relations as special types of binary relations. The theory of multi-relations by Feijs and
Krikhaar [40] defines formalism, suitable for reasoning about relation multiplicities.

53

We combine these theories and formaize: (1) SEAM host relations and property
compositions as part-of relations with multiplicities; (2) SEAM property associations as use
relations with multiplicities.

Multi-relation m(x,y)= n (Fig.4-5(a)), defined in [40], specifies n occurrences of the binary
relation (x,y),where xe X and yeY .

SEAM multi-relations part-of and use (Fig. 4-5(b,c)) between properties P and Q, and P
and T, specify 'relations with multiplicities between elements x:P, y:Q, z:T of corresponding
properties.

Q
P
N1..N2| Xn1,. Xn2
or r..12|211. Ze2
X —n—s y P——=Q P T
(a) (b) Ml X L (c)
ﬁ Xn1 ﬁ ﬁ Zn
1= b >‘ 0 P X< T
Xn “
m(x,y) =n partin{(P,Q) = n usein(P.T) = r1
partsp(P,Q) = n; usesup(PT) =12
ny<ns<n rsrsr

Figure 4-5: SEAM relations with multiplicities. a) binary multi-relation; b) SEAM property composition
represented asa’'part-of’ relation: "Pisapart of Q'. Thisisalso valid for SEAM host relations; ¢) SEAM
property association asa’'use’ relation: 'PusesT’.

SEAM multi-relations part-of and use are defined by a pair of functions:

(part, (P,Q), part,,,(P,Q)) and (use, (P,T),use,,(P,T)), representing cardinalities of
these relations:

vq: Q] part,; (P,Q) <[p:P[(p,q)e part(P,Q)}| < part,, (P,Q);
Vp:Pluse, (P, T) <[t:T[(p,t)e use(P,T)} <use, (P,T)

These functions return an upper (sup) and a lower (inf) bound of an interval:
part,, party,,,usg, ,use,, : PxP — N oo
0< part,; < party, <e;

O<usg; Susg,, <o

A part of relation part(P,Q) can beread as‘Pisapart of Q'; A use relation use(P,T) can
beread as‘PusesT’; here P, Q, T are SEAM properties.

Spect Spec2
* @‘OHM”XLXWE 0..Mj[t1..tus
7,,M|y7..YM 1..M|X1..XM O_,M2|y7,_yM2 T

(a) (b)

(4.7)

(4.8)

Figure 4-6: SEAM relations annotated with multiplicity and instance expressions. a) A host relation and
a property composition modeled as part-of relations; b) A property association modeled as use relation;
c) Well-formedness of host and property composition relations. T,W,Q are free floating properties.

Figure 4-6-aillustrates a property composition between P and Q modeled as a part-of
relation:

part,, (P,Q) =0, part,,(P,Q) =M, 4.9)
Eq. (4.9) can be read asfollows: There exist at most M, instances of P for each instance of Q.

X1,..Xm1 Specifies a list of component property names in SEAM. In a set-theoretical
interpretation, Xi,..,Xm1 Specifies alist of names of relations between elements of P and Q.

Property composition relationsin SEAM are functional and cycle-free. Functionality
means that the property P can be a part of, at most, one compound property:

VP,Q,Re P| part,,(P,Q) >0 part,,(P,R) >0 Q=R (4.10)

P isaset of all properties of aworking object.

A property composition relation is cycle-free, i.e. property P cannot be a direct (or
indirect) parent of itself (i.e. there is no path of one or more legs that starts at P and leads
back to P) as defined in [41]:

VPe P| part*(P,P) =@ (4.11)
part” (P, P) isatransitive closure.

We define a transitive closure part*(R,P,) on P as a sequence of elementsQ e P,i=1.n
such that P1 = Q1 and part(Q,,Q,) ..o part(Q,,R,) = part"(R,P,). Symbol ‘<’ denotes a
relation composition; part" (R, R,) isan n-step path from P1 to P2.

Figure 4-6(a) illustrates a SEAM host relation between a working object Specland a
property Q: part,,, (Q) = M; part; (Q) =1 - there exist at most M instances of Q in Soecl.

Similarly to a property composition, a host relation in SEAM isfunctional, i.e. property Q
can be apart of at most one working object.

A maximum and minimum number of instances of property P (denoted Inst, , (P) ,

Inst,;,(P)) in aworking object can be calculated as follows:
Inst,,, (P) = party,(P)+ > party,(P,Q)- party,(Q), party, (P.Q) =) partg,;
n=1

VQeP

Inst;, (P)= part;, (P)+ Z parti;f (P,.Q)- part (Q), parti;f (P,Q) = i parti?\f

VQeP n=1
(4.12)

An association between properties P and T specifies the fact that the property P
references (uses) property T. Figure 4-6-b illustrates an association between properties P and
T modeled as a use relation: part,, (P,T) =M,; part,, (P,T) =0- there exist at most M
referenceson T for each instance of P.

A property association relation is non-functional, i.e property T can be referenced by
multiple compound properties:

T,P,P'e P|P# P'ause, (P, T) > 0Ause, (P, T) >0 (4.13)

A property association relation can be cyclic, i.e property T can be referenced by itself:
dTePluse’ (T, T) 2D (4.14)

55

A maximum number of referencesto T in the working object (denoted Refux(P)):
Re f (T) = max(Inst,, (R) - Usey,, (R, T)) (4.15)

P; isaproperty that referencesT.

Specification Consistency

Example 4.2: Specification illustrated in Fig. 4-6 (b) defines a working object with
properties P and T where each instance of P refers some instances of T. We can calculate how
many instances of T can be demanded by a system as Refnx(T) = M x M, . The maximum

number of instances of T is INStma(T)=M1
If M1 < M xM, - we have an insufficient declaration of T that cannot cover its demand.

Typically, this problem is a subject of dynamic testing; however, based on the proposed
formalism, insufficient instance declaration can be detected during the static analysis, prior to
code generation and execution.

We formulate the following criterion of specification consistency.

Definition 4.1.
A specification of aworking object as awhole is consistent if:
= al host relations and property compositions are functional and cycle-free;
= instance declaration of all propertiesis sufficient (coversits potential demand):

JPe P|Ref,.(P)<Inst_ (P)

Specification consistency is a part of the static semantic of the model; it can be aso included
into the well-formedness rules for the SEAM models”.

434 Action

A behavior of aworking object is represented in a SEAM diagram by an action A that can be
modeled as a whole (denoted A,,) or as a composite (denoted A.). In this section we provide a
genera formaism for actions in SEAM. Specific action types (localized, joint, and
distributed actions) are discussed in the following sections.

Action asa Whole
Action A seen asawhole (Ay) isatuple(A,,, A, A, Ayg. |,0) . I and O denote input and

output parameters of action A. These parameters specify the information entering and leaving
the working object during the action execution. | and O belong to the set of state variables V
of the working object. Postcondition A, isacondition that aworking object meets after the

action termination. Precondition A, specifies a condition that must hold prior to the action
execution: If A is started in a state satisfying A, it is guaranteed to terminate in a state
satisfying A

Precondition and postcondition ae modded as predicates over dae Space X
A,e X —{true falsg,
A 1 ZXZ —{true, falsg

re?

(4.16)

% Static semantics of SEAM, including a definition of well-formedness rules for SEAM modelsis addressed in
the Ph.D thesis of Lam-Son Le [tbd].

56

A precondition of the action A specifies a set of states of a working object, where A can be
triggered. A postcondition of the action A defines a relation between the states of a working
object before and after this action respectively.

Invariant A, is a condition that holds before, after, and during the action execution. It

constraints action pre-states, post-states, and intermediate states. Fig. 4-7 illustrates how
action precondition, postcondition and invariant constraints the state space of a working
object. The region labeled Ay is the set of states that satisfy the action precondition; the
region labeled Apoy is the set of states of the action A, where the postcondition holds; the
region labeled Ain, is the set of states, which includes pre-states, post-states, and possible
intermediate states of A.

x

=

Figure 4-7: Representation of an action precondition, postcondition, and invariant as constraints over the
state space .

Any dtate of aworking object must satisfy its global invariantsS,,, . Invariants are formalized as
predicates over State spaceX :

S A, X —{true, false} (4.17)

Action A defines atransition of the working object from state X to state X' (pre-state and post-
date respectively). Action semanticsis provided by an FOL-formulaA: £ x X — {true, false} . We
specify the SEAM action using logical implication between precondition and postcondition:

__ __ def S -

A(X, X') = AL (X) = A (X, XY) (4.18)
If at a given state X the precondition A Of the action A holds, then the working object will be
tranderredto agtate X', for which the postcondition of A- A, - holds.

For actionswith invariantswe write
def

A, X = S (X) A A (X) A Ao (X) 2 A (X, X') A AL (X) A S, (XY (4.19)
If at a given state X the precondition Aye of the action A, and theinvariants S, A,,, hold, then the
working object will be transferred to a state X', for which the postcondittion A« and invariants

Snv ' Anv hold.

Action specifications often contain frame conditions. These conditions are originated from the
frame problem of declarative specifications [14]: This problem appears when more than one
implementation of the specification corresponds to its contract. Frame conditions congtrain the
number of such possible implementations by specifying the variables that are supposed to remain
‘unchanged' during the action execution. We consder frame conditionsin SEAM as apecid case of
action pogtconditions, as they must hold upon the action termination. We conjoin a frame

condition A™™ (X, X')with a postcondition to obtain the following action specification:

S7

def

AKX = S, (X) A Ay (X) A& Agg (X) = A (X, X7) A AT (X, X) A A (X) A Sy (X)
(4.20)

If the action is specified by input parameters | and output parameters O, then we specify the action as

follows
def

ACX, X 1,0) = AL (X, 1) = A (X,1,X",0) (4.21)

Here action postcondition relates pre-state, post-state, input, and output parameters of the
action.

If at a given state X the working object receives an input | such as the precondition Ay Of the
action A holds, then the working object will be transferred to a state X' and generate an output O,
for which the postconditionof A- A - holds.

Action input and output parameters can be considered asdate vaiaoles.
Notethet if the precondition does not hold —the post state X'is arbitrary.

In EQ. (4.21) we consider input | and output O as parts of the observable external behavior
(i.e. the input is received in the pre-state and is necessary to trigger the action; the output is
produced in the post-state). Note that thisis not aways a case: inputs and outputs can make a
part of the internal (not necessarily observable) action behavior, i.e. they may appear in the
intermediate action states.

Successful Action

Action spedificationsin Eq. (4.18) - (4.21) are defined as predicates that evaduate as ‘fase only when
the state trangition isincorrect, i.e. when X satisfies Aye, but X' does not satisfies A, - Therefore,
such predicate evauates to ‘true not only when the action makes a correct Sate trangtion, but aso
when Ayeisnot satisfied (i.e. no action is executed).

Now we specify apredicate that evaluates to 'true' if the action executes and makes a correct
transition and as 'false’ otherwise. We call this predicate a successful action specification. An
action is successful if its precondition holds and its postcondition realizes. We write the
expression for successful action from Eq.(4.17) asfollows:

__ __ def _ -
A=K, X)) = AL(X) A AKX, XY) (4.22)
Eq. (4.22) isequivaentto A, (X) A A, (X, X")

Update Statement

In Eq.(4.18)-(4.21) partial action specifications are defined: these specifications do not show
how the transition from a pre-state to a post-state is carried out. This transition can be
explicitly specified using an update statement (or statements).

Example 4.3: An action contract defined by a triple (precondition, invariant, postcondition)
can be implemented in many ways. Let us consider aworking object W having a property x: Int
(Fig. 4-8). We define an action A:IntxInt —{true, false} with the following contract:

(Aye:X<0; true, A, :X>x). Hereand later in the text we denote by x, y, z,... values of

variables before the action execution and, respectively, by x', y', Z,... values of the same
variables after execution of an action.

post

58

W w ?1 X

X
<Int>

Pre: x>0 Post: x'>x

Figure 4-8: Working object W seen asa whole with alocalized action A and its contract: (x>0, true, X’ >x).
Action invariant isnot specified, i.e. A;,, =true.

An action contract spedifies thet starting at a pre-date, where x<0, the action A switches the Sate of
the sysem such that in a post-date X' >x. *

We write the action specification where the transition from the pre-state X = state(X) = x to the post-
state X' =state(x) = X’ isexplicit: A, (x) = (X'= A, (X)) A Apg (%, X))

Ay isan update satement. All the update statements below can correctly specify atrangtion from
Xto X':
Ti=-X
X+1
-X+2

X X X

We aéfine an update statement as a function that explicitly specifies how the state of a
working object is switched during the action: A, (X — X

We distinguish two types of update statements. assignments and assumptions. An
assignment update binds a variable to a (new) value: v := s; An assumption update specifies a
condition that, if holds, guarantees that some formulaF is satisfied: if cthen F.

An action specification with an update statement is written as follows:

__ ___ def __ _ . I JR—
ACX, X) = VX | Ay (X) = @XT(X'= A (X)) A Aye (X, X)) (4.23)
For functional updates we can also write:

__ ___ def __ _ P —
AX, X) = VX | Aye(X) = A (X, A (X)) (4.24)
Eq. (4.23)-(4.24) specifiesthat If at a given state X the precondition Ay Of the action A holds, then
the working object will be tranderred to a state X'= A, (X), for which the postcondition of A -
A, - holds.

Weakest Precondition and Hoare Triple
We can specify Dijkstra's Weakest Precondition [18] for the action A. The weakest
precondition of an action A (denoted wp(A,4, A,)) defines aset of states, such that when the

action A is started on a state X satisfying WP(A,:A,), and the update statement A, is
executed on X to produce the state X', then X'meets the action postcondition A [18].
Thisisillustrated in Fig. 4-9: The region labelled A isthe set of states that satisfy action
postcondition; the region labelled wp(A ., A,) is the set of states of the working object that

satisfy the weakest precondition. Every state X on which the execution of the update
statement A, leadsto astate X' inthe A region must be in the wp(A 4, A,) region. This

is the reason the precondition wp(A,4,A,) is caled weakest. By definition, any other

59

precondition can only reduce the set of states X on which the execution of the update
statement A, leadsto A, being satisfied.

Wp(Apost ;Au)

Figure 4-9: Weakest precondition

For a sequence of update statements A, ;..;A, (operator ;' denotes the sequential
composition) we denote the weakest precondition aswp(A,g, A, ;- A,)- For the action
postcondition A, to hold after executing the sequence of update statements A, ;..; A, , the

weakest precondition must hold on an initial state of A. This weakest precondition defines the
set of states X, asfollows:

WO(Aps A, 15 A,) = WRWP(Ae A,) A A,) (4.25)
The postcondition A, holds if it holds after the last update statement. The weakest

post
precondition WP(A,s, A,) = A "‘can be considered as a postcondition of a
sequence A, ;..; A, | of update statements.

The verification condition for the sequence of update statementsis:

Ave > WP(Apg, Ao AL) (4.26)

The vdidity of this condition implies that when the precondition Ay holds, then after the

execution of the sequence of updates of A, the postcondition Ay holds.
This verification condition is denoted by the Hoare Triple [18]:

Ae A, A e | (427)
Example 4.4: Consider Example 4.3 with the contract: A, =x<0; A, =X>x and the
update statement A, : X’ 1= -X.

We write the verification condition from (4.27):

{x < O}x":= —x{x'> x}:

X< 00— wp(X'> X, X'==X);

We compute this as follows:

wp(X'> X, X''=—X)
< —X > X - by substituting X' with its assignment X':=—X;
S X< —X;

Weobtain: x<0— x<—x, whichisvalid.

A specification that defines a contract (precondition, invariant, postcondition) and omits
update statements is called partial. A specification that defines severa update statements and
the order of their execution is caled imperative. Update statements (and their order) can be
considered as an implementation of an action contract.

60

Preconditions, postconditions, update statements, and invariants relae actions and properties of a
working object. In SEAM graphica specifications, preconditions, postconditions, and update
satements are modeled using action-property reationswith annotations.

Action asa Composite

The action A seen as a composite (denoted Ac) is a tuple(A,,, Ayes AL Asrn AL ALg) -
This action specification is a detailed specification of a corresponding action seen as awhole
- Av. A A,..,Aare component actions of Ac .These actions make the action structure

explicit. (Recall that in A, only the external behavior, specified by the action contract, is
visible.) In the next chapter we consider the action, modeled as a composite, as a refinement
of the same action, modeled as awhole.

A can be specified declaratively, or imperatively. A declarative specification shows the
effect of the action application — a transition from a pre-state to a post-state. It conceals the
intermediate states and omits the specification of a control flow - the order of component
actions occurrence. An imperative specification reveals the intermediate states resulted from
ordered execution of component actions. An action control flow is modeled in SEAM using
action-action relations.

Ac isat-ary predicate p applied to the set of component actions A;.. A
O
A X) = p(ALL A) (4.28)

We call p the ordering function. If an action as a composite is modeled declaratively, then
the ordering function p is not specified, i.e. al combinations of component actions are
possible. We express such an action as follows:

— __ def
A(X,X") = JAO.0A (4.29)
o
Here O stands for some ordering between two component actions. The specification in EQ.
(4.29) is difficult to formulate for many component actions and different ordering types.

If component actionsin Eq. (4.29) operate on digoint states (i.e. do not affect each other),
these actions are called independent.

Actions Aq..A; are independent if and only if for each state variable p;; of aworking object
there is at most one component action Ay 1<k <t that modifies this state variable during the
execution of A .

Independent component actions A;..A; can be executed in paralédl. In this case, the action
seen as a composite will be expressed as a conjunction of its component actions:

_ __ def
AXY=AALAA (4.30)
Here il the component actions make a transition from the same pre-state X to the same post-
state X':
— __ def _ -
AX, XY = AX,X) Ana AKX, X) (4.31)

For an action, modeled imperatively, we specify the intermediate states X;,.., X, , and
obtain the following formula:

61

AKX) = 3%, X AKX A A K, X) (4.32)

In Eq.(4.32) specification of intermediate states defines the order in which the component
actions will be executed. This means that the execution of some action A (X j, X«) switches

the state of a working object and enables other action(s) A , for which a precondition at Xk
holds: VA [A (X«).

4.3.5 Action-to-Property (AP-) relations

Action to property (AP-) relations in SEAM diagrams are used for the explicit modeling of
action contracts and update statements. AP-relations in SEAM diagrams are annotated with
the corresponding expressions (the graphical notation for AP-relations was defined in section
3.4.5).

The expressions for preconditions, invariants, and postconditions are logical expressions
(predicates). We use the Alloy syntax [59] for these expressions in SEAM diagrams. For
further validation and refinement verification, we define the mapping rules for the trandlating
SEAM specifications to Alloy specifications (these rules are presented in Chapter 6). Thus,
using the Alloy specification language in graphical specifications facilitates these mapping

rules.

Table 4-1 lists the Alloy constructs used for annotating SEAM AP-relations.

Table4-1
Alloy expression | SEAM
al aX|F Quantification over property instances. It expresses the following:
no a:X |F ‘“for * instances of aproperty X F holds'. Here * means:
some a X |F al —‘all’;
lone a:X|F no-—‘'no’;
oneaX|F some —‘at least one’;
lone —‘at most on€e’;
one — ‘exactly on€e’;
F here is a logical expression that usually includes instances of X. For example we
write: al p:Person | (p.age>0)
F1||F2 Logical disunction or ‘inclusive or’. Specifiesthat either F1 or F2 or both are satisfied;
Flor F2
F=>. Logical implication. Is used for guarder update specification: ‘if Fthen ...”, or ‘If F
F=>.ese.. then .. else ..
F1&& F2 Logical conjunction. Specifies that both F1 and F2 are satisfied;
F1 and F2
IF Negation. Specifies that F must not hold.
AinX A:X Subset. Specifies that a property instance (or group of instances) A belongs to (or does
AlinX not belong to) a set defined by a property X.
=< > Operations of comparison: ‘equal to', ‘less then’, ‘greater then’, ‘less or equal’, ‘greater
<= >=l= or equa’, ‘not equal’
+ - Algebraic operations

For update statements, we use expressions written in Java language.

Example 4.5: Consider the action SellProduct specified as illustrated in Fig. 4-10. The
expression: [one p:Product | p.id = requested ID] is a selection of a property instance that
will be updated by the action. Here, it is a selection of a product with a given id from the set
of products.

62

An update statement expressed as an assignment p.quantity’ :=p.quantity - 1 defines how the
selected instance will be modified by the action. Here, the quantity of a selected product will

be reduced by 1.
ID
ﬂ

Product @——= Quantity

& 1|quantity
U:[one p:Product | p.id = requested_ID]
p.quantity’:=p.quantity-1
ProductID
\ <IN>

[SellProduct]/ 1|requested
ID

Figure 4-10: Update statement expressed as a selection condition followed by the assignment expression.

4.3.6 Action-to-Action (AA-) relations

Action-to-action (AA-) rdaions in SEAM connect component actions and define their order of
execution. SEAM specifies AA - rdations using a subset of graphica dements defined in Business
Process Modding Notation (BPMN) [78]. AA- rdaions defined in SEAM are:

Sart

End

Trangtion

Conditiond trangtion

Fork (AND, OR, XOR)

Merge (AND, OR, XOR)

Forking and merging of a control flow are defined usng BPMN data-based or event-based gateways.

The semantics of SEAM action-action relaiions can be expressed using combinations of logicd
connectives.

- ‘7A’ -anegation ‘not A’;

- ‘Aiv Ay -adigunction ‘A or Ay

- ‘Ai1AAJ-aconjunction ‘Ajand Ay,

- ‘A;—>A-animplication ‘A impliesA;’.

The graphical notation of SEAM AA-relations is presented in Table 3-3 of the previous
chapter; FOL semantics for these relations is presented in Table 4-2.

An AA-reation is specified by apair (src, dst), where src is a source action(s) of this rdation and
dst isits dedtination action(s).

A Sart relation defines an entry point for an activity (a sequence of component actions, specified
for some actions seen as a composite, Hg. 4-11); it has no src action. A destination action of a Start
relation is the action, which will be executed firg. This action is rdated to a parent action as

follows A, (X) > A_(X);

pre

63

Star((d< Transition(src, dst) End(src)

o6 @0

|

Sequence of actions
Figure 4-11: AA-relations

An End rdation specifies a terminating point for a sequence of actions; it has no dst. A source
action A, of the End rdation illugrated in Fig. 4-10 is rdated to a parent action as follows

A, (Xn, X) > A (X, X');

Table 4-2: FOL-Semanticsof AA-relationsin SEAM

SEAM FOL:
Start(A1) A (X, X1)...
End(A1) A (X1, XY
Transition(A1,A2) X2 | A_(Yl,YZ) A AZ(YZ,Y3)..

Conditional Transition — — — — — _—
(ALA2,C) IX2 | A(X1, X2) AC(X2) = A(X2, X3)..

Conditional Transition X | A(X1, X2) A ((C(Yz) - AZ(Yz,Ya))v (—C(Yz) - AS(Yz,Yz;)))
(AL{A2,A3},C)

AndFork(A1{A2,A3}) X | A(Yl,Yﬂ A (A2 (Yz,?s) A A3(Y2,Y4))

AndMerge({A1,A2} A3) | 3Xs|(A (X1, X3) A A (X2, X3)) A A(Xs, X4)

X2, X3, Xs |(AL(Y1,Y2) A A&(Yz,?:ﬂ)\/
OrFork(ALIAZAZ) | (A(Xa, Xs) A A(Xs, X))V (A (K Xs) A A (X, X7) A A (Ko, X))

X3, X4, X7 | (A(Yl,YS) A %(Ys,?s))\/

OMEGHALAZAT 1 (6 (R Xa) n AKX s, Xe)v (A (KL Xo) A A (K2, X7) A A7, X))

X (A X1, X2) A=A, (X2) A A(X2, Xa) v

XOrFork (A1{A2,A3 . _ .
rrork (AL 2 (Al(Xl,Xz)/\ﬁAzpre(Xz)/\A_,)(Xz,Xs))

X2, X4 | (A(Yl,YZ) AA(X2, Xs) A —A (Y4))v

HOMEGHALATAD (K0, K) 4 ALK, Ko) -y (X2))

SEAM transition relation specifies a sequential composition of actions, when after the
termination of one action, another action is triggered. We formalize a transition from action
A; to action A, as a conjunction of predicates specifying actions:

IX2 | Aﬁ_(?l,YZ) A Az(Yz,Ys) (4.33)

here X.is an intermediate state between A; and Ay; it is a post-state of A; and a pre-state of
Ao

Using Eg. (4.18), we rewrite Eq. (4.33) asfollows:

64

TXz (A (K1) = A gy (X1 X2))2 (8, (X2) = Ay (X2, X)) (4.34)

If update statements A , A, are specified — we write the following expression for action
transition:

X2 (Ao (X2) > A o (X1, Ay (X)) (g (X2) = Ay o (X2, AL (X2))) 1 (A (X2) = X2)

(4.35)
Recall the discussion about successful action specification: the expression for action
transition in Eq. (4.34)-(4.35) will be evaluated to ‘true’ even if one of its actions is not

successful (i.e. when A_Lpre(Yl) ='false' or A, (X,) ='false'). We cdl a transition
successful when the preconditions of both A; and A, are satisfied:
IX2 [AL (X)) A AKX, X2) A A (X2) A A (X2, X3) (4.36)

pre

SEAM conditional transition relation specifies a sequential composition of actions A; and Ay,
assuming that a condition C holds:

IX2 | A(X1, X2) AC(X2) = A(X2, X3) (4.37)
Notethat if C does not hold, then the transition results in an arbitrary state.

By analogy with the successful transition in Eq.(4.36), we write the successful conditional
transition:

3Xz2 | AL (X)) A A(X1, X2) AC(X2) A A (X2) A A(Xz2, X5) (4.38)

A conditional transition can be specified as an ‘exclusive OR’ - XOR fork. This means that if
C holds, then action A; istriggered, else action Agistriggered:

3?2 | AL(YLYQ A ((C(Yz) — AZ(Yz,Ys))\/ (—|C(Y2) — AS(Y2,Y4))) (439)

A fork relation in SEAM specifies a split of the control flow, when after a termination of
an action, severa actions can be triggered. A fork relation has one source action (src) and a
set of destination actions (dst).

A merge relation in SEAM is the opposite of the fork relation. It specifies a join of
different branches in the control flow, when several actions should terminate before another
action is triggered. A merge relation can be used for modeling synchronization or
concurrency. This relation is specified with a set of source actions (src) and one destination
action (dst).

We distinguish AND (paralel), OR (inclusive OR), and XOR (exclusive OR) fork and
merge relationsin SEAM.
AND fork defines a parallel execution of a set of actions, specified in adst parameter.
AND merge stands for synchronization: all the actions specified in a src parameter of AND
merge relation must terminate at the same post-state;
OR fork specifies a nondeterministic performance: any combination of actions from the dst
set can be triggered. As a result, severa different traces of intermediate states can be
produced;
OR merge specifies a concurrency.
XOR fork and XOR merge are exclusive choices, when only one action from the dst set (the
src set for merge) executes.

65

We use logica connectives and their combinations to connect component actions within a parent
action seen as acompodte. Thisis shown in Table 4-2. This table complements Table 3-3 where the
visud SEAM syntax of AA-rdationsis presented.

4.3.7 Distributed Action and Distributed to Localized Action (DAL A-) Relations
In contrast to SEAM localized and joint actions, a distributed action does not affect the
properties of a working object directly. It specifies an interaction between component
working objects and an invocation of the localized actions of these component working
objects:

— _— def
DA(X, X') = p,(LA,,..,LA) (4.40)
Distributed action does not specify its own precondition, postcondition, and invariants.

If a distributed action is modeled declaratively, then the ordering function pq is not
specified, i.e. localized actions can be triggered in any order:

DA(X, X) z | JLAO.OLA, (4.41)

Here O stands for some ordering between two localized actions. Eq. (4.41) specifies all
possible combinations of action invocations.

If localized actions in Eq. (4.41) operate on digoint states (i.e. do not affect each other),
these actions are independent and can be executed in paralel. We represent a declarative
specification of adistributed action by a conjunction of these localized actions:

DA(X, X") z LA (X, X") A.. A LA (X, X") (4.42)
Here al localized actions make a transition from the same pre-state X to the same post-
state X'

For a distributed action, modeled imperatively, we specify the intermediate states
Zm and obtain the following formula:

DACX, X') = 3, X o2 | LA (K, X)) A A LA (X2, X0) (4.43)

We use distributed-to-localized action relations (DALA-relations) in SEAM diagrams to
specify the localized actions, bound by a given distributed action, and their order of
invocation.

In the next chapter, we consider a distributed action of a working object seen as a
composite as arefinement of alocalized action of the same working object seen as awhole.

4.4 Imperative vs. Declarative Specifications

A declarative action specification defines a single transition of a working object from a pre-
state to a post-state and does not show the intermediate states.

An imperative specification of an action introduces the ordered set of the intermediate
states for this action. Each intermediate state may correspond to:

- apost-state of some component action (for an action as a composite);

- apost-state of alocalized action executed as a part of adistributed action;

- an update of asingle property (for alocalized or ajoint actions as awhole).

66

A (X, X") z X4, Xy € ZIA X, Xg) A A A (X, X) (4.44)

Here Xu,.., X: present intermediate states. Each intermediate state can be associated with
atime t during specification simulation. By this, actions can be ordered. For example, let the
intermediate state X, be a post state of an action A (X, X4), and a pre-state of an action

A (X4, Xy) . Herewe say that A; precedes A.. If X, isapre- state of two actions A, A, then

both of these actions are available at X, and can be executed in parallél.

Imperative action specifications are useful when simulation and dynamic verification
(testing) is required. A specification simulation usually involves a trandation to some
imperative language (e.g. Java).

4.5 Instance Creation and Deletion: Local Variables

The creation and deletion of an instance of a component working object, a property, or a
reference to a property can be seen as a part of a dynamic behavior of a system. To create a
new instance means to specify a binding between an instance name and a value in its
interpretation domain. New instance name is a name, defined by the instance expression and
not yet allocated to any other instance. Instance del etion respectively rel eases this binding.

W80 st W ¥ o istp \
P P \
1 |neWP 0 SMcurrent S w
Post: one newP | 1newP
(newP lin listP) && Post:
(newP in I/ISl‘F’) CreateP Mouront = Mogmont + 1
]

(a) (b)

Figure 4-12: a) Creation of a new element in alist using a local variable; b) Creation of an element
modifies an instance counter M gy rent

Figure 4-12(a) illustrates a creation of a new instance of a property P in alist listP. listP
specifies an ordered set of instances of P; each instance can be addressed by its position in a
list, for example listP[1]. Instance creation is carried out using a local variable newP. This
local variable exists only during the execution of CreateP: thisis shown (1) graphically - by a
relation with a black diamond between the action CreateP and the property P; (2) using a
quantification ‘one newP’ (thisis equivaent to dnewP), which islocal to the action.

The result of an action CreateP, expressed by its postcondition specifies that a local
variable newP is not in listP and it isin listP’. Here listP and listP’ define the state of a
system before and after the action CreateP, respectively.

In the specification of a postcondition, we use the Alloy notation: operator ‘in’ is a binary
predicate that returns ‘true’ if aleft hand side of this operator is a subset of right hand side of
it. The notation newP in listP is equivalent to newP c listP; quantifier ‘one’ is an existential

quantifier: one newP which is equivalent to InewP.

In SEAM specifications, creation or deletion operations also modify a current number
Mecurrent Of instances of a given object. This number is usually restricted by a multiplicity
expression (Fig. 4-12 (b)). Mcurent Can be seen as an instance counter. Its minimum and

67

maximum values are defined by a multiplicity constraint. For the model in Fig. 4-12 it is:
0< M, <o Thefact that the instance newP becomes an (M curen+1)™ element in the listP

—i.e. increases the instance counter value by 1 - isnot explicit in Fig. 4-12 (a).

The deletion of an instance can be specified in a similar way (Fig. 4-13). To delete an
instance that corresponds to a certain condition c:

(1) We specify alocal variable oldP: one oldP | c(oldP)

(2) We state that such avariable existsin listP but does not exist in listP’.
Here listP and listP define the state of a system before and after the action DeleteP
respectively.

Instance deletion decreases the instance counter value by 1.

W ¥ o st W ¥ o iistp \
p p \
1 |0|dP 0< M urrens < O
Post: one oldP | 10ldP
c(oldP) && .
(oldP in listP) && | DeleteP DeleteP ‘A'fsf- oy
(oldP lin listP’) Vlcurrent = Meurrent -

(a) (b)
Figure 4-13: a) Deletion of an ‘old’ element from thelist; b) Deletion of an element modifies an instance
counter My rent

68

Chapter 5

Transformations of Refinement in SEAM and
Refinement Verification

To reason about alignment between SEAM visual specifications, we identify the relationships
between these specifications with a transformation of refinement as defined in Model-Driven
Engineering (MDE). As MDE does not provide a formal notion of correctness for these
transformations, it is challenging to specify a verification procedure for them.

Refinement and refactoring are also defined in software engineering; they specify the
transformations of programs. Compared to MDE, refinement correctness in software
engineering is formally defined and can be validated using forma methods.

Formal semantics for visual specification increases the precision of these specifications.
Based on this, we can specify the criteria of refinement correctness for visual specifications
by an analogy with refinement correctness, defined for programs.

In software engineering, formal methods allow us to formulate a refinement correctness of
a program as a first-order logic formula and to validate this formula. Along these lines, we
represent SEAM visual specifications and relationships between them as first-order logic
formulas and reduce the problem of refinement verification to a problem of validation of the
first-order logic formula.

In Section 5.1 we discuss the transformations of refinement and refactoring. In Section 5.2
we make an overview of simulation techniques for refinement verification. We present in
more details data refinement [51], forward simulation as a method to prove its correctness,
and ASM refinement method [16] based on generalized forward simulation.

Modification, creation, or deletion of model elements in a diagram leads to a specification
refinement. In sections 5.3 — 5.7 we specify different forms of refinement in SEAM. We
formulate the criteria of correctness for each form of refinement in terms of forward
simulation (as defined in [51][27][112]) or in terms of generalized forward simulation (as
defined in [16]).

5.1 Refinement vs. Refactoring

In software engineering, a technique for transforming an existing code (its internal structure)
without changing its externa behavior is known as refactoring [42][69].
We specify the external behaviour of a system, executing an action A, as a pair of system

states X, X' before and after the execution of A. Refactoring preserves this pair for each
execution of the action A and its refactoring Areact SUCh that whenever the action Areaer Starts
at X and terminates at X', there exists a corresponding run of the action A, which also
startsat X and terminatesat X'. We formulate this as follows:

69

VX, X'€ | Ao (X, X') = AX, X") (5.1)
Eq. (5.1) isacriterion of refactoring correctness. Various refactoring types are specified in
www.refactoring.org and in the literature. Automated refactoring is supported by a number of

tools and environments for automated software development, such as IDEA by InteliJ,
Eclipse, NetBeans, Visua Studio, etc.

Refinement [111] is a general technique that specifies a stepwise development of the
program by adding details or eiminating nondeterminism. As opposed to refactoring,
refinement can change an observable behavior of a model (including its external behavior),
thus it specifies awider class of transformations than refactoring does (www.refactoring.org).
Adding or removing a field or a method of a class are examples of refinement, but they are
not refactorings.

Refinement can be seen as a transformation which preserves the corresponding external
behavior:

VXe, X '€ 2, Xa€ 2, | Agre (X, X') AR(Xa, Xo) =
HYaIE zinit | A(Ya,?al) A R(YaI,YcI)

Formula (5.2) denotes that whenever the refined action Avefine Starts at X cand terminates at
X', there exists a corresponding run of the action A, which starts at the corresponding state
Xa, rdlatedto X.: by R, andterminates at astate Xa', whichisasoreatedto X' by R.

The initial action specification is also called abstract; respectively, the refined action
specification is called concrete. Therefore, we use indexes ‘a and ‘c’ to specify states of the
abstract and concrete specification in Eq. (5.2).

R is arefinement relation. It defines a relation between observable system states of the
concrete and abstract specifications: R: X xX_ — {true, false} . A refinement relation can be

specified as a function R:X_ — X_that maps each state of the concrete specification to

exactly one state of the abstract specification.
Refactoring can be considered as a specia case of refinement: If a state space of the
concrete (refined) specification is the same as a state space of the abstract (initial)

specification, i.e. £, =X, and R is defined as an identity function: R:VXe Z|R(X)= X,
then the definition of refinement correctness from (5.2) transforms to the definition of
refactoring correctness from (5.1).

In this work, we use program refinement as semantics for al transformations defined for

SEAM specifications. A model development process in SEAM can be also considered as a
stepwise refinement of graphical specifications [96].

(5.2)

5.2 Simulation Techniques: the State of the Art

The verification of concurrent systems is largely based on the use of simulation techniques
[65]. By simulation we understand a correspondence between the states of two systems,
abstract and concrete; here the concrete system is considered an implementation and the
abstract system is its specification. The simulation proof is based on the establishing of this
correspondence. The fact that a simulation exists between two systems shows that any
behavior of one system can be exhibited (simulated) by the other system.

Along these lines, we consider two visual system specifications, where one is refining the
other. The refinement correctness can thus be verified. The proof of refinement correctnessis
based on the establishing of a refinement relation between the abstract and concrete system
specifications, and on the demonstration that this relation isa simulation.

70

A large number of different types of simulations is presented in the research literature; we
consider only severa of them: forward simulations, backward simulations, hybrid
simulations (i.e. forward-backward and backward-forward simulations) [65][112][50],
refinement mappings [1], and the proof method called generalized forward simulation
[16][98].

Here we illustrate how different ssimulations can be used to verify data refinement. In
software engineering, data refinement is a specia case of refinement where one data type in
program is refined by the other. Later we show that many forms of refinement in SEAM can
be also considered as data refinements. Thus, the simulation techniques for the verification of
data refinement (e.g. forward simulation) can be used to verify certain forms of refinement in
SEAM.

Data refinement. A data type X can be defined by a state space ¥ and an indexed
collection of operationso : X — Z,i : 1 . Where | isan indexing set.

A program P(X) on data type X can be seen as a sequence of operations from the indexed
set performed on X. In data refinement, we replace an abstract data type by a more concrete
data type in a program while preserving its algorithmic structure. Abstract operations are
similarly replaced by corresponding concrete operations [72].

Simulation proof of data refinement correctness is based on forward or backward
simulation (often specified as functional relation). This relation is established for each pair of
corresponding operations. We say that data refinement has a (1-1)-refinement proof schema
To verify that datatype A is a correct refinement of datatype B, values produced at each step
of aprogram'’s execution are considered.

Forward simulation for verification of data refinement:
If datatypes A and B share the same indexing set |, a forward simulation from A to B isa
relation R:X, — X over states of A and B, which satisfies:
- If g€ sart(A), thenR(s)) N start(B) # &, where start(A) c X, start(B) c X; aresets
of initial statesof A and B respectively; here R(s,) defines an image of s,—a start state of
A —on the state space X ;. The expression R(s)) N start(B) # & meansthat some states
inthisimage are dart gaesof B.
- For dl i:l, if an operation 0;a performed on A such that S—,, s and ue R(s), then

thereexigsadae u'e R(s') such that it isaresulting state of the corresponding operation ojg
performed on B: u o, U Expresson S, S denotesatrangtionfromstos inA asa

result of the operation 05, respectively, u o, u'isacorresponding trangtionin B.

The first condition relates respective initial states; the second condition matches the effect
of each step in A with a corresponding forward step in B.

Backward simulation for verification of data refinement:
If datatypes A and B share the same indexing set |, a backward ssmulation from A to B isa

total relation R™: X, — X over states of A and B that satisfies:
- Ifge start(A), thenR (s,) c start(B). Compared to forward smulation, backward
smulaion requiresthat al statesintheimage of g in X, are start states of B;

71

- Fordl i:l, if an operation 05 performed on A such that S—,, sand u'e R (s, then

there exigsadate ue R™(s) such tha it isan initid Sate of the corresponding operation o
performed on B: u o, U

The first condition relates respective initia states; the second condition matches the effect of
each step at A with a corresponding backward step in B.

There are aso cases where a combination of backward and forward simulations is required
(acomplete proof method): A is behavioray equivalent to B if there is some C such that there
exists aforward ssimulation R from A to C and the backward ssmulation R™ from C to B [65].

Forward-backward and backward-forward simulations combine in a single relation both a
forward and a backward simulation. For more details, read [65].

The refinement mappings introduced in [1] are another proof method for refinement
verification. Refinement mapping from a lower level specification S1 to a higher level
specification S2 is defined as a mapping from a state space of Sl to a state space of S2. If S1
implements S2, then by adding auxiliary — history and prophecy - variables to S1 the
existence of a refinement mapping (and subsequently, refinement correctness) can be
guaranteed. The connection between history variables and forward ssimulations and aso
between prophecy variables and backward simulation is shown in [65].

Generalized forward simulation:

The ASM-refinement method [15][16] defines the method of refinement verification based
on forward simulation. The simulation proof specified in [98] is called a generalized
forward ssmulation: it generalizes forward simulations from [65][112] by allowing arbitrary
diagrams, i.e. providing a (m-n)-refinement proof schema.

ASM-refinements are verified using an informa notion of commuting diagrams. Instead
of matching the results of execution of corresponding operations 0ja, Oig - considered in
forward and backward simulation methods for data refinement - ASM splits the programs of
an abstract and a concrete specifications into (finitely or infinitely) many
‘subcomputations (of finite length) and matches the results of these subcomputations. The
idea is to verify that each pair of subcomputations preserves a so-called coupling invariant.
The coupling invariant may be equal to the refinement relation R between specification state
spaces.

5.2.1 Data Refinement with Forward Simulation: (1, 1) - refinement schema

We adopt the notion of data refinement from [51][72][50][101][102] and consider forward
simulation, presented in [50][112] as atechnique to validate refinement correctness.

Definition of refinement correctness
Let us consder a working object W,, specified on the state space X, with an actionA,, and a

working object W, specified onthe state space X, withanaction A, .
Definition 5.1.

Given a refinement relation between state spaces, W is called a correct refinement of W, if
and only if for each run of the R:X_ xZXZ_—{true, false} concrete action A. of W;, which

72

starts at Xce X, and terminates at X, 'c X, there exists a run A of W, which starts at
Xae X, suchthat R(Xa, X,) holdsand terminatesat Xa', such that R(Xa', X,') holds.

This definition can be expressed with the following formula:

R:X, xX, —{true, falsg;

VX, X' € 3, [VXae 3, | (RXa, Xc) A A (Xe, X',))= (53)
X e X, |A(Xa, X',) ARX', X',)

if refinement relationisafunction R: X, — Z_, werewrite (5.3):

R:Z, = ZX2,;

VXe, X' €2, |VXa€Z, | (54)
(ROXe) = Xa) A A(Xe, X'))= X, € Z, [AL(Xa, X,) A (RX,) = Xa))
Thisisequivaent to:

A(Xe,X') = A (R(Xe),R(X',)) (5.5)

Data refinement verification by forward Smulation isreduced to aproof of vaidity of (5.3) - (5.5).

The déta refinement schema for SEAM specifications is illugtrated in Fg. 5-1, where W, is a
concrete pecification and Wj is the abstract specification. A, and A, are concrete and abstract

actions respectively. “ W correctly refines W, means that whenever A, makes a trangtion from
Xcto X'c, A, isadso meking atransition from Xato X'aand these states are related by R as
defined in (5.3)-(5.5).

Xc Ao X'c
w, >0

R R
A —_——— ——)

Xa Aa Xa

Figure5-1: The (1,1)-refinement for SEAM specifications

The proposed forma semantics dlow for avdidation of SEAM specifications as well asavdidation
of thelr refinements (i.e. atrangtion from one specification to ancther).

5.2.2 ASM Refinement: (m,n) — Refinement Schema

Forward smulation for data refinement preserves the corresponding pre- and post- states, the
external behaviour of a working object. We use the definition 5.1 to express the refinement
correctness between two SEAM actions modeled declaratively, where only corresponding
pre- and post- states of these actions are observable. When the analysis of intermediate
action states is required, we use the generalized (m,n)-refinement schema, specified by ASM-
refinement method.

The ASM Refinement Method

In [16][98], the Abstract State Machine (ASM) refinement method is presented. The ASM
refinement method generalises the notion of refinement for an arbitrary number of transitions
(called run segments) between an initia (pre-) and afinal (post-) states of a transition system.

73

We call a refinement schema, defined by this method, an (m,n)-refinement schema. The
number of run segments for an abstract and a concrete system in the (m,n)-refinement schema
can be different. This generalized notion of refinement takes into consideration the
intermediate system states. We use the (m,n)-refinement schema defined by the ASM
refinement method as semantics for refinement between SEAM specifications modeled
imperatively.

The ASM refinement method specifies a run as a sequence of states that starts from the
initial state. Runs can be finite and infinite. A finite run terminates at a fina state after a
number of transitions (run segments) have been performed. Each run segment transits the
system to an intermediate state (respectively, the last segment transits the system to its final
state). A stateisfinal if it has no successor state.

In SEAM, by a run we understand an execution of an action (or a set of actions) by a
working object. It starts at a pre-state, terminates at a post-state, and may include
intermediate states. For a SEAM (localized, joint, or distributed) action seen as a composite
and modeled imperatively, intermediate states are post- and pre- states of component actions;
for a SEAM distributed action modeled imperatively, intermediate states are post- and pre-
states of the localized actions bound by this declarative action.

The ASM refinement method specifies a relation R* between states of interest of an
abstract and a concrete transition systems. States of interest are specification states that we
want to preserve after refinement. They include an initial state, a final state, and a number
(not necessarily all) of intermediate states. these states represent a particular interest in a
specification analysis. We formulate R* for SEAM specifications as a relation between the
states of interest of the abstract and the concrete working objects respectively:

R .2 xX, —{true, falsg ,whereX, c X , X, X, (5.6)

The ASM method gives definitions of partial and total refinement correctness. A partia
correctness is defined for the terminating abstract and refined runs. It stipulates that the
refinement is partialy correct if the terminating refined run produces the same result (with
respect to the relation R*) as the terminating abstract run. It is a weak definition of
correctness because it accepts the possibility of simulating a terminating abstract run by a
non-terminating concrete run. In other terms, if the concrete run is non-terminating, we
cannot reason about the refinement correctness.

A total correctness stipulates that a refinement is [totally] correct with respect to the
relation R* when it is partialy correct and for each non-terminating (infinite) refined run
there exists an infinite abstract run. The generalized forward simulation, presented in [98], is
atechnique for validating a correctness of ASM-refinement.

In this work we assume that al actions specified in SEAM are terminating actions.
Therefore, we provide only a definition of partial refinement correctness for SEAM
specifications. We address in our future work the refinement correctness for possibly infinite
action runs.

Definition of Refinement Correctness

The (m,n)-refinement schema can be considered as a generalized (1,1)-refinement schema
from the previous section. First, we provide a definition of the correct (m,n)-refinement for
SEAM specifications. It preserves the external behavior of a working object, i.e. its pre- and
post-states. Then we proceed with a refinement correctness for (m,n)-refinement that takes
into account the intermediate states (the internal behavior of aworking object).

74

Let us consder aworking objects W,, specified on the state space X, with an action A, , and a
working object W,, specified on the state space £, with an actionA,. =, c X and T, c =, ae
sets of states of interest of corresponding working objects.

Definition 5.2 [preservation of the externd behavior]
Given arefinement relation between states spacesR* : X*_ xX* —{true, false} , W; is called

acorrect refinement of W, if and only if for each run of the concrete action A; of W, which
starts at Xce X*_ and terminates in n steps at X, 'e * , there exists a run Ay of W;, which

Sartsat Xae ¥*_ suchthat R* (Ya,z) holds and after a number of steps m, A, terminates
a Xa' where R* (Ya',Z') holds.

If the intermediate states are not shown, Definition 5.2 corresponds to the Definition 5.1 and
can be expressed by the following formula:

Rr:Z* xX*_ —{true, false};
VX, X' e T* |V Xae =%, | [R* (Xa, Xo) A A (Xe, X',)= (5.7)
X, e 2%, | A (Xa, X',) AR* (X', X',)

Fig. 5-2 illustrates the (m,n)-refinement schema that preserves the external behavior,
adopted for SEAM specifications. W, is a concrete specification and W, is the abdract

specification of a working object. A. and A, are concrete and abstract actions respectively. The
concrete spedification makes n steps from its initid state X cto the find state X', whereas an

abstract specification makes m sepsfrom Xato X'a. Initid and final specifications Sates are re ated
with R*.

Xc Xc_1 Ac Xc_n-1 X'c
. Ot —O0—>o
W.:)
n steps of W
R* / R*
m steps of W '
Wo: Y ST IR Vot
Xa Xa_1 Xa_m-1 Xa
Aa

Figure5-2: The (m,n)-refinement for SEAM specifications: preservation of the external behavior

When a refinement is carried out, the preservation of both external and internal behavior of
the system might be required. By the internal behavior we understand a sequence of
intermediate states of the working object. The following definition specifies the correctness
of the (m,n)-refinement the preserves the sequences of intermediate states.

Definition 5.3 [preservation of the externd and theinterna behavior]
Given arefinement relation between state spacesR* : Z*_ xX* _ —{true, false} , W is called a

correct refinement of W, if and only if for each run of the concrete action A of W, defined
75

by the ordered sequence of states, including the initial and the terminating states:
X X X Xige 2%, |(X, _xc) (X,.,=X"), such that ic iy ... in isa

loc’

monotone sequence of natural numbers there is a run A, of the abstract action of W, also
defined by the ordered ed sequence of states:

X, X, X X, ez (X =Xa)a(X,

in1c

IOa lia Im1a Jma Jma ZYI) wCh th& JO Jl e Jm Isa
monotone sequence of natural numbers and for every k the states of the abstract and concrete

specifications Xkcez* X, . €T%, the refinement relation R*(X X)holds

We write the following formulato express the definition above:
R*:X . xX, —{true, falsg} ;

VYC,YICG Z*c ,Ya (S Za |
((R* (YC’Ya))/\ A (Xec, X')):> X', e ¥, |Aa(Ya,Y'a)/\(R* (X', ,Y'a))/\
Hx_ ,T e |X' IXinceZ*C’xjoalx_ lx—' ez*al (58)

1) hc I ¢ jla’”'x-

S AN I AN ot AN ol AN

lo Joa Ima

(ip <iy <...<ip)A (Jo<11<-<1)

(vk, X, ez*.,X, ez, |R*(X, X,)
Thefirg part of the expresson a Eq.(5.8) deflna arefinement correctness that preserves the externd
behavior as in the definition 5.2. The second part of this expresson specifies the correspondence
between the intermediate states of the abstract and the concrete specification.

Refinement verification by generdized forward smulation is reduced to a proof of vaidity of (5.8)

for the (m-n)-refinement.

Fig. 5-3 illustrates the (m,n)-refinement schemathat preserves the external and the internal
behavior. W, is a concrete specification and W, is the abstract specification of aworking object. A,

and A, are concrete and abstract actions respectively. The concrete specification makes n steps of
interest from itsinitial state Xoc = X cto the final stetexn = X', whereas an abstract specification
makes m steps of interest from Xoa = Xato Xm, = X'a. Statesof interest are related with R*.

Xc. 0 Xc.1 Ac Xe_n
w,: .—».—»\ ::—».’, —». =)—».’,

R* R*. R LR R
W.: &--pC--- =P --“
Xa_0 Xa_1 Xa_2 Xa_m
Aa

Figure 5-3: The (m,n)-refinement for SEAM specifications: preservation of the external and the internal
behavior

76

In SEAM, by a refinement we understand a set of modifications applied to a SEAM visual
specification. The result of a refinement is a transition of the specification to the next
functional or organizational level.

Refinement verification aims at checking that a refined specification (obtained as a result
of arefinement) preserves the external (or the external and the internal) behavior of an initial
specification. This can be done by forward (or generalized forward) ssimulation, using the
refinement schemas defined above.

A refinement verification procedure can be applied under the assumption that both the
initial and the refined specifications are well-formed and consistent. A specification is well-
formed if it conforms to the syntax of a modeling language. Thisis typically controlled by a
modeling tool. A specification consistency is related to its semantics.

5.3 Specification Consistency

Formal semantics provided for visua specifications alow for the validation of the
specification consistency: this analysis can detect overconstrained specifications. A
specification is overconstrained if it contains contradictory preconditions, invariants, or
postconditions. For example, a gspecification with a postcondition

A (X, X") = (x>a) A (X'<a) is inconsistent. This postcondition cannot be satisfied, i.e.
the action A cannot be successfully executed.

In Chapter 4 we define a successful action as an action, whose precondition holds and,
postcondition is satisfied. We denote this action as the first order formula

AZCES (XX A (X) A A(X, X") (5.9)

pre
__ ___ def _ JR—
Eq. (5.9) isequivdent to: A**=(X, X") = A (X) A A (X, X").

If there exists a pair of states (X, X'), such that Eq.(5.9) evaluates to ‘true’, then this
formulais satisfiable. Satisfiability indicates that the specification is not overconstrained.

Underconstrained specifications represent another class of semantically incorrect
specifications. These specifications can be also called ‘incomplete’, as they do not restrict the
unwilling (or meaningless) state transitions. In contrast to overconstrained specifications,
underconstrained specifications cannot be detected automatically. It is a designer who should
guarantee that the specification is adequate and complete.

5.4 Functional and Organizational Refinement in SEAM

Refinement in SEAM specifies a transition of a working object from one hierarchical level
(n) where this working object is called ‘abstract’, to another hierarchical level (n+1) where
more details about the working object construction and/or functionality is provided. This
working object is caled ‘concrete’. We say that the concrete specification refines the
abstract specification. A relation between state spaces of the concrete and the abstract
working objectsis called arefinement relation.

77

SEAM Functional levels SEAM Functional levels

Level i | Level i+1 | | |

3 a b
3 5 ,) -
23 Functiohal Refinement o R L N
QL —— > 3 — AN / AN
—_ [N A = N N
z N z
9 8| “H% 5
8 = e A IS
= Q NG T x N (o]
S o Nidi¥e} c v

— N 7 © —
> (] AN (o2 o
2 % o 3

O . g % O N
=t T = N
< N <
w v c L
[~ @ 7]

~ <

] oy

\4

(a) (b)
Figure 5-4: a) Functional and organizational refinementsin SEAM; b) SEAM hierarchical levelsincrease
from top to bottom (for the organizational levels) and from left to right (for functional levels); any
specification at a higher level must be a correct refinement of any specification at a lower level.

The design process in SEAM is carried along two axes: the organizational level hierarchy
and the functional level hierarchy. Therefore, we define two classes of refinement for SEAM
specifications: afunctiona refinement and an organizational refinement (Fig. 5-4(a)).

The functional refinement in SEAM defines a set of modifications that results in more
precise specification of a behavior of a working object. The term ‘functiona’ refers to a
transition of this working object from one functional level, where some property and/or some
action is presented as a whole, to another functional level, where this property and/or action
is presented as a composite. Functiona refinement can be made by either modifying, or
creating, or eliminating any actions, properties, and relations between them. It isillustrated in
Fig. 5-5-5.7.

The organizational refinement in SEAM defines a set of modifications that resultsin a
more precise specification of a construction of a working object. The term ‘organizational’
refers to atransition from one organizational level, where the working object is presented as a
whole, to another organizational level, where this working object is presented as a composite.
Organizational refinement is made by the specifications of component working objects and
collaborations between them. It isillustrated in Fig. 5-8.

The refinement of both the construction and behavior of a working object in one
refinement step is called functional + organizational refinement. This is often seen in
practice. However, in SEAM, we are interested in modeling traceable concepts, whose
origins are explicit. This means that every ‘diagonal’ step in SEAM model hierarchy, which
stands for functional + organizational refinement, must be equivalent to one ‘horizontal’ step
(functional refinement) followed by one ‘vertical’ step (organizational refinement) or to one
‘vertical’ step followed by one ‘horizonta’ step (Fig. 5-4 (a)). Semantically, each functional
refinement step stands for a definition of concepts (action or property or both) and each
organizational refinement step defines the construction, suitable to hosting these concepts and
operating with them.

Fig. 5-4 (b) illustrates a SEAM model represented by a set of specifications at different
functional and organizational levels:

- Specification b isafunctional refinement of a;

- Specification c is an organizational refinement of g

78

- Specification d is a functional refinement of ¢, (it must be aso a correct refinement of a
andb);

- Specification f is obtained as afunctiona refinement of e, which refines c;

- Specification f must be also a correct refinement of a, b, ¢, and d.
Plain arrows stand for functional or organizational refinement steps; dashed arrows stand for
functional + organizational refinement.

NOTE: when we say that one specification is a refinement of the other, this does not
necessarily mean that the former is obtained from the latter by adding details. both
specifications can be created independently and, in general, can be specified in different
modeling languages. The expression ‘is a refinement of’’ states that there is a refinement
relation between these specifications. The refinement correctness between specifications can
be verified using definitions from the previous chapter.

Functional and organizational refinements resulte from manipulations with individual
model elements or groups of elements in a SEAM diagram. They may take different forms
depending on the elements modified. In the following sections, we focus on functional and
organizational refinements and their types.

5.4.1 Functional Refinement in SEAM

A functional refinement specifies a transition to the next functiona level and may take the
form of property refinement, behavioral refinement, or a combination of property and
behavioral refinements.

A property refinement isillustrated in Fig. 5-5, it comprises:

A property decomposition (representation of a property by a set of component

properties)- Fig. 5-5(a);

- A definition of anew property - Fig. 5-5(b);

- Ané€imination of a property from the working object;

- A definition of a new property association, composition, or a working object to
property relation (a host relation) - Fig. 5-5(c);

- Ané€imination of a property association, composition, or a working object to property
relation (ahost relation);

- A modification of amultiplicity expression - Fig. 5-5(d).

79

@

Initial Refined
W, W, W,
21 or
®e— P1 i—— Xl et *e— P ‘—1
X X X X
P G P2 | P2 P2
y y y
W, ?
* | P1 z
X
Q
®— P2
y
(b)
W, We
*e— P1 @ —— P1
X K
m|p2
*— P2 *— P2
y y
(c)

Figure 5-5: Property refinement of a working object as a whole: a) a property decomposition; b) a
definition of a new property; c) a definition of a property to property (PP-) relation; d) a modification of

a multiplicity expression .

Property refinement extends or reduces the state space of the working object seen as awhole.

A behaviora refinement isillustrated in Fig. 5-6 and Fig. 5-7. This refinement is defined for

three types of actionsin SEAM and may comprise:

- An action decomposition (a specification of a set of component actions with implicit or

explicit ordering) — Fig. 5-6(a);

- A modification of an action preconditions, postconditions, invariants, and updates (action to

property (AP-) relations) - Fig. 5-6(b);

(d)

- A modification of an action input/output parameters — Fig. 5-6(c);

- A definition of anew action - Fig. 5-7(a);

- An elimination of an action;

- A modification of the ordering between actions (action to action (AA-) relations) - Fig. 5-7

(b).

80

Initial Refined

Wo B
W, = \ We <IN> ¢ N <IN> %

S ®

(b)
Figure 5-6: Behavioral refinements of a working object: a) an action decomposition with implicit/explicit
action ordering; b) a modification of action AP-relations (defined for joint and localized actions); c¢) a
modification of action parameters.

Initial Refined
W, N W,

L)-E))| OO

A2

(b)

/

Figure 5-7: Behavioral refinements of a working object: a) a definition of a new action; b) a modification
of the action AA-relations.

5.4.2 Organizational Refinement in SEAM

An organizational refinement specifies atransition to a next organizational level and takes the
following forms:
= A working object decomposition and specification of a joint action between
components — Fig. 5-8(a), which includes:
- A definition of component working objects;
- A distribution of properties of the working object between the components;
- A definition of a joint action and its AP-relations with the properties of its
components,
= A working object decomposition and a definition of a distributed action between
components — Fig. 5-8(b), which includes:
- A definition of component working objects;
- A distribution of properties of the working object between the components;
- A distribution of responsibilities of the working object between the components
(where responsibility of each component is specified by alocalized action);
- A definition of adistributed action and its DALA- relations.

81

Initial Refined

JApre
JApost

P1

i"\\
' "
N
LA
LApost

P2 P
y I-Ainv

Figure5-8: Organizational refinement: a) a joint action specification; b) a distributed action specification.

In the following sections we specify the refinement correctness for each form of
organizational and functional refinements.

5.5 Correctness of Functional Refinement
5.5.1 Property Refinement

Property Decomposition

Refinement by property decomposition is a relation between two working objects W, and W,
where W, specifies a property Px as a primitive property, and W, specifies this property as a
compound property by defining component properties for it. We can also say that in W,, the
property Py is seen as awhole, whereasin W, it is seen as a composite - Fig.5-5(a).

Let us congder a working object W, seen as a whole, specified on the state space £, with a
localized action LA, , and properties P1..Pm, and aworking object W, seen asawhole, specified on the
state space I with a locaized actionLA,, and propetiesP,,.., P, B ... B .. If W, defines a
property P« 1< k <m asawhole and W, defines the corresponding property as a compodte, (i.e. it
specifies for B« component propertiesh, ,..,R_) then we say that W, refines W, by property
decomposition.

We write the expression for the abstract and the concrete state spaces as follows:

X, =P x.B.xP,

¥, =R x.xB .xB x.xP, (5.10)
——

In Section 4.3, we define astate X of aworking object by atuple of state variables of this
working object V and interpretation domain D, By state variables we understand instances of

properties: p, .., Py, Biees P e Pam * P -
For simplicity, let us consider that working objects W, and W, host one instance of each
property. Then the state X of W, is defined by a tuple(p,,.., p,.... P,); and the state X of

W, is defined by atuple (py,.., ., Py, v Py rvvs Pr)-

82

To compute a state of a working object means to interpret V on D,: we write for W, and
W

state(W,) = Xa = state(py,-., Perenr Py); (5.11)

state(Wo)= X o= state(py,.. Py, Py, voes Py rvvs Pr)-
Considering that p,,.., P 1, Peus- P, are the same for W, and W, we define a refinement

relation R between state spaces of W, and W, as a relation values of the property py:Pxin the
abstract specification and values of the tuple (p, , p,, .-, Py) in the concrete specification:

R(X s, X.) = R(Pes (P P, o Py,)€ {true, falsel (5.12)

Similarly, this relation can be defined for an arbitrary number of instances of Py We specify
the correctness of property refinement using the definition of correctness for data refinement by
forward smulation (definition 5.1):

Definition 5.4.
Given a refinement relation R as specified in (5.12), W, is a correct refinement of W, by
property decomposition if and only if for each run of the concrete action LA of W, which

startsat Xc e X, and terminates at X_'e X, there exists a run of the abstract action LA, of
W, which starts at Xae X, such that R(Xa, X_)holds and terminates at Xa.', where
R(X,', X,') holds.

Using the expression at Eq. (5.3) that expresses correctness for data refinement by forward
smulation the expression for correct refinement by property decomposition iswritten as
follows:

VX, X' € T, |VXae 2, | (RXa, Xo) A LA (Xe, X',)= 513
X', e 2, |LA (Xa, X',) AR(X", X",) '
Definition of a New Property or Property Elimination

Let uscongder aworking object W, seen asawhole, specified on the state space £, with alocalized
actionLA, , and properties P;..Pn, and a working object W, seen as a whole, specified on the state
space X withalocdized action LA, and propertiesP,,.., P, wheren = m.

= [f n>m, then W, specifiesafunctiona refinement of W, by property definition - Fig.5-5(b);
= |If n<m then W spedifiesafunctiond refinement of W, by property eimination.

Considering that working objects W, and W, host one instance of each property, we write
the following expressions for their states:

state(W,) = Xa = state(p,,.., p,,); (5.14)

state(We)= X.=state(p,,.., p,).

A refinement relation R between state spaces of W, and W, is a relation between the
corresponding tuples from (5.14):

R(Ya,Yc)dj R((py,es Py), (Pyser P,) € {true, false} (5.15)

83

Correctness of property refinement we specify as a correctness of data refinement by forward
smulation:

Definition 5.5.
Given a refinement relation R as specified in (5.15), W, is a correct refinement of W, by
property definition or property elimination if and only if for each run of the concrete action

LA of W, which startsat X € X, and terminates at X_'e X, there exists a run LA, of W,
which starts a& Xae X, such that R(Xa, X)holds and terminates at Xa', where
R(X,', X.").

NOTE 1.

1. The éimination of a property from a working object implies the eimination of all
incoming and outgoing relations of this property in this working object (the opposite is
not true);

2. Thedefinition of a new property P in aworking object W, with amultiplicity mimpliesa
definition of a host relation between W, and P with the corresponding multiplicity
expression m;

3. The decomposition of a property P into properties P1, P2 with corresponding
multiplicities m1, m2 implies a definition of a property composition relations between P
and P1, and between P and P2 with corresponding multiplicity expressions m1 and m2.

Definition and Elimination of Property Associations, Property Compositions, and
Host Relations between a Working Object and a Property; and the Modification
of a Multiplicity Expression.

In Section 4.3.3, semantics of property associations, property compositions, and host relations
between a working object and a property was specified as semantics of relations with
multiplicities. Definition and elimination of these relations as well as modification of their
multiplicity expressions affects specification consistency introduced in Chapter 4.

NOTE 2.

The following dependencies between different forms of refinement exist:

1. The definition or elimination of a host relation between a working object and a property
is semantically equivalent to a property definition or elimination;

2. The definition of a property association or a property composition relation is
semantically equivalent to a property decomposition; elimination of these relation is a
reversed process,

3. The modification of a multiplicity expression stands for modification of the number of
instances of a property. Thisis semantically equivalent to a definition or elimination of a
property in the specification (Fig. 5-9).

%ﬁ 2lp1,p2 T1|p1 T1|p2

P P P

Figure 5-9: Property refinement: modification of a multiplicity expression seen as a property definition.

Assuming that manipulations with host- and PP- relations do not violate the specification
consistency, the correctness of these refinement forms is reduced to the correctness of data
refinement by forward smulation.

Let us consder a working object W, seen as a whole (specified on the ate space X, with a
localized action LA, , and properties P,,.., P,), and aworking object W, seen as a whole (specified
on the state space = with alocdlized action LA, and the same s&t of properties P,,.., P,). W_ refines

W, by defining, diminating, or modifying some of property associations, property compositions,
or host relations specified in W,

Definition 5.6. W, specifies a correct property refinement of W, if:
(1) Therefined specification W, is consistent by Definition 4.1,
(2) W¢isacorrect functiona refinement of W, by definitions 5.4-5.5.

5.5.2 Behavioural Refinement

M odification of Action Parameters

Let us consider a working object W, specified with an action A, (X, X', 1,,0,), and a working
object W, specified with an action A (X, X', 1.,0,) . Abstract and concrete actions are specified
with different sets of input and output parameters: |, # 1,0, # O, . We say that W, isabehaviourd

refinement of W, where the action A refines the action A, by modifying input and output

parameters.

As inputs and outputs make a part of the object sate space (Section 4.3), then the refinement by
modification of action parametersis reduced to a detarefinement. In other terms, to prove refinement
correctness, arefinement relation R between state spaces X, and X is needed:

R:Z %X, —{true, falsg} .

Assuming that only input parameters (or only output parameters) have been refined, we
can specify Rin or Roy, where R, is arefinement relation between input parameters of abstract and
concrete specifications; Roy: IS a refinement rdation between output parameters of abstract and
concrete specifications. We give the following definition for these refinement reaions:

Definition 5.7.

Given refinement relations R, and Roy between abstract and concrete input and output
parameters, W, specifies a correct refinement of W, by modifying action input and output
parameters if and only if for each run of the concrete action A; of W, - which starts at some

pre-state X and terminates at some post-state X' and has an inputs |, and an output O, -

there exists a run A, of W, - which startsat X , terminatesat X' - and has an input |5, such
that R, (I,,1.) holdsand an output O, , suchthat R, (O,,0,) holds.

If the input is needed to trigger the action (it is a part of the precondition) and the output is
obtained upon the action termination (a part of the action postcondition), then we can write
the following expression for refinement correctness:

VXX 16,041, TR (1 T A AKX, X1, 0,) =30, | A (X, X, 1,,0,) A Ry, (0,,0,)
(5.16)

85

Modification of an Action Contract and Action Update Statements
Let us consder a working object W, specified on the state space = with an action A, defined as
follows:

__ ___ def _ _ - R
A X)=A (X)AA (X))o A (X, X)AA (X
for A, modeled as awhole we may specify an update statement: X'= A, (X);
and aworking object W., specified on the same state space T with an action A defined asfollows,

A A (A (DA _(KX)IAA_ (XY,

for A modeled as awhole we may specify an update statement: X'= A (X)

If A= AOTA #A OA #A oA A W is a behaviourd refinement of W,
withtheaction A, refining theaction A, by modifying its contract or update Statement.

We specify thisform of behavioural refinement using the (m,n)-refinement schema:
= For actions modeled as awhole: m=n=1,;
= For actions modeled declaratively we use the definition of correct (m,n)- refinement
preserving the external behavior;
= For actions modeler imperatively we define the states of interests X* X, 2*, c X
and specify arefinement relation R : Z*, xX* _ —{true, falsg} betweenthem. Then

we use the definition of correct (m,n)- refinement preserving the internal and the
external behavior.

Definition 5.8.

Given a refinement relation R, W, specifies a correct refinement of W, by modifying its
action contract and update statement if and only if it can be represented as a correct (m,n)-
refinement from Definition 5.2 or 5.3.

If abstract and concrete actions specify update statementsA, , A, then for refinement

correctness we require that for the post-states X', , X', of the abstract and concrete actions the
following holds:

R* (X, X.") = R* (A, (X,), A, (X)) (5.17)

Behavioral Refinement Using Transformers

Another way to define the refinement correctness is to leverage the logic of our reasoning by
introducing relations of higher order. We can specify the relations between ‘new’ (refined)
and ‘old’ (initial) invariants, preconditions, postconditions, and update statements as
predicates of higher order - predicate transformers.

Tores Toosts Ty 1 PEc > PX;

T, 0O > DX,

Here PX defines a set of predicateson X and ®X defines a set of update functionson X .

For example, using transformers, we write:

post

86

-I-inv(A:inV) = Aainv

Where Tin transforms a predicate A, that specifiesthe invariant of the concrete actionto a
predicate A, that specifies a corresponding invariant of the abstract action.
Definition 5.9.
Given arefinement relation between action preconditions, postconditions, invariants and
update statements as predicate transformers T .., T, Tiny» Ty » We Specifies a correct
refinement of W, by modifying its action contract and update statement if and only if the
following holds:

VYC ,YIC (S Zc VYa (S Za |

(ﬂmv (yc) A A\:pre (Yc) - A:pos (Yc ,ch) A A\:inv (%c))i (518)

A
IX'ae Za | (Tinv(&nv)(x a) A Tpre(&pre)(x a) - Tpost (Atpog)(X a, X Ia) /\Tinv (A\:inv)(x |a))
A,

pre? ! post?

For update statements we write:

A, (Xa) =T, (A)(Xa) = X's;
TR (5.19)

A, (Xe) = X'

Substituting X'cand X'ain Eq.(5.18) with their expressions from (5.19), we write:

VXc eX VXa€Z, |

(A, (XA A (Xe) > A (Xe A (X)) A A (A, (Xe)))= (5.20)

(Tinv('%m)(?a) ATpre(&p,e)(Ya) = Toa (A,)(Xe, T, (A (X)) AT (A,)T (A,)(Ya)))

Action Decomposition

Action decomposition typically takes place when the abstract action A, is specified as a
whole and its run makes one transition from a pre-state to a post- state, whereas the refined
action A executes multiple component actions and makes n>1 transitions from its pre-state to
its post-state.

Let us condder a working object W,, specified on the Sate space £ with an action A, (Fig. 5
10(a)). Thisactionisdefined asfollows:
AX)Z A ()OAA (X > A (X X)IAA(X);
We can also specify an update statement asfollows: X'= A, (X);
A working objet W, is gecfied on the same dae gace X with an
a:tionAt(Y,Y') =p(A,...,A), which is a decomposition of A, with the ordering function p
(Fig. 5-10(b,c)).

If the action is specified declaratively and the component actions are independent (they act on
the digoint sets of properties), we formalize the action at W, as follows:

87

A:(Y,Y')di A (X, XY AL A A (X, XY)
If the action is specified imperatively:
AKX 23K, X IAK K A4 AKX

To prove that W is a correct behaviourd refinement of W, with the action A, refining the
action A, by decomposition, we use the (m,n)-refinement schemaas follows:
= For actions modeled declaratively, we use the definition of correct (m,n)- refinement
preserving the external behavior;
= |f the concrete action A, ismodded imperatively, we define the states of interests
X* cX,X* cX and specify arefinement relation R* : X*, xX* —{true, false}
between them. Then we use the definition of correct (m,n)- refinement preserving the
internal and the external behavior.
Theideaisto define the refinement relation R* in away that intermediate steps of the
concrete action specification reflect the move from a pre-state to a post-state of the
abstract specification. We use the definition of correct (m,n)-refinement preserving
the internal and the external behavior.
= |f the abstract action A, is modeled as awhole, the states of interest £*_ include only

theinitial and thefinal statesof A, :

XJ a,leaeE*a,
X, =XaX, =X,
W, We
A i Ac f
(A1)_”.(Ai)_“_(At)J A1)|{AiJ»(At
I'X I'X, X1 X

(b) (c)
Figure 5-10: Behavioral refinement: action decomposition

Definition 5.10.

Given a refinement relation R* between the states of interests of abstract and concrete
specifications, W, specifies a correct refinement of W, by action decomposition if and only
if it can be represented as a correct (m,n)-refinement from Definition 5.2 or 5.3.

88

Definition of a New Action or Action Elimination
Let us condder a working object W, <specified on the dae gpace X with an

action Ad(Y,Y') =p,(A,..., A), anrd aworking object W, specified on the same state space X with

anaction A:(y,f') =p,(A,.... A), where t £s.

If t>s, then W, isabehaviourd refinement of W, with the action A, refining the action A, by action
dimination;

If t<s, then W is a behaviourd refinement of W, with the action A, refining the action A, by new

action definition.
= For actions A.and A modeled declaratively (i.e. intermediate states are not shown),

we use the definition of correct (m,n)- refinement preserving the external behavior;
= For actions A and A modeler imperatively (with explicitly modeled intermediate

states and their order), we define the states of interestsZ* . c Z,X*, c X, and specify

therelation R*: X*_ xZ*_ —{true, false between them.

Then we use the definition of correct (m,n)- refinement preserving the internal and the
external behavior.

Definition 5.11.

Given a refinement relation R* between the states of interests of abstract and concrete
specifications, W specifies a correct refinement of W, by action elimination or by new
action definition if and only if it can be represented as a correct (m,n)-refinement from
Definition 5.2 or 5.3.

M odification of a component Actions Ordering
Let us condder a working object W, <specified on the dtde space X with an

action A, (X, X") = p,(A..... A) , and aworking object W, specified on the same state space = with

an action A(Y,Y')zpz(Al,...,A). p, and p, define the order of component action
invocation in abstract and concrete actions. If p, # p,, then we say that W, is a behaviourd
refinement of W, with the action A.refining the action A, by modification of a component
actions' ordering.

If p,and/or p, specify a formula, we can convert this formula to an equivaent formula in

conjunctive normal form (CNF) and obtain the equivalent expression in the transformed state
Space:

AKX = oy (A A) = Y o 1BV YD) A n B (Y V) (5.21)

For action specifications from Eq. (5.21) we identify the states of interest: ¥*, cX,, X% c X,
and specify the relation R :Z* xX*, — {true, false} between these states of interest. Then we

use the definition of correct (m,n)- refinement preserving the internal and the externa
behavior.

89

Definition 5.12.
Given a refinement relation between transformed state spacesR* : 2* xZ*, — {true, falsg},

W. specifies a correct refinement of W, by modification of a component actions ordering
if and only if it can be represented as a correct (m,n)-refinement from Definition 5.3.

5.6 Correctness of Organizational Refinement

Organizational refinement defines a relation between the working object seen as awhole and
the same working object seen as a composite. The specification of a working object as a
composite shows how the component working objects collaborate to implement the behavior,
specified for the parent working object as a whole. We identify the following modeling
activities that result in organizational refinement:
- Déefinition of component working objects (working object decomposition)
- Distribution of properties of the parent working object between its component
working objects;
- Definition of ajoint action as a collaboration between components and its relations to
properties of these components (AP-relations); or
- Definition of adistributed action as collaboration between components and its
relations to localized actions of these components (DALA-relations).

In this section we formalize correctness for each type of organizational refinement.

5.6.1 Working Object Decomposition and Property Distribution

Example 5.1. Figure 5-11 illustrates the organizationa refinement, where a working object
W, (abstract) is refined by a working object W, (concrete). W, represents a decomposition of
W, into working objects S1 and S2. Properties P1 and P2 are distributed between component
working objects.

A property can be fully delegated to one of the component working objects (the property
P2 in Fig. 5-11) or shared by several working objects (the property P1in Fig. 5-11).
- X,y definemultiplicities of properties P1 and P2 in the working object Wo;
- (1, Gy define multiplicities of component working objects S1 and S2 in W¢;
- X, Xo, y1 @emultiplicities of properties P1 at S1, P1 at S2 and P2 at S2.

The state of the abstract working object W, is defined by a tuple of state variables:
V¥ = (p,,.., pl,, p2,..., p2,) and can be calculated as follows:

_(Wa)

Xa = =dtate(pl,.., pl,, p2,,.., p2,).

Here pl; and p2; are instances of the corresponding properties;

The state of the concrete working object W, is defined by atuple of state variables:

W, We c14 c2 ¢
S1_w S2 w
> P1 T c =
X *— P1 e | P2 Y1 =Y
x1 y1
*e— P2 C1X1 + CoX2 2 X
y e P1
X2

(a) (b)

Figure5-11: Organizational refinement: property distribution.

90

VO = (pU,. pLY, pLe? ., LY, p2i.. p2i3)
—\/—J
v (S v (52)
and can be also seen as atuple of states of component working objects:

(Sl) (51) —(S2) (sz)

X = state(pL{™ .., p1&?, p1f*?,.., p13?, p2°? .., p2(3?) = (X1 Xa X1 ., Xez2 ')

Consderl ng c;= cz—l we write an expression for XM asfollows:

= (X X"™) = state(pL'®,.., p1, pLi*? .., pL'? , p2? ., p233”),
where p1®?, pl(jsz), p2°?; are property instances in the component working objects, and
I=1.X,]=1%,,k=1.y,.

The organizationa refinement illustrated in Fig. 5-11 distributes properties correctly if

- all instances of the property P2 are delegated to the working object S2 such as
cl-yl=y;

- instances of the property P1 are shared between component working objects S1 and S2
(possibly with duplications) such as cl- x1+c2- x2> X.

Let us consder a working object W, seen as a whole, specified on the state space Z_, and a
working object W, seen as acomposite with component working objects (W,,..,W,) . We define the
multiplicities of each component working object by mil..ms.

W, refines W, by decomposition and property distribution.

Given x - a number of instances of the property Pi specified in Wa; and X, - a number of
instances of the property P; specified in the component working object W; , we calculate the
maximum number of instances of property P in We as Inst™’mac(R) =D myx; , where mj is

J

anumber of instances of W, in W..
The state space X_of W, can be seen as a Cartesian product of state spaces of the component

workingobjects £, =X, X..xX

Definition 5.13.
W, specifies a correct refinement of W, by decomposition and property distribution if and
only if:
(1) Each property P; of W, is delegated to at least one component working object W; of W¢;
(2) The maximum number of instances of property P; in W, is greater or equal to the number
of itsinstancesin W

VP | Inst™ e (P) > X (5.22)

A refinement relation R , between the states of working objects W, and W,, reflects a
permutation (and/or duplication) of state variablesin V =) compared to V ",

NOTE: The decomposition of a working object W into component working objects W1, W2
with multiplicities ml and m2 expresses a definition of aworking object composition relation
between W and W1 and between W and W2 with multiplicity expressions ml and m2
respectively;

91

5.6.2 Refinement of a L ocalized action with a Joint action
Example 5.2. Figure 5-12-aillustrates a specification of aworking object W, as awhole with
a localized action LACX ™, X'™)). X" X'™) e 5_are states of W, before and after the

action. Working object W, refines W, by decomposing it into working objects S1 and S2
(Fig. 5-12-b). ¢4, ¢, define multiplicities of component working objects S1 and S2 in W..
Properties P1 and P2 are distributed between component working objects S1 and S2; the
configuration of propertiesisthe same asin Example 5.1.

Working object W is specified with ajoint action JAXX ", X'y, X'~ X' We ¥ _are
states of W, before and after the joint action. These states can be expressed as following
tupl%'

M X X X X),

(8D (82) (S2)

'(Wc (XI(Sl), ,XI X1 . ’chz)

W)

where Xi * _isastate of thei-th instance of component working object S1, i=1..cy; Y(,SZ)- IS

astate of the j-th instance of component working object S2, j=1..c,.

e | P |
LA

L Apost

> P2 o
y 3 I—Ainv -’

(a) (b)

Figure 5-12: Definition of a Joint Action from a L ocalized Action

Joint action JA modifies the properties of component working objects S1 and S2 to change
the state of parent working object W.. In other terms, JA implements the localized action LA
defined for the working object W, seen asawholein Fig. 5-12(a).

W, correctly refines W, with the joint action JA as a whole refining the locdized action LA as a
wholeif JA preserves the external behavior of the localized action LA.

If localized and joint actions are modeled as composites, then we may be interested in a
preservation of the correspondent internal behavior.

We proceed with the following definition of correct organizational refinement:

Let us consder a working object W, seen as a whole, specified on the state space X, with its
properties P;1..P, and a locdized action LA, and a working object W, seen as a composte with
component working objects W, ,..,W, . Multiplicity of a component working object W in W, is
m, where i=1..s. W, is specified on the sate space X_with ajoint action JA. Z_ is a Catesan
product of state spaces of the component workingobjects £, =%, X.. XX

We denote locali zed action LA asfollows:
LAGK™ X Z 1AL (X™) A LA (X™) > LA (X™ X)) A LA, (X)) (5.23)

pre

92

Here X' X'™) ¢ 5_are pre- and post- states of the working object W, carrying out LA.

These states can be calculated by assigning values to the tuples of state variables of W, as

follows:

= W)
X = state(py . Pop); (5.24)

X' = state(p'y 1ver Popy)
Where p, ..., Pyt B Poyseos Pom - P

We denote joint acti on JA of the refined working object W, as follows:

JA(X(W) X)% 3A (XM A JA X"y 5 3a (X", XMWy A 37, (X)) (5.25)

pre

Here X, X'W) ¢ T . pre- and post- states of the refined working object W, carrying out
JA. These states are expressed as tuples:

(W) _(X:E-W:L)l)XSY\?lll)) |x§.\NS)) |Y§T\£/S))
X0 = (WD .) (5.26)
(x LX)

x 3 i - isadtate of j-th instance of component working object W, i=1..s, j=1..m.
W, refines W, by decomposition, with the joint action JA refining the localized action LA.

We identify the states of interest:X* X, ,X* cX., which include initia states
X" X" and terminating states X', X'™) of both actions. Then we specify the relation
RF:X* xZ* —{true, false} between these sates of interest and use the definition of correct

(m,n)- refinement. First we define refinement the correctness that preserves the external
behavior: This formalization is applicable when both joint action and localized actions are
modeled declaratively. We continue defining the refinement correctness that preserves the
external and internal behavior.

Definition 5.14. [preservation of the external behavior]

W, specifies a correct refinement of W, by decomposition, with joint action JA refining

localized action LA if and only if

(1) W isacorrect refinement of W, by decomposition and property distribution (Definition
5.13)

(2) given arefinement relation R*: X*_ xX* — {true, false} between states of abstract and

concrete specifications, for every run of the joint action JA of W, which starts at

X" e £*_ and terminates at X'“¥ e =*_, there exists a run LA of W,, which starts at

Y(Wa)ez* such that:
R (X" X"y = Re (X ™ (X XN L XML X))
holds, and terminatesat X'™) e £*_, for which

R (3™ X)) = R (™ (™LX L XA LX) | holds

We rewrite the expression for correctness of data refinement by forward smulaion from Eq.
(5.3) by using the refinement relation R* defined above and we obtain the expression for
correct organizational refinement asfollows:

93

W) X W) ¢ Zc’YoNa) ez, |R* (Y(\Na) ’Y(Wc)) N JA(YONC) X)=

HY'(Wa) ez, | LA(Y(Wa) ’Y'(Wa)) AR* (Y'(Wa) ,Y'(Wc))

VX
(5.27)

When both localized and joint actions are specified imperatively, preservation of sequences
of intermediate states (an internal behavior) might be required.

Definition 5.15. [preservation of the external and the internal behavior]

W, specifies a correct refinement of W, by decomposition, with joint action JA refining

localized action LA if and only if

(1) W isacorrect refinement of W, by decomposition and property distribution (Definition
5.13)

(2) given arefinement relation R*:X*_ xX*_ —{true, false} between the states of abstract

and concrete specifications, for every run of the joint action JA defined by the ordered
sequence of states, including initial and the terminating states:

x_i(,ONC)7X_i1(WC)7 ’XiH < W) X|n(W° T* |(X (W) ONC)) A (Yin(WC) :Y'(WC)), such that
io 11 ... Ip iSamonotone sequence of natural numbers; there is a run LA of the
abstract action, also defined by the ordered %quence of states

< W) T Wa) > W) T — _ W)

Xio X e X ,X].m eX*, |(X) (X = X"""), such
that

jo j1 ... JmisSamonotone sequence of natural numbers;

W) x—-k(Wa) ex*_, R (X_jk(Wa) 7x_ik(WC)) holds.

cr /N

and for every kand X, e =*

wy W) W)

~ (Ws)
e Ky Koy e X)) (5.28)

|

R* (x—jk(wa> ’X_ik(WC)) _ R* (Z(wa)

(X,
5.6.3 Refinement of a Localized Action with a Distributed Action
Example 5.3.
Figure 5-13(a) illustrates a specification of aworking object W, as awhole with alocalized
action LACX"™, X"W) Y
Working object W, refines W, by decomposing it into working objects S1 and S2 as specified
in the previous example. Properties P1 and P2 are distributed between component working
objects S1 and S2; localized actions LA; and LA, are specified for component working
objects.

Working object W is specified with a distributed action DACX " ©, X') . We denote the
distributed action as follows:
DACX "™, X)) = p_ (LA, LA, LA, ..., LA,) =

G)

(S2) —(S2)

Pa (LA (X1 X)L LA (X6 &, X), LA (X, X2, LA (X, X, 62))

94

W,
NN
’T P1 LAprg\
{LA 3|
LAp&st
> P2 ///
y “ LA (a) (b)

Figure5-13: Organizational refinement by definition of a distributed action

Distributed action DA binds localized actions LA; and LA, of al instances of component
working objects S1 and S2 in W¢; here LA(X:®”,X."®) - is a localized action LA
specified for the i-th instance of component working object S1, i =1..c; .

X" X'W) ¢ 5 are the initid and fina states of the refined working object W, that

performs DA. These states are expressed via the states of component working objects as
explained in the previous example.

LA; and LA, modify the properties of corresponding component working objects S1 and
S2 and change their states. The state of the parent working object W, is expressed as a tuple
of states of its component working objects:

X (X, X XL X,
where Yi(Sl) - isa state of the i-th instance of component working object S1, i=1..c; Y(jsz) -is

a state of the j-th instance of component working object S2, j=1..c..

In our example, W; with LA can be considered a specification of a certain behaviour; and
W with DA can be considered as an implementation of this behaviour. Here component
working objects participate in the distributed action to accomplish the behavior specified by
the localized action LA. W, correctly implements W, if its distributed action DA preserves the
external behavior of LA (for LA modeled declaratively) or its external and internal behavior
(for LA modeled imperatively).

We proceed with the following definition of correct organizational refinement:

Let us consder a working object W, seen as a whole, specified on the State space X, with a
locdized action LA, and aworking object W, seen as a composite with component working objects
W,,..,W,. Multiplicity of component working object W in W is m, where i=1..s. W, is
specified on the state space X with ajoint action JA. X, isaCartesan product of state spaces of the
component workingobjects. £, =X, X.. XX ..

We specify the localized action LA asfollows:
LAGX ™ Xy =LA, (X"™) A LA (X" 5 LA (X ™ Xy A LA, (X)) (5.29)

pre

We specify distributed action DA of the refined working object W, that binds the localized
actions of component working objects:

95

DA(Y(WC)’Y,(WC)) _

Pa (LA™ X ™), LA (X ™, X), LA GG, X)), LA (X ™ X, 1)
(5.30)

Here X X' e 3 are states of the refined working object W,. These states are

expressed as tuples:

XM = (X Xy s X3 X);

— —wy -, W) avs)
XM = (X1 XD X e X,)

Y‘;\M) - isastate of j-th instance of component working object W;
LA (X", X,"™)- is a localized action specified for the j-th instance of component
working object W, i=1..s,j=1..m..

W. refines W, by decomposition, with the distributed action DA refining the localized action
LA.

We identify the states of interests: X*, <X ,X* cX., which include initia states

X" X" and terminating states X'™ , X'™) of both actions. Then we specify the

relation R¥:X* xZ* —{true, false} between these sates of interest and use the definition of
correct (m,n)- refinement. First we define the refinement correctness that preserves the
external behavior: This formalization is applicable when the localized action is modeled
declaratively. Second, we define the refinement correctness that preserves the external and
internal behavior.

Definition 5.16. [preservation of the external behavior]

W, specifies a correct refinement of W, by decomposition, with distributed action DA

refining localized action LA if and only if

(1) Wecisacorrect refinement of W, by decomposition and property distribution (Definition
5.13)

(2) given arefinement relation R*: X*_ xX* — {true, false} between states of abstract and

concrete specifications, for every run of the distributed action DA of W, which starts at

X" e £*_ and terminates at X'“¥ e *_, there exists a run LA of W,, which starts at

X" e x*_ suchthat

R* (X" X" =Re (X" (X" X0 XL X0

holds, and terminatesat X'™) e £*_, for which

R (3™ ™) = R [(ot L XWX X)) holds

We rewrite the expression for correctness of data refinement by forward smulation from Eq.
(5.3) by using the refinement relation R* defined above. We obtain the expression for correct

organizationa refinement as follows:

VX X Wes X™ ez, IR (X" X"™) ADAX™ X1y =

_ R _ o (5.31)
gx'Ma) ¢ T, | LA(X(Wa) ’ X W)) A R* (X'(Wa) , X '))

96

For localized and distributed actions, the modeler might require the imperative preservation
of sequences of intermediate states (an internal behavior).

Definition 5.17. [preservation of the external and the internal behavior]

W, specifies a correct refinement of W, by decomposition, with distributed action DA

refining localized action LA if and only if

(1) W, is a correct refinement of W, by decomposition and property distribution (Definition
5.13)

(2) given a refinement relation R*:X* xX* —{true, false} between states of abstract and

concrete specifications, for every run of the distributed action DA defined by the ordered
sequence of states, including initial and the terminating states:

X, XXX M ez (6 =X A = X)), such that

xi ' Xi1 in1
io i1 ... Ipisamonotone sequence of natural numbers; there is a run LA of the abstract
action, also defined by the ordered sequence of states:

v W) W) W) W,
oo X

) . W))y g MR o)
xjo ’le Jm-1 ’Xim ez*al()('n =X)A(ij =X)! such
that

jo j1 ... JmiSamonotone sequence of natural numbers;
o W) (W)

X, ezt RE(X, XY holds.

cr N i

and for every k and X_ik(w°) ex*

Wo) Wy ——Wh) W)

~ (Ws)
(O UXC X ,..,xikms)) (5.32)

k1 km 7 i1

R* (x_jk(Wa) ’X—ik(Wc)) — R* (X_Jk

97

98

Chapter 6

Analysis of SEAM Specifications using
Formal Specification Languages

In Chapter 4 we specify the FOL-based semantics for SEAM. In Chapter 5 we formulate
correctness for different refinement types in SEAM as FOL formulas. The refinement
verification is reduced to a proof of vaidity of these formulas.

The algorithm for refinement verification involves the following steps:

1. Representation of the abstract specification as an FOL-formula;

2. Representation of the concrete specification as an FOL-formula;

3. Definition of a refinement relation between states of the concrete and the abstract
specifications as an FOL-formula;

4. Checking that abstract and concrete specifications, as well as the refinement relation,
are not overconstrained (i.e. there exists an interpretation of their state variables that
evaluates the corresponding FOL-formulato ‘true’);

5. Application of (1,1)- or (m,n)-schema for refinement correctness as explained in
Chapter 5: This means a specification of forward or generalized forward simulation
between the abstract and the concrete specifications. Refinement correctness is also a
FOL-formula, which is a combination of formulas from 1-3.

6. Validation of refinement correctness.

The validation of an FOL formula can be automated using model checkers and theorem
provers.

In this chapter, we define the technique for an automated vaidation of refinement
correctness, which is based on two model verification tools: the Alloy Anayzer [3]; and the
Jahob verification system [63][115]. We apply this technique for refinement verification of
SEAM specifications.

The idea behind the automated verification is to trandate a SEAM specification to a
(target) specification language, supported by a verification tool.

Technically, we automate the steps 1 and 2 from the algorithm above by defining and
implementing the mapping rules for SEAM specifications to aformal specification language;

Using the verification tool for the target formal specification language, we automate the
steps 4 and 6 of the algorithm above. These two steps are reduced to satisfiability and
validity problems for the corresponding FOL-formulas. These problems can be solved by the
tool.

The identification of a refinement type, specification of a refinement relation, and the
formalisation of the refinement correctness as an FOL-formula (steps 3 and 5 of the
algorithm above) should be done manually, by a designer.

99

In Section 6.1 of this chapter we provide an overview of the approaches to formal
verification based on model checking and formal theorem proving. We examine in detail the
Alloy modeling language and its analyzer, which is an example of a model checker; and the
Jahob verification system, which is an example of aformal theorem prover. In Section 6.2 we
present a simple example of SEAM specification. This specification is verified with Alloy
and Jahob in the following sections: In Section 6.3 we specify a mapping of SEAM to the
Alloy specification language and illustrate the refinement verification in the Alloy Analyzer
tool. In Section 6.4 we present a prototype tool for automated mapping of SEAM
specifications to Alloy. In Section 6.5 we formalize the refinement correctness for SEAM
specifications as a Jahob formula and illustrate the refinement verification in the Jahob
verification system.

6.1 Approaches to Formal Verification

There are two main approaches to formal verification: model checking [20] and a theorem
proving based on logical inference [47] [64]. When a designer specifies refinement
correctness, for example, based on simulations from Chapter 5, these approaches verify this
correctness. Not only refinement correctness, but any other property of a specification can be
verified.

Model checking is an approach for verifying requirements and design for a vast class of
systems, including real-time embedded and safety-critical systems. Model checkers analyze
system models written in some specification language. The fact that the model satisfies a
certain property is expressed as alogical formula. Model checkers often use counterexample-
based agorithms to validate the formula. If a counterexample (a set of values of system state
variables that evaluates the formula to ‘false’) is found - this formula is invalid. The major
drawback of the model checking is a state explosion problem, which originates from the fact
that for real systems the size of the state space grows exponentially with the number of
processes [21]. To avoid this problem, model checkers validate the formula for the limited
test spaces. Therefore, the validation result is not universal, and related only to this test space
of a model checker. The absence of a counterexample does not imply the formula validity in
model checkers. Some examples of model checkers are: Alloy Analyzer [3], BLAST [52],
SPIN [54].

The second approach is an automated theor em proving based on logical inference. Asin
the previous approach, to be processed by a theorem prover, system models are written in
some specification languages; the fact that the model satisfies a certain property is expressed
asalogica formula Thetask isto prove the validity of thisformula, deducing it from a set of
axioms that exist for the underlying logic (e.g. first-, second-, higher-order logic etc), and
hypotheses made about the system. If the theorem prover manages to construct a proof, then
the formulais valid. The absence of a proof, dually to model checkers, does not necessarily
mean that the formulaisinvalid - due to the complexity of a proving procedure.

Despite the fact that the automated theorem proving is complex and requires much human
involvement, compared to the model checking, its application is promising: this approach is
not limited by the state explosion problem and can handle the infinite number of states. The
examples of theorem provers for the first-order logic are: [100][99]. The examples of
theorem provers for the higher-order logic are: [48][74][82].

To prove desired properties of specifications, or to verify the correctness of their
refinement, a visual modeling language can benefit from model checkers and automated
theorem provers. In Chapter 4, we introduce our forma semantics for SEAM visua

100

specifications. Based on these semantics, we specify a mapping of SEAM models to (1) the
Alloy specification language for the refinement verification with the Alloy Analyzer tool [3],
(2) the Jahob formulas, written in subset of the Isabelle specification language, or Jahob
programs for proving the refinement correctness in Jahob verification system. Both the Alloy
Analyzer and Jahab verification system support the automated specification analysis.

6.1.1 TheAlloy Specification Language and the Alloy Analyzer

The Alloy Analyzer is a tool for the automated analysis of models written in the Alloy
specification language [59]. Thistool isan example of amodel checker.

Alloy is a declarative specification language developed by the Software Design Group at
MIT. Alloy is a language for expressing complex structural constraints and behaviour based
on first-order logic. The syntax of Alloy is similar to the syntax of OCL — the Object
Constraint Language for UML[76]. However, Alloy is a fully declarative, whereas OCL
combines both declarative and imperative (operational) elements.

Unlike a programming language, a declarative Alloy model describes the effect of
behaviour and does not revea its mechanism. This modeling technique alows for the
creating and analysis of partial models and is beneficial when a modeler, for example, has a
limited knowledge about the system or devel ops an abstract system specification.

Given alogica formula and a data structure that defines the value domain for this formula,
the Alloy Analyzer decides whether this formula is satisfiable. Mechanically, the Alloy
Analyzer attempts to find a model instance - a binding of the variables to values - that
makes the formula true. A logical formula may correspond to some property of the modeled
system or its behavior. The current version of Alloy Analyzer is based on the new SAT-
based model finder Kodkod [106].

Analysiswith Alloy

We model the actions performed by a system as Alloy formulas. The parameters of these
formulas are values of system state variables before and after the action.

With the Alloy Analyzer, we can (1) validate that the action specification does not contain
contradictory constraints (i.e. it is not overconstrained); (2) validate a refinement between
two specifications:. to do so, we specify abstract and concrete action specifications (A and Ac)
and a refinement relation R between their states as Alloy predicates. The fact that A
correctly refines A, given a refinement relation R, is expressed in the Alloy specification
language as an assertion.

Assertions are proven in Alloy by a counterexample, as follows. An assertion is valid if
and only if it is satisfiable by every model instance (see Chapter 3 for semantics of FOL). If
there is at least one model instance that falsifies this assertion, then the assertion is invalid.
Such an instance is called a counterexample. If the analyzer finds no counterexample, then
the assertion may be valid. The assertion validity is limited by the test space of model
instances, considered by the analyzer.

To prove refinement correctness (i.e. to validate it for all possible model instances), the
same assertion can be examined by theorem provers. If the proof of validity is constructed
than the assertion is valid without a limitation. We use the Jahob verification system [63] to
make a formal proof of refinement correctness.

6.1.2 TheJahob Verification System

Jahob is a data structure verification system [63][115]. Jahob combines the techniques from
static analysis, decision procedures, and theorem proving. The Jahob system analyzes

101

programs written in a subset of Java and annotated with specification constructs. The main
ideaisto verify that the program is consistent with its specification.

The input language for Jahob is a subset of Java, extended with annotations. These
annotations contain formulas written in a subset of higher-order logic (HOL) of the Isabelle
theorem prover [74][82] and represent a program specification.

Based on this architecture, a Jahob program can be compiled, tested, and executed using
existing Java tools; and it can be staticaly verified to satisfy important data structure
consistency properties. Jahob reduces the verification problem to deciding on the validity of
HOL formulas; these formulas are used as an input for the Jahob form decider, which carries
out the proof of validity (Fig. 6-1).

Specification constructs in Jahob are written in special comments : /*: this is a special
comment */. These constructs mainly contain formulas denoting a predicate on a program
state or arelationship between the current and a previous program state.

Similarly to a state of a working object in SEAM, the program state in Jahob is specified
by the values of the program’s variables. Jahob distinguishes two types of program variables:
Standard Java variables called concrete variables, and variables defined as a part of Jahob
specification called specification variables. Specification variables do not affect program
execution and exist for verification purposes.

To specify aprogram behavior, Jahob uses procedure contracts [71] that contain:

* A precondition, stating the state of the procedure upon its invocation;

* A frame condition, listing the components of state that may be modified by the procedure,
meaning that the other state components remain unchanged,

* A postcondition, describing the state of the procedure at the end of itsinvocation.

To constrain the data structure of a program, apart from procedure contracts, Jahob can
specify program invariants.

Given the invariants and procedure contracts, the Jahob system statically analyzes the
program implementation to ensure that (1) it preserves data structure consistency properties,
and (2) each procedure conformsto its specification.

When analyzing a procedure p, Jahob assumes that the precondition of p holds and checks
that p satisfies its postcondition and the frame condition. Dually, when analyzing a call to
procedure p, Jahob checks that the precondition of p is satisfied, assuming that the frame
condition and the postcondition of p hold.

From Jahob programs, the Jahob verification system first generates logical constraints
(proof obligations) in higher-order logic and then proves their validity using a form decider.
Jahob attempts to prove these proof obligations using various specialized reasoning
procedures. Although some procedures may fail in deciding formula validity, the others may
succeed.

Fig. 6-1 illustrates an architecture of the Jahob verification system. This system may
accept for verification both Jahob specifications (Java programs annotated with Jahob
expressions) and Jahob formulas (expressions, written in a subset of Isabelle specification
language). Jahob specifications are first pre-processed and transformed into Jahob formulas.
Then the formulas are validated by using various decision procedures (e.g. Isabelle, SPASS,
E, etc). Jahob formulas can be entered for validation directly by using the Jahob formDecider
tool.

102

SPASS E CVC3 Z3 MONA

T A A T
field

FOL SMT-LIB constraint
Coq interface interface analysis
Coq |e— mterface\ A T
bell splitter, o
Isabelle |¢— .'S? T;' € le— dispatcher, i BAPA
Interface syntactic prover
verification (b) Jahob formula
conditions (VCs)
. . vcgen
interactively y
proven lemmas
desugar
implementation, T
specification, lexer, parser
proof hints ’ ! . .
resolver (a) Jahob specification

Figure 6-2: Jahob Verification system: (a) a Jahob specification is an input for the Jahob verification
system. It is a program, written in a subset of Java and annotated with Jahob expressions. This
specification is transformed later into Jahob formula; (b) a Jahob formula is a ‘ready to prove
expression that isan input for the formDecider

Analysiswith Jahob

1. The possibility of using directly the Jahob form decider (formDecider) alows us to
verify a refinement of SEAM specifications without writing Jahob programs, but specifying
Jahob formulas.

FormDecider is a command-line tool for proving formulas (Fig. 6.1(b)). We map an FOL
formula that expresses the refinement correctness for SEAM specifications to a Jahob
formula and pass the latter to the Jahob formDecider. FormDecider attempts to decide
formula validity. The result is supposed to approve or refute the result obtained earlier with
the Alloy Analyzer.

Technicaly, we specify Jahob formulas from corresponding formulas in Alloy. The
mapping between Alloy and Jahob formulasisintroduced later in this section.

2. SEAM specifications with explicit update statements can be trandated to Jahob
specifications - Java programs annotated with Jahob expressions — for further verification
with Jahob verification system (Fig. 6-1(a)). The mapping of SEAM action contracts to Jahob
specification constructs, and the mapping of SEAM update statements to Java statements are
two main parts of this approach. The representation of a SEAM specification as a Jahob
program permits us to formally prove that the action implementation (the update statements)
is consistent with its specification (the action contract). We expect to develop this approach
in the future.

6.2 The'XYZ' Example

In this section we introduce a ssmple example and use this example in the following sections
to specify the mapping rules of SEAM to Alloy and then to Jahob for further verification.

103

Fig. 6-2 illustrates the SEAM specification of a working object M seen as a whole (M_w)
with three primitive properties X, Y, Z. A localized action doMath of the working object specifiesthe
operation on the instances of these properties (integer vaues). One ingance of each property is
specified in the modd: x: X, y.Y, zZ. Thisis done using host relations with multiplicity and instance
expressons. We define the state of the working object M by atuple of sate varidblesV = (X, y, 2);

The state is calculated as a binding of these state variables and their values:
X = state(x, Y,) .

The localized action doMath (denoted as LAdoMath in Fig. 6-2) is specified with the
following contract:

LAdoMath,, : trug;

LAdoMath ™™ : x'= x; (6.1)
LAdoMath ., : (Y'=X+Y) A(Z=2zZ+X+Y)

M_w 1|z
1ly Z
<Int>

Y
<Int>

Post: z'=z +(y + x)

1Ix
Post: y'=y + x

LAdoMath

Figure 6-2: Specification of a working object M asawhole, with a localized action doM ath (L AdoM ath)
and threeproperties: x:X, y:Y, z:Z. A frame condition specifiesthe variablesthat rest unchanged after
the action.

<Int>

Frame

Iy Post: x'= x
condition | """

Pre: true

The action specifies a transition from a pre-state X to a post-state X'. The pre-state and
the post-state are defined by values of state variables x, y, z before the action execution and
after the action termination respectively. We denote this as follows:

X = state(x, y,2) = (X, y,z) — pre— state 62)
X'=state(x, y,z) = (X, y',Z) - post — state '

The precondition of this action ‘true’ means that the action is available (i.e. can be
triggered) at any state of the system.

The postcondition defines relations between values of x, y and z before and after the
action. The fact that the value of x is not changed by the action is expressed by a frame
condition.

We write the action specification as aformula:
def

LAdoMath (X, X') =

LAdoMath (x,y,z, X', Yy, Z)=true = (Y'=X+ Y) A(Z=z2+ X+ Y) A(X'=X)
Hﬁ/_J ﬁ’_J

X X'

— _ oef
Thisisequivaent to: LAdoMath (X, X') =(y'=X+Yy) A(Z=Z+ X+ y) A(X=X).

(6.3

104

Preconditions, postconditions, frame conditions, and invariants (if any) are specified as
annotations for action-property relations in SEAM specifications. These annotations are
expressed in a subset of the Alloy language.

6.3 Mappingto Alloy

6.3.1 Modd Elements

A SEAM working object seen as awhole (W,) and the properties of this working object P,
are represented in Alloy as sets and denoted by signatures.

We specify the working object M_w from our example (Fig. 6-2) in Alloy as:
sgM_w{..}

An Alloy signature can be considered as a class in the object-oriented paradigm.

Property instances p,,,.., p,,are relaions of a typeW, — P, having W, as its domain
and the set P as its range. The expression W, p returns a value from its range P. Alloy

relations can be seen as analogy of fields in the object-oriented paradigm.

SEAM uses relations with multiplicities to specify host relations, composition relations
and property to property (PP-) relations (Section 3.4). These relations are annotated with
expressions of the foom M | Iy where M = # | #.##.*[*; and Iy = <inst.name>[,
<inst.name>].

M is a multiplicity expression; ly — an instance expression. Instance namesp;;,.., P

define the names of relations in Alloy. M specifies a number of such relations. Table 6-1
illustrates the most useful expressions of the form M '|' Iy in SEAM and their mapping to
Alloy [59]:

Table 6-1
Alloy:
M|l
1|a a: one X
O..1|a a: lone X
1.3lab,c a,b,c: one X
*Ib b: set X

SEAM relations with multiplicities are shown in Fig. 6-3:

Fig. 6-3(a) illustrates asingle instance. We denoteitin Alloy as: a: one a

Fig. 6-3(b) illustrates an unbounded set of undistinguishable instances: b : set B

Fig. 6-3(c) illustrates afinite (bounded) set of distinguishableinstances. c1,c2,c¢3 : one C

T Tla $ ‘b Y1..3|c1..c3

A B C
<Int> <Int> <Int>
(@ (b) (c)

Figure 6-3: SEAM multiplicities

105

Properties A, B, Cin Fig. 6-3 are primitive properties; they specify sets of integers: for
example, each instance of A hasavaluethat isarelation of type A— Int. In Alloy, we
specify these properties as follows:

sig A {value : one Int}

sig B {value : one Int}

sig C {value : one Int}

we smplify the notation for primitive properties
a : one Int

b : set Int

cl,c2,c3 : one Int

We provide a specification for the working object M_w from our example asfollows:
sig M w{
X,y,Z: one Int

}

iid_— ID

Client ®——=| Name
1in Street
1ls
1..2]al,a2
Address NPA
1lnpa

Figure 6-4: SEAM compound property

Example 6.1. Consdering a data structure illustrated in Fig. 6-4, we specify compound properties
Client and Address by the following Alloy signatures.

sig Client {

id : one ID,

n: one Name,

al, a2: one Address}

sig Address {
s : one Street,
npa : one NPA}

SEAM actions are mapped to Alloy predicates. Action parameter s are mapped to the parameters of
these predicates.

Preconditions, postconditionsand invariants of a SEAM action are specified as annotated action to
property (AP-) relationsin SEAM diagrams.

In our example (Fig. 6-2), we obtain the action specification by combining corresponding annotation

expressonsasfollows.
def

LAdoMath(X, X') = LAdoMath,,(X) — LAdoMath, ., (X, X') A LAdoMath ™™ (X, X") (6.4)

pre

If an action precondition, postcondition, or invariant is specified by severa annotated AP-rdaionsin
the diagram, then the corresponding action condition is represented in Alloy as a conjunction of

106

annotation expressions. If an action precondition is not specified - we consider that this action
is available at each state of the working object. This can be denoted as : Aye = true.

InFig. 6-2, two AP-relations are stereotyped with a keyword Post:. Thus, the action postcondition
isa conjunction of the annotating expressons: LAdoMathpes = (y' = y + X) A(Z = z+ (y + X)).

The Alloy specification language is based on first-order logic, which allows us to map the
action specification from Eq.(6.4) to an Alloy predicate as follows:
pred LAdoMath[x,y,z:one Int, x',y',z':one Int] { _ LAdoMath(Y Y')
//true => - precondition LAdoMathpre(f)
! && it Y X
Z' y+ x - postcondition | AdoMath,. (X, X)

z + (y + X) &&
x = x' - frame condition LAdoMath™™(X, X)

}

Logica conjunction 'A'is expressed by the operator 'and' or '&&" in Alloy. Table 6-2 illudrates the
logica connectives and quantifiers of FOL and correspondent Alloy symbols, used in thiswork.

Table 6-2

FOL Alloy:

Va:X|F —3Ja:X|F 3Ja:X|F 3Ja:X|F all a:X|F no a:X|F some a:X|F one a:x|F
Ny 1, or

o, e <=>

N =>

A &&, and

- !

C € ¢ in l!in

=<> = < >

Successful Action

With the Alloy Andyzer we can verify the consstency of a SEAM action by checking if this action
specification isnot overconstrained (see Section 5.3). This is done by checking the satisfiability of
the formulathat expresses the successful action in Eg. (5.9).

For the successful action LAdoMath in Fig. 6-2 we write:
LAdoMath, .(X) A LAdoMath,.. (X, X") A LAdoMath™™(X, X") (6.5

pre

The satisfiability of this formula means that there exists at least one binding of the properties
to values such that the action precondition holds and its postcondition is satisfied. To verify
satisfiability of Eq.(6.5), we trandate this formula to the Alloy predicate and run this
predicate in the Alloy Anayzer:

Action precondition of LAdoMath in the example is ‘true’ (i.e. it always holds). Thus,
technically, specification of LAdoMathc and specification of the successful action
LAdoMath_succ are the same.

We run the predicate in the Alloy Analyzer using the command run with the predicate name and
other (optional) parameters™:

® See the Alloy Analyzer documentation on http://alloy.mit.edu/ for the details
107

run LAdoMath succ

6.3.2 Functional Refinement: from an Action asa Wholeto an Action asa
Composite

We continue working on the example, presented in Section 6.2 and illustrate the mapping of

the refined SEAM specification illustrated in Fig. 6-5to Alloy.

SEAM diagram in Fig. 6-5 specifies the working object M seen as a whole with the
localized action doMath seen as a composite (LAdoMath.). This specification is a functional
refinement of the specification presented in Fig. 6-2: The computation presented by action
LAdoMath in Fig. 6-2 is decomposed into two subcomputations, one modifying the property
y, and another one modifying the property z. These subcomputations are component
localized actions LAaddToY; and LAaddToY;.

M_w T 1|z

Tly Z
<Int>
1|x Y
<Int>
X
<Int> / Post.zZ =z +x+y

Post:.y’=y+x
Pre: tr i’ t x'=x
Post: x'=x X ost: X'= Pre: true

/LAdoMath_c¢
LAaddToY1 LAaddToZ1

Figure 6-5: Specification of a working object M as a whole, with a localized action doMath seen as a
composite. LAdoM ath. is modeled declar atively.

First, we consider a declarative specification of LAdoMath.: we do not specify the order of
component actions and do not show the intermediate states of action execution.

Component actions LAaddToY1 and LAaddToZ1 are independent. Therefore, we write the
following expression for the localized action doMath seen as a composite from Eq.(4.30):

_ __ def
LAdoMath, _declar (X, X') = LAdoMath, _ declar(x,y,z,X,y',Z) = (6.6)
true —» LAaddToY,(Xx, Y,z X',Y', Z') A LAaddToZ,(x, Y, z, X, y', Z')

Component localized actions are specified with the following formulas:
LAaddToY,(x, ¥,z X,Y',Z) =

6.7
true - (X=X)A(y'=y+Xx) 0
Thisisequivalent to: LAaddToY,(x,y,z X,y",Z) =(X=x)A(y'= y+X)
LAaddToZ,(x, Y,z X, Y',Z) = (6.8)

true — (X=x)A(Z=z+x+y)
Thisisequivalent to: LAaddToZ,(x,y,z X,Y',Z)=(X=X)A(Z=z+x+Y)

Preconditions for both component actions of LAdoMath, are 'true'.

108

Similarly to LAdoMath seen as a whole, we map LAdoMath, and its component actionsto
Alloy predicates:

pred LAdoMath c declar[x, y, z, x', y', z': one Int]{
//true =>

LAaddToYl[x, vy, z, x', y', z' 1 &&

LAaddTozl[x, v, z, x', y', z']

!

pred LAaddToYl[x, y, z, X', y', z': one Int]{
x'= x &&
y' = Yy + X

pred LAaddToZl([x, y, z, x', y', z': one Int]{
X'= x &&
Z'=z2 + X + Y }

NOTE: Despite the fact that the action LAaddToY; does not change the value of z, and the
action LAaddToZ; does not change the vaue of y - we do not specify this as a frame
condition. The declarative specification Eq.(6.6) specifies two actions LAaddToY; and
LAaddToZ; executed within one state transition, where both z and y are changed. Therefore, a
frame condition would lead here to the action inconsistency.

The imperative specification of LAdoMath, is illustrated in Fig. 6-6. The SEAM diagram
specifies the order of component actions - the control flow- using SEAM action-action (AA)
relations. In our example actions are composed sequentially, using SEAM transition (see

Section 4.3).
M_w lly M_w !
Y
<Int> <Int> <Int> <Int>
1fx] _ Post: z =z
X Post: y y+X 1|Z¢ X Posty' =y+x \ / N
<Int> | . <Int> | Post
< 1|Yt : V =Y Post: z'= z+y+x
Post:X'=x \ e N
POSt:,X,’f?? | R, 4
$) Pre: true ! Pre-trle___ .
LAdOMathf | " Vs Local LAdoMach“c VA /7 Action
- O—»{LAaddTov2) \I.AaddTozz>‘—>O§ variables | (O——{LAaddToy2)—w(LAaddToz2 contract
I Xyz X'y'z' Xyz xy'z| I xyz Xy'z Xyz xy'z!|
Ix, Yy, Z Xt, Y, Zt Ly, z Ix,y, z Xt Yt Zt YL,z
(@ (b)

Figure 6-6: Specification of a working object M as a whole, with a localized action doMath seen as a
composite. LAdoMath_c is modeled imperatively, with an intermediate state Xt = state(X,,z,z).

Local variables X, Z, Z specify the inter mediate state of the action as a composite. a) Local variablesare
emphasized; b) action contract is emphasized.

SEAM defines severd types of AA-rdations Start, End, Transtion, Conditiond trangtion, Fork
(AND, OR, XOR), Merge (AND, OR, XOR). In Section 4.3.6 we have introduced the FOL
semantics of theserdaions. In Table 6-3 we present the semantics of theserdaionsin Alloy.

109

Table 6-3

SEAM Alloy:
Start(A1) Al (x,x1)
End(A1) Al (x1,x")
Transition(A1,A2) Al (x1,x2) && A2 (x2,x%x3)
ConditionalTransition (A1,A2,C) Al (x1,x%x2) && C => A2 (x2,x3)
ConditionalTransition (A1,{A2,A3},C) Al (x1,x2) && C => A2(x2,x3) else A3 (x2,x4)
AndFork(A1,{A2,A3}) Al (x1,x2) && (A2(x2,xX3) && A3 (x2,x4))
AndMerge({A1,A2},A3) (Al (x1,x3) && A2 (x2,x%x3)) && A3(x3,x4)
OrFork(A1,{A2,A3}) (Al (x1,%2) && A2 (x2,x4)) ||
(Al (x1,%3) && A3(x3,x5)) ||
(Al (x1,x6) && A2 (x6,x7) && A3 (x6,x%X8))
OrMerge({A1,A2},A3) (Al (x1,%3) && A3 (x3,x5)) ||
(A2 (x2,%4) && A3 (x4,x6)) ||
(Al (x1,x7) && A2 (x2,x7) && A3 (x7,x%x8))
XOrFork (A1,{A2,A3}) (Al (x1,x2) && !A3pre(x2) && A2(x2,x4)) ||
(Al (x1,x2) && !A2pre(x2) && A3 (x2,x4))
XOrMerge({A1,A2},A3) (Al (x1,%2) && A3 (x2,x5) && !A3pre(x4)) ||
(A2 (x3,x4) && A3 (x4,x6) && !A3pre(x2))

The action LAaddToY; seen as a whole specifies a transition of aworking object M from a
pre-state X to an intermediate state X . We write:
Xt = state(X, y,2) = (X, Y, z) - intermediate state (6.9)
Here(x,,Y,,z)is a tuple of values of state variables x, y, z ‘in the middle of’ the action
execution (Fig.6-6).

The action LAaddToZ, seen as a whole specifies a transition of a working object M from
Xt to apost- state X' . We write the following expression for the action LAdoMathy:

def

LAdoMath, _imper(x,y,z X,Y',Z) =
true—>3Ix:X,y,:Y,z:2Z]| (6.10)
LAaddToY, (X, Y,z X, ¥,. Z) A LAaddToZ,(X,, ¥,,z.X, Y, Z)

Component localized actions are specified with the following formulas:
LAaddToY,(x,y,z,X,y',Z) =

true — (X': X)/\ (y': y+ X)/\ 7= Z) (6.11)

LAaddTozZ,(x,y,z,X,y',Z) =

true —» (X': X)/\ y': y /\(Z': Z+y+ X) (612)

NOTE: The specifications of component localized actions in Eq. (6.10), (6.11) are different
from those in Eq. (6.7), (6.8): In Eq. (6.11), (6.12) we specify the frame conditions on the
variablesz and y.

We map LAdoMath; and its component actions to Alloy:

110

pred LAdoMath c imper[x, y, z, x', y', 2z': one Int]{

//t - local time

//true =>

(some x t, y t, z t : Int |

LAaddToY2[x, vy, z, x t, vy t, z t] &&

LAaddToZ2[x t, y t, z t, x', y', z' 1)

!

pred LAaddToY2[x, y, z, x', y', z': one Int]{
x!' X &&

zZ &&

V + X

<N

}

pred LAaddToZ2[x, y, z, X', y', z': one Int]{

x'= x &&
y'=y &&
Z'= 2 + X + Y

}

The imperative and declarative specifications of localized action doMath, seen as a
composite, are related. The imperative specification refines the declarative specification as it
reduces nondeterminism. We can check the refinement between these specifications. We call
the declarative specification ‘abstract’ and the imperative specification ‘ concrete’ and specify

the refinement relation between abstract and concrete statesR(Xc, Xa). We express the
refinement correctness as the following Alloy assertion:

assert Declar Imper{

all xc, yc, zc, x'c, y'c, z'c, xa, ya, za: one Int |

(LAdoMath c¢_imper[xc, yc, zc, x'c, y'c, z'c] &&

(xa = xc) && (ya = yc) && (za = zc))=> //R(Xc,Xa)

(some x'a, y'a, z'a: Int |

LAdoMath ¢ declar([xa, ya, za, x'a, y'a, z'a] &&

(x'a = x'c) && (y'a = y'c) && (z'a = z'c)) //R(X’c, X’a)

}

The Alloy Anayzer validates this assertion using a counterexample-based algorithm; it
explores alimited test state space and looks for an example that invalidates the assertion. Not

discovering such a counterexample, it concludes that the assertion may be valid.

Refinement Verification

We formalize the refinement correctness for the working object M performing action
LAdoMath. (the concrete specification) refining the working object M performing action
LAdoMath seen as awhole (the abstract specification). LAdoMath is a functional refinement
by action decomposition of the action LAdoMath. The correctness of this refinement is
formulated in Definition 5.10. As we do not introduce new properties, the state spaces of the
abstract and the concrete specifications are the same, and the refinement relation between
these state spaces is an identity function. We specify the refinement relation with the
following Alloy predicate:

pred R LAC to LAW[xc, yc, zc, xa, ya, za: one Int]{
(xc xa) &&
(zc za) &&
(yc ya)

}
Here the tuple (xc,yc,zc) specifies a state of the concrete specification, and a tuple (xa,ya,za)

specifies a state of the abstract specification.
We specify the criterion of refinement correctness from Definition 5.10 with the following
assertionin Alloy:

111

assert LAW LAC{

all xa, ya, za, xc, yc¢, zc, xc', yc¢', zc': Int |
(LAdoMath c¢_ imper[xc, yc, zc, xc', yc', zc']l &&
R _LAC to LAW[xc, yc, zc, xa, ya, zal) =>

(some xa', ya', za' : Int |

LAdoMath w declar([xa, ya, za, xa', ya', za'l&&
R LAC to LAW[xc', yc', zc', xa', ya', za'l)

}

check LAW LAC

The localized action seen as a whole does not specify the intermediate states, therefore we
verify only the correspondence of external behavior of LAdoMath and LAdoMath,.

We check the validity of this assertion in the Alloy Analyzer using the command check
with the assertion name and other (optional) parameters™

check LAW LAC

6.3.3 Organizational Refinement: from a Working Object asaWholeto a
Working Object asa Composite

Fig 6-7 illustrates the working object M seen as a composite (M¢). For M. we specify
component working objects A and B and a joint action doMath (denoted: JAdoMath) that
represents collaboration between these component working objects.

M_c
- 1Ia$ 1|bT

A T ?1 |Az B ?1 |Bx
X

Z
1A
| Ay <Int> <Int>
Y 7 1|By
<Int> Post: Az’=Ax + Ay + Az ITost:/Bx'=/Bx |
Y
1|AX Post: Ay'= shared_y Post: Bx= shared_x <Int>
X
<Int> Post: By'= By + Bx

Post: Ax= shared_x Post: By'= shared_y

<Int>
Pre: true Y
JAdoMath
<Int>

1|shared_y

Figure 6-7: Specification of a working object M as a composite (denoted M) with a joint action doMath
(denoted JAdoM ath) seen asa whole. A and B are component working objectsof M.

The properties of M are distributed between A and B such that X and Y are presented in
both A and B (duplicated), and Z is ‘fully delegated’ to A.

The specifications of component working objects A, B, and their parent working object M.
are mapped to Alloy asfollows:

® See the Alloy Analyzer documentation on http://alloy.mit.edu/ for the details
112

1. Component working objects are mapped to Alloy signatures. Host relations of
component working objects specify relations between working objects and properties.
These relations are annotated with multiplicity/instance expressions of aform M'|'Iy. We
map these relations to the fields of an Alloy signature as specified in Table 6-1.

sig A{
Ax,Ay,Az: one Int

}
sig B{
Bx,By: one Int}

2. Parent working object M. is mapped to Alloy signature M_c. WO composition relations
of M. specify relations between this working object and its component working objects.
These relations are annotated with multiplicity/instance expressions of aform M'['1y. We
map these relations to the fields of an Alloy signature as specified in Table 6-1:

sig M cf
a: one A,
b: one B

}

M. is the organizational refinement of M,, with JAdoMath refining LAdoMath.

We can show that M. correctly refines My, by decomposition and property distribution by
Definition 5.13:
All properties of M. are delegated to component working objects. Based on Eg. (5.22) we
write:

INSt™< e (X) = 2> InSt ™ e (X);
INst™ < ma (Y) = 2> Inst™ ma (Y); (6.13)
INst™<) e (Z) = INSt™ e (Z) = 1;

Figure 6-7 presents a declarative specification of JAdoMath: We do not specify in which
order the properties of component working objects are modified and do not show the
intermediate states of action execution. We define shared properties shared x: X, shared_y:Y
for the working object to maintain the common knowledge of Mc.

The state of the working object M. is represented by a tuple of states of its component

working objects X = (XY, X"™), where each component working object is

characterised by its state variables, and
<A

X = state(x, y, z);

X' = state(x, y)

State variables of A and B are digoint. To distinguish them, we use prefixes as follows:
<A

X = state(Ax, Ay, Az);

X = state(Bx, By)

We write the following expression for the joint action doMath:

113

— __ def _ _ S S
JAdoMath _declar (X, X") = JAdoMath _declar (X", X ®),(X*™ X®)) =

JAdoMath _ declar ((Ax, Ay, Az, Bx, By), (AX', Ay', AZ', BX', By')) =

true — (6.15)
dshared _x: X,shared _y:Y|

(Ax'= Ax)A(Bx'= Bx)A(By'= By +Bx)a (AZ= Az+ Ax+Ay)A

(shared_x = Ax) A (shared_x =Bx) A (shared_y = Ay') A (shared_y = By")

We map this formulato the Alloy predicate as follows:

pred JAdoMath w declar[Ax, Ay, Az, Ax', Ay', Az', Bx, By, Bx', By': one Int]{

//true =>

Ax'= Ax &&

Bx'= Bx &&
By'= By + Bx &&

g
N

Az + AX + Ay &&

some shared x, shared y: Int |
(shared x = Ax &&

Bx = shared x &&

shared y = Ay' &&

shared _y= By')}

Refinement Verification

We formalize the refinement correctness for the working object M. with the action
JAdoMath (the concrete specification) refining the working object M,, with the action
LAdoMath (the abstract specification). By Definition 5.14, this is an organizational
refinement by decomposition, with a joint action refining a localized action. We specify the
refinement relation between state spaces with the following Alloy predicate:

pred R JA to LA[Ax t, Ay t, Az t, Bx_t, By t: one Int, // model concrete
Xxa t, ya t, za t : one Int] // model abstract
{

(Ax t= xa t) &&

(Az_t= za_ t) &&
(Ay t= vya t)
}
Here (AXx,Ay,Az,Bx,By) is a tuple of state variables of the working object M., and

(xaya,za) is atuple of state variables of the working object My, (‘& — for ‘abstract’). We
specify the formulafor correct refinement with the Alloy assertion and check this assertion in
the Alloy Anayzer.

assert LA JA{

all Ax, Ay, Az, Ax', Ay', Az', Bx, By, Bx', By': Int , xa, ya, za: Int |
(JAdoMath w declar[Ax, Ay, Az, Ax', Ay', Az', Bx, By, Bx', By'l &&
R JA to LA[Ax, Ay, Az, Bx, By,xa, ya, zal) =>
(some xa', ya', za': Int |
R JA to LA[Ax', Ay', Az', Bx', By', xa', ya', za'l &&
LAdoMath w([xa, ya, za, xa', ya', za'l)

}

check LA JA

The joint action seen as a whole does not specify the intermediate states, therefore we
verify only the correspondence of external behavior of JAdoMath and LAdoMath. In
Appendix A, we provide a listing of Alloy specifications for the ‘XY Z' example. Thislisting
contains other simple refinement verification exercises and comments on them.

114

6.4 Automated SEAM to Alloy Trandation

We explore the possibility of automating the translation of SEAM specificationsto Alloy and
we build atechnique based on XSLT[105] transformation. Thistechniqueisillustrated in Fig.
6-8.

* xml . *.als -

Editor
|
|

Graphic¢al editor
Y
EMF Simple Seam
SEAMtoAlloy.xslt
Alloy Analyzer

Figure 6-8: Automated SEAM to Alloy transformation.

Based on the SEAM metamodel from Chapter 3, we create the Simple Seam Editor - aEMF-
based Eclipse application [39] that simulates a back-end of a tool for SEAM graphical
modeling’. This application allows for creating SEAM hierarchical models using textual
interface, and stores them in XML format.

Figure 6-9 illustrates the interface of the Simple Seam Editor. On the left pane, a SEAM
model is created using a hierarchical tree-structure.

Java - 'myd.seam - Eclipse = EX3
D Java - TESEAMIOAIIGY Eclipse SDK Yoo
File Edit Navigate Search Project Run Field Assist Seam Editor Window Help

(mijis Q- BHE- L!.?fa P orD~ &Y @ xMLspy (& ava)
& 3 mydseam 52 '. mysaml 18] iyl 537 (3 N =]
it [T Resource Set 22 xml version="1.0" encoding="UTF-8" Al <Bmiversion= 10" englldin \F.s > = |

’ - cxeni= * https/ /v, omg.org/XMI” xminssi="hitps/ A,

. [platform/resource/TestSEAMtoAlloy/myd seam ~ (€] Seam_modelModel Sear.modl M ion= P/ fors xmlnsaxsi="http/ A

4 + ModelM @® miverion :” — <componentLis cityExp="1" &cp a"
4 4 Working Object M_ © xminsomi g/ Forw.0ni g.0rg/) <comporg Seam_ oy Objm name="A" parent="//@root">
4 4 Composition1 @® xminsasi ittp:/fwww.w3.0rg/2001/XMLSchema-inst] <mum mumphmyEx an(eExpf >
.o Wolhng Object A xmins:Seam_model hittp:///SEAM_metamodel.ecore ‘pro x org we’iypr 'Int” host="//@root/@componentList0/@comp)
name [</root

. elation 1 . <ro s| mumph instancefxp=
0] (;“nmg ° m_ ¥ prirnl =“Int" host= !f@mm’@mmpﬂnentl 2.0/ @companent’/>
L ist
[E) componentList %@L ist mul ="1" instanceEip="az">
u-onl \ @ multiplicityExp 1 name="Z Type “Int" host="//@roct/ @componentlist.0/@component™/>
@ instancebp . mpt«ym
P=">'Z ootActionlist xg . modekLocalizedAction” name="aLAdoMath" orgLevel="1">
alwmmc (€] component uus:mump mslancdxp_ in. pmpm’y ,fg.m.f@mmponm:usm.'gmmpm
’ _modek “QUT" property="7) @

Szam Mosetbrecongiion instancebxps"ax_pre ew.emn e pre 120

\enl @ usitype Seam_model:WorkingObject <p‘,,mmm,

ng Objm @ name A <<nns(mmtl|stx
e\manl @ parent fi@root <cong] "Seam_| "az_post” expre "az_post =
! - <cons} sitypes"Seam_ ! ="out_” exp " ax_pre = oul
Relg v Compasition <cguetoa itype="Seam_modeklnvariant’ mulllplmtyExp_ " instanceExp="ax_pre” expressior

Q@

%
o:r:p‘e mg v| 42 Transition I ; xsitype="Seam_modekInvariant” instanceExp="ay_pre” expression="(2y_pre = in) a
eld <fro

4 Prope, bz | % Sttt L4 =

. | % End is

< [@alointA ey | % entList multiplictyEsp="1. instancerp=
4 AShar 9§ APanam pe="Seam_ bje: * name="8" parent="//@root">
4 AShar of ' Cut 4% Ashared rogiPropertyList mu\hpll(ltyhp. "1" instanceExp="bx">
4 Preco| i Cop 5 Seam_mode:LocalizedAction foperty name="X" primitiveType="Int" host="//@roct/ @componentList/@component’/>
+ Precal Pt #% Precondition alAdoMath footPropertyList>
& Invar] = P < Postcondition 1 < pertylist = by">
<property name="Y" primitiveType="Tnt" host—ff@wmj@ccmpunen(hslll@(umpcnenl »

< Invari{ 3§ Delete 4 Invariant dmmmopenymb
4 Postc 9% Update ist xsitype="Seam_modekL * name="bLAdoMath” orglevel="1">

Validate <palemu\l\pllmyE:p_l instanceEsp="in_" property="//@roct/@ componentList/ Gcompene:

4 Poste| Control @ sitype Seam_modekfggconditi <parlist multiplicityExp="1" instancetxp="out " P

b 4 Localized @ instencebxp ax_pre <constraintList xsitype="Seam_model:Precondition” instanceExp="in_" expressio 0" subj="

C) Pe—— RunAs ® expression ax_pre!=0 <constraintList xsitype="Seam_modekInvariant” instanceExp="bx_pre" expression= re=in)a

| | 4 <constraintlist xsitvoe="Seam_modek:Posteondition” multiolicitvExo="" instanceExo="bv post” exc ™

Se\mmn Parem: l:sl Tn Debug As bree ol o = |
D Properties R Validate N :::o v =)
= 1 Team - |
oy Compare With AL |
Name) ¥ JA_doMath |
OrgLevel Replace With &0 I
|
|

Load Resource... % Working Object M_ o

| Refresh
o* Selected Ob) Show Properties View

Parent

Figure 6-9: A screenshot of the Simple Seam Editor application

" Currently, an official tool for SEAM visual modeling - SeamCAD tool [66] - is under development. The
metamodel, presented in this work, and some important elements, required for the model analysis, are not yet
adopted by thistool. Due to this limitation, the application, simulating atool back-end, was created.

115

The root object is amodel that contains one working object that represents a system. Using a
contextual menu, new sibling and/or child elements can be added to a current element. Thisis
defined by a SEAM metamodel. On the bottom of the screen, element properties are listed in
the property pane. These properties (e.g. name, parent element, condition expression, etc.) are
also specified for each element based on the SEAM metamodel. Vaues of these properties
are defined by a designer.

Figure 6-10 shows the model pane in detail and illustrates how the model of the XYZ
example from Section 6.2 corresponds to the SEAM graphical specification of this example.

The second part of the automated tranglation is an XSLT script that transforms XML files,
created in the Simple Seam Editor into Alloy specifications.

The XSLT transformation of the SEAM model stored as an XML file, results in a
formatted textud file that can be stored as *.ds (native file type for Alloy) and opened in the
Alloy Analyzer. This file contains a data structure and a specification of SEAM actions,
extracted from SEAM working object specification and mapped to Alloy as it is specified in
the Section 6.3.

116

= Java - TestSEAMtoAlloy/my4.seam - Eclipse SDK
File Edit Mavigate Search Project Run Field Assist Seam Editor Win

5~ &l ﬁ'o'%' i""l-b@' & 4 L

2 my4.xml ¥ *myd.seam =

- Resource Set

W H L

4 4 platform:/resource/TestSEAMtoAlloy/myd.seam
4 4 ModelM
M- e 2 3 Working Object M_>
1y . a CO@’EEM,,\
<int> 3 4 ff*Working Object A
<I:t> Post: z' = 4 4 ﬂl@@i
z_pre+(y_pre + x_pre)\ ® % Property X >
Post: y' = % WOP Relation 1

X y_pre + x_pre 4 Property ¥
<Int> 4 4 WOP Relation1
4 Property Z

Post:: x' zyx_pre
4 Localized Action aLAdoMath
4 4 Composition1_
Pre: true . i,/wwking 0@@,
4 4 WOP Relation1

/ 4 Property X
4 WOP Relation 1
/ 4 Localized Action bLAdoMath
4 4 WOP Relation1

4 Property X
a4 4 WOP Relation1
& 4 Property ¥
M_c
- ta f 1w ¢ 4\g WOP Relation 1

A ? B T % PropertyZ >

1Ix

LAdoMath D

A& Tocalized Action LAdoMath
& Precondition
Invariant >
4 Postcondition
4 Postcondition

4_Joint Action JA_doMath >
AShared T —,

4 AShared 1
4 Precondition 1

[Properties i3

1jshared_y Property Value
Instance Exp '= shared_x
Multiplicity Exp =1
Property ¢ Property X

The Instance Exp of the Relation

Figure 6-10: A model pane of th?STrhple Seam Editor application

Refinement relations and assertions for refinement verification should be provided
manually: the specification of arefinement relation between modelsis a designer's choice. To
smplify this task, we consider an implementation of automated alignment assistant — a
supplementary function of the SEAM modeling tool SeamCAD [66] - as a part of our future
work. This assistant will identify a refinement type based on designer's activities and will
help the modeler to define the refinement rel ations and refinement verification procedures.

By providing an automated mapping of a SEAM specification to Alloy, we facilitate the
analysis process, though, understanding of the Alloy model by a designer remains
indispensable for interpreting results of this analysis. Verification in Alloy, if successful,
approves the correctness of the design process, however, when it fails - the designer has no
further support from the tool to find out the reason of the failure. The lack of interpretation of
the verification result is one of the main drawbacks of this method.

117

— — =
= Java - CAWork\SEAM_Edit\xyz_fromEMF.als - Eclipse SDK =R
File Edit Navigate Search Project Run FieldAssist Window Help
~HE -0 -Q- EHE O D ~H e By xmusey [l
=@ mydami 52 K| “testTransformLstt 52 (¥ testTransformlaslt | 2 &) *xyz_fromEMF.als 53 =&
= x 22 xml version="10" encoding="UTF-8" - some sig M_{
. XN [€] xskstylesheet aone A,
te b:one 8
B @ version
) }
<component xsittype="Sear @ sminsosl
<roctPropertylist multiplici @ wmlnssi lone sig A{
<property name="X" crgl @ xmins:SEAM &1_pre,ax_post : one int,
cotPropertylist> ® sischemalocation ay_pre,ay_post: one int,
@] xskoutput a2_pre,az_post : one int
<property nam
</roctPropertyl. [e] xsitemplate pred aLAdoMath{ax_pre,ax_post : one Int, ay_pre,ay_post : one Int, az_pre,az
€] xsltemplate in_slnt, out_sintl{
i template for makingyan gnature out of { -
(€] xshtemplate \ "
@ name Dsignature & -
[@ xckeall-template (D'
B sig
(&) xshvalue-of V a az_presay_pre) a
d & ax_pre = oul
d i ncekx pre el o2 \ added manully O
<lcomponent> 8] s O N
</componentList> [€] xskfor-each \ lone sig B
<componentList multipl ="1" inst Rp"> i tgmplaM for making an Alloy signature out of * bx,bx_post: one |
<component xsitypes Mgamodel WorkinBebject” name="B" parent= by by_post: ane Int
€ xchtemplate
<rootPropertylist licityEx = 4 }
<property namez itiveTypeNGt” host= mponen)). ramia o pred bLAdoMath{bx bx_post : ane Int, by by_post : one int,
B ne sig in_int, out_sintl{
icitylng{1 = ® (/i
el = onen| 3 ((bx = in) and (bx = bx_post)) and
(in_t=0)) =>
1 { /ipost
((by_post = by + bx) and (by_post = out)})
< i !
WtList i pre T T
<N MintL @ 4p=
- late fo ki Alloy si f e
ionLi L tempwte for makng en oy ogashRw este pred JA_doMathlax,ax_post : one Int, 2y ,ay_post: one Int, az,az_post : one
P it (€] xsltemplate hared variable
iponentList FHITIERT T all shared jelnt, shared_y:/nt |
<NotPropertyList multiplicityExp="1" instanceExp="x"> declaration an Alloy fiel
<Broperty name="X" primitiveType="Int" host="//@root’/> (8] ssttemplate
</rootPropertylist> (//in
<rootPropertyList multiplicityExp="1" instanceExp="y"> ((shared_x = ax Jand (ax_post = ax]) and
<property name="Y" primitiveType="Int" host="//@root'/> ({bx = shared_x) and (bx_post = bx)) and
</rootPropertylist> [¢] xsitemplate pre
Design | Source
58 matches replaced Writable Insert 181:50 4l il Contrib (Eottor) RN R o) Py =

Figure 6-11: A screenshot of an XSLT transfor mation of a SEAM model to Alloy under Eclipse.

Figure 6-11 illustrates an XML file, representing a SEAM model before the processing,
the XSL script for processing, and a resulting Alloy file. The Alloy plug-in under Eclipse
allows us to make all the steps - a model creation, its transformation, and analysis - in the
common Eclipse environment.

6.5 Mapping to Jahob

We specify two gpproaches to a formd verification of SEAM specifications by using the Jahob
verificaion sysem: The fird gpproach uses the Jahob formDecider to vdidate formulas for
refinement correctness, the second approach ams a verification of consgency of SEAM
specifications.

In the firgt gpproach, a Jahob formula that expresses the refinement correctnessis written based on
SEAM action specifications. Thisformulacan dso be generated from the Alloy code. We vdidate the
obtained Jahob formulawith the Jahob form decider (Fg. 6-1(b)).

The second gpproach is based on the mapping of SEAM specifications to Jahob programs. Jahob
programs are further converted to Jahob formulasto be used with the formDecider (Fig. 6-1(9)).

6.5.1 From an Alloy Specification to a Jahob Formula

Jahob formulas use I sabelle notation as a semantic and syntactic basis. In this section we explain how
aJahob formula can be generated from the Alloy code and illugtrate thiswith XY Z example.

Jahob Formula asa Lambda-expression

A Jahob formula conssts of two parts: thefirg part contains the definitions of SEAM abstract and
concrete actions Ay, A, and arefinement rdation R; the second part States the refinement correctness,
expressad using the definitions from the first part. Jahob formula is a lambda expresson of lambda
cadculus[9]. A recursive definition of alambda expressonisthe following:

118

expression = name | lambda-function | function gpplication
name = function name | variable name

lambda-function = A name. expresson

function gpplication = expresson expresson

In a Jahob formula, SEAM actions and a refinement relation are formulated as lambda functions.
For example, for a SEAM action A, expressed as a FOL formula A(x, X') = A, (X) = Ay (X, X)),
where x and X’ are vaues of state variables before and after the action, we can write the following
lambda function:

A=A Xy.Aue(X) = Ay (X X) (6.16)

Here A,.and A, canasobelambdafunctions

To formulate the refinement correctness, we define (1) the absiract action specification Ay, (2) the
concrete action specification A, and (3) the refinement relation R between the abstract and the
concrete pecifications aslambda-functions. We connect these functions asfollows:

(A, =A..)A(A = 1..) A(R=A...) = [refinement correctness| (6.17)

The refinement correctness follows from the conjunction of lambda-functions. Refinement
correctness can be written using the expressons defined in sections 5.5 and 5.6. Some modifications
of syntax, compared to definitionsin Chapter 5, are required:

- symbol ‘[isreplaced by *.’;
- an gpplication of a FOL formula or predicate is written: A(X1, Xa,..., Xn); appliction of a
corresponding lambdafunctionsiswritten: A(Xy) (X2)... (X)) Or A X1 Xo... Xn.

We write alambda expression for a SEAM specification W with concrete action A correctly refines
the specification Wwith abstract action A, given arefinement relation R, asfollows:

A AAY AR® -
(VX X', Xa. (A (Xe)(X',) A R(Xa)(Xc))— IX, (A (X)X,) A RX,)(XY)))
INEq.(6.16) A™, A" R*™ are definitions of corresponding lambda-functions.

Using the syntax of Jahob formulas, we write:
Aa & Ac & R --> (ALL Xc Xc_,Xa . (Ac(Xc) (Xc_) & R(Xa) (Xc) & R(Xa) (Xc_)) -->
EX Xa_ . RAa(Xa) (Xa_)& R(Xa) (Xc_))

(6.18)

Note that the syntax of Jahob does not accept “ * ” symbal in a varigble name. We replace it by “p”
(which gandsfor ‘ post’).

From an Alloy specification to a Jahob formula
Table 6-4 illudtrates the correspondence between the Alloy syntax and the syntax of Jahob formulas.

119

Table 6-4

Alloy Jahob formula

x* Xp

//comment text (* comment text *)

pred A [xX, vy, z, X', v, z' :oneInt 1{..} |A= (XY ZXDYP 2D « .-..)
//predicate specification (*lambda function specification *)
Alx,y] //predicate call A(x) (y) (*lambda function call ¥*)
=> -->

&& &

All ALL

Some EX

In Alloy, we separady specify the predicates for aostract and concrete action specifications, plus
the predicate that expresses a refinement relaion between them. Then we express the refinement

COIrectness as an assartion:
pred Aa [x, x’': one Int]{..}
pred Ac [y, y’': one Int]{..}
pred R [x, y: one Int]{..}
assert A2 refines Al{all x,y,y’ | R(X,y)&& A2(y,y’) => ALl(x,x’')&& R(x',y’)}

An andogous Jahob formula starts with a conjunction of lambda function definitions, which
specify SEAM actions and arefinement reation. These definitions arefollowed by an expresson of a
correct refinement:

MAa = (3 XxXxp.)) & //function definition (abstract action)
Ac = (S yypP.)) & //function definition (concrete action)
R=(5Xy. ...)) --> //function definition (refinement relation)

ALL x y yp. Ac(y) (yp) &

(R (%) (y) -->
EX xp. Aa(x) (xp) & R (xp)

(yp)) //function application (correctness)

TheXYZ Examplein Jahob

We map the Alloy code for XY Z example to Jahob formulas by using the rules for specification of
lambda expressons and the syntax correspondence from Table 6-4. Than vaidate these formulas
with the Jahob form decider. The code beow illustrates the mapping of the Alloy predicate for the
localized action doMath seen as awhole to the lambda function:

Alloy Predicate LAdoMath: Lambda function LAdoMath:
pred LAdoMath[x,y,z:one Int, x',y',z':one Int]{ (LAdoMath = (% x vy z Xp yp zp.
y'' =y + X && YpP =X + Y &

z' =z + (y + X) && zp =z + (y + x) &

x = x' Xp = X))

}

In Section 6.3.2 the functiona refinement for XY Z example is specified in Alloy. We consider the
localized action doMath (Fig. 6-2) an abgtract action, and the locdized action doMath, modeed
imperatively (Fig.6-6) —aconcrete action.

The listing below specifies the Jahob formula that expresses refinement correctness between the
abstract and the concrete actions:

120

File final_law_ladi.form

(* action LAdoMath w *) Locdized action asawhole;

(ActionAbstract = (% X y z Xp yp zp.

YP = X +Y &

zp =z + (y + X) &

Xp = X)) &

(* component actions *) - Component localized actions
(LAaddToY2 = (% Xy z2 Xp VP 2ZP-

Xp = X &

Zp = zZ &

yp = Y +x)) &

(LAaddToZ2 = (% Xy 2z Xp VP 2ZP-

Xp = X &

YP =Y &

Zp = 2 + X + Yy))&

(* LAdoMath composite - imperative *) - Locdizaja:tionasacorrpos'te;
(ActionConcrete = (% x y 2z Xp ypP 2Zp.

EX x t, y t, z t.
LAaddToY2 x y Xtytztsa
t t z t

LAaddToZ2 % xp yp zp))& - Application of component actions

b4
Y_
(*Refinement verification¥) - Refinement rdaion
(* refinement relation *)

(RefinementRelation = (% xc t yc t zc t
Xa t ya t za_t.

xc_t
zc_t
yc_t

w
v

o
N
@
ot ot
~ R R

) -->

~
Q

(*assert LAW LAC *) - Refinement correctness
((ALL xa ya za XC yC zC XCp YyCp ZzCp.

(ActionConcrete xc yc zc xcp ycp Zcp & - Application of functions defined abovein the form:
RefinementRelation xc yc zc xa ya za) --> = =, - - = - =,

(EX xap vap zap. vi<c,xcezc,i<aiza|(R(x:,xi)AAc(xc,xc)):
ActionAbstract xa ya za xap yap zap & IX',eZ, |A(Xa, X',) AR(X'",, X'a)
RefinementRelation xcp ycp zcp xap yap

zap))

The values of xa, ya, za and xap, yap, zap define the pre-stae and the pos-state of the abstract
action; The vaues of xc, yc, zc and xcp, ycp, zcp define the pre-gtate and the podt-date of the
concrete action.

Thisformulais used for a verification of functiond refinement with the Jahob form decider. Jahob
formulas are stored in atextud file* .form. To verify the formula, the Jahob form decider is called:

~/Alloy-Jahob$../jahob/bin/formDecider.opt find_law_laci.form -usedp eisaz3

The command —usedp followed by alist of parameters specifies the decision procedures that will
be used to prove the formula.

Executing the command above with specified decison procedures we obtain the formula vaidity
proven by E:

E proved 1 out of 1 sequents. Totd time: 0.1s

121

In Appendix B, we provide listings of severa Jahob formulas that are used to verify
refinement in the XY Z example. These formulas are obtained from the corresponding Alloy
codein Appendix A. All the results obtained with Alloy Analyzer, are confirmed by Jahob.

6.5.2 From a SEAM Specification to a Jahob Program

We specify SEAM actions as untyped lambda functions. The verification of complex data typesis
possi ble with the Jahob verification system by specifying a Jahob program.

An approach, where SEAM specifications with explicit update statements are trand ated to
Java programs annotated with Jahob specification constructs and verified using Jahob
verification system, is a part of our future work. There are two main tasks to anticipate:

- A mapping of SEAM action contracts (FOL formulas) to Jahob specification
constructs;
- A mapping of SEAM update statements to Java statements.

At the time of this writing, a student project on the trandation of SEAM specifications
with explicitly modeled update statements into a subset of Java has been completed [tbd].
This project is resulted in a prototype tool for the automated SEAM to Java trandlation. This
tool is developed on the platform of ATL (Atlas Model Transformation) tool [55].

A representation of a SEAM specification as a Java program permits us to simulate this
specification on the Java platform. A representation of SEAM specification as a Jahob
program will enable us to formaly prove that the action implementation (the update
statements) is consistent with its specification (the action contract).

For the moment, we do not have a theory to interpret the verification results and to provide the
recommendations on specification improvement for designers. We address this topic in our future
work.

122

Chapter 7

Practical Impact: Application of the
Developed Theory in Practice

In this chapter we focus on the practical contribution of this thesis. We illustrate our
technique of refinement verification presented in the previous chapter with two examples:

The On-LineBook Store example shows different customizations and designs of the book
store sale process. The verification of developed business process specifications against each
other, or against a higher level specification, guarantees that al specifications are
behaviorally compatible and correspond to the same strategic goal of the company. This
exampleis presented in Section 7.1;

The Gas Incident Service case study shows a service specification at one level and its
planned implementation by a group of IT applications on the other. A formal verification of
a service specification against its planned implementation serves as a proof that the serviceis
implemented correctly. This exampleis presented in Section 7.2;

In both cases the problem is reduced to a verification of refinement between two
specifications and solved using the algorithm defined in Chapter 6: We provide the SEAM
diagrams, the Alloy specifications obtained from these diagrams, and we illustrate the
refinement verification with the Alloy Analyzer.

In Section 7.3 we present results of the inquiry conducted among practitioners. We
discussed the research results of this dissertation with experts who meet the problem of
Business/IT alignment in practice. This inquiry provided us with valuable feedback and
helped us to prioritize the directions of our research in future.

7.1 High-Level Design and Analysis of Business Processes: TheOn-Line
Book Store Example

Problem description:

Aligning business processes with business strategy is an important preoccupation in modern
organizations. This aignment is made simpler if an adequate level of abstraction for business
process representation is used. A business process can be defined as “a set of partialy
ordered activities aimed at reaching a well-defined goal.” [61]. The keyword partial aludes
to the problem of defining, ahead of time, the exact order in which the activities will be
executed. Indeed a business process may be subjected to many conditions in which this order
cannot be identified at design time. The exact sequence of activities is therefore quite
impossible to predict [61]. Even a simple sale process has been shown to incorporate optional
execution orders depending on, among other aspects, cultural and legal considerations [90].
The example given in [90] describes an on-line book store that needs to adapt its sale process
to local customs in different countries. The sequence of execution between payment and
order fulfilment needs to be adapted to different local preferences. In the United States for
example, payment by credit card is most often required before goods are shipped. In some

123

European countries, e.g. Switzerland, customers are used to paying for goods after they have
been received.

Organizations have a marked tendency to limit their interpretations of their environment
[109]. These interpretations constrain their business processes at the early phases of their
design [73]. Modeling techniques, such as BPMN [78] and use cases [58], also encourage
modeling details at an early stage. As aresult, in many cases, an organization will commit to
one of the execution paths (e.g. paying before sending the goods) and later, handle the second
one (sending the goods before receiving the payment) as an exception. The number of
exceptions, however, often results in tangled processes containing many exceptions. This has
two related consequences. First of al, the alignment between the strategy of the organization
(i.e. selling on-line) and its detailed business processes is not apparent. Second, the flexibility
of the processes themselves [91] is limited because they become difficult to manage and
change.

We propose a technique that complements imperative business process specifications with
declarative specifications. This declarative specification enables designers to describe the
actions that a business process needs to contain, but not their sequence. It omits the
specification of the control flow between the actions thus keeping the process design
independent from constraints imposed by an environment in which this process will be
implemented. The control flow, often specific to a given environment, is later modeled in an
imperative specification. Our technique includes checking the conformance of the imperative
and the declarative specifications.

Our technique can improve the alignment of the business process with the business
strategy of an organization by giving a synthesis of a set of business processes (abstracting
the control flow) and maintain a rigorous relationship with the detailed process. Flexibility
may also be enhanced because aternative paths are modeled as separate business processes
conforming to an overall process, thereby helping organizations to tailor them to different
environments without losing the overall view.

We illustrate our technique with the example of an On-Line Book Store: The company
wants to design a global view on its sale process in order to maintain the alignment between
the different customizations of this process for different countries and to smplify the design
of these customizations. We illustrate a business process redesign task using the same
example and show how declarative specifications help designers to understand the relation
between the redesigned process and the initial one.

We formalize the concepts of the SEAM modeling language using first-order logic with
the Alloy specification language [59]. This enables us to check our models using the Alloy
Anayzer [3].

7.1.1 A Business Process Specification in SEAM

A SEAM working object, as a composite, specifies a distributed action (DA) between
components of the working object (Chapter 3). The distributed action can be considered as a
declarative specification of a business process within a working object. It defines the actions
to be performed by component working objects, but does not prescribe the order in which
these actions will be performed. Many execution paths are valid for a given distributed
action. The selection of one of them is the business process designer’s choice. When a
designer commits to a concrete control flow, the specification is no longer declarative; it is
transformed into atraditional imperative business process model. We call it a customization.

124

7.1.2 Example: A Sale Processfor the On-Line Book Store

In this section we illustrate the declarative business process specifications with the example
of a sale process for an On-Line Book Store. We also clarify the relationships between these
declarative specifications and traditiona imperative business process models.

The On-Line Book Store Description

The On-Line Book Store (BS) is a company that collaborates with a publisher (P), and a
bank (B) to sell books to customers. BS manages requests from customers viathe Internet. A
sale begins when a customer logs into www.BS.com using an id (customerID) and requests a
book using a book id (bookID). If the requested book is available in the publisher’s
inventory and if the customer’s rating in the data base of the bank is good then the sale is
successful. The successful sale terminates when the book is delivered by the publisher to the
customer and the payment for the book is received by the bank from the customer.

If the ordered book is not available or the customer’ srating is not good, we assume that no action
isexecuted (the cash and the inventory remain unchanged).

The Successful Sale: Process Design

The company wants to design different customizations of its sde process for different countries by
maintaining aglobd view of this process.

For the sake of smplicity, we limit our discussion to the specification of the successful sde. Wedo
not specify the case where the payment is not received or the book is not ddlivered.

Localized Action sellOk

InFig. 7.1 the On-Line Book Store vaue network is modded as aworking object seen asawhole
- SYN_w. The successful sde process is modded as a locdized action LAsAIOk of this working
object. LASHIOK specifiesthe strategic god of the vaue network: To perform a sale by guarantying
that if a book is available and if a customer has a good rating then this book will be ddlivered and
paid by the customer.

Action-property relaions are used on the diagram in Fig.7-1 to specify pre- and post-conditions of
LASHIOK. In alegend for Fig.7-1 we present a forma specification of pre- and post-conditions for
LASHIOK written in the Alloy specification language.

SVN_w

0..*|customerDB

Customer
Info Rati
atin
1[ratin <|nt>g Quantity
9 = | quantity <Int>
1jcash |_<int> A. Pre: book is available. ————

B. Pre: customer has a good rating\D.Post: book is delivered

LAsellOk

For all book: Book, buyer: Customerinfo holds:
A. (book.id = bookID) and
(book in blnventory) and
(book.quantity>0) _
B. (buyer.id = customerID) and ((cash = cash + 1)
(buyer in customerDB) and
(buyer.rating > 0) PRE OST

Figure 7-1: Localized Action SellOk.

- N
Book_id | ¢ post: payment received
1lbook_id___ <Int> |

Customer_id
1| cusimer_id <Int>

C. (book.quantity= book.quantity- 1)

125

Distributed Action DAsel|lOk

To relae the strategic god of the vaue network with the specification of a business process tha
supportsthis god, we represent the On-Line Book Store va ue network as a collaboration between the
bank, the publisher and the book store— the participants in the value network. In Fig. 7-2 the On-Line
Book Store value network is modded as aworking object seen asacomposite- SYN_c. The SEAM
digributed action DAsHIOK in Fig.5 specifies how the responghilities in a successful sde are
digributed between the vaue network participants. The bank, the publisher and the book gtore are
modeded as working objects seen as wholes. The responsihilities are modeed as locdized actions of
the corresponding working objects: for example, the fact that the bank checks the customer’srating is
mode ed by localized action checkRating within the B working object.

To specify the communication between the book store, the bank and the publisher, we define
additiona actions preocessRequest and getlD, and properties cID, bID in Fg. 7-2. These actions and
properties serve for information exchange between working objects and are not specific to the
successful sale process, we show them without shading and place the relaions between them and
another actions and properties as dashed lines.

SVN_c 1 " i

P

B 0..*|customerDB 0..*|inventory

. Requested
. <Int>

Check
Availability

DAsellOk

For all sharedBook:one Book, sharedCustomer: one Customerinfo holds:

A. p_checkAvailability[p_blnventory, C. p_deliverBook[p_binventory,

p_requestedID, sharedBook] p_requestedID, sharedBook,
sharedCustomer]

D.b_getPayment[b_cash,
sharedCustomer]

Figure 7-2: Distributed Action DAsellOk.

B.b_checkRating[b_customerDB,
b_requestedID, sharedCustomer] PRE POST

In our example, sharedBook and sharedCustomer are shared properties. They represent the
information used by the bank, the publisher, and the book store to manage their tasks within
the successful sale process of the value network.

The Process Customization

The distributed action DAsdllOKk is a declarative business process specification that
defines the conditions and the results of the process but does not impose any constraints on
how this process will be conducted in a particular environment.

Considering that the On-Line Book Store wants to pursue international markets, namely
US and European markets (including Switzerland), different process customizations have to
be designed [90].

126

In the US, most on-line orders are paid by a credit card and shipped only after the payment is
received. A customization of the sde process for the US market is illudrated in Fig.7-3 (4). This
customization ismodded asaBPMN business process diagram (BPD).

In countries such as Switzerland most mail order companies and on-line stores have
traditionally trusted customers enough to deliver ordered goods without an obligation to pay
in advance. A payment form is shipped with the purchase and customers can then use it to
pay for their purchases in a post office or through their bank [90]. For the Suisse market, the
sell process should be customized allowing for the delivery prior to (or simultaneously with)
the payment procedure asillustrated in Fig. 7-3 (b).

(
T U
PRE : POST
l GetlD Avc;ngg:iity } DBe;“o’:r
| [bookID \
SellOk
YE
Process
. +

Publisher
(P)

rating o
Is book

8BS |

Book Store

[

On-line Book Store Value
Network (SVN)

__ 1 OT 8]

PRE Check OST
GetlD Availability} Deliver
[bookID Book

|

Publisher
(P)

Book Store

On-line Book Store Value
Network (SVN)

Figure 7-3: On-Line Book Store value network performing Sale:
a. the process customization for US;
b. the process customization for Switzerland

The distributed action DAsellOk relates business process customizations illustrated in
Fig. 7-3 with the strategic goa of the On-Line Book Store value network, specified as a
localized action in Fig. 7-1.

The Successful Sale: Process Redesign
The second business process modeling task that can benefit from an additional declarative
specification layer is a business process redesign. A decision of the company to redesign its
business process (or processes) can be based on different internal or external factors, e.g. the
emergence of new technologies or new products, the change of a political situation, the
competitive landscape etc. Considering our example, let’s imagine that the On-Line Book
Store discovered that its shipment service suffers from chronic delays and is found
unsatisfactory by the customers. The On-Line Book Store decides to maintain its own
inventory and to provide the shipment service by itself, instead of outsourcing this service to
the publisher.
Although the strategic goa of the value network remains the same, the value network
itself is reorganized and, as a consequence, a business process redesign is required. The
redesign of a successful sale can be rigorously modeled using a declarative specification that

127

reflects a new distribution of responsibilities between participants of the reorganized value
network. We specify a new (redesigned) distributed action for sellOk in Fig. 7-4. In this
specification, the book inventory modeled as a set of books, and the localized actions
checkAvailability and deliverBook become a part of the BS working object specification.
Working object P that represents the publisher in our specification is removed.

SVN_c 1lb

B ¢
0..*lcustomerDB

Rating
Cash | 1|rating <Int>
<int>

Customer_id | |
<Int> | Request/,»

1| cusimer_id

e ™
1Jbook_id_—_<Int> @My/)

0..%inventory 1]id| <Int>"_

~_ e ~
- Quantity + deliverBook |
d|quantity <Int> o P

For all sharedCustomer: one Customerinfo holds:

A. bs_checkAvailability[bs_blnventory, C. bs_deliverBook[m_blnventory,
bs_book_ID] bs_bookID, sharedCustomer]

B.b_checkRating[b_customerDB, q D.b_getPayment[b_cash,
b_requestedID, sharedCustomer sharedCustomer]

RE POST
Figure 7-4: Distributed action for redesigned sale.

The distributed action DAsellOK in Fig.7-4 is consistent with the localized action
LAsalOk in Fig.4 because the latter specifies only the work to be done - but not the
distribution of this work. This illustrates an integration of two declarative specifications of
the sale process: theinitial one and the redesigned one.

Based on the redesigned distributed action, new process customizations for the US and
Switzerland are modeled in Fig. 7-5. The redesigned distributed action DAsellOk relates the
business process customizations illustrated in Fig. 7-5 with the strategic goal of the On-Line
Book Store value network, specified as alocalized action in Fig. 7-1.

128

)
A
m

POST

Deliver
Book
”””” Check Get
|

SellOk
YE

& rating oR
Is book

Process
Request

Network (SVN)

On-line Book Store Value

S

& rating oR
Is book
available %

On-line Book Store Value
Network (SVN)

ok St
O

33
28
e 3
-0

___________ t; S —
Figure 7-5: On-Line Book Store value network performing Sale:
a. the process cugtomization for US (redesigned);
b. the process customization for Switzerland (redesigned)

7.1.3 Validation of Declarative Business Process Specificationsin Alloy

A transition from the localized action specified for the working object seen as a whole to the
distributed action specified for the same working object seen as a composite is a form of
organizational refinement, defined in Section 5.7.3.

Specification of Localized and Distributed Actions SellOk Using Alloy

We model SEAM actions as Alloy predicates. In SEAM, an action defines a transition of a
working object from one state (pre-state) to another (post-state). The SEAM action
specification uses a pre-state and a post-state as parameters. We use indexes _pre, _post, and
_pr epost to model parameters of the Alloy predicate:

all parameters indexed with _pre correspond to the propertles of the working object

before the action and define a pre- state of this working object X ;
- al parameters indexed with post- correspond to the properties of the working object after

the action happens and define the post-state X' of this working object;
- index _prepost specifies parameters that are not modified by the action. These

parameters correspond to the properties that make apart of both X and X'.
We write the following Alloy specifications of pre- and post- states for localized action
LAselOk in Fig.7-1:

bInventory pre: one Inventory,
customerDB_prepost: one CustomerDB,
customerID prepost: one Int,

bookID prepost: one Int,

cash pre: one Int; & X
bInventory post: one Inventory,
customerDB_prepost: one CustomerDB,

customerID prepost: one Int,
bookID prepost: one Int,

cash post: one Int & X'

129

The Alloy code below specifies the LAsellOk localized action as a corresponding Alloy
predicate. Lines 1-7 in this code correspond to the action’s precondition; lines 8-14 — to its
postcondition. The predicate LAsellOk holds when its precondition implies its postcondition.

pred LAsellOk [bInventory pre, bInventory post: one Inventory,
customerDB_prepost: one CustomerDB,

customerID prepost, bookID prepost, cash pre, cash post: one Int] ({
1. (all requested book: Book, buyer: CustomerInfo|

((requested book.id = bookID prepost) and
(requested book in bInventory pre.content) and
(requested book.quantity>0) and
(buyer.id = customerID prepost) and
(buyer in customerDB prepost.content) and
(buyer.rating > 0)) =>
((one b post: Book |

(b_post.id = requested book.id) and
10. (b _post.quantity= requested book.quantity- 1) and
11. (bInventory post.content = bInventory pre.content -

requested book + b post) and

12. // (customerToDeliver.id = bookDeliveredToID)
13. (cash post = cash pre + 1))
14. // (buyer.id = paymentFromID)
))}

The specification of the localized action LAsellOk in Alloy can beread as follows:

For all buyers and requested books (line 1): the precondition of LAsellOk holds if the values
of their id fields are equal to the values of booklD and customerID respectively (lines 2,5),
and the requested book exists in the inventory (line 3), and is available (line 4), and a buyer
exists in the customer DB (line 6), and has a good rating (line 7). The postcondition
expresses that there exists a book post (line 8) that corresponds to the requested book (line
9) and its quantity is equal to the quantity of the requested book decreased by one (line 10),
and the book inventory after the action (blnventory post) is equivalent to the inventory
before this action (bInventory_pre) with the regquested book substituted by the book post (line
11), and the cash value after the action is augmented by one unit (line 13). We also need to
specify that the requested book is delivered to the proper buyer, and that the payment is
received from the proper customer (lines 12, 14). For the sake of simplicity we do not model
it in this example.

The working object SVN_c from the SEAM specification in Fig.7-1 is specified with its
three component working objects: the bank (B), the publisher (P) and the book store (BS).
The localized actions of component working objects are modeled as the following Alloy
predicates:
pred p checkAvailability[..1{..} - thepublisher checksif the requested book is
available;
pred b _checkRating[..]{..}- thebank checksif arating of the customer is good;
pred p_deliverBook[..]{..} - thepublisher deliversthe book to the customer;
pred b getPayment[..]{..}- thebank receivespayment from the customer.

The following predicates specify communication between the book store, the bank, and the
publisher, as do so the corresponding localized actionsin Fig. 7-2:

130

pred bs processRequest[..]{..}- the book store gets request and externalizes the
requested book id and the customer id for the rest of the network.

pred p getID[..]1{..} - thepublisher getsthe requested book id;

pred b getID[..]{..}- thebank getsthe customer id.

The distributed action DAsellOk binds the localized actions of the component working
objects. The Alloy code below specifies the DAsdIOk distributed action as an Alloy
predicate. Lines 1-7 in this code correspond to the precondition of a localized action
LAsellOk from the listing above; lines 8-9 —to its postcondition.

pred DAsellOk[p bInventory pre, p_blInventory post: one Inventory,
p_requestedID prepost: one Int,

b customerDB prepost: one CustomerDB, b requestedID prepost: one Int,
b cash pre, b cash post: one Int,

bs customerID prepost, bs bookID prepost: one Int]

1. (one cID,bID: Int |

bs processRequest [bs_bookID prepost, bs customerID prepost, bID,cID]
and

p_getID[bID, p requestedID prepost] and
b getID[cID, b_requestedID prepost]) and
all sharedBook:one Book, sharedCustomer: one CustomerInfo|
(p_checkAvailability[p bInventory pre, p requestedID prepost,
sharedBook] and
7. b checkRating[b customerDB prepost, b requestedID prepost,
sharedCustomer]) =>
8. (p_deliverBook[p bInventory pre,
p_bInventory post,p requestedID prepost,sharedBook, sharedCustomer] and
9. b getPayment [b cash pre,b cash post, sharedCustomer]) }

N

o Ul W

Prefixesp_, b_, bs_in the names of predicates specifying localized actions and in the names
of predicate parameters specifying properties refer to the component working objects these
localized actions or properties belong to (e.g. p_blnventory specifies the book inventory,
which isthe property of the publisher).

7.1.4 Validation of Refinement from LA to DA Using Alloy Analyzer 4.0

To relate the designed business process of successful sale to the strategic goa of the On-Line
Book Store, we have to guarantee:

1) The correct refinement from the localized action LAsellOk to the distributed action
DAsdIOK;

2) The correct mapping between the declarative specification DAsellOk and the
imperative business process specifications (i.e. BPMN diagrams) that specify process
customizations.

To check if the distributed action DAsellOk correctly refines the localized action
LAsellOk in our example, we use the definition of refinement correctness from Definition
5.16. We write an Alloy assertion that specifies the correct refinement from abstract to
concrete specification:

assert DA_LA{

al Xc,X',, Xal
(R_LA_to DA (X¢, X a)and DAsdlIOK(X, X'.)) =>
some X', | LAsellOk(X a, X',)and R_LA_to_DA(X',, X",)}

131

Here X, X' ,Xa,X', stand for pre- and post- states at concrete and abstract

specifications respectively. R_LA_to DA is arefinement function that relates state spaces
of the SYN_w and SVN_c. We provide the complete specification of this refinement
function:

pred R LA to DA[p bInventory t: one Inventory, p_requestedID t:
one Int, b customerDB t: one CustomerDB, b requestedID t: one Int,
b cash t: one Int,

bs customerID t, bs bookID t: one Int,

// concrete

bInventory t: one Inventory,

customerDB_t: one CustomerDB, customerID t, bookID t, cash t: one
Int // abstract

I

p_bInventory t = bInventory t
p_requestedID t = bookID t

b customerDB t = customerDB t
b requestedID t = customerID t
b cash t = cash t
bs_customerID t = customerID t
bs bookID t = bookID t

} © RIX,X,!

From Declarative to | mper ative Business Process Specification

The mapping between SEAM distributed actions, modeled declaratively, and imperative
business process diagrams modeled in BPMN can be done in two steps:

First, we define a control flow for the SEAM distributed actions modeled declaratively.
This is equivalent to the specification of intermediate states, caused by the execution of
individual localized action, and the order of their occurrence.

The second step is a mapping of the obtained imperative specifications to BPMN. This
mapping and its automation is a part of our future work.

The conformance of the imperative specification with the dedarative specification in SEAM can
be formdly verified in Alloy by usng the same approach as for refinement verification and by
assuming that the imperative action specification is nothing but a correct refinement of this action,
specified declaratively.

7.2 Specification and Alignment Verification of Services in ITIL: The
Gas Incident Service Case Study

Problem description:

The Information Technology Infrastructure Library (ITIL) [57] is a collection of good
practices for the management of IT services. The perceived value of ITIL isthe improvement
of the relationship between the business and its IT service providers. The relationship
between a business and itsinternal IT department is defined with the use of of Service Level
Agreements (SLA). Similar agreements define the relationships between sub-departments of
the IT department (Operational Level Agreements, OLA) and between the IT departments
and their external providers (Underpinning Contract, UC). For the IT department to be ableto
live up to its obligations defined in the SLA, it has to make sure that the SLA is
implementable with the existing and envisioned infrastructure and with its OLAs and UCs. In

132

this paper we propose a forma method for specifying the alignment between and SLA and a
set of OLAS.

Weillustrate our method with a concrete ITIL project currently in progress. This project is
done for the public utility of Geneva: SIG (http://www.sig-ge.ch/). SIG provides, among other
services, water, gas, and electricity to Geneva residents. One of the important services is the
management of gas incidents, i.e. leaks from gas machinery or pipes. The IT department of
SIG provides support for this service. The expectation of the gas department and the
possibilities afforded by the IT department are captured in an SLA. In this project, the utility
company, the consulting company Itecor and the EPFL University have partnered to apply
the SEAM method for the definition of the SLA.

Though we are inspired by the real example, we have substantially simplified the actua
processes. In particular, al process definitions and quantities, e.g. intervention time, are
illustrative only. To account for the fact that the example is an academic illustration only, we
use the name City Industrial Service to refer to the utility company.

7.2.1 Case Study: Gaslncident Service

In this section, we model a case study that specifies a security service for gas leaks (‘gas
incident service'), provided by the City Industrial Service (CIS) and supported by the IT
system Gaslncident. We consider the service description asfollows: [The gasincident service hag|
to neutralize a gas leak reported by a witness, guaranteing that if the incident site is not secured
within 45 minutes from the time of the regidtration of the witness call by a CIS operator, then an
emergency call ismadeto thelocal Fire Brigade.

Service Specification

In Fig. 7-6, we specify the Service Level Agreement (SLA), which represents the service
specification.

The IT system IT_Gaslncident_w is a service provider in our example (the postfix ‘w’
means that the system is represented as a whole). The process of securing an incident is
modeled as an action LA GaslncidentService of this IT system. This action specifies the
service, provided by CIS.

To support the incident processing, we define an incidentList property for the IT system.
The incidentList represents a set of records of incident cases. The fields of an Incident record
are set during the incident processing.

Action-property relations in Fig. 7-6 explicitly specify the action contract (precondition,
postcondition, invariant)

For example, the condition ‘if the incident is not secured after 45 minutes from the time of the
regigration of the call, then the emergency signal (out_emergency) is generated’ is expressed as a
following postcondition expresson:

((newInc.t3 - newInc.tl <= 45) and (out emergency=0)) or
((newInc.t4 = newInc.tl + 45) and (out emergency=1))

133

IT Witness
i <IN>
GasIncident w |\ iionList *lincidentList 1a CalsIN
|— —o Address
GEO 1|sitelnfo =
info =TT 1|t -
- g CallTime
? fla | 4" CaTime X 1lin call 1|d
Pre: t1>0° @ <@ Description
Address ¢ I
Description ¢ |~ = — — . Gaslncident
s ArrivedOnSite Service
Time
~_ 1] in_secured
Pre:t3>0 1] outifadent \‘\\'\ -
out1nciaen
= Secured
i B |1]t4 i :
SiteSecured T | CallToFBTime Incident Time
Time <0uUT> | <IN>
1] out_emergency
Emergency
Signal
<0uT>
Post: (2-t1 > 15) => (t4=t1+15) - if the time {nBost:(2-t1 < 15) & (t3-t1 < 45) => (t4=0) - a
interval between the registration of the incide e successful securing of an incident - no call to a fire

‘CIS operator is arrived on site’ noti s 1{ brigade is done.

min, then the call to a fir @19\& JE\must be maie\ S\ . .
sﬁ({@‘é Post: newlInc in incidentList - a new incident is

Post: (t3-t1 > 45) => (t4=t1+45) — if tggli(@e recorded to the data base (the incident list)
interval between the registration of the &@ nt and the

'site secured’ notification exceeds 45 min, then the call to

a fire brigade must be made.

Figure 7-6: SEAM specification of the service LA_GaslncidentService (ITIL SLA)

Service specification, illugtrated in Fg. 7-6 isdeclar ative. This specification defines the action
contract but does not show how this contract will be implemented.

Service Construction

In Fig. 7-7, we specify the Operational Levels Agreements (OLA)s. The service is
implemented by several applications; each application provides its ‘part of the service'.
Concretly, IT_Gasincident_c (the postfix ¢ means that the system is represented as a
composite), which describes the planned construction of the IT_Gasincident w has three
component applications: (1) SAP_App, the SAP application, which processes the data from
the help desk and provides the CIS operator with the GPS coordinates of the site; (2) the
ECS App application (Emergency Call Service), which provides an automated call service to
the local fire brigade; and (3) Gaslncident_App application that coordinates the incident
processing, triggers the call to the fire brigade afterwards and maintains the incident record in
the incident list. Specifications of the services offered by these applications correspond to
Operationa Levels Agreements (OLAS). Note that Underpinning Contracts (UCs) would be
specified in a similar manner. Underpinning contracts specificity services offered by third
parties.

The action DA_GaslincidentServicel specifies how the responsibilities in the incident
securing are distributed between the applications. It is, therefore, caled a distributed action.
The distributed action DA_GaslncidentServicel is a declarative process specification that
defines the conditions and the results of the process, but it does not impose any constraints on
how this process has to be conducted in a particular environment.

134

IT_Gaslncident_c \ -
1jincGasApp Gaslncident_App r
1|geoA CallTime i .
locohep ’W lincidentList
SAP App Call <IN>

T Incident
. 1la 1] in_ipfo
|locationList| “
Address | |~ — | 10| callTime
<IN> 1t Description | |
CallTime ¢~ <IN> |
1] in_gddress |
¢ W — = ncall| \ e,
i escription ¢ in_call | |
LocalizeAddress || GEO info \ |
<ouT> \ |
1] out_locatiot \ \‘
] \ \
GEOinfo | /o GEOinfo | | | .
<shared> | /T <>\ |
SecuredTime A\ |
<IN> 1lin

Emergency
Signal
<OuT>

1|shared_site
Info

1in_securedTime

Em
Signal DA_ Gas Incident

<shared> IncidentService1

1|shared_ei-._ \

<shared> ||
erg
ECS_App

irciGas| nt
W
GaslngidentProcess
\” [Emergency
"8\ Signal Open GetTechOn .
\ <IN> (Incident) Site) aCe e
in_dmergency

1|shared_inc

1] out mergency

GetSite :
(Seoured) GloselnclderD

-
. <IN> ne:
|callList out_msg -
\\\\\ o
Emerg Emerg
Message CallFB —— Message T
<OUT>

Figure 7-7: Serviceimplementat

ion modeled as SEAM distributed action

The GaslncidentProcess action specifies the responsibility of the Gaslncident_App

application and is aso modeled declaratively: the set of tasks this action performs is listed,
but no control flow is defined.

The SEAM specification of LA_GaslncidentService in Fig. 7-6 corresponds to the SLA; the
SEAM specification of DA _GaslncidentServicel (as a distributed action) in Fig. 7-7 shows
the planned construction of this SLA by a collaboration of three applications: SAP_App,
ECS_App, and Gaslncident_ App. An OLA is defined for each application. The transition

from the specification of the SLA (Fig. 7-6) to the specification of the multiple OLAs (Fig. 7-
7) isaresult of the organizational refinement (Section 6.3.3).

7.2.2 Validation of a Service and its Construction in Alloy
Specification of SLA using Alloy

To proceed with the specification anaysis and dignment verification, we mgp the SEAM visud

specificationsto Alloy. Figure 5 illugtrates the result of the trandation of the LA_GaslncidentProcess
(Fig.1) to Alloy specification language.

In mapping the SEAM specification to the Alloy specification language, the annotations made to
the diagrams are used to specify the actioniin Alloy.

Similarly to the previous example, we use indexes _pre, _post, and _prepost to model

parameters of the Alloy predicate. We alco use prefixes in_ and out_ to specify input and
output parameters of the action.

incidentList pre: set Incident,
locationList prepost: set GEOInfo ©& X

in call:one WitnessCall,

in securedTime: one Int & |

out emergency: one Int,

out_incident: one Incident & O

incidentList post: set Incident,

135

locationList prepost: set GEOInfo,
in call:one WitnessCall ®& X'

In the listing below, lines 1-2 defines the Alloy signature that specifies the action, line 3
specifies the action precondition, and lines 4-13 specify the action postcondition. No
invariant is defined.

1. pred LA GasIncidentService [incidentList pre, incidentList post: set
Incident, locationList prepost: set GEOInfo, in call:one WitnessCall,
in securedTime: one Int,

2.out_emergency: one Int, out incident: one Incident] ({

3. ((in_call.t >0) and (in securedTime >0)) =>
4., (one newlInc: Incident | //local var. newlnc
5. (! (newInc in incidentList pre)) and //Added to the list:
6. (incidentList post = incidentList pre + newlInc) and
//Initial values from the witness call:
7. (newInc.tl = in call.t) and (newInc.info = in call.d) and
//GPS data is obtained from the Address
8. (one loc: GEOInfo | (loc in locationList prepost) and

9. (loc.a = in _call.a) and (newInc.siteInfo = loc)) and
//secured time as an income call from the technician

10. ((newInc.t3 = in securedTime))and

//either the site is secured within 45 min or emergency sent
11. (((newInc.t3 - newlInc.tl <= 45) and (out_emergency=0)) or
12. ((newInc.t4 = newInc.tl + 45) and (out emergency=1))) and
13. (out_incident = newlnc)) }

newlncisalocd variableintroducesin the action LA_GasincidentService to creste a new instance of
theincident and to add it |ater on to thelist. (See Section 4.5 about ingtance cregtion in SEAM).

The Alloy specification of a GaslncidentService localized action, modeled as a predicate
LA_GaslncidentService can be read as follows:

Given a system, with its state specified by the incidentList and a locationList, and input
parameters in_call, in_securedTime, and output parameters out_incident, and
out_emergency (line 1,2): the precondition of LA GasincidentService holds if the witness call
in_call with non-negative time is regisered, and a non-negative securization time in_securedTime
was obtained (line 3). The postcondition expresses that upon the action termination there will
be created a record of incident newlnc such that this record is not in the list incidentList_pre
(line 4-6), and the fields of this record are received from the witness call in_call and the
technician call in_securedTime (line 7-10) and if theincident is not secured after 45 minutesfrom
thetime of the regidtration of the witness call then the emergency signal (out_emergency) isgenerated
(line 11), and the created incident record is an output parameter of the system — out_incident
(line 13).

The working object IT_Gaslncident_c from the SEAM specification in Fig.7-7 is specified
with its three component working objects: SAP_App, ESC_App, and Gasincident_App. The
localized actions of component working objects, defining OLAs, are modeled as the
following Alloy predicates:

pred LocalizeAddress[locationlList prepost: set GEOInfo,

in address: one Int, out location: one GEOInfo] {

//post

one loc: GEOInfo |

(loc in locationList prepost) and (loc.a = in address) and (out location =
loc) }

136

Getting an address as an input, the SAP_App retrieves a site location from the GEOInfo
database;

pred CallFB[mList pre, mList post: set EmergencyMsg, in inc: one Incident,
in emergency: one Int, out m: one EmergencyMsg]{

//pre

(in_emergency = 1) =»>

//post: create an outgoing emergency call and add it to the list
(one out m: EmergencyMsg | (out m.inc = in inc) and

(mList post = mList pre+out m)) else (mList post = mList pre) }

Getting an emergency signal as an input, the ESC_App generates a phone call to a fire
brigade;

pred GasIncidentProcess [incidentList pre, incidentList post: set Incident,
in call: one Int, in siteInfo: one GEOInfo, in _onSite,in secured: one Int,
in info: one Int, out emergency: one Int, out incident :one Incident] {
one shared incident: Incident |
(OpenIncident [incidentList pre, incidentList post,
in call,in siteInfo, in info, shared incident]and
GetTechOnSite[in _onSite,shared incident] and
GetSiteSecured[in secured, shared incident] and
InciCallFB[out emergency, shared incident] and
CloseIncident [shared incident]and
(out_incident = shared incident)) }

The Gaslncident_App manages the process, having awhitness cal and information from
operator as input parameters.

The GaslncidentProcess localized action is specified as a composite with component actions
Openincident, GetTechOnSite, GetSteSecured, InciCallFB, and Closelncident, they define
responsibility of the IncidentGas application within the service in detail.

The distributed action DA _GaslncidentService specifies how localized actions of SAP, ECS,
and Gaslncident applications are bound together to provide the implementation of the
GaslncidentService. The Alloy code below specifies the DA_GaslncidentService distributed
action as an Alloy predicate.

pred DA GasIncidentService[incidentList pre, incidentList post: set
Incident, locationList prepost: set GEOInfo, mList pre, mList post: set
EmergencyMsg,

in call: one WitnessCall, out emergencyCall: one EmergencyMsg,

in securedTime: one Int] {

some shared siteInfo: GEOInfo, shared inc: Incident,
shared emergency:Int |
LA GasIncidentProcess wl[incidentList pre, incidentList post,
in call.t, in call.d, shared siteInfo, in securedTime,
shared emergency, shared inc] and
LocalizeAddress[locationlList prepost,in call.a, shared siteInfo] and
CallFB[mList pre, mList post, shared inc, shared emergency,
out emergencyCalll] }

137

7.2.3 Validation of Refinement from SLA (Modeled as SEAM L ocalized Action)
to OLAs(Modeled as SEAM Distributed Action) Using Alloy Analyzer 4.0

Based on the Alloy semantics for SEAM specifications, defined in Chapter 6, we transform
the visual SEAM specifications of the SLA or the OLA/UC (SLA and OLAs+UCsinFig. 7-
8) to the corresponding programs written in Alloy formal specification language (P1 and P2
in Fig. 7-8). We can verify the refinement correctness between the Alloy models using the
Alloy Analyzer tool (http://alloy.mit.edu/).

—— | SLA > P1 o

A_] * >

_______ J =

/= * \ Q

/€ < <

= |/ £ = . >

<) Ia' o 5

-k = 2 // = g

PN 8 S / 5

P — — — — — . o)

k - /1/ -
I\OLAs > P2

Figure 7-8: Refinement verification

To relate the service specification modeled as a localized action — that corresponds to the
SLA - with its implementation modeled as a distributed action — that combines the OLAS -,
we have to guarantee the correct refinement from the localized action
LA_GasIncidentService to the distributed action DA_GaslncidentService. Similarly to the
previous example, we use the definition of refinement correctness from Definition 5.16. We
write an Alloy assertion that expresses the correct refinement from abstract to concrete

specification

assetDALA{

al Xe, X', Xa,le,la,0c]

(R_Input(1c,l 2)&& R LA_to_DA (Xc, X a)&& DAsallOk(Xc, X',)) =>

some X', ,0a| LAsellOk(Xa, X',)&& R LA_to_DA(X",, X',)&& R_Output(Oc,0a)}
Here X.,X',,Xa, X", stand for pre- and post- states at concrete and abstract specifications

respectively; 1¢,la,0c,Oastand for input and output parameters of concrete and abstract

specifications. . R_ LA _to DA is a refinement relation that relates state spaces of the
IT_GasIncident w and IT_Gaslncident _c. R Input and R_Output are relations between
input and output parameters respectively. We provide the complete specification of this
relations:

pred R_LA to DA[incidentList t: set Incident, locationList t: set GEOInfo,
mList t: set EmergencyMsg, // model concrete
incidentListl t: set Incident, locationListl t: set GEOInfo]{ // model
abstract

(incidentList t= incidentListl t) and

(locationList t= locationListl t)}

pred R_Input[in call: one WitnessCall, in calll: one WitnessCall,
in securedTime, in_securedTimel: one Int] {

in call = in calll and

in securedTime = in securedTimel}

138

pred R _Output [out emergencyCall: EmergencyMsg, out Incident: one Incident,
out emergency: one Int] {

(out_emergency = 1) &&

(out emergencyCall.inc = out Incident)}

assert DA LA({

all incidentList pre: IDB, mList pre: MSG, in call: WitnessCall,

in securedTime: Int, incidentListl pre: IDB, in calll: WitnessCall,
in securedTimel: Int, incidentList post: IDB, mList post: MSG,
locationList prepost: GEO, locationListl prepost: GEO|

& all Yc,Y'C,Ya,Tc,Ta,6c|

(DA_GasIncidentService[incidentList pre.v, incidentList post.v,
locationList prepost.v, mList pre.v, mList post.v, in call,
out emergencyCall, in securedTime] &&

& DAsellOk(Yc,X'c)

R LA to DA[incidentList pre.v, locationList prepost.v, mList pre.v,
incidentListl pre.v, locationListl prepost.v] &&

® R_LA to DA (Xc,Xa)

R_Input[in call, in calll, in securedTime, in_securedTimel])=>

o R_Input(TmTa)

(some incidentListl post: IDB, out emergencyCall: EmergencyMsg,
out Incident: Incident, out emergency:Int|

& some X'aJJaI

LA GasIncidentService w([incidentListl pre.v, incidentListl post.v,
locationListl prepost.v, in calll, in securedTimel, out emergency,
out Incident] &&

© LAsellok(Xa,X',)

R LA to DA[incidentList post.v, locationList prepost.v, mList post.v,
incidentListl post.v, locationlListl prepost.v] &&

& R LA to DA(X',X',)

R Output [out emergencyCall, out Incident, out emergencyl) }
& R_Output (Oc,0a)

7.3 Practical Feedback

To reason about a practical value of our research, we have conducted an inquiry among
experts in the domain who meet the problem of business/IT aignment in practice. During this
inquiry, we propose that the experts read one of our recent research papers that illustrate the
practical examples above. To state their opinion about our technique, we propose that the
experts answer the following questions:

1. Whether the problem discussed in the paper is encountered in practice?

2. What do you think about the usefulness of the method presented in the paper for a
practitioner? Please, explain your answer.

139

expect.

3. How do you think the validation / verification technique presented in the paper can
help you (your company)? Please, describe the advantages and disadvantages that you can

Thelist of experts:

agbrwbdPE

lan F. Alexander
Ilia Bider

Alexander Samarin
Thomas Langenberg
Donald C. Gause

Below, we summarise the results of our inquiry.

Summary
1. Experts:

140

All the experts participating in our inquiry have years of experience in consulting. The
areas of their expertise range from SAP consulting in IT to solutions in enterprise
architecture and requirements engineering;

Four of the experts are active in the research community;

Three of the experts have their own consulting companies;

One expert isafull academic professor.

M odeling methods and tools used in practice:

All the experts use visual modeling techniques to devel op their solutions, and to
communicate them with the customers. The following tools were named by the
experts: Intalio BPM suite, IBM WebSphere Integration Developer, Enterprise
Architect for UML, i*, and Microsoft Power Point.

Most of the experts also admitted that they use their own methods and tools, created
for specific problems.

Problem soundness:

All the experts confirmed that the alignment of business processes with business
strategy (as described in Section 7.1) and the alignment between a service level
agreement (SLA) and the operational level agreements (OLAS) (as described in
Section 7.2) are important problems for their organizations.

4. Theusefulness of the presented method:
(below we provide the excer pts from the answer s)

The proposed method is useful as a methodological base for discussing problems and
finding solutions. It could help to create accurate service specifications for clients;
The method sounds useful because it considers the complimentary of declarative and
imperative techniques. The synergy of these two techniques (complimented by some
guidance how to combine them) will certainly create more flexible business process
models.

The evaluation of each aternative solution and the validation that this solution does
not violate the requirements is a typical problem. Though, having a technique with
which one can evaluate proposed solutions could save project resources and would be
auseful instrument for a consultant;

It is hard to imagine a computer design problem that would not benefit from a
refinement tool that is capable of recognizing and correcting inconsistencies between

high-level business and systems requirements and implementation instructions
(functional specifications).

5. Advantages:

- By expressing the relationships between actions and data graphicaly, it is highly
expressive, making it clear what is needed when.

- The proposed technique may serve for a consultant to verify solutions against
requirements and also to evaluate and to compare these solutions.

- Any formal verification is very useful in daly practica work because such
verification can bring highly demanded, objective, and scientifically proven reasoning
into a modern enterprise environment with all its political tensions and power games
(where it is dmost impossible to have something willingly accepted and followed by
everyone).

6. Disadvantages/Concerns

- Thescaahility of the method is questionable: the technique was nicely illustrated with
the “toy” example, however a big concern is about how such a notation may scale up
for large problems; the number of relationships may increase rapidly with the number
of both actions and pieces of data, which could make the diagrams hard to read. It
could also make a formal proof of correctness long; but as this is supported by the
Alloy Analyzer tool, this should not be a problem.

- The complex graphical notation plus the use of forma methods prevents this
technique from being used for communication with a client.

- The industrialisation of the approach would involve training for requirements
practitioners, tooling, and reasonable assurance to both the company and the client
that the approach is workable in practice (on areal problem, and by practitioners).

- The utilization of this technique will introduce a new step in the project devel opment
process, which is promising but time and money consuming. It could be difficult to
communicate a profitability of this technique to the customer.

- It is difficult to imagine the use of forma methods of verification/validation in any
foreseeable future.

7. Suggested improvements:
- A popular version and texts in methodological style should be written, e.g. manuals,
etc.
- Making full use of the methodology will require an introduction of it in a tool that
helps to design processes/support systems;
- Thevisua notation needs some enhancements before meeting non-experts;
- Severd redlistic projects in the field have to be accomplished using this technique to
demonstrate its scalability and potential profitability for a customer;
- There might be some possibilities for promoting formal verification/ validation,
provided they are incorporated in some tool, e.g.:
o Asasdesargument for the tool
o To provide guarantees in cases of extremely importance for the customers (e.g.
SOX compliance).

The results of the conducted inquiry are valuable feedback for this work and help us to
prioritize the directions of this research for the future.

141

142

Chapter 8

Conclusion

In this dissertation we have defined the formal semantics for SEAM language that permit us
to validate the alignment between models, specified in SEAM.

We have achieved four main advantages for visual SEAM specifications;

1. The SEAM extension with AP-relations and AA-relations and their semantics. This
extension alows for the explicit modeling of a system behavior as a change of a
system state;

2. The formalization of relations between SEAM Visua Specifications as Refinements.
This formalization alows for the utilization of theories that aready exist in software
engineering and are dedicated to rigorous program devel opment;

3. The formaization of SEAM concepts in first-order logic (FOL). This formalizartion
allows us to be able to reduce the problem of refinement verification in visual models
to aproblem of validity of an FOL-formula;

4. The definition of a language migration and refinement verification using formal
specification languages. This migration alows for the utilization of tools (i.e. the
Alloy Anayzer, the Jahob verification system) for automated verification of
refinement.

We have illustrated our technique of refinement verification with two examples: In the first
example, we consider the problem of aignment verification in the context of business
process modeling; the problem presented in the second example discusses the alignment in
context of service specification and design.

Using forma semantics for SEAM specifications, we have defined declarative and
imperative process specifications. We use combinations of these specifications:
- tointegrate different customizations and redesigns of a business process; and
- to specify services at different levels of abstraction;

We have shown how a refinement theory can be applied to validate the alignment between
the processes (e.g. business processes, services), specified at different abstraction levels.

We have illustrated how Alloy, alight weight specification language, can be used to verify
the alignment. We have also explored the alternative method of alignment verification, based
on the Jahob verification system.

Our contribution establishes a bridge between the forma methods of Software Engineering

and practical problemsin the area of Business/IT aignment (i.e. the verification of alignment
between process specifications and their implementations).

143

8.1 Future Work

The problem the alignment of Business and IT is gaining an importance. Various methods
and tools have been developed in this domain in order to support the modeler in creating the
models and making these models transparent, traceable, and aligned. In conducting this
research, we have pursued the goa of bringing the visual specifications to such a level of
precision that they become self-contained means for system validation. To do so, we have
extended the visual notation with formal concepts and textual annotations. By defining the
formal semantics for visua SEAM specifications, we were able to create a technique for
mapping these specifications to the verifiable code. The main directions of our future work
are:

(1) To decrease the visible complexity of the method by providing documentation,
guidelines and by implementing the front-end of the technique in the form of an application.
This should hide the complexity from the user (see for example [13]).

(2) Further exploration of opportunities given by formal semanticsin SEAM,;

(3) Further exploration of opportunities given by refinement formalization for SEAM
visual specifications.

8.1.1 Complexity Reduction, Usability

Documentation. At the time of this writing, this PhD dissertation is the most complete
documentation of the technique created. To enhance the usability of the method,
documentation, focused on the practical application of the technique (e.g. atutorial) would be
very useful.

The SEAM graphical notation.

The development of a simpler notation that can be used both in an education process with an
academic audience (i.e. students, research community), and in practice with a business
audience (as atechnique for business workshops) is the magjor goal in the future.

The automated alignment assistant. We consider an implementation of the automated
alignment assistant — a supplementary function of the SEAM modeling tool SeamCAD [66].
This assistant will identify a refinement type based on the modeler’ s activities; depending on
the refinement type, the assistant may propose that the modeler specify the states of interest
and define a refinement relations between them.

8.1.2 Formal Semantics

Deter ministic vs. nondeter ministic.
Forma semantics for SEAM and, in particular, a possibility of specifying a system
declaratively, opens an interesting discussion about nondeterministic specifications and the
way to specify and validate them. By a nondeterministic specification, we understand a
specification whose behavior is not explicit. For example, different actions can be triggered
by a ‘random choice’ or action parameters can be randomly chosen from some range of
allowed values. Forma semantics provides a mechanism to specify nondeterminism for
SEAM models.

Formal semantics allows us to design and implement various applications for the
simulation and animation of SEAM visual specifications.
From a visual specification to an executable code. During this work, we have devel oped
severa tool prototypes for generating executable and verifiable specifications from SEAM
visual models. The improvement of these prototypes, their testing, and documentation is one
of the tasksin the future.

144

SEAM to Jahob is an application that we plan to develop based on the theory created in

this dissertation. This tool will help the modeler to animate her specifications by simulating
them in Java; providing the Jahob specification constructs will give us an opportunity to
formally prove that the implementation corresponds to its specification.
Scalability. The technique we crested was tested on redlistic, but small problems.
Considering the integral complexity of the SEAM extended notation, plus the complexity of
the verification procedure, the scaability of our technique on a real-size problem is
guestionable for the moment. By improving both the notation and the transformation
procedure, we expect to make our technique scalable.

8.1.3 Refinement

From an executable code to a visual specification. For the moment, the lack of interpretation of
(negetive) verificaion results is a serious drawback of this technique when the refinement is
incorrect, the only recommendation that can be given to the modder is. * Change the specification and
repeet the verification!’. Severd sources of the verification falure can be listed: the refined
specification is incorrect; the refinement reldion is incorrect; the assertion about refinement is
incorrect; the proof technique failed to congtruct a proof; the vaidation technique faled; etc. To
identify the reasons for failure based on the verification results (error messages, traces, etc. received
from verification tools) and to provide recommendations on how to solve the problem is an important
task that makes atopic for the future research. Heuristics

Refinement propagation

Significant efforts in future might be invested in the further exploration and development of
the refinement propagation technique [96] based on refinement theory for SEAM
specifications:

In contrast to techniques where a refinement is first proposed and then proved to be
correct, some techniques allow for the calculation of a refinement step based on the
refinement laws. The refinement calculus is an underlying theory. This calculation assures
refinement correctness ' by construction’, and enables the reduction of proof obligations.

We believe that refinement by calculation [72] can be beneficial for the practical
application in the context of visual modeling. By exploring the refinement types, specified in
Chapter 5, we found relations between them in the form “refinementX implies refinement” .
This implication we call a propagation of refinement. With refinement correctness criteria
defined, a sufficient part of the calculations can be done without a modeler’ s involvement.

145

146

Bibliography

[1]

[2]
[3]
[4]
[3]

(€]

[7]

(8]

[9]

Abadi, M., Lamport, L.: The Existence of Refinement Mappings, Theoretical Computer
Science, v. 82, n.2, pp.253-284 (1991).

Adora: http://www.ifi.uzh.ch/rerg/research/projects/adoraltool/

Alloy Analyzer 4.0, http://alloy.mit.edu/alloy4/
Argo UML.: http://argouml.tigris.org/

Baar, T., Markovi , S.: A Graphical Approach to Prove the Semantic Preservation of
UML/OCL Refactoring Rules, Irina Virbitskaite and Andrel Voronkov, editors.
Perspectives of Systems Informatics, 6th International Andrei Ershov Memorial
Conference, PSI 2006, Proceedings, LNCS 4378, pp. 70-83, Springer (2007).

Baar, T., Markovi , S., Fondement, F., Strohmeier, A.. Definition and Correct
Refinement of Operation Specifications, In B. Meyer, A. Schiper, J. Kohlas, editors,
Dependable Systems: Software, Computing, Networks, volume 4028 of Lecture Notesin
Computer Science, pages 127-144, Springer (2006).

Back, R.-J.: On the Correctness of Refinement Steps in Program Development. Abo
Akademi, Department of Computer Science. Ph.D. Thesis. Helsinki, Finland (1978).

Back, R.-J.: Incremental software construction with refinement diagrams. In Broy,
Gunbauer, H. and Hoare, editors, Engineering Theories of Software Intensive Systems,
NATO Science Series II: Mathematics, Physics and Chemistry, pages 3-46. Springer,
Marktoberdorf, Germany (2005).

Barendregt, H.P.: The lambda calculus, its syntax and semantics. North Holland,
ISBN-13: 978-0-444-87508-2 (1984).

[10] Barendregt, H.P.: Functiona Programming and Lambda Calculus. Handbook of

Theoretical Computer Science, Volume B: Forma Models and Sematics (B), 321-363
(1990).

[11] Barnett, M., Grieskamp, W., Gurevich, Y., Schulte, W., Tillmann, N., Veanes, M.:

Scenario-oriented Modeling in AsmL and its Instrumentation for Testing /UML use
cases testing using AsmL

[12] Beizer, B.: Software Testing Techniques. 2nd ed., New York, NY, USA, Van Nostrand

Reinhold Co., 550 p. (1990).

[13] Bordbar, B., Anastasakis, K.: UML2Alloy: A tool for lightweight modelling of Discrete

Event Systems. International Conference in Applied Computing. Volume 1., Algarve,
Portugal, IADIS Press, 209-216 (2005).

147

[14] Borgida, A., Mylopolous, J., Reiter, R.: ...And Nothing Else Changes. The Frame
Problem in Procedure Specifications. In Proceedings of ICSE-15, pages 303-314. |[EEE
Computer Society Press, (1993).

[15] Borger, E., Stark, R.: Abstract State Machines. A Method for High-Level System Design
and Analysis. Springer-Verlag, Berlin Heidelberg New Y ork (2003).

[16] Borger, E.: The ASM Refinement Method, Formal Asp. Comput. 15(2-3): 237-257
(2003).

[17] http://istm.tue.nl/staff/rdijkman/cbd.html#transformer.

[18] Bradley, A. R., Manna, Z.: The Calculus of Computation: Decision procedures with
Applicationsto Verification, Springer, ISBN-10: 3540741127 366p. (2007).

[19]Brown, A.: An introduction to Model Driven Architecture, IBM, available at:
http://www-128.ibm.com/devel operworks/rational/library/3100.html

[20] Clarke, E.M., Emerson, E.A., Sistla, A.P.: Automatic verification of finite state
concurrent systems using temporal logic, ACM Trans. on Programming Languages and
Systems, 8(2), pp. 244263, (1986).

[21] Clarke, E.M., Grumberg, O., Jha, S, Lu, Y., Veith, H.: Progress on the state explosion
problem in model checking. In Informatics, 10 Years Back, 10 Years Ahead, volume
2000 of LNCS, pages 176--194, (2001).

[22] Clarke, E.M., Orna Grumberg Jr., Peled, D. A.: Model Checking, MIT Press, 1SBN 0-
262-03270-8. (1999).

[23] Cornelio, M.: Refactorings as Forma Refinements - PhD thesis, Universidade de
Pernambuco, (2004).

[24] Dardenne, A., van Lamsweerde A., and Fickas, S.. Goa Directed Requirements
Acquisition, Science of Computer Programming, Vol. 20, No. 1-2, pp. 3-50, (1993).

[25] Project page:

http://se2c.uni.lu/tiki/tiki-index.php?pt=Research%20Groups$M DE:%20M odel -
Driven$Foundations$DA SCOM & page=DascomOverview

[26] DEMOS on-line documentation: http://se2c.uni.lu/demos/documentation/

[27] Derrick, J., Boiten, E.: Refinement in Z and Object-Z. Springer, (2001).

[28] Dietz, J. L. G.: DEMO: towards a discipline of Organisation Engineering. (1999).

[29] Dietz, JL.G.: Enterprise Ontology —Theory and Methodology. Springer, New York,
ISBN: 3-540-29169-5. (2006).

148

[30] Dijkman, R. M., Dumas, M., Ouyang, C.: Forma Semantics and Anaysis of BPMN
Process Models, preprint version, QUT | ePrints Archive,
http://eprints.library.qut.edu.au/ (2007).

[31] Dijkstra, E. W. Notes on structured programming. In Structured Programming.
Academic Press (1971).

[32] Department of Defense, USA: DoD Architecture Framework Version 1.5, 2007.

[33] van Dongen, B., Alves de Medeiros, A.K., Verbeek, H.M.W., Weijters, A.JM.M., van
der Aast, W.M.P.: The ProM framework: A new erain process mining tool support. In
G. Ciardo and P. Darondeau, editors, Application and Theory of Petri Nets 2005, volume
3536 of Lecture Notesin Computer Science, pages 444-454. Springer, (2005).

[34] Dori, D.: Object-Process Methodology, A Holistic Systems Paradigm, Springer Verlag,
(2002).

[35] Dori, D., Reinhartz-Beger, I., and Sturm, A.: OPCAT - A Bimoda CASE Tool for

Object-Process Based System Development. Proceedings of 5th ICEIS, Angers, France,
(2003).

[36] Dori, D.: SODA: Not Just a Drink!, mbd-mompes, pp. 3-14, Fourth Workshop on
Model-Based Development of Computer-Based Systems and Third International
Workshop on Model-Based Methodologies for Pervasive and Embedded Software
(MBD-MOMPES06), (2006).

[37] http://dresden-ocl.sourceforge.net/aboutproject.html

[38] D'Souza, D. F., Wills, A. C.: Objects, Components, and Frameworks With UML: The
Catalysis Approach, Addison-Wesley, (1998).

[39] Eclipse — an open devel opment platform www.eclipse.org

[40] Feijs, L.M.G., Krikhaar R.L.: Relation algebra with multi-relations. Intern J. Computer
Math., (1998).

[41] Feijs, L.M.G., van Ommering, R.C: Relation partition algebra - mathematical aspects of
uses and part-of relations. Science of Computer Programming 33 (1999).

[42] Fowler, M.: Refactoring: Improving the Design of Existing Code, Addison-Wesley,
Object Technology Series, ISBN 0201485672 , (1999).

[43] Girault, C., Valk, R.: Petri Netsfor Systems Engineering, Springer, 607p. (2002).

[44] Glinz, M., Berner, S., Joos, S., Ryser, J., Schett, N., Xia, Y.: The ADORA Approach to
Object-Oriented Modeling of Software, Lecture Notes in Computer Science, (2001).

[45] Glinz, M., Berner, S., Joos, S.: Object-oriented modeling with ADORA, Inf. Syst., v.27,
n 6, Elsevier Science Ltd., pp. 425—444 (2002).

[46] Glinz, M., Seybold, C., Meier S.: Simulation-Driven Creation, Validation and Evolution
of Behaviora Requirements Models. Proceedings of the Dagstuhl-Workshop

149

Modellbasierte Entwicklung eingebetteter Systeme. Informatik-Bericht 2007-01, TU
Braunschweig, Germany. 103-112. (2007).

[47] Gordon, M. J. C., Melham, T. F.: Introduction to HOL: a theorem proving environment
for higher order logic, Cambridge University Press New York, NY, USA. (1993).

[48] Gordon, M. J. C.: From LCF to HOL: a short history; Proof, Language, and Interaction,
by G. Plotkin (Editor), Colin P. Stirling (Editor), Mads Tofte (Editor). MIT Press,
(2000).

[49] Habermas, J.: The Theory of Communicative Action: Reason and Rationalization of
Society. Polity Press, Cambridge. (1984).

[50] He, J., Hoare, C., Sanders, J.: Data refinement refined. ESOP 86 Lecture Notes in
Computer Science 213 187-196 (1986).

[51] Hoare, C.A.R.: Proofs of correctness of data representation. Acta Informatica (1972).

[52] Henzinger, T.A., Jhaa, R., Mgiumdar, R., Sutre, G.: Software Verification with Blast. In
Proceedings of the 10th SPIN Workshop on Model Checking Software (SPIN 2003),
LNCS 2648, Springer-V erlag, pages 235-239, (2003).

[53] Hilbert, D., and Ackermann, W.: Principles of Theoretica Logic (English trandation).
Chelsea. (1950). The 1928 first German edition was titled Grundztige der theoretischen
Logik.

[54] Holzmann, G. J.: The SPIN Model Checker: Primer and Reference Manual, Addison-
Wesley Professional, (2003).

[55] Inria ATL - The ATLAS model transformation language
http://ralyx.inria.fr/2006/Raweb/atl as/uid26.html

[56] Intalio Designer: www.intalio.com
[S7]ITIL: Office of Government Commerce, ITIL Service Strategy, TSO, London, (2007).

[58] Jacobson, 1., Christerson, M., Jonsson, P., Overgaard, G.: Object-Oriented Software
Engineering: A Use Case Driven Approach, (ACM Press) Addison-Wesley, (1992).

[59] Jackson, D.: Software Abstractions: Logic, Language, and Analysis, MIT Press.
Cambridge, MA. ISBN 0-262-10114-9 (2006).

[60] Kelsen, P.: A Declarative Executble Model for Object-Based Systems Based on
Functional Decomposition. Technical Report TR-LASSY-06-06, ISBN 2-919940-12-0,
(2006).

[61] Khomyakov, M., and Bider, I.: Achieving Workflow Flexibility through Taming the
Chaos’. OOIS 2000 - 6th international conference on object oriented information
systems. Springer, 2000, pp.85-92. Reprinted in the Journal of Conceptual Modeling,
(2001).

[62] Kleppe, Warmer, J., Bast., W.: MDA Explained, The Model-Driven Architecture:
Practice and Promise. Addison Wesley (2003).

150

[63] Kuncak, V.: Modular Data Structure Verification, Ph.D. thesis, Department of Electrical
Engineering and Computer Science, Massachusetts Institute of Technology (2007).

[64] Loveland, D.W.: Automated theorem proving: A logical basis (Fundamental studies in
computer science), sole distributor for the USA and Canada, Elsevier North-Holland
(1978).

[65] Lynch, N. A., Vaandrager, F. W. : Forward and Backward Simulations. I. Untimed
Systems Inf. Comput. 121(2): 214-233 (1995).

[66] L& L.S.; Wegmann, A.. SeamCAD: Object-Oriented Modeling Tool for Hierarchical
Systems in Enterprise Architecture, 39h |IEEE Hawaii International Conference on
System Sciences. (2006).

[67] MagicDraw http://www.magicdraw.com/

[68] Markovic, S.: Model refactoring using transformations. PhD dissertation, These EPFL,
no 4031 (2008).

[69] Mens, T., Tourwe, T.: A survey on software refactoring, Transactions on Software
Engineering, IEEE Computer Society Press, (2004).

[70] Mens, T., van Gorp, P.: A Taxonomy of Model Transformation. ENTCS (2006).
[71] Meyer, B.: Eiffel — The Language. Prentice-Hall, Englewood Cliffs, (1992).

[72] Morgan, C., Gardiner, P.H.B.: Data Refinement by Caculation Oxford University,
Programming Research Group, (1989).

[73] Narasipuram, M.M., Regev, G., Kumar, K., Wegmann, A.: Business Process Flexibility

through the Exploration of Stimuli, accepted for publication, International Journal of
Business Process I ntegration and Management (1JBPIM), (2008).

[74] Nipkow, T., Paulson, L. C. and Wenzel, M.: Isabelle/HOL: A Proof Assistant for Higher-
Order Logic, volume 2283 of LNCS. Springer-Verlag, (2002).

[75] OMG: MDA Guide Version 1.01 (2003). Available at:
http://www.omg.org/docs/omg/03-06-01.pdf

[76] OMG: UML 2.0 OCL Specification — OMG Fina Adopted Specification. OMG
Document ptc/03-10-14, (2003).

[77] OMG: Unified Modeling Language: Superstructure, version 2.1.2. (2007).

[78] OMG: Business Process Modeling Notation (BPMN) Version 1.0, OMG Final Adopted
Specification, (2006).

[79] OMG: Systems Modeling Language (OMG SysML ™), V1.0 (2007).

[80] OPCAT: http://www.opcat.com/

151

[81] The Open Group Architecture Framework TOGAF — 2007 Edition, The open group,
http://www.opengroup.org/togaf/ (2007).

[82] Paulson, L.: Isabelle: A Generic Theorem Prover”, Springer, (1994).

[83] The Petri Net Makup Language (PNML) http://www2.informatik.hu-
berlin.de/top/pnml/about.html

[84] Prom: http://is.tm.tue.nl/~cgunther/dev/prom/

[85] Pons, C.: Heuristics on the definition of UML refinement patterns. In SOFSEM, pages
461-470, (2006).

[86] Metastorm, Pro Vision www.metastorm.com/products/mpea.asp

[87] Rationa Software Architect:
http://www-306.ibm.com/software/awdtool /architect/swarchitect/index.html

[88] Reeves, S., Streader, D.: Comparison of Data and Process Refinement, In Proc. of 5th
International Conference on Formal Engineering Methods, ICFEM 2003, volume 2885
of Lecture Notesin Computer Science, pages 266—285. Springer, (2003).

[89] Reeves, S., Streader, D.. Stepwise Refinement of Processes , Proceedings of the
International Workshop on Formal Aspects of Component Software (FACS 2005),
Electronic Notes in Theoretical Computer Science (2006).

[90] Regev, G., Wegmann, A.: Regulation Based Linking of Strategic Goals and Business
Processes, Proceedings of the 3rd BPMDS Workshop on Goa-Oriented Business
Process Modeling, GBPM'02, London, September (2002).

[91] Regev, G., Soffer, P., Schmidt, R.: Taxonomy of Flexibility in Business Processes,
proceedings of the seventh workshop on Business Process Modeling, Design and
Support (BPMDS 06), (2006).

[92] RM-ODP: Reference model of open distributed processing part 1. Draft International
Standard (DIS). Helsinki, Finland. (1995).

[93] de Roever, W.-P., Engelhardt, K.: Data Refinement: Model-Oriented Proof Methods and
their Comparison, (with the assistance of Jos Coenen, Karl-Heinz Buth, Paul Gardiner,
Y assine Lakhnech, and Frank Stomp); Cambridge University Press, (1998).

[94] RoclET: http://www.roclet.org/

[95] Rychkova, 1., Wegmann, A.. A Method for Functional Alignment Verification in
Hierarchica Enterprise models. In proceedings of A workshop on Business/IT
Alignment and Interoperability in conjunction with CAiSE'06, (2006).

[96] Rychkova I., Wegmann A. : Refinement propagation. Towards automated construction
of visua specifications, proceedings of International Conference on Enterprise
Information Systems (ICEIS), (2007).

[97] Sessions, R.: A Comparison of the Top Four Enterprise-Architecture Methodologies,
MSDN, Enterprise Architecture, (2007).

152

[98] Schellhorn, G.: Verification of ASM Refinements Using Generalized Forward
Simulation, J. Universal Comput. Sci. (J.UCS) 7 (11) (2001).

[99] Schulz, S.: E - A Brainiac Theorem Prover. Journal of Al Communications 15 (2/3):
111-126. (2002).

[100] SPASS. An Automated Theorem Prover for First-Order Logic with Equality
http://spass.mpi-sb.mpg.de/

[101] Spivey, JM.: The Z notation: A reference manual. Prentice Hall (1989).

[102] Spivey, JM: Understanding Z: A Specification Language and its Formal Semantics,
Cambridge University Press, (2008).

[103] Strassmann, P.A.: What is Alignment? Alignment is The Delivery of the Required
Results. Edited excerpt from The Squandered Computer Published in Cutter 1T Journal,
(1998).

[104] System Architect: Telelogic
http://www.tel el ogic.com/Products/systemarchitect/systemarchitect/index.cfm

[105] Tidwell, D.: XSLT, 2nd Edition, O’ Reilly, (2008).

[106] Torlak, E., Jackson, D.: Kodkod: A Relational Model Finder. Tools and Algorithms
for Construction and Analysis of Systems (TACAS'07), (2007).

[107] UMLZ2AIlloy: http://mww.cs.bham.ac.uk/~bxb/UML2Alloy/index.php

[108] Wegmann, A.: On the Systemic Enterprise Architecture Methodology (SEAM),
International Conference on Enterprise Information Systems (ICEIS), (2003).

[109] Weick, K. E.: The Socia Psychology of Organizing, second edition, McGraw-Hill.
(2979).

[110] Wikipedia http://en.wikipedia.org/wiki/Business/IT_alignment

[111] Wirth, N.: Program development by stepwise refinement. Communications of the
ACM, 14:221-227. (1971).

[112] Woodcock, J., Davies, J.: Using Z: Specification, Refinement and Proof. Prentice Hall
(1996).

[113] Xia, Y., Glinz, M.: Extending a Graphic Modeling Language to Support Partial and
Evolutionary Specification. 11th Asia-Pacific Software Engineering Conference, IEEE
Computer Society (2004).

[114] Zachman, J. A.. The Zachman framework for Enterprise Architecture
http://www.zifa.com/, http://www.zachmaninternational .com/index.php/home-
article/article/13#thezf

[115] Zee, K., Kuncek,V., Rinard, M.C.: Full Functional Verification of Linked Data
Structures, PLDI (2008).

153

154

Appendix A

Alloy Specification of the XYZ Example

//::::::::::::::::::::Model Abstract=================================
// =============M_W with 3 attributes (x, y, z)

// =============y =y +Xx;2=2 +V (sequence of statements)

// =============Two actions:

- LAdoMath_w (all changes done at one transition)
- LAdoMath_c_d (changes done separately on y and z - declarative)
- LAdoMath_c_i (changes done on y, then on z - imperative)

//====WO0 as a whole

lone sig M_w{
X,y,z:one Int

pred LAdoMath_w_d[x,y, z, X', ¥', z": one Int] {
// true =>
((y'=y+x)&&
(z'=z+(y+ x))&&(x=x1))
}
//run LAdoMath_w_d for 5

//successful action doMath
pred LAdoMath_s[x,y, z, X', y', z": one Int] {
(y=y+x)&& (z'=1z+(y+x)&& (x=x)

pred LAaddToY2[x,y, z, X', y', z": one Int |{
x'= x &&
z'= 7 &&
y'=y+x

pred LAaddToZ2[x,y, z,x', y', z": one Int |{
(x'=%x) && (y'=y) && (z'= z +x+y)

pred LAaddToY1[x,y, z, X, y', z": one Int |{
X'= X &&
y'=y+Xx

}

pred LAaddToZ1[x,y, z X', ¥', z": one Int]{
X'=X &&
Z'=7Z + X+y

//==== LAdoMath_composite - declarative

155

pred LAdoMath_c_d[x, y, z, X, y', z": one Int |{
// true =>

LAaddToY1[x,y,z Xy, z' | &&
LAaddToZ1[x,y,z X',y z"]

}
//run LAdoMath_c_d

//====LAdoMath_composite - imperative

pred LAdoMath_c_i[x,y, z, x',y', z": one Int]{
//t-local time stamp

// true =>

(somex_t,y_tzt:Int]|

LAaddToY2[x,y,z x_t y.t z t] &&
LAaddToZ2[x_t,y_t,z_t, X,y 2'])

}

//run LAdoMath_c_i

assert Declar_Imper{

all xc, yc, zc, x'c, y'c, z'c, Xa, ya, za: one Int |

(LAdoMath_c_i[xc, yc, zc, X'c, y'c, z'c | && (xa = xc) && (ya = yc) && (za = zc))=>

(some x'a, y'a, z'a: Int | LAdoMath_c_d[xa, ya, za, x'a, y'a, z'a] && (x'a=x'c) && (y'a=y'c) && (z'a=1z'c))

//check Declar_Imper

//=======Refinement check

//Given 2 specifications - abstract Ma and concrete Mc; Mc obtained from Ma by a refinement;
//Actions Ac and Aa are defined for both specifications as relations between states at pre and post:

// Aa=Aa(Ma, Ma') && Ac = Ac(Mc, Mc").

//Formal refinement verification states the following:

// given a refinement relation R which

// makes a correspondence between Mc and Ma, such as : Ma_t = R(Mc_t) then the refinement is correct
under the following

// condition: For All Mc, Mc' | Ac(Mc, Mc') => Aa(R(Mc), R(Mc"))

//Must be read: if a step happenes in a concrete specification, there will be also a step in the abstract
specification.

//In particular case, we specify refinement function R as a predicate that is R(Mc -> Ma) -> boolean
//And refinement correctness condition is reformulated as follows:
// For All Xa,Xa',Xc,Xc' | (Ac(Xc,Xc'") && R(Xc ->Xa) && R(Xc'->Xa'")) => Aa(Xa, Xa"))

[[=============z===m==smmsssmsmsmsssssssssssssmssssssssssssssssssssssssssess
// REFINEMENT: Localized action as a whole is refined to a composite

//== R -refinement relation ;

//== xa - stands for model abstract; xc - for refined model,

//==or model concrete (both models represent the system as a whole)
|[z===============s=========s====s=s==s==s=s=s==s=sss=sssssssssssssssssssss=as

pred R_LAC_to_LAW[xc_t, yc_t, zc_t, Xa_t, ya_t, za_t: one Int |{
(xc_t= xa_t) &&
(zc_t= za_t) &&
(yc_t=ya_t)

}

assert LAW_LAC{
all xa, ya, za, xc, yc, zc, xc', yc', zc": Int |
(LAdoMath_c_d[xc, yc, zc, xc', yc', zc'] &&

156

R_LAC_to_LAWI[xc, yc, zc, Xa, ya, za]) =>
(some xa',ya',za': Int |
LAdoMath_w_d[xa, ya, za, xa', ya', za'| &&
R_LAC_to_LAW[xc', yc', zc', xa', ya', za'])

}
//check LAW_LAC

// M_C with 2 components: A and B
// A with 3 attributes: X, Y, Z

// B with 2 attributes: X, Y

/ly=y +x2=2 +y

// Two actions:

// -JAdoMath_w

// -DAdoMath_w

lone sig A{

Ax, Ay, Az: one Int
}

lone sig B{

Bx, By: one Int

}

lone sig M_c{
a:one A,

pred JAdoMath_w_d[Ax, Ay, Az, Ax', Ay', Az', Bx, By, Bx', By'": one Int] {
// true =>

Ax'= Ax &&

Bx'= Bx &&

By'= By + Bx &&

Az'= Az + Ax + Ay &&

some shared_x, shared_y: Int |
(shared_x = Ax &&

Bx = shared_x &&

shared_y = Ay' &&
shared_y=By')

}

//run JAdoMath_w_d for 5

pred JAdoMath_w_i[AX, Ay, Az, Ax', Ay', Az', Bx, By, Bx', By'": one Int] {
some shared_x, shared_y: Int |
(Ax = shared_x &&
Bx = shared_x &&
Ay' = shared_y &&
By' = shared_y) &&
some Ax_lt, Ay_lIt, Az_lt, Bx_It, By_lt : Int|
((Ax_It= Ax) && (Bx_lt= Bx) &&
(Ax'= Ax_t) && (Bx'= Bx_lt) &&

157

(By_lt= By + Bx) && (By'= By_lt) &&
(Ay_lt= Ay) && (Ay_lt= Ay +Ax) &&
(Az_lt= Az) && (Az'= Az It + Ay lt+Ax 1t))

}
//run JAdoMath_w_i for 5

assert JImper_]declar{

all Axc, Ayc, Azc, Axc', Ayc', Azc', Bxc, Byc, Bxc', Byc', Ax, Ay, Az, Bx, By: Int |
(JAdoMath_w_i[Axc, Ayc, Azc, Axc', Ayc', Azc', Bxc, Byc, Bxc', Byc' | &&
Axc = Ax &&

Ayc = Ay &&

Azc=Az) =>

(some Ax', Ay', Az', Bx', By'": Int |

JAdoMath_w_d[Ax, Ay, Az, AX', Ay', Az', Bx, By, Bx', By'] &&

Axc' = AX' &&

Ayc' = Ay' &&

Azc' = Az')

}

check JImper_]Jdeclar

// REFINEMENT: System is refined from w to c; Localized action is refined to a Joint Action
//==== R -refinement relation;

pred R_JA_to_LA[Ax_t, Ay_t, Az_t: one Int, // model concrete
xa_t, ya_t, za_t: one Int] // model abstract
{ (Ax_t= xa_t) &&
(Az_t= za_t) &&
(Ay_t= ya_t) }

assert LAw_]JAd{
all Ax, Ay, Az, Ax', Ay', Az', Bx, By, Bx', By', xa, ya, za: Int |
(JAdoMath_w_i[Ax, Ay, Az, AX', Ay', Az', Bx, By, Bx', By'] &&
R_JA_to_LA[Ax, Ay, Az, xa, ya, za]) =>
(some xa', ya', za": Int |
R_JA_to_LA[AX', Ay', Az', xa', ya', za'] &&
LAdoMath_w_d[xa, ya, za, xa', ya', za'])

}
//check LAw_]Ad

assert LAc_JAd{
all Ax, Ay, Az, Ax', Ay', Az', Bx, By, Bx', By": Int, xa, ya, za: Int |
(JAdoMath_w_d[Ax, Ay, Az, Ax', Ay', Az', Bx, By, Bx', By'] &&
R_JA_to_LA[Ax, Ay, Az, xa, ya, za]) =>
(some xa', ya',za": Int |
R_JA_to_LA[AX', Ay', Az', xa',ya', za'] &&
LAdoMath_c_d[xa, ya, za, xa', ya', za'])

}

//check LAc_JAd

assert LAc_JAi{
all Ax, Ay, Az, Ax', Ay', Az', Bx, By, Bx', By": Int, xa, ya, za: Int |
(JAdoMath_w_i[Ax, Ay, Az, AX', Ay', Az', Bx, By, Bx', By'] &&
R_JA_to_LA[Ax, Ay, Az, xa, ya, za]) =>
(some xa', ya', za'": Int |
R_JA_to_LA[AX', Ay', Az', xa', ya', za'] &&
LAdoMath_c_i[xa, ya, za, xa', ya', za"])

}
//check LAc_JAi - to check

158

A A
1’|Ay ?1 |Az B Y1 |Bx "I |By
|

Y Z X Y
<Int> <Int> <Int>
X
Post: Bx' = Bx
X Post: By’ = Bx + By

<Int>

Post Ax' = Ax Pre = true /
\< aLAdoMath > < bLAdoMath >
Pre = true (a) (b)

Figure A-1: Specification of a component working objects A and B with their localized actions
al AdoMath and bL AdoM ath.

//:::::::::::::::::::::::::::::::::
//===== Actions for A (Fig. A-1-a)
//:::::::::::::::::::::::::::::::::
pred aLAdoMath_w[Ax, Ay, Az, Ax', Ay', Az": one Int]{
//true =>
(Ax'= Ax &&
Az' = Az + Ax + Ay)
}
//:::::::::::::::::::::::::::::::::
//===== Actions for B (Fig. A-1-b)
//=================================
pred bLAdoMath_w[Bx, By, Bx', By': one Int]|{
//true =>
(Bx'= Bx &&
By'= By + Bx)
}
//===
//===== Distributed Action - declarative (Fig. A-2)
//===

pred DA_w_d[Ax, Ay, Az, AX', Ay', Az', Bx, By, Bx', By': one Int] {
bLAdoMath_w[Bx, By, Bx', By'] &&

aLAdoMath_w[Ax, Ay, Az, Ax', Ay', Az'] &&

some sharedX, sharedY one Int |

Bx' = sharedX && Ax'=sharedX &&

Ay' = sharedY && By'=sharedY

}
//run DA_w_d for 10

159

1|a 1lb
y
A 1]Ay ? ?1 |Bx 1|By

Y X Y

<Int> <Int> <Int>
11A <Int> T /

X
ost: Bx’ = Bx
X Post: By’ = Bx + By
<Int>

Post: AX' = Ax Pre = true

bLAdoMath

<Int>

Pre = true

DAdoMath

Figure A-2: Specification of a distributed action DAdoM ath.

pred R_DA_to_JA[Axc_t, Ayc_t, Azc_t, Bxc_t, Byc_t, //model concrete
Axa_t, Aya_t, Aza_t, Bxa_t, Bya_t: one Int]{ //model abstract
(Axc_t= Axa_t) &&
(Ayc_t= Aya_t) &&
(Azc_t= Aza_t)

}
//valid for DAdoMath_w_d JAdoMath_w_d, JAdoMath_w_i

assert JA_DAD{
all Axc, Ayc, Azc, Axc', Ayc', Azc', Bxc, Byc, Bxc', Byc',
Axa, Aya, Aza, Bxa, Bya: Int |
(DA_w_d[Axc, Ayc, Azc, Axc', Ayc', Azc', Bxc, Byc, Bxc', Byc'] &&
R_DA_to_JA[Axc, Ayc, Azc, Bxc, Byc, //model concrete
Axa, Aya, Aza, Bxa, Bya]) =>
some Axa', Aya', Aza', Bxa', Bya': Int |
(R_DA_to_JA[Axc', Ayc', Azc', Bxc', Byc', //model concrete
Axa', Aya', Aza', Bxa', Bya'] &&
JAdoMath_w_i[Axa, Aya, Aza, Axa', Aya', Aza', Bxa, Bya, Bxa', Bya'])
}
check JA_DAD

pred R_DA_to_LA[Ax, Ay, Az, Bx, By, xa, ya, za: one Int]{
Ax= xa &&
Az= za &&

Ay= ya }
//valid for DAdoMath_w_d , LAdoMath_w_i, LAdoMath_w_d, LAdoMath_c_i, LAdoMath_c_d

160

assert LA_DAD{
all Ax, Ay, Az, Ax', Ay', Az', Bx, By, BX', By', xa, ya, za: Int |
(DA_w_d[Ax, Ay, Az, AX', Ay', Az', Bx, By, Bx', By' | &&
R_DA_to_LA[Ax, Ay, Az, Bx, By, xa, ya, za]) =>
(some xa',ya',za': Int |
R_DA_to_LA[AX', Ay', AZ', BxX', By', xa', ya', za'] &&
LAdoMath_c_i[xa, ya, za, xa', ya', za'])

}

//check LA_DAD to check

161

162

Appendix B

Jahob Formulasfor the XYZ Example

1. File fina_law_lacd.form

Thisformulavalidates the fact that the localized action as a composite modeled declaratively
correctly refines the localized action as awhole:

(* action LAdoMath w *)
(ActionAbstract = (% X y z Xp yp Zp-

Vp = X + YV &
zZp z + (y + x) &
Xp = X)) &

(* component actions *)
(LAaddToY1l = (% X Vv 2 Xp ypP 2ZD.
Xp = X &

yp = Yy +x)) &

(LAaddToZl = (% Xy z2 Xp YpP Zp-
Xp = X &
Zp = z2 + X + Y))&

(* LAdoMath composite - declarative ¥*)

[}

(ActionConcrete = ($ Xy z2 Xp yp 2Zp-

LAaddToYl x y
t

X tytzté&
LAaddToZl x_ t z t

Z
v_ Xp YP zZp))&
(*Refinement verification¥*)

(* refinement relation *)

(RefinementRelation = (% xc_t yc t zc t xa t ya t za t.
Xc t = xa t &

zc_t = za t &

yc t = yat)) -->

(*assert LAW_LAC *)

((ALL xa ya za XC yC zC XCp YyCp zCp.
(ActionConcrete xc yC zC XCp yCp zCp &
RefinementRelation xc yc zc xa ya za) -->
(EX xap yap zap.

ActionAbstract xa ya za xap yap zap &
RefinementRelation xcp ycp zcp xXap yap zap))

2. File find_law_laci.form

Thisformula validates the fact that the localized action as a composite modeled imperatively
correctly refines the localized action as a whole modeled declaratively:

(* action LAdoMath w *)
(ActionAbstract = (% X y z Xp yp Zp-

yp X +Vy &
zp =z + (y + x) &
Xp = X)) &

163

(* component actions *)

(LAaddToY2 = (% Xy z2 Xp VP Zp-
Xp = X &
zZp = z &

yp = Y +Xx)) &

(LAaddToZ2 = (% Xy z2 Xp YpP Zp-
Xp = X &
Yp =y &

Zp = z2 + X + Y))&

(* LAdoMath composite - imperative *)
(ActionConcrete = ($ Xy z2 Xp yp 2Zp-
EX x t, vy t, z t.

LAaddToY2 x
LAaddToZ2 x_

(Sl

xp yp zp))&

(*Refinement verification¥*)
(* refinement relation *)

(RefinementRelation = (% xc_t yc t zc t xa t ya t za t.
Xc t = xa t &

zc_t = za t &

yc t = yat)) -->

(*assert LAW_LAC *)

((ALL xa ya za XC yC zC XCp YyCp zCp.
(ActionConcrete xc yC zC XCp yCp zCp &
RefinementRelation xc yc zc xa ya za) -->
(EX xap vyap zap.

ActionAbstract xa ya za xap yap zap &
RefinementRelation xcp ycp zcp xXap yap zap))

3. File fina_laci_lacd.form

Thisformula validates the fact that the localized action as a composite modeled imperatively
correctly refines the same action modeled declaratively:

(* component actions *)
(LAaddToY1l = (% X Vv 2 Xp ypP 2ZD.
Xp = X &

yp = Yy +x)) &

(LAaddToZl = (% X V 2 Xp VP Zp.
Xp = X &
Zp = Z + X + Y))&

(* LAdoMath composite - declarative ¥*)
(ActionAbstract = (% Xy 2 Xp yp Zp.

LAaddToYl x y
t

X tytzté&
LAaddToZl x_ t z t

b
y_ Xp yp zp))&

(* component actions *)

(LAaddToY2 = (% X Vv 2 Xp VP Zp.
Xp = X &

Zzp = z &

yp = Y + X)) &

164

(LAaddToZ2 = (% Xy 2 Xp YpP 2Zp-

Xp = X &

Yyp =Yy &

Zp = z2 + X + Y))&

(* LAdoMath composite - imperative *)
(ActionConcrete = ($ Xy z2 Xp yp Zp-

EXx t, y t, z_ t.
LAaddToY2 x
LAaddToZ2 x_

[N

(* refinement relation *)

(RefinementRelation = (% xc_ t yc t zc t xa t ya t za t.
Xc t = xa t &

zc_t = za t &

yc. t = yat)) -->

(*assert declar imper *)

((ALL xa ya za XC yC zC XCp YyCp zCp.
(ActionConcrete xXc ycC zC XCp yCp zCp &
RefinementRelation xc yc zc xa ya za) -->
(EX xap yap zap.

ActionAbstract xa ya za xap yap zap &
RefinementRelation xcp ycp zcp Xap yap zap))

4. File: final_dad laci.form

Thisformula validates the fact that the distributed action as a whole modeled declaratively

correctly refines the localized action as a composite modeled declaratively / imperatively:

(* component actions *)

(LAaddToY2 = (% Xy 2 Xp YP 2Zp-
Xp = X &
zp = z &

yp = Y +x)) &

(LAaddToZ2 = (% X Vv 2 Xp VP Zp.

Xp = X &

yp =Y &

ZD = Z + X + Y))&

(* LAdoMath composite - imperative *)
(ActionAbstract = (% Xy 2 Xp yp Zp.

EX x t, y t, z t.
LAaddToY2 x y
LAaddToZ2 x t

(* WO as a composite = A + B (see Fig. A-1) ¥*)
(* Actions for A:)

(aLAdoMath w = (% Ax Ay Az Axp Ayp Azp.
AXp = Ax &
Azp = Az + AX + Ay)) &

(* Actions for B:)

(bLAdoMath w = (% Bx By Bxp Byp.
Bxp = Bx &

Byp = By + Bx))&

(* Distributed action - declarative *)

(ActionConcrete = (% Ax Ay Az Axp Ayp Azp Bx By Bxp Byp.

165

aLAdoMath w Ax Ay Az Axp Ayp Azp &
bLAdoMath w Bx By Bxp Byp &

EX x shared, y_shared.

Bxp = x_shared & Axp = X shared &
Ayp = y _shared & Byp = y_shared))&

(* refinement relation *)

(RefinementRelation = (% x t y t z t Ax t Ay t Az t.
Ax t = X t &

Az t = z t &

Ay t = y t)) -->

(*assert LA DAD *)

((ALL Ax Ay Az Axp Ayp Azp Bx By Bxp Byp X y z.
(ActionConcrete Ax Ay Az Axp Ayp Azp Bx By Bxp Byp &
RefinementRelation Ax Ay Az X y 2Z) -->

(EX xXp yp zp.
ActionAbstract x y z Xp Yp Zp &
RefinementRelation xp yp zp Axp Ayp Azp))

To validate the refinement of the localized action as a composite modeled declaratively and
the distributed action, the abstract action definition should be replaced with one from the
previous examples. Therest of the formulawill not change.

5. File fina_jad dad.form

Thisformula validates the fact that the distributed action as a whole modeled declaratively
correctly refines the joint action modeled declaratively:

(* Joint action JAdoMath w - declarative *)

(ActionAbstract = (% Ax Ay Az Axp Ayp Azp Bx By Bxp Byp.
AxXp = AxX & Bxp = Bx &

Byp = By + Bx &

Azp = Az + AX + Ay &

EX shared x shared y.
(shared x = Ax & Bx = shared x &
shared y = Ayp & shared y= Byp)))&

(* WO as a composite = A + B (see Fig. A-1) ¥*)
(* Actions for A:)

(aLAdoMath w = (% Ax Ay Az Axp Ayp Azp.
AXp = Ax &
Azp = Az + AX + Ay)) &

(* Actions for B:)

(bLAdoMath w = (% Bx By Bxp Byp.
Bxp = Bx &

Byp = By + Bx))&

(* Distributed action - declarative ¥*)

(ActionConcrete = (% Ax Ay Az Axp Ayp Azp Bx By Bxp Byp.
alLAdoMath w Ax Ay Az Axp Ayp Azp &

bLAdoMath w Bx By Bxp Byp &

EX x_shared, y_shared.

Bxp = x_shared & Axp = X shared &

Ayp = y shared & Byp = y shared))&

(* refinement relation *)

(RefinementRelation = (% x t y t z t Ax t Ay t Az t.
Axc t = Axa t &

166

Azc t = Aza t &
Ayc t Aya t)) -->

(*assert JA DAD *)
((ALL Axc Ayc Azc Axcp Aycp Azcp Bxc Byc Bxcp Bycp Axa Aya Aza

Bxa Bya.
(ActionConcrete Axc Ayc Azc Axcp Aycp Azcp Bxc Byc Bxcp Bycp &
RefinementRelation Axc Ayc Azc Axa Aya Aza) -->

(EX Axap Ayap Azap Bxap Byap.
ActionAbstract Axa Aya Aza Axap Ayap Azap Bxa Bya Bxap Byap &
RefinementRelation Axcp Aycp Azcp Axap Ayap Azap))

NOTE: Axa — stands for the value of variable x of the component working object A of the
abstract specification; Axc — stands for the value of variable x of the component working

object A of the concrete specification;
Correspondingly, Axap and Axcp are values of these variables after the action termination.

167

168

Appendix C

Practical Feedback

lan F Alexander
Company: Scenario Plus (UK)
Director (consultant, trainer, author)

- What is your expertise in business/I T alignment? (based on your past projects)

| have worked as a requirements specialist since 1994, running my consultancy and training
company Scenario Plus. Clients have included Ericsson, DaimlerChrysler, The Post Office,
London Underground and many others. | am the lead author of Writing Better Requirements,
Addison-Wesley 2002, and Scenarios, Stories, Use Cases, Wiley 2004. My publications are
available at http://easyweb.easynet.co.uk/~iany/consultancy/papers.htm

- Do you use any modeling techniques for your projects? (i.e. UML, BPMN, other.)

| use a wide range of modelling techniques including goa modelling, scenario analysis,
context modelling, and rationale modelling. | have personally developed stakeholder analysis
techniques and extended the use of negative scenario analysis with “misuse cases’. | have
not found most kinds of UML diagram especially helpful, but make use of them (e.g. class
diagrams, activity diagrams) from time to time.

- Do you use any software for automated modeling / documentation / analysis in your
projects?

Scenario Plus for Use Cases was originally conceived as a tool which would animate (step
through) a scenario AND/OR tree to generate specific scenarios which could be used directly
as test cases. Now | use a range of Scenario Plus tools to edit diagrammatic models (goal
models, rationale models, etc), as well as Enterprise Architect for UML models, and DOORS
to automate traceability in requirements documentation.

2. Validation:
- Whether the problem discussed in the paper is encountered in practice?

Yes. There is no doubt that many SLASs are poorly written and result in poor service to the
business.

-Here | would refer not only to the fact that the S_LA can be poorly written: What | really
wanted to address in my work, is the fact that even from the initially well written SLA one
can get the poorly constructed service, which will violate this SLA. Do you think this is a
sound problem?

Yes, certainly. Traceability isamajor problem in industry —it is horribly tedious to apply,
and always error-prone.

169

- What do you think about the usefulness of the method presented in the paper for a
practitioner? Please, explain your answer.

Firstly the specification is remarkably clear and easy to read, despite being in an unfamiliar
notation.

Secondly, by expressing the relationships between actions and data graphicaly, it is
highly expressive, making it clear what is needed when.

These properties of the approach make it an attractive new possibility for practical use. It
appears far more likely to be practical than the mgjority of formal methods from research
projects.

A possible concern is about how such a notation may scale up for large problems; the
number of relationships may increase rapidly with the number of both actions and pieces of
data, which could make the diagrams hard to read. It could also make forma proof of
correctness long, though as this is supported by the Alloy Analyzer tool that should not be a
problem.

- How do you think the validation / verification technique presented in the paper can help
you (your company)? Please, describe the advantages and disadvantages that you can
expect.

In principle the techniques could help to create accurate service specifications for clients. The
industrialisation of the approach would involve training for requirements practitioners,
tooling, and reasonable assurance to both the company and the client that the approach is
workable in practice (on areal problem, and by practitioners).

Ilia Bider

Company: I bisSoft (Sweden)

Director R&D

- What is your expertise in business/I T alignment? (based on your past projects)
Organizational change through introduction of business process support systems

- Do you use any modeling techniques for your projects? (i.e. UML, BPMN, other.)

Y es (others)

- Do you use any software for automated modeling / documentation / analysisin your
projects?

We use (and develop) tools for getting IT support system from (or at the same time as)
process specification.

2. Vadlidation:
- Whether the problem discussed in the paper is encountered in practice?
Personally, | have not encountered them in my practice. Nevertheless, | can easily imagine

who have this kind of problems, one example being vendors of software systems with
business processes built-in in them, for example CRM vendors, WEB-shopping systems

170

vendors, etc. They need to be able to adjust their systems to each customer needs.

- What do you think about the usefulness of the method presented inthe paper for a
practitioner? Please, explain your answer.

It could be quite useful as a methodological base for discussing problems and finding
solutions. To achieve this, a popular version and texts in methodological style should be
written, e.g. manuals, etc. Making full use of the methodology will require introduction of it
in atool that helps to design processes/support systems.

- How do you think the validation/verification technique presented in the paper can help you
(your company)? Please, describe the advantages and disadvantages that you can expect.

| cannot see direct use of them in our current practice. | can imagine using them as a
methodological framework, if we come across an appropriate task in the future.

As far as forma methods are concerned, | do not think we will use forma methods of
verification/validation in any foreseeable future. As an explanation of my response, | would
like to draw a parallel with formal verification/ validation of computer programs. The domain
is quite old, but | have never seen it being used in the development of business applications,
at a maximum people use formal testing methods. As | understand, these are used for very
critical applications, like in a space ship sent by NASA to Mars, or in high volume low
margin cases, like hardware built-in programs. In the latter case the vendors cannot afford
serious faults in a program, and high volume of production can justify investment in formal
methods and tools. In addition, their programs, normally, have well-defined formal
specifications.

| cannot see any signs of the two situations above in the market of BPM/process support
tools. What is more, tools vendors might not be much interested in formal staff. Considerable
share of their income is coming from tuning/adjustment of their tools to the customers needs.
In this area, customers are charged on the consulting basis, i.e. per hour, and the vendors are
quite happy with that. | cannot se why they suddenly would like to invest in formal
validation/verification.

Nevertheless, there might be some possibilities to promote formal verification/ validation,
provided they are incorporated in sometool, e.g.:
e Asasaesargument for the tool
e To provide guarantees in cases of extremely importance for the customers (e.g. SOX
compliance).

In genera, | believe that there is only one way to answer the question of practical
applicability of a method of this kind — to implement it as an own toolkit for process design,
or as an ad on to somebody’s else toolkit. Thus the authors need to develop and market their
own stuff, or sell the idea to an existing toolkit vendor. Another option is to wait until
somebody will pick it up, but it may take along time.

Alexander Samarin

Company: Teamlog S.A. (Suisse)
Enter prise solutions ar chitect

171

- What is your expertise in business/I T alignment? (based on your past projects)

Many years of active participation in architecting and implementing flexible enterprise
solutions.

- Do you use any modeling techniques for your projects? (i.e. UML, BPMN, other.)
BPMN and some proprietary methods

- Do you use any software for automated modeling / documentation / analysis in your
projects?

IBM WebSphere Integration Devel oper, Oracle SOA suite, Intalio BPM suite
2. Vdidation:
- Whether the problem discussed in the paper is encountered in practice?

Use of declarative specifications for complex dynamic systemsis very attractive [1] and very
challenging at the same time. Higher flexibility and higher potentials for optimisation are
coming together with higher difficultly, especially, for non-experts for creating such
specifications.

Experience shows that always we have to find a balance between different techniques for
coordination of business activities — some aspects/fragments of a business process are better
to express with an imperative technique and others are better to express with a declarative
technique.

A practical example of the problem of customisation has been encountered at a client from
the international standardisation. The core business process at this client is a well-defined
sequence of step-by-step enrichments (commenting, balloting, technical editing, trandlating,
etc.) of a complex document. We found that it would be better if each document would have
its own sequence. So, we wanted to customize atemplate for each instance. We didn’t find an
easy way to implement this with modern tools.

- What do you think about the usefulness of the method presented in the paper for a
practitioner? Please, explain your answer.

From a practitioner point of view, the method sounds useful and promising because it
considers complimentary of declarative and imperative techniques. Synergy of these two
techniques (complimented by some guidance how to combine them) will certainly create
better more flexible business process models.

- How do you think the validation / verification technique presented in the paper can help you
(your company)? Please, describe the advantages and disadvantages that you can expect.

Any formal verification is very useful in daily practical work because such a verification can
bring highly demanded objective and scientifically proven reasoning into modern enterprise
environment with all its political tensions and power games (where it is almost impossible to
have something willingly accepted and followed by everyone).

So far, | think that the visual notation needs some enhancements before meeting non-experts.
For example, some traditional modelling artefacts (e.g. events and roles) are expected by the

172

users. Also some diagramming style should be recommended to improve explicitness of
diagrams and their structuring for better “executability”.

[1] “DecSerFlow: Towards a Truly Declarative Service Flow Language” by W.M.P. van der
Aalst and M. Pesic

Thomas Langenberg
Company: Accenture (Germany)
2 years of experience, SAP Consultant, Project manager

- What is your expertise in business/I T alignment? (Based on your past projects)

Implementation of SAP BW for large corporations (I was working with Siemens, Deutsche
Telecom, Otto Versand). | was customizing the predefined SAP solutions for controlling and
performance monitoring units of financial departments within the client organization.

- Do you use any modeling techniques for your projects? (i.e. UML, BPMN, other.)

Standard document formats accepted in financia departments are typicaly Microsoft Word,
Excel, and PowerPoint. Therefore, all as-is and to-be modeling of the work flow and
processes during my projects was done in MS Power Point. Based on my experience,
presentations are very efficient for the client (who is typicaly not used to any modeling
standard). | was using the ad-hoc graphical notation, similar to BPMN.

- Do you use any software for automated modeling / documentation / analysis in your
projects?

Power Point presentations for discussing and documenting projects; no further analysis.
2. Validation:
- Whether the problem discussed in the paper is encountered in practice?

The projects | was involved in amed at substituting an existing system for financia
monitoring by a more efficient and productive system, such as SAP. These projects usualy
contain two parts:

1. Initial configuration of a system, using a standard SAP solution. The goa of this part is to
make a quick solution for the customer that will work as a substitute of the old system;

2. When the initia configuration is built, we switch to the system optimization. This typically
involves customization and reorganization of components within the standard solution and
aims at improving, for example, the speed and responsiveness of the system. Customization
includes re-programming of some components, and their interconnection.

In context of such projects, the problem of verification that the customized system performs
as well the standard solution or provides at least the same functionality as an old system is
important.

- What do you think about the usefulness of the method presented in the paper for a
practitioner? Please, explain your answer .

173

Based on my experience, standard development process (typically presented as Requirements
specification, Development, Testing, and Deployment) is never linear. Many iterations are
usually required during a development phase. There are severa reasons to it: the
requirements keep changing; many different stakeholders are involved proposing their own
solutions, many political interests must be taken into account. Each iteration of the
development processis costly and time consuming.

Evaluation of each aternative solution and validation that this solution does not violate the
requirements is atypical problem. Though, having a technique with which one can evaluate
proposed solutions could save project resources and would be a useful instrument for a
consultant.

- How do you think the validation / verification technique presented in the paper can help you
(your company)? Please, describe the advantages and disadvantages that you can expect.

As | see it, the proposed technique may serve for a consultant to verify solutions against
requirements and also to evaluate and to compare these solutions. This is definitely an
atractive instrument. However | consider several man chalenges in adopting such
technique:

1. The complex graphical notation plus the use of formal methods prevents this technique
from being used for communication with a client. (Based on my experience, only asmall part
of the organization, mainly from the IT department, uses and understands UML or other
modeling techniques). Therefore, the proposed technique can be used only by a trained
consultant, in the project back-office.

2. The utilization of this technique will introduce a new step in the project development
process, which is promising but time and money consuming. As time is essential during the
project, it can be difficult to communicate a profitability of this step to the customer. Several
successful projects in a field, accomplished using this technique and illustrating its
profitability can help. Therefore, some statistics might be needed prior to a commercia use.

Donald C. Gause

Company: SavileRow LLC (USA) - Principal and Consultant

Thomas J. Watson School of Engineering, Binghamton University, State University of
New York — Resear ch Professor

- What isyour expertise in business/I T alignment? (based on your past projects)

The preponderance of my work deals with the application of generic requirements
processes developed as a result of observing common problems and lost opportunities in
practice.

Recent professional and consulting activities include:

Requirements, design, and process consultant to global banking community on projects
involving:

Gap analysis and cross-functional system development for the replacement of divisional
legacy systems; Formal design reviews of requirements and specifications for systems under
development; Post-release user reviews of systems and design processes of recently released
systems; Advising management teams in the enhancement of information flow and
productive innovation within and across banking functions; etc.

Advised a number of commercia and government organizations in concept, function and
requirements development for:

174

Traumatic brain injury treatment management system; Traumatic brain injury full-care
delivery information system; FDA drug approval protocol system; etc.

Directed a corporate task force in the development of advanced computer concepts and
strategic plans for next generation cars and trucks.

Advised directors in the integrated development of the business plan, business
requirements, feature and function development and design risk analysis for a new Internet
start-up company.

- Do you use any modeling techniques for your projects? (i.e. UML, BPMN, other.)

My work focuses on the non-functional regquirements short of functional specification and
implementation but does include use scenarios and test cases.

| have worked with systems in which Parnas's structured decision tables, Jackson's
problem frames, Yu'si’, Petri nets and UML have been used for algorithm specification. |
have had graduate professional student projects in which APL was used as a meta-language
to describe the final system with the advantage that the executable meta-language was used to
test and refine the algorithm before fina implementation was achieved in assembler
language. | have aso designed evolutionary programs capable of improving their
performance with experience thus demonstrating their ability to define their own required
modification and structure based on ill-defined goals as well as explicit goals. These
approaches are based on genetic and neural network models.

- Do you use any software for automated modeling / documentation / analysis in your
projects?

| have used software of my own design to document the requirements elicitation process
described above and to test for consistency and completeness based on binary context
matrices defining pair-wise relationships between users, attributes, and constraints.

2. Validation research:
- Whether the problem discussed in the paper is encountered in practice?

The problem discussed in this paper is a fundamental problem in design and implementation
of software systems. It is, in fact, a fundamental problem in the design of computer
solutions, in genera (hardware and software), as it has grown more advantageous to delay
decisons determining the allocation of required functionality to software, firmware, or
hardware until the full functionality has been defined. This is particularly true in the design
of imbedded process control systems (manufacturing, vehicular stabilizing, traffic, robotic
control) as well as with the implementation of distributed computing systems designed to
take advantage of highly paralel agorithms (genetic and evolutionary programs, neural
networks, reconstructability and cluster analysis).

- What do you think about the usefulness of the method presented inthe paper for a
practitioner? Please, explain your answer.

It is hard to imagine a computer design problem that would not benefit from a refinement
tool that is capable of recognizing and correcting inconsistency between high-level business
and systems requirements and implementation instructions (functional specifications). Many
factors contribute to our increasing needs to apply effective specification refinement, afew of

175

which are: 1) we are building larger, more complex systems to be used by more diverse user
populations, 2) these systems must integrate into even larger systems, 3) systems usability
has become a stronger differentiating factor in increasingly competitive markets, 4) because
of these three factors, many critical contextual factors cannot be recognized until the product
has been released and unintended consequences are discovered giving rise to continua
change activity.

The main concern | have with the EPFL white paper® is that | have not seen enough
evidence that the proposed method has been properly validated.

- How do you think the validation, verification technique presented in the paper can help you
(your company)? Please, describe the advantages and disadvantages that you can expect.

Advantages:

- Assuming that your claims are correct in al process assumptions you have based your
study on, the technique will certainly be beneficial to designers, clients, and end users aike.
The one aspect assures this is the fact that this substantially enhances design visibility to each
of the targeted constituents enabling the users to say, “No, that’s not what | mean.” Rather
than, “No, that’snot what | meant.” Thisiswhat we are all striving for.

Potential problems:

- Your techniqgue was nicely illustrated with the “toy” example because of admitted
difficulty in describing a more complex (redistic) case in SEAM. And yet, SEAM is
described as being a visual tool.

- | have the advantage of being relatively ignorant of the SEAM visua representation
schema and, as such, wonder if there might not be a serious difficulty in scaling up to
more typically complex design problems. | have no doubt that people working with
SEAM on a daily basis find the notation to be elegant in its ssimplicity but doubt that the
end- users (and many other critical but computer notationally disadvantaged users) will
find SEAM to be the visually accessible tool that provides enhanced visibility to al.

- How critical isITIL to the success of this approach? | raise this point from a commercia
perspective because, as | understand it, members of the potential ITIL market have
criticized the product because of the need to purchase expensive system books and the
zeal with which the ITIL backers express themselves with respect to their product. One
member of the potential customer community felt that his ITIL contact was more full of
zeal than the pragmatics of his problem.

- Asalast point, what can this SEAM-based model system do that UML, i*, Petri nets or
other current meta-languages not do? What does it do better than any of these meta-
languages?

8 Donald C. Gause is mentioning the paper, which shortly illustrates the research result of this dissertation using
the SIG example from Section 7.2.

176

List of Figures

Figure 1-1: Refinement verification by SImulation............ccccveeieeie s 10
Figure 1-2: @ Working object as a whole (org. level 1, func. level 1), specified with a
property and a localized action. Properties represent the data the working object stores or
operates with. A localized action changes the state of the working object by modifying its
properties; b) Working object as a composite (org. level 2, func. level 1) specified with its

component working objects and ajoint action between them.ccccccverivvieiineccecceceene, 11
Figure 1-3: Working object as awhole (org. level 1, func. level 2), specified with a property
seen as a composite and alocalized action seen as a CoMPOSILE.cocvvrereerieererenenerieseenens 11
Figure 2-1: Classification of model transformations in context of Visual modding............... 14
Figure 2-2: Refinement verification of visual specifications as a refinement verification of
corresponding programs - specifications written in aformal specification language. 18

Figure 3-1: a) a SEAM working object W as a whole; b) W as a composite with component
working objects S1 and S2 and a joint action JA seen as awhole; ¢) W as a composite with

components S1 and S2 and a distributed action DA seenasawhole.ccocoeeeeverieieenene. 32
Figure 3-2: SEAM MELAMOAE!ccooieieeceseee e 37
Figure 3-3: SEAM working object: a) general representation b) specific pictograms............. 38
Figure 3-4: Working object composition: a) composition relation with multiplicity and
instance expressions; b) Example: acar as a composite specifies 4 Wheels: wl..w4. 39
Figure 3-5: SEAM property: a) graphical notation; b) host relation c) property association; d)
(000] 0070 S 1 o o TSRS P PP PR 40
Figure 3-6: SEAM aCtion SPECITICALION.c.cciveieeieee e 40

Figure 3-7: Localized action AAA seen as a composite with component localized actions BB
and CC The control flow is specified using the following AA-relations (in their order of
appearance from the left to the right) : Start, AND-Fork, AND-Merge, End. Intermediate

SYStem StateS are NOL SNOWN.c.eeiicie et esa et e e sreeneeneens 41
Figure 3-8: SEAM action-action (AA-) relations vs. BPMN elements (events and gateways).
Taken from WWW.DPIMN.OIG.. ..oveiieieeie et e st e s eae e e sreenseeseesseeneesneenns 41

Figure 3-9: Proposed graphical notation for AA-relations where intermediate states are
shown; &) an imperative specification of a parallel fork; b) an imperative specification of a

L= S 1o o PSPPSR 42
Figure 3-10: SEAM action-to-property (AP-) relations @) relation types; b) An action (local)
invariant vs. asystem (global) INVAariant. ... e 43
Figure 3-11: Localized vs. Joint vs. distributed ACLION.ccccceeveriieeecece e, 44
Figure 3-12: Shared PrOPETYccooeiirerinisiee e e 44
Figure 3-13: Action [0Cal Variablecccccceeiiiicce e 45
Figure 3-14: Input and OULPUL PArAMELENS.cc.eiirerieieiee e 45
Figure 4-1: @) SEAM notation; b) Set — relations notation; ‘a value change' is modeled as a
redirection of acorresPONding FElELION.cceririrereree e s 51

Figure 4-2: a) working object W seen as awhole; b) working object W seen as a composite 51
Figure 4-3: @) working object W seen as a whole (see also Fig. 4-2-a); b) working object W

seen as a composite (see also Fig. 4-2-D). ..o 51
Figure 4-4: @) a primitive property; b) a compound property with two references on primitive
O10] 071 S 53

177

Figure 4-5: SEAM multi-relations. @) binary multi-relation; b) SEAM property composition
represented as a 'part-of’ relation: 'P is a part of Q. This is adso valid for SEAM host
relations; ¢) SEAM property association asa’use’ relation: 'PusesT'ccooveeveveeeeiecneene, 54
Figure 4-6. SEAM relations annotated with multiplicity and instance expressions. @) A host
relation and a property composition modeled as part-of relations; b) A property association
modeled as use relation; ¢) Well-formedness of host and property composition relations.

T,W,Q arefree floating ProPertiES.cceiiiereiesece et 54
Figure 4-7: Representation of an action precondition, postcondition, and invariant as
CONSLrAiNS OVEr the SLALE SPBCE oeeeeeiiieeeteriee ettt sreneas 57
Figure 4-8: Working object W seen as a whole with a localized action A and its contract:
(x>0, true, x’>x). Action invariant is not specified, i.e. ANV =true.c.ccccoeevvenieriencenenenne 59
Figure 4-9: Weakest PreCONTitiONc.ccveiieeieieese e ee et e e ee e nns 60
Figure 4-10: Update statement expressed as a selection condition followed by the assignment
LS 015 T o) o USSR 63
FIQUIE 4-11: AA-TEIALIONS......oiuiciieieeiieieee ettt sr e e se st nns 64
Figure 4-12: a) Creation of a new element in alist using a loca variable; b) Creation of an
element modifies an instance CoUNter MCUITEN............cocveereieeeniceeeeee e 67
Figure 4-13: a) Deletion of an ‘old’ element from the list; b) Deletion of an element modifies
AN INSLANCE COUNTEY MCUITENT.o.eeiieeiiseee ettt ettt sre et e neesseenee s 68
Figure 5-1: (1,1)-refinement for SEAM SPECITICALIONS........ccceveeiierieseeieseese e 73

Figure 5-2: (m,n)-refinement for SEAM specifications. preservation of the external behavior75
Figure 5-3: (m,n)-refinement for SEAM specifications. preservation of the external and the
INEEINEI DENAVION ... e ettt sae b neas 766
Figure 5-4. a) Functional and organizational refinements in SEAM; b) SEAM hierarchical
levels increases from top to bottom (for the organizational levels) and from left to right (for
functiona levels); any specification at higher level must be a correct refinement of any
SPECITICAtioN 8t [OWEN TEVEL. ... e 78
Figure 5-5: Property refinement of a working object as awhole: @) a property decomposition;
b) a definition of a new property; c) a definition of a property to property (PP-) relation; d) a
modification of aMUItiPliCIty EXPIrESSIONcceieerieieeeerie e e e aeeee e 80
Figure 5-6: Behavioral refinements of a working object: &) an action decomposition with
implicit/explicit action ordering; b) a modification of action AP-relations (defined for joint

and localized actions); ¢) amodification of action parameters.cccoccevercineneeie e 81
Figure 5-7: Behaviora refinements of a working object: @) a definition of a new action; b) a
modification of the aCtion AA-TEIGLIONS..........cccoiiiire e 81
Figure 5-8: Organizational refinement: a) ajoint action specification; b) a distributed action
S 01 o L 1T (o] o TSRS PT PP 82
Figure 5-9: Property refinement: modification of a multiplicity expression seen as a property
(01 1 01 (T o SR URPRRRN 84
Figure 5-10: Behaviora refinement: action decompoSItioNcccceeceveerenieeneeserseesesee e 88
Figure 5-11: Organizational refinement: property distribution.coceoeieienencnnenene, 90
Figure 5-12: Definition of a Joint Action from aLocalized Action..........cccceeeveevvneereseenne. 92
Figure 5-13: Organizational refinement by definition of adistributed actionc....... 95

Figure 6-1: Jahob Verification system: (a) a Jahob specification is an input for the Jahob
verification system. It is a program, written in a subset of Java and annotated with Jahob
expressions. This specification is transformed later into Jahob formula; (b) a Jahob formulais
a‘ready to prove' expression that is an input for the formDecider...........ccoovvvveienienenen. 103
Figure 6-2: Specification of a working object M as a whole, with a localized action doMath
(LAdoMath) and three properties: x:X, y:Y, z:Z. A frame condition specifies the variables
that rest unchanged after the @CtiON.ccciieii e 104

178

Figure 6-3: SEAM MUIIPIICITIES.cvieeiieieeee e 105

Figure 6-4: SEAM COMPOUNG PrOPETYcoiveeeeeeesiieiieseesseesesseessesaesseessesssesseessesseessesssesnnns 106
Figure 6-5: Specification of a working object M as a whole, with a localized action doMath
seen as a composite. LAdoMathc is modeled declaratively.........ooeovecvieeiicceseececeeee, 108

Figure 6-6: Specification of a working object M as a whole, with a localized action doMath
seen as a composite. LAdoMath ¢ is modeled imperatively, with an intermediate
state X = state(x,, z,,z,) . Loca variables x,, z,, z, specify the intermediate state of the action

asacomposite. @) Local variables are emphasized; b) action contract is emphasized. 109
Figure 6-7: Specification of a working object M as a composite (denoted Mc) with a joint
action doMath (denoted JAdoMath) seen as awhole. A and B are component working objects

o] 1V SRRSO 112
Figure 6-8: Automated SEAM to Alloy transformationccccceveeceneerncceesie e e 115
Figure 6-9: A screenshot of the Simple Seam Editor application...........ccccoveveenenccenenenne. 115
Figure 6-10: A model pane of the Simple Seam Editor applicationccccceevevcevieenennns 117
Figure 6-11: A screenshot of an XSLT transformation of a SEAM model to Alloy under
o 01 OSSPSR 118
Figure 7-1: Localized ACtioN SEITOK.cooiiiiiiiieieeeeies e 125
Figure 7-2: Distributed ACtion DASEIIOK.c.cceeiieeseee e 126
Figure 7-3: On-Line Book Store value network performing Sale: a) the process customization
for US; b) the process customization for Switzerlandcccocveceveeiecceve e 127
Figure 7-4: Distributed action for redesigned Sale.coeiiiinininineceeeeeee e 128

Figure 7-5. On-Line Book Store value network performing Sale: a). the process
customization for US (redesigned); b). the process customization for Switzerland

(=015 o [T) 129
Figure 7-6: SEAM specification of the service LA_GaslncidentService (ITIL SLA)........... 134
Figure 7-7: Service implementation modeled as SEAM distributed action............ccccceeveeeene 135
Figure 7-8: Refinement VErifiCation............ooiiiiiiiniieeeeeeeeee e 138
Figure A-1. Specification of a component working objects A and B with their localized
actionsaLAdoMath and BLAAOM@LN..........ooeiiiiiicee s 159
Figure A-2: Specification of adistributed action DAdoMath.ccccccvrveevirceveecieseeen, 160

179

180

List of Abbreviations

c, G [c]
DA

EA

FOL
HOL

In

Inv

JA

LA

Out

Post

Pre
RM-ODP
RPA

SE

SEAM

w, W, [w]
WO

- view as a composite

- distributed action

- Enterprise Architecture
- First-Order Logic

- Higher-Order Logic

- input parameter

- invariant

- joint action

- localized action

- output parameter

- postcondition

- precondition

- Reference Model for Open Distributed Processing
- Relation Partition Algebra

- Software Engineering

- Systemic Enterprise Architecture M ethodol ogy
- view asawhole

- working object

181

182

List of Publications

10.

11.

12.

13.

Declarative Specification and Alignment Verification of Services in ITIL.
Irina Rychkova, Gil Regev and Alain Wegmann. First International Workshop on
Dynamic and Declarative Business Processes (DDBP 2008), Munich, Germany.

Using Declarative Specifications In Business Process Design. Rychkova Irina, Regev
Gil, Wegmann Alain. International Journal of Computer Science & Applications. 2008.
High-Level Design and Analysis of Business Processes. The Advantages of Declarative
Specifications Rychkova, | ; Regev, G ; Wegmann, A. Presented at: The Second |IEEE
International Conference on Research Challenges in Information Science (RCIS),
Marrakech, Morocco, 3-6 June, 2008. (Best Paper Award)

From Business to IT with SEAM: J2EE Pet Store Example. Rychkova, I; Wegmann,
A; Regev, G ; Le, L.-S. Presented at: The 11th IEEE International EDOC Conference,
Annapolis, Maryland U.SA., 15-19 October 2007.

Refinement Propagation. Towards Automated Construction of Visual Specifications.
Rychkova, I; Wegmann, A.Presented at: International Conference on Enterprise
Information Systems (ICEIS), Funchal, Madeira - Portugal, 12-16 june 2007.

Formal Semantics for Property-Property Relations in SEAM Visual Language:
Towards Simulation and Analysis of Visual Specifications Rychkova, |; Wegmann,
A; Presented at: Proceedings of the 5th international workshop on Modelling,
Smulation, Verification and Validation of Enterprise Information Systems - MSVVEIS
2007. In conjunction with ICEIS 2007, Funchal, Madeira - Portugal, june 2007.
Business-IT Alignment with SEAM for Enterprise Architecture. Wegmann, Alain ;
Regev, Gil ; Rychkova, Irina ; L& Lam-Son et a. Presented at: The 11th IEEE
International EDOC Conference (EDOC 2007), Annapolis, Maryland, 15-19 October
2007.

Teaching Enterprise and Service-Oriented Architecture in Practice. Wegmann, Alain;
Regev, Gil; delaCruz, José Diego; L& Lam-Son; Rychkova, Irina. Accepted in: Journal
of Enterprise Architecture, vol. 4, num. 3, 2007, p. 15— 24.

An Example of a Hierarchical System Model Using SEAM and its Formalization in
Alloy. Wegmann, Alain ; L& Lam-Son ; de la Cruz, José Diego ; Rychkova, Irina et
al. Presented at: 4th International Workshop on ODP for Enterprise Computing
(WODPEC 2007), Annapolis, Maryland, October 15.

Early Requirements and Business-I T Alignment with SEAM for Business Wegmann,
Alain; Regev, Gil; Rychkova, Irina; Julia, Philippe et al. Presented at: 15th IEEE
International Requirements Engineering Conference, New Delhi, India, October 15-
19th, 2007.

A Method of Functional Alignment Verification in Hierarchical Enterprise Models.
Rychkova, I; Wegmann, A Presented at: Workshop on Business/IT Alignment and
Interoperability (BUSITAL) in conjunction with CAiSE, Luxembourg, june, 2006.

A Method and Tool for Business-IT Alignment in Enterprise Architecture. Balabko,
Pavel; Le, Lam Son; Regev, Gil; Rychkova, Irina et al. Presented at: CAISE 05 Forum,
Porto, Portugal. In: CAISE 05 Forum, 2005.

Operational ASM Semantics behind Graphical SEAM Notation. Balabko, Pavel;
Rychkova, Irina; Wegmann, Alain. Presented at: DAISFMOODS Ph.D. workshop,
Paris. In. DAISFMOODS Ph.D. workshop, 2003.

183

184

Curriculum Vitae

Irina RYCHKOVA

School of Computer and Communication Sciences
Ecole Polytechnique Fédérale de Lausanne (EPFL)
EPFL - 1&C — LAMS,CH - 1015 Lausanne, Switzerland

+41 76 385.2240 (tel.) Year of birth: 1978
Irina.rychkova@gmail.com Nationality: Russian
Marital status: Married

PROFESSIONAL INTERESTS

Business/IT Alignment

Business Process Modeling and Analysis

IT Service specification

Visual Modeling (UML-inspired languages), Simulation, and Analysis

DEGREES & EDUCATION

2003 - 2008 Ph.D., School in Information and Communicational sciences,
Ecole Polytechnique Fédérale de Lausanne (EPFL), Switzerland
(graduation: September 2008)

2002 -2003 Doctoral School in Information and Communication sciences, Ecole
Polytechnique Fédérale de Lausanne (EPFL), Switzerland

2000 -2002 M.Sc. (with Honors). Department of Physical and Quantum Electronics.
Moscow Institute of Physics and Technology (MIPT), Russia

1995-2000 Engineer diploma (with Honors). School of Information Sciences. Samara
State Aerospace University (SSAU), Russia.

RESEARCH EXPERIENCE

2003 —.. EPFL - 1&C — LAMS, research assistant

Project: Semantics and Verification of SEAM visual models.

SEAM is a modeling method for Enterprise Architecture. | develop semantics that allow for
verification of SEAM Visual models on the formal basis. My approach is applied in the context
of Business/ IT alignment, where a system implementation needs to be verified against its
specification. Results are used in the joint project with Itecor company, performed for Service
Industrielle de Geneve.

Teaching assistantship, exam expertise, project supervision:

- ESOA (Enterprise and Service-Oriented Architecture) course for Master students (2007 -
2008);

- Programmation I-1l (in French) course for Bachelor students (2006);

- Various Master (diploma) and semester projects.

185

PROFESSIONAL EXPERIENCE

07.2008 — 12.2008 adidas group, GloballT (Herzogenaurach, Germany). 6 months
internship in IT Architecture. Complexity reduction and IT consolidation is one of the main
initiatives in GloballT. I'm working on validation of Business/IT alignment between the Go-to-
market core process of the company and the IT- landscape, supporting this process across
the different devisions of the company. My task is to develop a framework for evaluating the
impact of late changes in product specification. Based on the change impact, IT solution for
change management has to be specified.

2000-2002 Center of Open Systems and High Technologies (Moscow, Russia), project
member

Project: Information system for aviation and engineering services of an airline company.

In collaboration with engineering department of Aeroflot — Russian Air lines, | was designing

and developing integrated services for different company departments. My objectives was to
analyze and to optimize the process based on data mining.

LANGUAGES

French — good communication skills; English (spoken and written) — fluent;
Russian - native; Italian — basic; German - basics.

INTERESTS

Triathlon (Team.Triody.com), cross-country skiing, alpinism, landscape photography and art.

186

