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Abstract 
 
In this dissertation we investigate how Business/IT alignment in enterprise models can be 
enhanced by using a software engineering stepwise refinement paradigm.  

To have an IT system that supports an enterprise and meets the enterprise business needs, 
management seeks to align business system with IT systems. Enterprise Architecture (EA) is 
the discipline that addresses the design of aligned business and IT systems. SEAM is an 
Enterprise Architecture method, developed in the Laboratory of Systemic Modeling (LAMS) 
at EPFL. SEAM defines a visual language for building an enterprise model of an 
organization. In this work, we develop a theory and propose a technique to validate an 
alignment between the system specifications expressed in the SEAM language. 

We base our reasoning on the idea that each system (an organization, a business system, or 
an IT system) can be modeled using a set of hierarchical specifications, explicitly related to 
each other. Considering these relations as refinement relations, we transform the problem of 
alignment validation into the problem of refinement verification for system specifications: we 
consider that two system specifications are aligned if one is correctly refines the other.  

Model-driven engineering (MDE) defines refinement as a transformation between two 
visual (or program) specifications, where a specification is gradually refined into an 
implementation. MDE, however, does not formalize refinement verification. Software 
engineering (SE) formalizes refinement for program specifications. It provides a theory and 
techniques for refinement verification.  

To benefit from the formal theories and the refinement verification techniques defined in 
SE, we extend the SEAM language with additional concepts (e.g. preconditions, 
postconditions, invariants, etc). This extension enables us to increase the precision of the 
SEAM visual specifications. Then we define a formal semantics for the extended SEAM 
modeling language. This semantics is based on first-order logic and set theory; it allows us to 
reduce the problem of refinement verification to the validation of a first-order logic formula. 

In software engineering, the tools for the automated analysis of program specifications are 
defined. To use these tools for refinement verification, we define a translation from SEAM 
visual specifications to formal specification languages.  

We apply, using case studies, our theory and technique in several problem areas to verify: 
(1) if a business process design and re-design correspond to high level business process 
specifications; (2) if a service implementation corresponds to its specifications. These case 
studies have been presented to a group of domain experts who practice business/IT 
alignment. This inquiry has shown that our research has a potential practical value. 

 
 

Key words: Business/IT alignment, visual modeling, formal semantics, refinement, 
refinement verification, SEAM, Alloy, Jahob.  
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Résumé 
 

 
Dans cette thèse nous étudions comment l'alignement Business/IT dans des modèles 
d'entreprise peut être améliorée en utilisant le ‘raffinement par étapes’ – un paradigme 
développé en génie logiciel. 

Pour obtenir un système informatique qui répond aux besoins de l'entreprise, la direction 
vise à aligner les systèmes informatiques avec le métier. L’Architecture d’Enterprise (EA) est 
la discipline qui étudie et développe des théories et méthodes pour cet alignement. SEAM est 
une méthode d’architecture d'entreprise, développée dans le Laboratoire de modélisation 
systémique (LAMS) à l'EPFL. Dans cette thèse, nous développons une théorie et proposons 
une technique de validation d’alignement entre les spécifications exprimées dans le langage 
de modélisation SEAM. 

Nous fondons notre raisonnement sur l'idée que chaque système (une organisation, un 
système d'entreprise, ou un système d'information) peut être modélisé en utilisant un 
ensemble de spécifications hiérarchiques, explicitement liés les uns aux autres. En repensant 
ces relations comme des ‘relations de raffinement’, nous transformons le problème de 
l'alignement entre spécifications au problème de validation de raffinement entre ces 
spécifications. Nous considérons que deux spécifications du système sont alignées si ce 
raffinement est correct. 

Le concept de raffinement est défini en Model-Driven engineering (MDE) comme une 
transformation entre deux spécifications visuelles où une spécification est progressivement 
affinée et détaillée jusqu’au niveau d’implémentation. Cependant, les règles de la vérification 
pour le raffinement ne sont pas formalisées en MDE. Le concept de raffinement pour logiciel 
a été formalisé en génie logiciel. Le génie logiciel fournit, d'ailleurs, une théorie et des 
techniques pour la vérification du raffinement. Pour bénéficier de ces théories et techniques, 
nous étendons SEAM avec des concepts de modélisation supplémentaires. Cette extension 
nous permet d'augmenter la précision de nos spécifications visuelles. Nous définissons une 
sémantique formelle pour le langage visuelle de SEAM. Cette sémantique est basée sur la 
logique de premier ordre et sur la théorie des ensembles. Elle nous permet de réduire le 
problème de la vérification de raffinement à la validation d’une formule de premier ordre. 

Pour utiliser les outils d'analyse automatique des spécifications de logiciels dans le 
contexte des spécifications visuelles, nous définissons une traduction des spécifications 
SEAM dans un langage de spécifications formelle. 

Nous appliquons la théorie et les techniques que nous avons développées à plusieurs 
domaines: (1) à la vérification des processus métier par rapport aux spécifications 
d’organisation de haut niveau; (2) à la vérification d'une implémentation de service par 
rapport à ses spécifications. Ces études de cas ont été présentées à un groupe d'experts du 
domaine qui pratiquent l’alignement Business et  IT. Cette enquête a montré que notre 
recherche a potentiellement une valeur pratique. 

 
Mots-clés: alignement Business/IT, spécifications visuelles, sémantique formelle, 
raffinement, vérification de raffinement, SEAM, Alloy, Jahob.  
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Chapter 1   

Introduction 
 
 

In providing services to stakeholders, many organizations depend heavily on their IT 
infrastructure. Insuring that IT does what business needs is a very important issue for 
management and is achieved by Business-IT alignment. Business-IT alignment is defined in 
[110] as “.. an ongoing process that will optimize the relational mechanisms between the 
business and IT organization by working on the IT effectiveness of the organization in order 
to maximize the business value from IT.”.  

Enterprise Architecture (EA) is the discipline that addresses the design of aligned business 
systems and IT systems. Enterprise Architecture methods provide techniques, tools, and 
guidelines for building an enterprise model of an organization.  

Traditionally, an enterprise model is a set of visual specifications of an organization that 
has a hierarchical structure. Each hierarchical level specifies an organization from different 
perspectives, e.g. business, organizational, or IT. The main challenge of enterprise modeling 
is to insure that the specifications representing an organization at the IT level correspond to 
the specifications at the higher levels, where the value for this organization is defined. 

1.1 Business /IT Alignment vs. Stepwise Refinement  

Enterprise models are mostly represented in graphical form that we call visual specifications. 
The main advantage of visual specifications is that they enable discussion about the model 
among different stakeholders. However, the lack of precision and formally-defined semantics 
makes a further analysis (such as a comparison of different versions of the model, or an 
alignment validation between models) complicated, if at all possible. 
 

Software Engineering (SE) provides an underlying theory and a set of techniques for 
program specification analysis. Program specifications, similarly to visual specifications, are 
used to describe systems: their construction and functionality.  

Stepwise refinement is a paradigm for semantic program construction, originally proposed 
by Dijkstra [31] and Wirth [111]. It is based on the idea that a program can be developed 
through a sequence of refinement steps starting from an abstract specification. At each step, 
the refined (‘concrete’) specification is proven to be a correct refinement of the ‘abstract’ 
specification.  
 

In this dissertation, we make a correspondence between program specifications in SE and 
visual system1 specifications in order to benefit from theories and tools exist for program 
specification analysis.  

We explore the idea that, similarly to program specifications, each visual specification can 
be seen as a refinement of another visual specification. This describes the organization at a 
more abstract organizational level.  

                                         
1 In this work, we will use the generic term system to discuss organizations, business systems, IT systems, and 
their alignment. 
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As a main contribution of this dissertation, we reduce the problem of alignment 
verification in enterprise visual specifications to the problem of refinement verification, 
defined for program specifications in SE. 

1.2 Verification of Refinement 

Refinement correctness for programs is validated by establishing simulation relations [65] 
between the abstract and concrete specifications. In other terms, the refinement is correct if 
the concrete specification simulates the abstract specification.  

A simulation relation R (also called a refinement relation) puts into correspondence the 
states of abstract and the concrete specifications. The concrete specification is said to be a 
correct refinement of the abstract specification when, starting at the corresponding initial 
states, both specifications will terminate in the corresponding final states (Fig. 1-1). 

 
Figure 1-1: Refinement verification by simulation. 

 
The same way, we define semantics for visual system specifications in terms of states and 

transitions between them. Therefore, the refinement verification schema, illustrated in Fig.1-
1, is also valid for visual specifications. We proceed with an automated validation of 
refinement, providing a mapping of visual specifications to a formal language, for which 
tools for automated analysis already exist. 

1.3 The SEAM Method for Enterprise Architecture 

We implement the theory of refinement verification in order to validate the alignment 
between systems specified in SEAM [108]. SEAM is an Enterprise Architecture (EA) method 
that provides a visual notation for modeling systems, including business and IT systems.  

In SEAM, a system is represented by a working object. A SEAM model of a system 
contains a set of specifications of the working object structured in two hierarchies: an 
organizational level hierarchy and a functional level hierarchy.  

A working object, modeled as a whole at one organizational level, can be represented as a 
composite on the next organizational level. This maintains the explicit traceability between 
organizational levels.  

Fig. 1-2 (a) illustrates a working object WObject1 as a whole; Fig. 1-2 (b) illustrates this 
working object on the next organizational level (i.e. seen as a composite).  

A working object, as a whole, has properties and localized actions; A working object, as a 
composite, has component working objects and joint or distributed actions between them.  
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Figure 1-2: a) Working object as a whole (org. level 1, func. level 1) is specified with a property and a 
localized action. Properties represent data the working object stores or operates with. A localized action 
changes the state of the working object by modifying its properties; b) Working object as a composite 
(org. level 2, func. level 1) is specified with its component working objects and a joint action between 
them. 

 
A property or an action, modeled as a whole at one functional level, can be represented as 

a composite on the next functional level. This maintains the explicit traceability between 
functional levels: 

 
Figure 1-3:  Working object as a whole (org. level 1, func. level 2), specified with a property seen as a 
composite and a localized action seen as a composite.  

1.4 Alignment Validation vs. Refinement Verification in SEAM 

This work applies the paradigm of stepwise refinement for SEAM specifications and 
describes how SEAM specifications can be aligned and how this alignment can be validated.  

To rigorously reason about SEAM specifications and their refinements, we provide a 
formal semantics for SEAM specifications and their refinements, based on set theory and 
first-order logic (FOL)2. To formalize the criteria of refinement correctness, we use a theory 
of data refinement from [72][51][101]  and more generalized form of refinement from 
[15][16].  

Based on the formal semantics, we specify a mapping of SEAM visual specifications to 
the specification languages (e.g. Alloy [59], Jahob [63]) for further refinement verification.        
We interpret the result of refinement verification as the validity of the alignment between 
visual specifications. 
The contributions of this dissertation can be summarized as follows: 
• Formalization of the initial set of SEAM modeling concepts using first-order logic; 
• Classification of SEAM refinements; 
• Identification of the modeling concepts, missing in the current version of SEAM and 

required for refinement verification (i.e. action preconditions, postconditions etc.); 
• Formalization of the initial set of SEAM modeling concepts; 
• Definition of refinement correctness for SEAM using a forward simulation for data 

refinement from [72][65]  and generalized forward simulation from [16]; 

                                         
2 FOL is a system of formal reasoning also known as a first-order predicate calculus [53][18]. 
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• Mapping of SEAM specifications to the Alloy specification language [59] for the 
validation of refinement using the Alloy Analyzer tool;  

• Mapping of SEAM specifications to the Jahob formulae [63] in order to generate a 
formal proof of refinement correctness using the Jahob formDecider. 

1.5 The Structure of this Document  

In Chapter 2 of this document, we analyze the state of the art. It comprises (a) theoretical 
foundations in specification development using refinement, formal refinement verification, 
and visual modeling and (b) practical applications of modeling techniques developed in 
academia and in the industry. 

In Chapter 3 we present the SEAM method. This work extends the original set of SEAM 
modeling concepts. In this chapter, we specify the graphical notation and semantics for the 
extended SEAM language. 

In Chapter 4 we present the formalization of SEAM modeling concepts using first-order 
logic (FOL). 

In Chapter 5 we classify refinements in SEAM and specify correctness for each 
refinement type. We use forward simulation for data refinement and generalized forward 
simulation, defined in the ASM refinement method, as proof methods for refinement 
correctness. We reduce a problem of refinement verification in SEAM to a proof of validity 
of a corresponding FOL-formula. 

In Chapter 6 we present two techniques for the automated refinement verification in 
SEAM: The first technique is based on use of the Alloy Analyzer - a tool for analyzing 
models written in the Alloy specification language; the second technique is a formal proof of 
refinement correctness in the Jahob verification system. 

In Chapter 7 we present the practical impact of the developed theory. In this chapter, we 
discuss in detail two examples that illustrate how the achievements of this thesis can be 
implemented to verify: 

(1) If business process design and re-design correspond to the high level business process 
specification (Book Store example); 

(2) If service implementation corresponds to its specification (SIG example). 
In Chapter 8 we present our conclusion and discuss a future work.  
 
At the beginning of each chapter, we give an overview of the chapter’s content.  
For the reader interested in business / IT alignment and the practical aspects of the 

proposed theory, we recommend reading Chapter 2: it provides a state of the art. Then read 
briefly Chapters 3 and 6, where the SEAM notation and the rules of transformation of SEAM 
models to formal specifications are explained. And then proceed with Chapters 7 and 8: they 
illustrate our technique on the examples and provide a practical feedback. 

For the reader interested in modeling languages and their semantics, we recommend 
reading Chapters 2, 3, 4 of this document, then proceed with Chapters 6 and 7. 

For the reader interested in formal methods and their implementation, we recommend 
reading Chapters 3, 4, 5, 6, and 7 of this document. 
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Chapter 2   

The State of the Art 
 
 
This dissertation reports the results of an interdisciplinary research that involves the 
following areas of information science, and computer science: Enterprise Architecture, 
Model Driven Engineering, Visual Modeling Languages, and Formal Methods and 
Languages. 

 
In the first part of this chapter we make an overview of the work, which describes the 

theoretical foundations of this Ph.D: 
In Section 2.1 we introduce the term of model transformation as it is defined in Model 

Driven Engineering (MDE). In Section 2.2 we provide an overview of the existing theories 
and the approaches to refinement verification: model checking and theorem proving. In 
Section 2.3 we give a definition of the semantics for visual modeling languages and explain 
the role of formal semantics in the process of refinement verification.  

 
In the second part of this chapter, we study how model transformations (namely, model 

refactoring and refinement) are (1) specified in different visual modeling methods and (2) 
how they are supported by different modeling tools used in Software and 
Enterprise modeling: 

In Section 2.4 we define a comparative framework for visual modelling upon which we 
analyse five methods developed in the area of Enterprise and Software modelling. In Section 
2.5 we define a comparative framework for the modeling tools. Tools, compared to methods, 
are more user-oriented: some of them (mostly commercial tools) are based on best-practices, 
whereas the others (research prototypes developed in an academia) implement the theoretical 
methodologies. We analyse four commercial tools and seven tools, developed in academia. 
We explore how the automated refinement and the refinement verification are supported by 
these tools.  

In Section 2.6 we apply the same frameworks to evaluate the SEAM modelling method 
and tool. 

2.1 Theoretical Foundations of this Work 

2.1.1 Model Transformations 
Model-Driven Engineering (MDE) is a discipline that defines a set of methods and tools for 
the software development, where a model plays a central role. Model evolution and 
elaboration in MDE is described as a result of model transformations.  

The best known MDE initiative is the Model-Driven Architecture (MDA) software design 
approach [75]. MDA describes a model evolvement from abstract specifications to their 
implementations (code). The separation of design from architecture is one of the main 
principles of MDA. Kleppe et al. [62] provide the following definition of a model 
transformation: “A transformation is the automatic generation of a target model from a 
source model, according to a transformation definition. A transformation definition is a set of 
transformation rules that together describe how a model in the source language can be 
transformed into a model in the target language. A transformation rule is a description of 
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how one or more constructs in the source language can be transformed into one or more 
constructs in the target language.”  

Source and target models, in model transformation, are expressed in corresponding 
languages and are said to be conforming to metamodels. The term metamodel is often 
associated with a set of rules and definitions, provided by the modelling language.  

[70] proposes the following dimensions for the categorization of transformations: 
endogenous/exogenous and horizontal/vertical.  

A transformation is endogenous if the source and the target models conform to the same 
metamodel (are expressed in the same language). If the source and the target metamodels are 
different, then the transformation is exogenous. Exogenous transformations can be also 
called translations from one language to another. 

A transformation is horizontal if the source and the target model reside at the same 
abstraction level. A vertical transformation, respectively, is a transformation, where the 
source and the target model reside in different abstraction levels. The taxonomy of model 
transformations is presented in [70]. 

 

 
Figure 2-1: Classification of model transformations in context of Visual modeling. 

 
In context of visual modeling, we distinguish the transformations of visual specifications 

to executable program specifications, and the transformations of visual specifications to 
visual specifications. Former transformations are exogenous; latter transformations can be 
endogenous (if both models are expressed in the same visual modeling language) or 
exogenous (if a language of the target model is different from the language of the source 
model).  

 
In Fig. 2-1, transformations T1 and T2 specify transformations from a visual specification 

to a program specification – they are exogenous; T0 specifies a transformation between two 
visual specifications, where one conforms to a metamodel MM1 and another - to a 
metamodel MM2. If MM1 = MM2 then T0 is an endogenous transformation.  
 
Examples of transformations are: 

– Synthesis of a higher level (more abstract) specification into a lower-level (more 
concrete) specification. The result of synthesis of a visual specification is typically a code 
generation.  
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- Generation of an abstract specification from its implementation (also called a 
reverse engineering). This transformation is the opposite of a synthesis. The result of reverse 
engineering is typically a visual specification generated from the program specification. 

Synthesis and reverse engineering aim at increasing or decreasing the abstraction level of 
a model; these transformations are vertical transformations (Table 2-1).  

- Language migration is an exogenous transformation that specifies a translation of a 
visual (or a program) specification expressed in one language to a visual (or a program) 
specification expressed in the other language, keeping the same level of abstraction. 
Language migration is a horizontal transformation. (Table 2-1).  

In this work, we consider two endogenous transformations: refactoring and refinement. 
Both refinement and refactoring specify transformations between two visual (or program) 
specifications expressed in the same language. Refinement changes the internal structure of a 
specification while keeping the same level of abstraction. Refactoring is a horizontal 
transformation. Refinement is a transformation, where a specification is gradually refined 
into an implementation [70]. Refinement is a vertical transformation.  

The design process in SEAM can be seen as a sequence of the transformations of visual 
specifications. Based on our classification, the transformations of SEAM specifications are 
refinements and/or refactorings.  

 
Table 2-1 summarizes transformation types along two classifications: 

exogenous/endogenous and vertical/horizontal.  
 

Table 2-1 Classification of Model Transformations 

 HORIZONTAL 
(level of abstraction  
does not change) 

VERTICAL 
(level of abstraction  
changes) 

ENDOGENOUS 
(MMs = MMt) Refactoring Refinement 

EXOGENOUS 
(MMs  MMt) Language migration 

Code Generation, 
Reverse engineering 

 
Model Driven Engineering provides a classification of model transformations, however it 
does not provide a theory for reasoning about these transformations. Such a theory can be 
found in domain of Software Engineering. 

2.1.2 Refinement and Refactoring in Software Engineering 
Transformations of refactoring and refinement are also defined in Software Engineering (SE) 
to specify transformations of programs.  

 [42] defines refactoring as “the process of changing a software system in such a way 
that it does not alter the external behavior of the code yet improves its internal structure." 
Refactoring can be considered as a series of atomic behavior-preserving transformations (also 
refactorings) which in combination may result in substantial reorganization of the code. 
Refactoring does not consider transformations, which change a state space of the model.  

In the domain of software modeling, refactorings for UML class diagrams annotated by 
OCL constraints are systematized and formalized in [68]. 
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Refinement [111] is a more general technique that specifies a stepwise development of the 
program by adding details or eliminating nondeterminism. As opposed to refactoring, 
refinement can change a state space and an observable behavior of a model (e.g. adding, 
removing a field or a method of a class). Thus, refinement specifies a wider class of 
transformations then refactoring does (see www.refactoring.org).  

In Software Engineering, the criteria of refactoring/refinement correctness are well 
specified; therefore these transformations can be verified.  

Refinement verification techniques are often used to verify refactoring correctness [23], 
[85]. The semantic correctness of the refactorings for UML class diagrams is presented in [6]. 

In this work, we formalize all types of transformations defined for SEAM visual 
specifications as refinements.  

2.1.3 Refinement and Refinement Verification  
Stepwise refinement is a well-known paradigm for semantic program constructions originally 
proposed in [31] and [111]. It is based on the idea that a program can be developed through a 
sequence of refinement steps starting from an abstract specification. Different notions of 
refinement can be found in the literature (see [88] for an overview). We list only a few.  

A method of program construction based on stepwise data refinement together with proof 
of refinement correctness was proposed by Hoare [51].  

Data refinement and techniques to prove its correctness are presented in [93].  
In [15], the Abstract State Machine method of abstract refinable system specifications is 

introduced. In [16], the Abstract State Machine refinement method is presented. The ASM 
refinement method generalizes the notion of refinement for an arbitrary number of transitions 
(run segments) between the initial and the final specification states.  

Refinement verification is largely based on the use of simulation techniques [65]. By the 
simulation we understand a correspondence between the states of two systems, where one 
system is considered a specification and other – its implementation. The simulation proof is 
based on the establishing of this correspondence. The fact that a simulation between two 
systems exists shows that any behavior of one system can also be exhibited (simulated) by 
the other system.  

The research literature contains a large number of different types of simulations, such as 
forward simulation, backward simulation, hybrid simulations (i.e. forward-backward and 
backward-forward simulations) [65][112][50][27], refinement mappings [1], and a 
generalized forward simulation [15][16][98]. These simulations are differentiated based on 
the way they relate system specifications and their implementations: for example, forward 
simulation matches each step of the system implementation with a corresponding step 
forward of its specification; whereas the backward simulation matches each step of the 
system implementation with the corresponding step backward of its specification. The 
simulation techniques will be presented in detail in Chapter 5.  

In contrast to refinement techniques where an intermediate specification is first proposed 
and then proved (for example, by simulation) to be a correct refinement of its antecedent, 
there exists a refinement technique based on calculation [72]. The refinement calculus by 
Back [7] is an underlying theory of this technique. According to this technique, every 
intermediate specification can be calculated from the previous one by using refinement laws. 
The application of these laws enables the reduction of proof obligations and assures 
refinement correctness.  

In the context of visual modeling methods, incremental software construction using 
refinement diagrams is proposed in [8]. Here refinement calculus is used as logic for 
reasoning on software systems and their evolution. Pons defines in [85] the UML refinement 
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patterns grounded on Object-Z. In [6] refinement for the UML class diagrams and 
corresponding OCL contracts is specified.  

2.1.4 Model Verification 
When a model (a program or a visual specification) is created or obtained by refining another 
model, it is important to validate that it is constructed correctly: for example, that it has a 
certain property. This can be done by formal verification.  

There are two main approaches to formal verification: model checking [20] and theorem 
proving based on logical inference [47] [64]. 

Model checking is an approach for verifying the requirements and design for a vast class 
of systems. A system, specified as a Kripke structure, is checked against some logical 
formula that expresses a desired property or requirement of this system. Typically, formal 
specification languages are used to specify the system, its properties, and requirements. 

A model M of the system can be considered in model checking as a finite state machine 
(FSM). A FSM consists of nodes, representing system states, and vertices, presenting 
transitions between their states. Desired properties of the system are specified as logical 
formulas. To find out whether the model M with the initial state s satisfies some property φ, 
(denoted M, s ╞ φ) the state space and all transitions of the model are systematically and 
exhaustively explored.  

The major drawback of the model checking is a state explosion problem, which originates 
from the fact that for real systems the size of the state space grows exponentially with the 
number of processes [21]. To avoid the state explosion, model checkers implement specific 
techniques, such as symbolic algorithms and binary decision diagrams (BDD) [54], bounded 
algorithms [3], counter-example guided abstraction refinement [52], and algorithms based on 
partial order reduction, or on abstraction. 

Model checking approaches largely use the counterexample-based algorithms to validate 
properties of a system, specified as logical formulas. Such algorithms explore the system 
state space looking for the case, where this formula is violated. This case is called a counter-
example; the occurrence of a counter-example demonstrates that the formula is invalid. 
However, the fact that no counterexample is found does not prove the validity of the formula, 
because the state space under the exploration is limited.  

 
The second approach is an automated theorem proving based on logical inference. 

Within this approach, the fact that the system specification (a model) satisfies a certain 
property is expressed as a logical formula. The task is to prove the validity of this formula, 
deducing it from a set of axioms that exist for the underlying logic (e.g. first-, second-, 
higher-order logic etc), and hypotheses made about the system.  

Depending on the underlying logic, the problem of deciding the validity of a theorem 
varies from trivial to impossible. Theorem proving for the first-order logic (FOL) is widely 
represented in the literature (see for example [100][99]).  

Higher-order logic (HOL) operates on predicates and functions of higher order (a higher-
order predicate is a predicate that takes one or more other predicates as arguments). It is more 
expressive and appropriate for a wider range of problems then first-order logic. However the 
theorem proving procedures for HOL are more complicated [48][74][82]. 

 
Despite the fact that automated theorem proving is complex and requires a lot of 

involvement from the modeler, its application is promising: this approach is not limited by 
the state explosion problem (the main limitation of model checkers) and can handle the 
infinite number of states.  
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2.1.5 Formal Semantics for Visual Modeling Languages 
To prove the desired properties of specifications, or to verify the refinement correctness of a 
visual specification, these specifications should be translated to a formal specification 
language, accepted by a model checker or an automated theorem prover. Translation (or 
mapping) rules for a visual specification language can be defined as its formal semantics. 

The semantics of a visual language L gives a meaning to the constructs and the expressions 
in this language and can be defined in two ways [10]: "(1) By providing a way in which 
expressions (and constructs) of L are made (2) By translating the expressions (and 
constructs) of L into expressions of another language that is already known". 
 

Fig. 2-2 illustrates the refinement of a visual specification and its verification. Here M1 
and M2 are visual specifications conforming to a source metamodel MMs. T0 is a 
transformation that specifies a refinement between M1 and M2. We say 'M2 refines M1'. 
Transformations T1 and T2 specify translations of M1 and M2 to specifications P1 and P2, 
written in a formal specification languages and defined by formal semantics. We also say that 
P1 and P2 conform to a target metamodel MMt. Specifications P1 and P2 are formalizations 
of M1 and M2 in the target language.  

We identify the refinement between M1 and M2 with the refinement between P1 and P2. 
For P1 and P2 we can check the refinement correctness using formal verification tools. We 
interpret the obtained result for M1 and M2: M2 correctly refines M1 if and only if P2 
correctly refines P1.  

 

 
Figure 2-2: Refinement verification of visual specifications is considered as a refinement verification of 
corresponding specifications written in a formal specification language.  

 
There is a gap between visual modeling languages and formal specification languages: 

Whereas visual languages are practice-oriented and tend to specify the system avoiding 
exhaustive details, formal specification languages demand a high precision in model 
definition. This gap makes translations between specifications complicated. To define formal 
semantics for visual specifications, the level of precision of these specifications should be 
increased by introducing new elements to the visual modeling language. 

2.2 Visual Modeling Methods and their Consideration of Refinement  

Many modeling frameworks and methods in the domain of enterprise modeling, system 
modeling, and software modeling have emerged in the last decades. See for example 
[77][78][81][32][114][35][45]. Some of those are discussed and compared in [97]. In this 
section we analyze some of the methods that we consider the most relevant to the problem of 
refinement verification.  



 
 

19 

2.2.1 Classification Framework for Modeling Methods 
Visual modeling methods in Software and Enterprise modeling can be classified based on the 
way they organize their specifications and guide the modeling process: Some methods define 
several types of highly specialized diagrams, whereas the others use one diagram type; some 
methods keep their diagrams explicitly related (aligned) and provide mechanisms for this 
alignment, and the others define loosely coupled sets of specifications, leaving the 
relationships between these specifications to a modeler’s consideration.  

These characteristics of modeling methods affect the way these methods support 
refinement. We develop the following criteria to classify different modeling methods:  
 
1. Diagram Types 
We distinguish the modeling methods that define one diagram type for its specifications and 
those that define many specific diagrams (e.g. UML). 
 
2. Model Structure 
We distinguish a plain or hierarchical model structure. A hierarchical structure enables 
‘zooming in and out’ into model details by switching hierarchical levels. In the plain model, 
the system is represented by a collection of complementary views that capture different 
aspects of the system.  
 
3. Traceability 
Traceability is a relationship between elements in different specifications, which enables a 
designer to carry out an impact analysis. For the model with a plain structure, the traceability 
between different views is important to maintain the model consistency. When the model is 
structured hierarchically, the traceability between specifications at different levels helps to 
verify the refinement correctness.  
 
4. Refactoring/Refinement Rules 
We distinguish the methods that specify the rules of refinement or refactoring for their 
specifications, and those that do not restrict the modeler and leave the refinement process to 
the modeler’s discretion.  

2.2.2 Modeling Methods Overview 
We consider in detail the following modeling methods: 

UML2.0 and its extension SysML; 
BPMN 
DEMO 
OPM 
ADORA 
 
UML 2.0 [77] is a de-facto standard for software development. UML proposes 13 

diagram types that enable modeling various system aspects. These diagrams are divided in 
three groups: structure, behavior, and interaction diagrams. Structure diagrams include: 

• Class diagram  
• Component diagram 
• Composite structure diagram 
• Deployment diagram 
• Object diagram 
• Package diagram + 

Behavior diagrams are: 
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• Activity diagram + 
• State Machine diagram + 
• Use case diagram + 

Interaction diagrams relate a system structure defined in the structure diagrams with its 
behavior, specified in behavior diagrams. These diagrams include: 

• Communication diagram 
• Interaction overview diagram  
• Sequence diagram 
• UML Timing Diagram  
 
There is a semantic relationship between the UML diagrams of different types, i.e. they 

are complementary. Some diagrams in addition have a hierarchical structure (they are marked 
with ‘+’ in the list). For example, a state machine diagram defines state machines and 
submachines; activities are composed of activity nodes that can be also activities, etc.  

Different UML diagrams are complementary but self-contained, which implies that any 
relationships between the elements in different diagrams have no semantic effect on the 
model. Traceability in UML can be expressed using traceability relationships. An 
implementation of traceability typically depends on the tool. IBM Rational software architect 
[87], for example, provides diagrams and table views of related model elements, broken 
relationships between model elements, and implied dependencies between model elements. 
UML 2.0 specification [77] does not address explicitly the traceability issue. 

UML defines an abstraction relationship between its model elements. This relationship in 
UML can be used to model stepwise refinement. No explicit refinement rules or classification 
of refinements is specified in the original UML documentation. It is left to the discretion of 
the UML practitioners or tools, implementing UML.  

The official list of UML-based modeling tools is available at http://uml-
directory.omg.org/vendor/list.htm. At the time of this work, there are more than 40 products.  

 
Systems Modeling Language (SysML) [79] was developed by OMG and based on UML. 

SysML targets the design of large industrial systems (e.g. aircraft, power plants, etc). It 
defines nine diagram types; four of them are inherited from UML.  

SysML defines blocks as modular units of system description. Blocks group both 
structural and behavioral features (properties, states, operations) to describe a system of 
interest. The Block Definition Diagram in SysML defines features of a block and 
relationships between blocks. The Internal Block Diagram in SysML captures the internal 
structure of a block. Blocks can be decomposed into parts that are also blocks.  

 
Business Process Modeling Notation (BPMN) [78] provides a visual notation and 

formalism for business process model development. This notation is mostly focused on the 
representation of a system’s behavior and proposes a variety of model elements for its 
realistic specification. BPMN specifies one diagram type called business process diagram 
(BPD). In a BPD, two hierarchies can be captured: by using combinations of swim lanes, a 
hierarchical structure of organizations can be modeled; and by using combinations of BPMN 
processes, sub-processes, and tasks, organization behavior can be modeled with different 
levels of details. 

Traceability between tasks and activities in BPD is explicit and maintained by the 
sequence and message flows (connections).  

Modeling expanded sub-processes can be considered as a functional refinement of the 
business process model. BPMN defines rules for sub-process definition to guarantee that it is 
consistent with the main process. They can be considered as refinement rules. Swim lanes 
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specify the process participants. Therefore, the definition of multiple lanes for one pool is 
equivalent to the organizational refinement.  

At the time of this work, there are 44 existing and 4 planned implementations of BPMN. 
The complete list of tools is available at http://www.bpmn.org/ . 

 
Design & Engineering Methodology for Organizations (DEMO) [29] is an EA framework 

based on the organizational theory called Language/Action Perspective. The DEMO 
methodology takes its theoretical origin from the works of Habermas on communicative 
action [49]. This methodology provides a set of methods for capturing and visualizing 
business processes and the actors involved in the activities comprising these business 
processes. DEMO defines its organizational levels based on a communication paradigm. 
Functional levels are defined in DEMO based on the view of business processes as 
transactions.  

DEMO specifies four aspect models (construction, process, state, and action models) and 
five diagram types for these models (actor - transaction diagram, actor - bank diagram, 
process - structure diagram, objects - fact diagram, action - rule specification). 

The construction model specifies the construction of the organization in terms of the 
transactions, actors, information banks, and information links between them. The process 
model and the state model are considered as the next detailing level of the construction model 
– they describe each transaction as a set of states and transitions. The action model specifies 
the action rules and can be seen as the second detailing level of the construction model. 
Traceability between modeled aspects is captured in DEMO using cross-model tables.  

DEMO defines functional and constructional decompositions as techniques for dealing 
with the complexity of the modeled system. Decompositions can be seen as corresponding 
refinement types.  

 
Object-Process Methodology (OPM) [34][35] proposes a method for the complete 

integration of the systems' states and behaviors within a single graphical model. OPM defines 
one diagram type for its models called object process diagram (OPD). The system model in 
OPM is represented by a collection of OPDs structured as a directed acyclic graph with the 
top-level system diagram in its root. This diagram is considered at detail level zero. Each 
node of this graph is an OPD, which specifies in more detail a process from the higher level 
OPD (a zoomed-in process). Relationships between diagrams can be defined explicitly by 
specifying a control flow.  

OPM defines the abstracting and refining of its specifications as subtypes of the process 
called scaling. There are three modes of refinement in OPM: in-zooming, unfolding, and 
expressing. OPM defines the rules for refining/abstracting processes. 

In OPM, there exist three types of hierarchies, defined with respect to the first three 
fundamental structural relations: aggregation-participation, exhibition-characterization, and 
generalization-specialization. These hierarchies are equally applicable to objects and to 
processes.  

 
The object-oriented modeling method for software called ADORA (Analysis and 

Description of Requirements and Architecture) is presented in [44][45]. Models in ADORA 
are composed of hierarchically structured abstract views. ADORA defines a base view and 
four aspect views for its models (structural, behavior, user, and context views). The base 
view specifies the hierarchical structure of the objects of the modeled system. Aspect views 
are generated by combining the base view with the information that is relevant for the 
selected aspect. All views are integrated in one coherent model.  
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The mechanism of hierarchical decomposition is applied to views. A view transition in 
ADORA is a sequence of steps that guarantees the well-formedness of a new view. View 
transitions for structural, behavioral, and user aspect views are specified [113] and can be 
considered as refinement rules. View transitions enable an explicit traceability between 
model elements [113]. ADORA defines a formal refinement calculus semantic for the 
structural, behavioral, and user views.  

2.2.3 A Comparison of Modeling Methods  
We have analysed the methods from 2.2.2 based on the classification framework defined in 
2.2.1. A summary of this evaluation is presented in Table 2-2.  

 
Table 2-2 

Method 1.Diagram 
types 

2.Model 
structure 

3.Traceability 4.Refactoring/ refinement 
rules 

UML 
2.0 

13 diagram 
types 

Hierarchical for 
some (not all) 
diagrams 

Can be modeled using 
traceability relationship, 
implicit; no semantic 
impact is specified 

Structural refinement: can 
be modeled using 
realization relationship, 
implicit; 
Behavioral refinement: 
implicit.  

SysML 9 diagram 
types  

Hierarchical for 
some (not all) 
diagrams 

Explicit requirements 
traceability; relations 
between blocks 

Structural, behavioral 
refinement: using block 
decomposition 

BPMN 1 diagram 
type 

Hierarchical: 
pools/lanes; 
process/ sub-
process 

Explicit for tasks and 
activities using sequence 
and message flows; 

Behavioral refinement: 
defined by sub-process 
modeling;  
Structural refinement: can 
be modeled using pools – 
lanes combination. 

DEMO 5 diagram 
types 

Hierarchical Explicit, using cross-
model tables 

Behavioral and structural 
refinements: using 
functional and 
constructional 
(de)composition 

OPM 1 diagram 
type 

Hierarchical Explicit for processes 
using a control flow. 

Behavioral and structural 
refinements: in the form of 
in-zooming, unfolding, and 
expressing 

ADORA Base view + 
aspect views  

Hierarchical Explicit, using view 
transitions 

Behavioral and structural 
refinements: using 
hierarchical decomposition;  

 
Our analysis shows that most of the methods consider behavioral and structural 

refinement for their models, however semantics of refinement (criteria of refinement validity) 
and refinement rules are often left for an implementation of the method.  
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2.3 Visual Modeling Tools and their Support of Model Refinement and 
Refinement Verification 

Modeling methods are largely based on theoretical paradigms; they may exist in a form of the 
guidelines, and may have no tool support. Modeling tools, compared to methods, are concrete 
applications. Some of the tools are grounded on modeling methods (e.g. UML, BPMN), 
whereas the others may have no underlying theory but a set of best practices. Modeling tools 
usually provide an additional functionality to the methods, such as simulation and 
verification.  

Model simulation and verification require details about dynamic and static constraints of 
a modeled system that are often omitted in the visual model. Therefore, semantics of the 
visual modeling language needs to be extended. For these purposes, visual models are often 
annotated with expressions written in other languages, e.g. OCL annotations for UML 
diagrams. 

In this section we consider visual modeling tools which implement some of the modeling 
methods listed above.  

2.3.1 Classification Framework for Modeling Tools 
To answer the question, “How different modeling tools support model analysis and 
refinement verification?”, we  define the following classification framework:  
 
1. A Source Language 
We classify modeling tools by modeling languages that they support or modeling methods 
they implement. We call these languages or methods source languages, as the model 
expressed in this language is used as a source for further processing and analysis. 
 
2. A Constrain Specification Language  
Apart from the source language, we distinguish two other types of languages that (if defined) 
characterize the modeling tool: a constraint specification language and a target language. 
The constraint specification language is a language for annotating visual models in order to 
extend their semantics and increase their precision.  
 
3. Migration to another Language 
Some modeling tools use their own means to simulate or verify their models; other tools 
provide a translation of their models to other (target) languages and profit from the 
simulation and verification tools, developed for those languages.  
 
4. A Target Language 
The target language is an executable or verifiable specification language. Visual 
specifications, written in a source language and annotated with expressions written in a 
constraint specification language are mapped to the target language for further simulation 
and/or verification.  
 
5. Simulation is a capability of a modeling tool to simulate or execute the model. 
 
6. Well-Formedness and Consistency Checking is a capability of a modeling tool to check 
if the model is well-formed (a correct instance of its meta-model) and consistent 
(semantically non-contradictory). 
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7. Refinement Support is a capability of a modeling tool to provide an assistance in at least 
one of the following refinement–related activities: 

• the support of incremental model development, when different parts of a model can be 
iteratively refined;  

• the control of refinement consistency, when specific rules are implemented to prevent 
the model from incorrect refinement; 

• the refinement synchronization, when the rest of the model is synchronized (adjusted) 
with respect to the refined model part; 

• the refinement verification, when the refined model is proven a correct refinement of 
the initial model with respect to the formal definition of refinement correctness. 

2.3.2 Modeling Tools Overview 
Four commercial tools and seven tools developed in academia (or originated from it) have 
been selected for our analysis. We find the analyzing of both groups of tools important, 
because the former group reflects the current needs of practitioners, whereas the latter 
illustrates the research innovations in the area.  

For our analysis we have selected the tools that facilitate model simulation, analysis and 
refinement support. 
 
Commercial tools: 
No Magic - MagicDraw (UML2.0, SysML, BPMN, DoDAF) - www.magicdraw.com/ 
Telelogic - SystemArchitect (BPMN, DoDAF) - 
www.telelogic.com/products/systemarchitect/index.cfm  
Metastorm - ProVision (BPMN, Six Sigma, Zachman, TOGAF, DoDAF, UML) - 
www.metastorm.com/products/mpea.asp 
Intalio - Designer (BPMN) - www.intalio.com/products/designer/ 
 
Research prototypes and research based tools:  
ArgoUML (UML)  
RoclET  (UML, OCL) 
UML2Alloy (UML, OCL)  
BPMN2PNML (BPMN) 
OPCAT (OPM) 
ADORA (ADORA) 
DEMOS (ER) 
 

MagicDraw is a business modeling tool, developed by No Magic Inc.[67]. MagicDraw 
UML 15.0 is the latest version of the product by the time of this work. This tool supports 
UML 2, BPMN notations, and provides a plugin for SysML.  

MagicDraw supports OCL constraints for its model elements. OCL syntax is validated 
automatically. The tool supports model decomposition and provides the automated check of 
model completeness and correctness. Model versioning can serve for refinement support: one 
can see the changes made between two different versions of a model. To the best of our 
knowledge, MagicDraw does not provide means to keep track and to validate these changes 
with respect of the initial model (what we call refinement verification). 

 
Telelogic System Architect is a tool for business and enterprise architecture modeling 

[104]. This tool supports BPMN and provides facilities for planning, modeling, and execution 
of business process specifications. System Architect has its own simulator for process 
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specifications, called System Architect Simulator II. System Architect complements another 
Telelogic tool called TAU G2 supporting UML2.0 visual modeling.  

 
Metastorm ProVision [86] is a tool for business process modeling and analysis that 

supports (among the others) BPMN notation for the processes. The tool includes both Monte 
Carlo and discrete event simulators to define scenarios and perform process simulation. 
Scenario-based simulation shows how the process will behave under specific conditions.  

 
Intalio Designer [56] is an Eclipse-based integrated development environment for BPMN 

business processes. It is a part of Intalio BPMS 4.0. Intalio designer supports the static 
process validation and automatic process code generation. Refining processes into sub-
processes in Intalio Designer is performed using the in-line sub-process drill-down approach.  

 
ArgoUML [4] is an open source UML modeling tool. ArgoUML provides OCL constraint 

modeling for its diagrams. ArgoUML supports syntax and type checking of OCL constraints 
using the Dresden OCL toolkit [37]. ArgoUML implements design critics feature to supervise 
the modeling process and to correct the modeler’s activity. The tool does not mention 
explicitly its refinement capabilities; however we consider design critics potentially 
beneficial for the refinement support. 

 
RoclET [94] is an open source tool for analysis of UML/OCL specifications. The current 

version of RoclET supports UML 1.5 class and objects diagrams and provides a parser/ 
typechecker for annotated OCL 2.0 constraints. RoclET supports the refactoring of UML 
class diagrams and automatic synchronization of attached OCL constraints. Baar and 
Marcovi  [5] introduce a proof technique for the semantic preservation of refactoring rules 
for UML class diagrams and OCL constraints. Evaluation of invariants, pre-, and 
postconditions for object diagrams is also provided by the tool.  

 
UML2Alloy [13] is a tool for the analysis of discrete event systems modeled in UML. 

This tool provides an interactive interface to translate UML diagrams annotated with OCL 
constraints into Alloy specifications. UML2Alloy tool accepts XMI serializations of UML 
models developed in some UML modeling tool (e.g. Magic Draw 9.5, ArgoUML). The tool 
generates text files with Alloy specifications that can be analyzed in Alloy Analyzer 4.0 [3].  

 
The BPMN to Petri net transformer (BPMN2PNML)[17] is a tool that generates Petri Net 

Markup Language (PNML) [43][83] specifications from BPMN models for further static 
analysis. The tool accepts XMI serializations of BPMN models generated by existing BPMN 
modeling tools (e.g. ILOG BPMN Modeler tool). The semantic analysis of BPMN models 
can be conducted by importing generated PNML specification into the Petri net-based 
verification tool ProM [33][84]. This tool allows for the verification of the two following 
properties of BPMN models: the absence of dead tasks, and the absence of improper process 
completion, which means that any process instance eventually reaches proper completion. 
Further details can be found in [30]. 

 
The Object-Process CASE Tool (OPCAT) [35][80] is a tool for the development and 

simulation of OPM system specifications. OPCAT provides an abstraction/refinement 
mechanism in the form of in-zooming/out-zooming, unfolding/folding and expression/ 
suppression of the states. OPCAT's simulation capability enables an animated running of a 
system model, a testing of its functionality against the requirement specifications, and a 
debugging of them at the model level [36].  
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DEMOS [26] is a modeling tool for the EP modeling language [60]. This tool is developed 

within the project of Declarative Approaches to Software Complexity [25]. The EP-model is 
a declarative executable model for engineering object-based systems. EP-models model both 
static and dynamic aspects of a system in a single diagram. The executable part of EP-model 
is specified in the form of Java code snippets that annotate model elements. DEMOS tool is 
implemented as an Eclipse plug-in and provides:  

• graphical editing of applications using the EP model, 
• background code generation, and 
• immediate feedback on syntactical validity of models and user-supplied code. 

A recent work of the authors defines the abstract syntax, static semantics, and dynamic 
semantics of the EP modeling language in Alloy [59]. 
 

The ADORA tool [2] implements the modeling method ADORA. This tool was 
successfully applied for the creation, validation and evolution of behavioral requirements 
models [46]. ADORA defines a stepwise incremental process of behavior specification, 
where a behavioral model is refined in each step by specifying partial behaviors. The tool 
simulates partial system behaviors documented in message sequence charts. The modeler can 
then generalize these partial behaviors and revalidate the resulting behavior by simulating it 
against previously recorded behavior. Model revalidation at each step stands for the 
refinement consistency control.  

The ADORA tool simulates models regardless of their degree of formality and 
completeness. If the information needed for the simulation is missing, the tool interrupts the 
simulation and the modeler provides the required information interactively.  

2.3.3 A Comparison of Modeling Tools  
Table 2-3 presents a summary of our comparative analysis. One of the difficulties we met 
conducting this analysis was related to the fact that commercial tools rarely disclose their 
technical details or underlying heuristics. Thus, it is often difficult to position them within 
our classification framework. Whereas tools developed in an academia are usually based on 
scientific publications, which clearly explain the theoretical foundations, and potential 
benefits for the user. However, some of these tools exist only as research prototypes. 

This is reflected in the summary table, which is incomplete. We use a question mark ‘?’ if 
we are unable to make a judgment about the tool based on the information available.  
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Table 2-3 
Tool 

1. Source language 

2.C
onstraint Specification 

L
anguage 

3.M
igration to another language 

4.T
arget language 

5.Sim
ulation 

6.W
ell-form

edness/ C
onsistency 

checking 

7.R
efinem

ent support 

Magic 
Draw 

UML, 
BPMN, 
SysML 

OCL  No - No Yes Model 
decomposition/ 
model differencing; 
No verification 

System 
Architect 

BPMN ? ? Language supported 
by native Simulator 
II tool  

Yes Yes ? 

ProVision BPMN, 
UML, 
etc 

? ? Languages 
supported by native 
Monte-Carlo / 
discrete event 
simulator tools  

Yes Yes ? 

Intalio 
Designer 

BPMN ? Yes BPEL Yes Yes In-line drill-down 
modeling of 
activities 

ArgoUML UML OCL No No No Yes Design critics 

RoclET UML OCL No - No Yes Refactoring; 
verification of 
semantic 
preservation  

UML2 
Alloy 

UML OCL yes Alloy No Yes No 

BPMN2 
PNML 

BPMN   Yes Petri Net – PNML Yes Yes ? 

OPCAT OPM OPL No - Yes Yes In-zooming, 
unfolding, state 
expression. 

DEMOS EP Java Yes Java Yes Yes Functional 
decomposition 

ADORA ADORA No No - Yes Yes Stepwise 
refinement; 
refinement 
consistency control 
by revalidation 
/regression 
simulation 
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The SEAM Method 
Our work defines the formal semantics and the theory for refinement and refinement 
verification for the SEAM method [108]. The SEAM method was designed to model 
enterprises and can be used to model software systems. SEAM defines one diagram type for 
its specifications. The SEAM ontology is based on the second part of the RM-ODP [92] 
specification. Based on this standard, the main modeling concepts of SEAM such as property, 
state, and action are defined [108]. 

SEAM defines a model of a system as a set of system specifications structures within two 
hierarchies: a hierarchy of organizational levels, and a hierarchy of functional levels. The first 
hierarchy incrementally reveals a system’s construction, whereas the second hierarchy 
addresses an incremental specification of system’s functionality.  

SEAM explicitly models the traceability between model elements across functional and 
organizational levels using traceability relations.  

The transition of model from one hierarchical level to another is formalized in SEAM as a 
refinement (contribution of this work). Two main classes of refinement are defined in SEAM: 
an organizational refinement, which addresses the incremental specification of a system 
structure, and a functional refinement, which addresses the incremental specification of 
behavior of the system.  

Several prototypes of SEAM-based applications have been recently developed. The 
SeamCAD tool [66] is a framework for SEAM graphical modeling. SEAM to Java is a 
prototype of SEAM model transformation application that translates visual SEAM 
specifications to Java programs. This application is based on ATL - Atlas Model 
Transformation language [55] and is developed as a plug-in under Eclipse [39]. SEAM to 
Java accepts as input a SEAM model in XML format and generates another XML that 
corresponds to the target Java model. Using XSLT [105] script, the executable Java code is 
obtained. SEAM to AsmL is a prototype tool that translates SEAM applications to AsmL - 
the Abstract State Machine Language [15][11] for further simulation and verification with 
AsmL verification tool [95].  
 

As a part of this Ph.D thesis, a prototype of SEAM to Alloy translator was developed. This 
translator is based on the XSLT script and allows for the generation of Alloy models from 
SEAM specifications, documented in XML. The XML file with a SEAM specification is 
obtained from the EMF (Eclipse Modeling Framework)-based SEAM Editor. The mapping 
rules from SEAM to Alloy are explained in Chapter 6.  

As future work, we plan an implementation of the Seam to Jahob translator that will 
provide us with the possibility of verifying specification refinement using the Jahob 
verification system [63]. 

In Tables 2-4, 2-5, we evaluate the SEAM method based on the frameworks we applied 
for the other modeling methods and tools: 
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Table 2-4 

Method 1.Diagram 
types 

2.Model structure 3.Specification 
traceability 

4.Refactoring, 
refinement 

SEAM 1 Hierarchical 
(functional + 
organizational 
hierarchies) 

Explicit, via 
whole/composite 
relationships 

Structural refinement: 
explicit; results in a 
transition to the next 
org. level; 
Behavioral refinement: 
explicit; results in a 
transition to the next 
functional level.  

 
Table 2-5 

Tool 1.Source 
language 

2.C
onstraint 

S
pecification 

L
anguage 

3.M
igration to 

another 
language 

4.T
arget 

language 

5.Sim
ulation 

6.W
ell-

form
edness/C

onsistency 
checking 

7.R
efinem

ent 
support 

Seam 
to Java 

SEAM Java Yes Java Yes No  No 

Seam 
to 
AsmL 

SEAM ASM yes AsmL Yes Yes No 

SEAM 
to 
Alloy 

SEAM FOL/Alloy Yes Alloy No Yes Refinement 
verification 

SEAM 
to 
Jahob 
(future 
work) 

SEAM FOL/Alloy 
+ Java 

yes Jahob Yes Yes Refinement 
verification 
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Chapter 3   

The SEAM Method 
 
 

In this chapter, we introduce the SEAM method for Enterprise Architecture modeling and the 
SEAM visual modeling language. SEAM considers marketing segments, organizations, IT 
systems and IT applications as systems, structured in organizational levels of an enterprise 
model. The SEAM ontology is based on the second part of the RM-ODP [92] specification. 
Based on this standard, the main modeling concepts of SEAM such as property, state, and 
action have been defined [108]. This work contributes in a definition of the additional 
concepts necessary for the formal verification of SEAM visual specifications: preconditions, 
postconditions, invariants, and updates.  

SEAM specifies various model elements and different ways to combine them in a 
diagram. A modeler may choose her own strategy in order to enhance the traceability of 
concepts across levels and to improve the model transparency. 

To specify a system structure, SEAM defines a working object and two views of it:  
- a working object as a whole; 
- a working object as a composite.  
To specify a system behavior, SEAM defines properties and three action types:  
- a localized action; 
- a joint action; 
- a distributed action; 
two views of a property: 
- a property as a whole; 
- a property as a composite; 
 two views of each action:  
- an action as a whole; 
- an action as a composite; and 
 two ways of action specification:  
- declarative action specification; 
- imperative action specification. 
 
Sections 3.1-3.2 of this chapter describe SEAM model elements, their views and 

specification styles.  Section 3.3 presents a metamodel of SEAM, which specifies its abstract 
syntax. As a contribution of this work, the SEAM metamodel is extended with new model 
elements. Section 3.4 presents the the semantics of SEAM model elements and specifies their 
graphical notation. 

3.1 The SEAM Specification of a System 
 
In a SEAM specification, a system is represented by a working object. The working object 
can be seen as a whole where its construction is hidden or as a composite that reveals its 
components. The views as a whole and as a composite belong to two adjacent organizational 
levels. 
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Example 3-1. Figure 3-1 illustrates a SEAM specification of a system, modeled as a 
working object W. W is shown as a whole (denoted W[w]) in Fig. 3-1(a), and as a composite 
(denoted W[c]) 3 – in Fig. 3-1(b,c).  

A working object as a composite specifies system components (also modeled as working 
objects) and a joint action (JA) [38] or a distributed action (DA) between these components.  

 

 
Figure 3-1: a) a SEAM working object W as a whole; b) W as a composite with component working 
objects S1 and S2 and a joint action JA seen as a whole; c) W as a composite with components S1 and S2 
and a distributed action DA seen as a whole. 
 

A working object as a whole has properties and may specify localized actions (LA). 
Properties represent the data that the working object stores or operates with. A collection of 
all properties of the working object determines a state of this working object. A localized 
action changes the state of the working object by updating its properties.  

Each action and property in SEAM can be seen as a whole where its construction is hidden 
or as a composite, where the components (component actions and component properties 
respectively) are shown.  

 
The term ‘joint action’ in SEAM was taken from [38]. A joint action describes a 

collaboration of the components of a working object. This action changes states of these 
components by updating their properties (Fig. 3-1(b)).  

Diagrams in Fig. 3-1(a,b) illustrate the following: To perform the localized action LA at W 
(as a whole), the collaboration JA[w] of component working objects S1 and S2 is required. 
JA[w] modifies a property P at S1 and a property P1 at S2. 

 Working object decomposition (a transition from a whole to a composite) requires that the 
properties of the parent working object are distributed between component working objects. 
Localized actions for the component working objects can be omitted. 

 
A working object as a composite specifies a distributed action between components of the 

working object (Fig. 3-1(b)). The keyword Distributed stands for a distribution of 

                                         
3 We use indexes w (_w or [w]) or  c (_c or [c]) to specify SEAM elements as a whole or as a composite 
respectively 
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responsibilities between components, answering the question, “Who does what?” The 
responsibilities are modeled as localized actions. 

 In contrast to localized and joint actions, distributed action does not update the properties 
of a working object directly. This action changes the states of the working object by invoking 
localized actions of its components (Fig. 3-1(c)).  

 Diagrams in Fig. 3-1(a,c) illustrate the following: To perform the localized action LA at W, 
the collaboration DA[w] of component working objects S1 and S2 is required. S1 participates in 
DA[w] by performing a localized action LA1[w]. LA1 changes a property P; similarly, S2 performs a 
localized action LA2[w], which changes a property P1. 

Action specifications ‘as a whole’ and ‘as a composite’ correspond to the terms ‘action’ 
and ‘activity’ of RM-ODP [92]. 

 
To specify the communication between component working objects or component actions 

of one working object, SEAM uses shared properties and input/output parameters. 
A shared property is a property that does not belong to a specific component working 

object; shared properties represent the common knowledge maintained by the system. Input 
and output parameters are properties that specify the information flow from one working 
object (or action) to another. 

 In contrast to shared properties that can be perceived as global variables of a system, 
SEAM also defines local variables for its actions. A local variable is a property that belongs 
to a concrete working object and is defined by an action of this working object. The lifecycle 
of a local variable is related to an action (for other properties, it is related to a working 
object): the local variable exists only during the action execution. 

 
We distinguish primitive and compound properties in SEAM. A primitive property can be 

considered as an alias for an operational (primitive) data type (e.g. int, string, boolean, etc.). 
The compound property is defined by a set of component properties and references to 
properties using property associations and property compositions.  
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Table 3-1 illustrates the relationships between concepts in SEAM. The 10 columns specify 
main SEAM elements and one of their views - as a whole or as a composite. The rows 
specify the same elements plus shared properties, parameters, and local variables.  
 
Table 3-1   
    WO Property LA JA DA 

   1 2 3 4 5 6 7 8 9 10
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whole   x                 WO 

composite   x                 

whole x    R xr r r r r   Property 

composite x    R xr r r r r   

whole x        r xr      r  r LA 

composite x        r xr      r  r 

whole   x         r  xr     JA 

composite   x          r xr     

whole   x              r xr DA 

composite   x              r xr 

Parameters 
In/Out 

   x  x     x x x x  x x 
 

Shared 
properties 

    x       x x x x x 

Local 
variables 

     x x x x x x 

 
An ‘x’ in a row-column intersection means that the ‘column’ element can specify (or own) 

the ‘row’ element. (Graphically, this is equivalent to having a relation with a black-diamond 
between elements).  

An ‘r’ in row-column intersection means that the ‘column’ element can be related to the 
‘row’ element. (Graphically, this is equivalent to having a simple relation between elements). 

 
For example, a working object seen as a whole (column 1) can specify properties, 

localized actions, and input/output parameters; LA (localized action) seen as a composite 
(column 6) can specify component localized actions seen as a whole or as a composite, 
input/output parameters, shared properties, and local variables; it can be also related to other 
localized actions and properties. A property as a whole (column 3) cannot specify any other 
elements; it can be related to other properties. 
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3.2 Declarative vs. Imperative Action Specifications in SEAM 
 

Actions in SEAM can be modeled declaratively or imperatively.  
Declarative specifications describe the state of the working object prior to the action 

execution – pre-state - and the state of this working object upon the action termination – post-
state. The pair (pre-state, post-state) describes the overall effect of the action and 
characterizes the external behavior of the working object.  

Declarative specifications define an action contract - a triple (precondition, invariant, 
postcondition) - and leave the detail of implementation of this contract unspecified. 
Imperative specifications, in contrast, encourage the modeler to commit to an explicit 
scenario of an action execution. 

Imperative specifications make explicit the intermediate effects of the action by defining 
the sequence of states the working object goes through during the action execution. This 
sequence of states is also called the internal behavior of the working object.  

A declarative specification is beneficial when a modeler has a limited knowledge about the 
system and develops an abstract system specification. Once the action contract is extended 
with the concrete scenario of its realisation (a sequence of intermediate states), the 
specification becomes imperative. 

For declarative specifications there exists a frame problem [14]. This problem appears 
when more than one implementation of the specification corresponds to its contract. To avoid 
erroneous implementations, the specification should explicitly indicate the properties that 
must remain unchanged after the action termination. This is done using frame conditions.  

In contrast to declarative specification, imperative specification does not allow unspecified 
updates and stipulates that “what was not explicitly updated is unchanged”.  

 
SEAM action A, seen as a whole, specifies a state change as a single transition from pre-

state to post-state. Therefore the view as a whole corresponds to a declarative action 
specification.  

SEAM action A, seen as a composite, specifies actions A1..At that should be executed to 
accomplish A. Action A here is called a parent action and A1..At are called component 
actions. A declarative specification of an action seen as a composite is useful when the 
modeler wants to ignore the order of component actions.  

An imperative action specification introduces the ordered set of the intermediate states for 
this action.  

Table 3-2 presents the elements of action specifications (rows) and shows the visibility of 
these elements in different action specifications (columns). A specification, in which less 
elements are visible is called more abstract, when compared to a specification where more 
elements are visible. For example, the most abstract specification is a declarative 
specification of a localized action seen as a whole.   
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Table 3-2 
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Preconditions x x x x     x x x x     

Invariants x  x x x     x x x x     

Postconditions x x x x     x x x x     

Update             x x x x   

IN/OUT parameters x  x  x  x  x x  x x x  x   x x  

shared properties   x x x x x             

Local variables x x x x x x x x x x x x 

Visible   x   x x x   x   x x x 

Component 
actions  

(*Localized 
actions for 

DA) Ordered               x   x x x 

Intermediate states  

D
ec

la
ra

ti
ve

 

            
Im
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x x x x x x 
 

3.3 The SEAM Metamodel (Abstract Syntax) 
 
SEAM modeling language defines one diagram type for system specifications. The SEAM 
diagram is a graphical specification of a system.  
Figure 3-2 presents a SEAM metamodel specified as a UML [77] class diagram.  
 
The recursive definition of the SEAM abstract syntax is presented below.  

 
As a contribution of this work, the following elements have been added to the SEAM 

modeling language: 
- A distributed action; 
- Input/output parameters, shared properties, and local variables for actions; 
- Action-to-property relations and their specializations; 
- Action-to-action relations and their specializations; 
- Distributed-to-localized action relations. 

(These elements are denoted in bold in the syntax definition below.) 
 
working_object = wo_whole | wo_composite 
wo_whole = property {property} {localized_action} 
property = primitive_property| compound_property 
compound_property = {property, p_composition} {property, p_association} 
localized_action = la_whole | la_composite 
la_whole = {AP-relation} {input_par}{output_par}{local_var} 
la_composite = localized_action {localized_action}{AA-relation}{input_par}{output_par} 
  {shared} { local_var} 
wo_composite = working_object, wo_composition {working_object, wo_composition}  
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    joint_action | distributed_action  
joint_action = ja_whole | ja_composite 
ja_whole = {AP-relation}{input_par} {output_par}{shared} { local_var } 
ja_composite = joint_action {joint_action}{AA-relation}{input_par} {output_par} 
  {shared} { local_var } 
distributed_action = da_whole | da_composite 
da_whole = {DALA-relation}{input_par} {output_par}{shared} { local_var } 
da_composite = distributed_action {distributed_action}{AA-relation}{input_par} 

   {output_par} {shared} { local_var } 
 
The well-formedness rules are out of the scope of this work.  

 

 
Figure 3-2: SEAM metamodel 
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The extension of the SEAM metamodel is resulted in a possibility to specify formal 
semantics for the other model elements in SEAM, including: 

- A working object as a whole and as a composite; 
- An action (localized, joint, distributed) as a whole or as a composite; 
- A property and property-to-property relations; 
- A working object-to-property relation.  

Formal semantics of SEAM will be discussed in the next chapter.  

3.4 The SEAM Semantics and Graphical Notation (Concrete Syntax)  
 

The metamodel in Fig. 3-2 illustrates the SEAM model elements and relations between them 
- the abstract syntax of SEAM specifications. In this section, we specify a concrete syntax of 
SEAM specifications. The concrete syntax describes how model elements can be depicted 
and put together in SEAM diagrams.  
 
The SEAM modeling language defines the following graphical elements: 

 A working object (WO); 
 A WO-composition;  
 A property; 
 A property composition; 
 A property-to-property (PP-) relation;  
 A working object-to-property (WOP-relation); 
 An action; 
 An action-to-action (AA-) relation; 
 An action-to-property (AP-) relation; 
 A distributed-to-localized action (DALA-) relation. 

 
The following sections address these graphical elements as well as their semantics in detail. 

3.4.1 Working Object 
The boundary of a SEAM diagram is always specified by a working object (WO) that 
represents the system of interest; other model elements (component working objects, 
properties, actions, etc) are depicted inside this working object – ‘box in the box’.  

SEAM uses a ‘porter arrow’ pictogram to specify a working object (Fig. 3-3(a)). When it 
is necessary to emphasize the nature of the working object – other pictograms are used (Fig. 
3-3(b)). 

 

 
Figure 3-3: SEAM working object: a) general representation b) specific pictograms. 
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A working object can be modeled as a whole or as a composite. A working object as a 
composite (indicated by ‘_c’ or [c] in the pictogram) specifies component working objects 
of the same or a different kind. These component working objects are depicted inside the 
parent working object and are connected to it using a composition relation (Fig. 3-4). The 
source of the working object composition (marked with a black diamond) is called ‘parent’; 
the destination is called ‘component’. 

 

 
Figure 3-4: Working object composition: a) composition relation with multiplicity and instance 
expressions; b) Example: a car as a composite specifies 4 Wheels: w1..w4. 

3.4.2 Property 
Working object as a whole (indicated by ‘_w’ or [w] in the pictogram) specifies properties. 
Properties are depicted with rectangles (Fig. 3-5(a)). For primitive properties their primitive 
type (e.g. ‘string’, ‘int’, ‘boolean’, etc.) is indicated under the property name.  

The properties hosted by a working object are placed inside the pictogram, representing 
this working object and are connected to it using a working object to property (WOP) – 
relation (or host relation) as illustrated in Fig. 3-5(b).  

A property (if compound) can be associated with another property (or group of 
properties), which is hosted by the same working object. This is depicted using a property 
association (Fig. 3-5(c)).  

A property (if compound) can have component properties. The component properties are 
connected to their parent property using a composition relation. The source of this relation 
(marked with a black diamond) is called ‘parent’; the destination(s) is called ‘component’. 
Two versions of graphical representation are presented in Fig. 3-5(d). 

Properties hosted by different working objects can be connected using a trace (Fig. 3-5 
(e). In the example, the trace specifies that properties ProductID and DesiredProductID are 
the same.  

 



 
 
40  

 
Figure 3-5: SEAM property: a) graphical notation; b) host relation c) property association;  
d) composition;  e) trace. 

3.4.3 Action 
To specify a behavior of a working object, SEAM defines localized, joint, and distributed 
actions (Fig. 3-6). These actions are depicted by rounded rectangles with indicated action 
name, type, and view.  

The action type can be one of the following: LA for a Localized Action, JA for a Joint 
Action, or DA for a Distributed Action. The action view specifies the action modeled as a 
whole or as a composite (indicated by ‘_w’ or [w] and ‘_c’ or [c] respectively).  

For an action seen as a composite, component actions are placed inside the pictogram 
representing this action. The border of the parent action is depicted using a dashed line. Fig. 
3-6(b) illustrates a joint action as a composite with two component joint actions.  

 

 
Figure 3-6: SEAM action specification. 

 

3.4.4 Action- to-Action (AA-) Relations 
A control flow between component actions of an action seen as a composite is specified in 
SEAM using action-to-action (AA-) relations. The notation is based on BPMN (Business 
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Process Modeling Notation) [78]. Fig. 3-7 shows the control flow of a localized action AAA 
seen as a composite. 

SEAM specifies the following AA-relations: 
 Start – to define an entry point of an action as a composite; 
 End – to define an exit point of an action as a composite; 
 Transition – to define a sequential composition between component actions; 
 Conditional transition – to define a transition that happens if a certain condition holds; 
 Fork (AND, OR, XOR) – to specify a branching of process (parallel or alternative 

execution of component actions); 
 Merge (AND, OR, XOR) – to specify a synchronization (AND) or concurrency (OR, 

XOR). 
 

 
Figure 3-7: Localized action AAA seen as a composite with component localized actions BB and CC The 
control flow is specified using the following AA-relations (in their order of appearance from the left to the 
right) : Start, AND-Fork, AND-Merge, End. Intermediate system states are not shown. 
 
Figure 3-8 illustrates the SEAM graphical notation for AA-relations and the corresponding BPMN 
notation. 

 
Figure 3-8: SEAM action-action (AA-) relations vs. BPMN elements (events and gateways). Taken from 
www.bpmn.org 
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Table 3-3 presents AA-relations and their semantics in more detail. Textual notation on 
the left specifies the action ordering. Diagrams on the right stand for imperative action 
specifications.  
 
Table 3-3 
AA-relation name 
and description 

SEAM Graphical 
notation 

AA-relation name 
and description 

SEAM Graphical 
notation 

Start(A1) – A1 is an 
action start; 

 

AndFork(A1,{A2,A3})- 
A1 is followed by A2 
and A3, executing in 
parallel;  

End(A1) – A1 is an 
action end; 

 

AndMerge({A1,A2},A3
) – A3 starts after both 
A1 and A2 terminate 
(synchronization);  

Transition(A1,A2) – a 
sequential composition 
of A1 and A2 (A2 
follows A1);  

OrFork(A1,{A2,A3})- 
A1 is followed by A2, 
or by A3, or by both of 
them executing in 
parallel (inclusive);  

ConditionalTransition 
(A1,A2,C) – A2 folows 
A1 if C holds; 

 

OrMerge({A1,A2},A3) 
-A3 starts after either 
one of A1, A2 or both 
terminate 
(concurrency); 

 

ConditionalTransition 
(A1,{A2,A3},C)- A1 is 
followed by A2 if C 
holds and by A3 
otherwise; 

 

xOrFork 
(A1,{A2,A3})})- A1 is 
followed by A2, or by 
A3, but not by both of 
them (exclusive);  

 xOrMerge({A1,A2}, 
A3)- A3 starts after 
either one of A1, A2, 
but not both terminate 
(concurrency);  

 
Similarly to Inclusive/Exclusive Merge and a Parallel Join gateways in BPMN (Fig. 3-8), 

Or- and xOr- Merge relations in SEAM specify a concurrent action execution; whereas 
AndMerge specifies a synchronisation. In this work, we do not consider concurrency in 
SEAM specification. This is a topic for future work. 

Current graphical notation provides no information about the intermediate states. Fig. 3-9 
illustrates the (prospective) notation, in which intermediate states of the imperative 
specification are shown.  

 
Figure 3-9: Proposed graphical notation for AA-relations where intermediate states are shown; a) an 
imperative specification of a parallel fork; b) an imperative specification of a transition. 
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3.4.5 Action-to-Property (AP-) Relations 
 

 
Figure 3-10: SEAM action-to-property (AP-) relations a) relation types; b) An action (local) invariant vs. 
a system (global) invariant. 

 
The following action-to-property (AP-) relations are defined in SEAM (Fig. 3-10 (a)): 

‘Pre:’ – for precondition; 
‘Post:’ – for postcondition; 
‘Inv:’ – for invariant; 
‘U:’ – for update statement. 

AP-relations are depicted by arrows, annotated with corresponding precondition, 
postcondition, invariant, or update expressions. 

A precondition is a condition (or state) of the working object where the action can be 
triggered; a postcondition specifies the states of the working object after the action 
termination; an invariant is a logical expression that must hold before, after, and during the 
action execution.  

 
We distinguish between action invariants, which are modeled using action to property 

relations and hold for a particular action, and system invariants, which hold for all the actions 
of this working object. 

Figure 3-10(b) illustrates a local invariant Inv of action BB and a global invariant S.Inv 
that must hold for any action of S.  

A triple (preconditions, postconditions, invariants) is also called the action contract; an 
update statement explicitly defines how this contract is fulfilled.  

Precondition, postcondition and invariant expressions are logical expressions. In SEAM 
diagrams, these expressions annotate corresponding AP-relations. We write these expressions 
in a subset of the Alloy specification language [59].  

Update statements typically stand for a change of a value of a given property and are 
written using assignment expressions: ‘property_old := property_new’.  

Definition of AP-relations in SEAM is one of the contributions of this work. Syntax and 
semantics of AP-relation expressions is explained in more detail in Section 4.3.5 of the next 
chapter. 
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3.4.6 Localized vs. Joint vs. Distributed actions 
SEAM defines three types of actions (localized, joint and distributed action). These actions 
are distinguished by the way they change a state of a working object.  

- A localized action (Fig. 3-11(a)) changes the state of a working object seen as a 
whole by modifying its properties.  

- A Joint action (Fig. 3-11(b)) changes the state of a working object seen as a 
composite by modifying properties of its component working objects. 

- A distributed action (Fig. 3-11(c)) changes the state of a working object seen as a 
composite by invoking localized actions of its component working objects. 

 

X Y

Pre:...

S[c]

Post:...

X Y

Pre:...

LA_AA_w

S[w]

Post:...

S1[w] S2[w]
X Y

S[c]
S1[w] S2[w]

Y
<OUT>

Post:...
X

<shared>
Pre:...

X
<shared>

(a) (b) (c)

1|y_out 1|x_in

JA_AA_w

DA_AA_w

LA_BB_w LA_CC_w

Figure 3-11: Localized vs. Joint vs. distributed Action. 
 

3.4.7 Shared Properties, Input and Output Parameters, Local Variables 
SEAM uses action shared properties, input and output parameters, and local variables to 
specify a flow of data in its specifications. 

Shared properties are shown in SEAM diagrams as properties with a stereotype <shared>. 
A shared property represents a common knowledge that is maintained by a working object as 
a composite (Fig. 3-12(a); it can also specify a flow of data between component actions (Fig. 
3-12(b). 
 

 
Figure 3-12: Shared property 

 
By definition, if a property is ‘shared’ – it is visible to several working objects and can be 

modified by actions of these working objects. It can be considered as a global variable. 
Alternatively, a SEAM action may specify local variables. A local variable p:P of an action 
AA (Fig. 3-13) is an instance of a property P, which is created by AA and exists only during 
the execution of AA. A local variable is modeled using a directed relation with multiplicity 
and a black diamond on the action’s side.  

Note that the instance p:P in Fig. 3-13 is defined in the context of action AA and is 
disjoint from the instances p1, p2,.. defined in the context of working object S. 
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1|p

AA

P

*|p1,p2..
S

 
Figure 3-13: Action local variable 

 
Shared and local variables are useful for modeling persistence of business objects. 
 
Input and output parameters are shown in SEAM diagrams as properties with a stereotype 

<IN> or <OUT> (Fig. 3-14). These parameters are used to specify the data coming into the 
system or leaving the system while performing the action; they can be also a subject of action 
precondition and postcondition.  

Typically, input parameters are associated with the action precondition (i.e. an input is 
something that should be received by the system to trigger the action). However, input 
parameters can be also received by the system in an intermediate action state. Thus, inputs 
are NOT always a part of the observable external behavior (i.e. a part of the precondition). 
Similarly, output parameters are often identified with action postconditions (i.e. an output is 
something that is produced by the system upon the action termination). However, output 
parameters can be also produced by the system in an intermediate action state (as a part of 
internal behavior). In this case, the output parameter is not a part of the action postcondition. 

 

 
Figure 3-14: Input and output parameters. 

3.4.8 Relations with Multiplicities 
A working object composition, a property association, a property composition, and an action-
to-local variable relation (ALocalVar) are relations with multiplicities in SEAM. They 
contain multiplicity and instance expressions in the form:  

M '|' IM 

 
A multiplicity expression shows how many instances of a property of a given type are 
considered by this relation; an instance expressions provide a list of names of these instances. 
 
M  is a multiplicity expression; it has the following format: 

 
M = # | #..#|#..*|* 

 
# - a nonnegative integer constant 0,1,2...; 
#..# - an interval with constant lower and upper bounds; 
#..*- an interval with an undefined upper bound; 
* - an interval 0..*. 
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IM  is an instance expression;  it has the following format: 

 
IM = <inst.name>[, <inst.name>] 
 
IM defines a set p1..pM of allocated instance names. The size of this set is defined by the 

multiplicity expression M and is equal to the difference between the lower and the upper 
bound of an interval specified by M. If the upper bound is undefined – indexed list of names 
can be used. For example, let multiplicity expression M be “0..*” then we define an instance 
expression IM as an indexed list of names {namei}, where i=0..* 
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Chapter 4   

Formal Semantics for SEAM Specifications  
 
 

To rigorously reason about visual specifications, we define a formal semantics for SEAM. 
This semantics is based on the set theory and first-order logic (FOL). It enables the mapping 
of a SEAM specification to other specification languages, i.e. Alloy [59], Jahob [63] for 
further validation.  

In Chapter 3, the SEAM method was introduced. This work extends the SEAM modeling 
language with concepts of action-to-property relations, action-to-action relations, and 
distributed actions. In this chapter we define the formal semantics for the following concepts 
of SEAM modeling language: 

- SEAM working object as a whole with its 

 Properties 

 Localized action (as  a whole or as a composite) [optional] 

- SEAM working object as a composite with its 

 Component working objects 

 Joint action (as  a whole or as a composite) or 

 Distributed action (as  a whole or as a composite) 

- Action-to-property (AP-) relations for joint and localized actions seen as a whole and 
its specializations: 

 Precondition 

 Postcondition 

 Invariant 

 Update statement 

- Distributed-to-localized action (DALA-) relations for distributed actions seen as a 
whole  

- Action-to-action (AA-) relations for localized, joint, and distributed actions seen as a 
composite; 

- Imperative and declarative action specifications; 

As a consequence of formalization, new modeling concepts are explicitly specified in SEAM: 

 State of a working object as a whole 

 State of a working object as a composite 

 Primitive property 

 Compound property 

 State of a primitive and a compound property 
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Based on formal semantics, we are able to define refinement relations between SEAM 
specifications, for example, we say that: 

- A SEAM working object modeled as a composite is a refinement of a corresponding 
SEAM working object modeled as a whole;  

- A joint or a distributed action specified for the SEAM working object as a composite is 
a refinement of a localized action, specified for the corresponding working object as a 
whole; 

- A SEAM (localized, joint, distributed) action modeled as a composite is a refinement 
of a corresponding SEAM (localized, joint, distributed) action modeled as a whole; 

- A SEAM action modeled imperatively is a refinement of a corresponding action 
modeled declaratively. 

These refinement relations and the notion of their correctness are presented in Chapter 5.  

The outline of this chapter is the following: Section 4.1 is a short introduction of first-
order logic (FOL); we present a syntax, semantics, and introduce the notion of satisfiability 
and validity of FOL formulas – concepts fundamental for verification. In Sections 4.2 and 4.3 
we present the formalization of SEAM modeling concepts in set theory and FOL. In Section 
4.4 we discuss imperative and declarative modeling of behavior in SEAM; In Section 4.5 we 
present how creation and deletion of an object can be modeled with SEAM. 

4.1 First-Order Logic 
 
First-order logic (FOL) is a system of formal reasoning also known as first-order predicate 
calculus [18]. In this section we present a short introduction to FOL. For more details, see 
[18]. 
 
The FOL Syntax 

The basic terms of FOL are constants a, b, c, .. and variables x, y, v,…Complex terms are 
constructed using functions of a different arity. Functions are denoted by symbols f, g, h,.. in 
FOL. An n-ary function f takes n terms as arguments: for example a function f(x, y) is a 
binary function applied to variables x and y. A function with arity 0 is a constant. Predicates 
in FOL are denoted by symbols p, q, r,… An n-ary predicate p takes n terms as arguments. A 
predicate can be seen as a function with a codomain {true, false}. An n-ary predicate applied 
to n terms is called an atom in FOL. An atom or its negation ( ¬ ) is a literal. FOL also 
defines logical connectives ( ↔→∨∧ ,,, ) and quantifiers ( ∃∀, ) that can be applied to literals 
to produce a FOL formula. FOL formulas evaluate as ‘true’ or ‘false’. 
 
The recursive definition of the FOL syntax is presented as follows: 
term = function(term{, term}) | constant  | variable 
predicate = predicate(term{,term})  
atom = true| false| predicate  
literal = atom | ¬  atom 
formula = literal | quantifier variable . formula | formula connective formula |connective 
formula 
 

connective = ¬|→|↔| ∨ | ∧  
 
quantifier = ∃∀ |   
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variable = x | y | z |.. 
constant = a | b | c |.. 
function = f | g | h |.. 
 
Symbol ‘.’ is an application of a quantifier. In this work, we often use the Alloy notation [59] 
to specify FOL expressions for SEAM. The Alloy specification language uses the symbol ‘|’ 
instead of ‘.’ to denote an application of a quantifier. 
 
Example 4-1: zzyyxxzyx ⋅=⋅+⋅∃ .,, is a formula where =+⋅ ,, are binary functions on 
integers.  In Alloy, we write this formula as follows: some x,y,z | x*x + y*y = z*z 
 
The FOL Semantics 
 
In [18], FOL semantics is defined in terms of interpretations. An interpretation I:(DI, αI) in 
FOL is a pair, where DI  is the interpretation domain, and αI is the assignment. The 
interpretation domain DI is a finite or infinite set of objects (e.g. integers, SEAM properties, 
SEAM working objects, etc). The assignment αI maps FOL constants and variables to 
elements of DI, and FOL functions and predicates to functions and predicates over elements 
of  DI . 

Based on these semantics, satisfiability and validity properties can be introduced: 
A formula F is satisfiable if and only if there exists an interpretation I:(DI, αI) such that F 

evaluates to ‘true’ on I. A formula F is valid if and only if it is satisfiable for all 
interpretations I. 

One approach to prove that a formula F is satisfiable is to construct an interpretation I, i.e. 
to find a configuration of values from DI that evaluates F to ‘true’. This approach is 
implemented by the Alloy Analyser [3]. Validity of a formula in the Alloy Analyzer is 
checked by contradiction: from the definition of validity, F is valid if and only if the negation 
of F ( ¬F) is unsatisfiable. 

Another approach to prove a satisfiability or validity of a formula is based on logical 
inference. This approach is implemented by theorem provers, including the Jahob verification 
system [115][63]. 
 

In this work, we reduce the problem of refinement verification for visual SEAM 
specifications to the proof of validity of a corresponding FOL formula. We explain how to 
write such a formula for SEAM specifications in Chapter 5. In Chapter 6, we illustrate the 
technique of refinement verification using the Alloy Analyzer and the Jahob verification 
system.  

4.2 Intuition for Set-Theoretical Interpretation of SEAM Modeling 
Concepts 

 
We represent SEAM model elements as sets and relations between them. Table 4-1 illustrates 
a set-theoretical interpretation of SEAM model elements. 

The elements of sets are static, whereas the relations between them can be seen as a matter 
of change. The change of property value can be specified by relations between sets. 
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Table 4-1. 
SEAM element Graphical notation Set –theoretical interpretation 
Working object  

 

Set W 

Property  

 

Set P 

WO composition  
 

 

Relation between two sets:  
;1WWrWOcomp ×⊆  

Property 
composition and 
property to 
property (PP-) 
relation 

 

 

Relation between two sets:  
AgePersonrcomp ×⊆ (is equivalent to 

IntPersonrcomp ×⊆ ); 

CompanyPersonrassoc ×⊆  

Working object to 
property relation 
(host relation) 

 

Relation between two sets:  
YearCarrhost ×⊆ (is equivalent to 

IntCarrhost ×⊆ ); 

Multiplicity 
expressions and 
instance 
expressions of 
SEAM relations: 

 

For relation r, multiplicity expression is a 
cardinality of r: 

{ } nrqpQqPp

QPr

≤∈∈≤∈∀
×⊆

),(|0|

;
 

Instance expression is a list of names of 
relation instances: 

112221111

`212111

.,..,.;.

;,...),(,),(,..),(,),(

121

+

+

===

⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

=

m

r

m

r

m

rr

qrpqrpqrp

qpqpqpqpr

k

43421321321321

 
 
Example 4-2: Figure 4-1 illustrates a compound property, Account, which has a component 
property, Balance. A property composition relation between Account and Balance can be 
formulated as follows: BalanceAccountrcomp ×⊆  (is equivalent to IntAccountrcomp ×⊆ ). 

A multiplicity expression ‘1’ of this relation denotes that every account has exactly one value 
of balance (balanceValue) which is an integer (Fig.4-1(a)); We can also say that every 
element of Account set is related to exactly one element of Balance set (called balanceValue) 
which is an Integer (Fig.4-1(b)): 

{ } 1),(|| =∈∈∈∀ compruebalanceValaBalanceuebalanceValAccounta  

An instance expression ‘b’ of relation r specifies that for some account a1 the value of its 
balance is calculated as a1.b and it is equal 1500 (Fig. 4-1(b)): 

1500.1 =ba ; 
To change the balanceValue means to ‘redirect’ relation b from one element at Balance set to 
another, as shown in Fig. 4-1 (b). 



 
 

51 

 
Figure 4-1: a) SEAM notation; b) Set – relations notation; ‘a value change’ is modeled as a redirection of 
a corresponding relation. 

 
Fig. 4-2 and 4-3 present the SEAM notation and its set-theoretical interpretation 

respectively.  
Fig. 4-3(a) illustrates a SEAM working object W seen as a whole, properties Px, Py, Pz, 

and relations x, y, z, r between these elements; Fig. 4-3(b) illustrates a set-theoretical 
interpretation of SEAM working object W seen as a composite, its component working 
objects W1, W2, properties Px, Py, Pz, and relations c, t, x, y, z, r between these elements. In 
Fig. 4-2(b) and 4-3(b) the property Py refers to the same set of objects (interpretation 
domain) in reality. 

 

 
Figure 4-2: a) working object W seen as a whole; b) working object W seen as a composite.  

 

 
Figure 4-3: a) working object W seen as a whole (see also Fig. 4-2-a); b) working object W seen as a 
composite (see also Fig. 4-2-b); 
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4.3 Formalization of SEAM Model Elements in FOL 

4.3.1 Working Object 
A working object seen as a whole (denoted Ww) describes a system by a number of 
properties mPP ,..,1 and a localized action LA.  

),,..,( 1 LAPPW mw =           (4.1)  

 
Localised action LA describes the functionality of the working object. This localized 

action can be modeled as a whole (denoted LAw) or as a composite (denoted LAc). For the 
localized action seen as a whole no component actions are shown; the localized action as a 
composite, in contrast, reveals component actions and possibly their order.  

 
A working object seen as a composite (denoted Wc) describes a system’s construction by 

a number of component working objects ,.., 21 WW  seen as a whole and a joint action JA or a 
distributed action DA. We formalize it as follows: 

),..,(

);,..,(

1

1

DAWW

JAWW

c

c

=
=

          (4.2) 

JA and DA can be modeled as a whole (denoted JAw , DAw) or as a composite (denoted JAc , 
DAc). 

A working object in SEAM is represented by a set in a set-theoretical interpretation (Table 
4-1). However, this working object is so precisely defined that often it explicitly refers to 
only one instance in the reality – the company, the IT system, the IT application, etc. 
Therefore, we are able to reason on the instance level using the notion of sets. In the text, we 
often use the term ‘working object’ and omit the word ‘instance’ to refer to the system of 
interest.  

Working objects, representing components (components of components and so on) of this 
working object may have an arbitrary number of instances (elements of the same set). A 
number of instances for each of component working objects is specified by a multiplicity 
constraint of a working object composition relation.  

4.3.2 Property and State 
SEAM property iP  is specified in FOL as a set whose elements are instances of this 

property.  
A state X  of a working object seen as a whole is defined by a tuple of state variables: 

),..,(
11 mnppV =            (4.3)  

 
The state is computed by assigning state variables to values in the domain DI. Components 

nmnnm PppPpp :,..,;..;:,..,
11 111  are instances of properties this working object hosts; DI is an 

interpretation domain of a working object. DI is a non-empty set of values of property 
instances

mnpp ,..,
11 . | DI| denotes the cardinality of DI. 

To compute the state Σ∈X  of the working object W means to interpret V on DI , i.e. to 
map nmpp ,..,11  to their values in DI ;  

The assignment αI maps variables nmpp ,..,11 to elements of DI : 

},..,'',..,11{:
11 truepSmithpp nmiI j

aaaα       (4.4) 

Using the assignment, we denote the state X as follows:  
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])[],..,[(),..,( 1111 nmIInm ppppstateX αα==       (4.5) 
 

To model an interaction of working objects with the environment, we specify input 
parameters kII ,..,1  and output parameters lOO ,..,1 . Property instances nmpp ,..,11 , inputs 

, and outputs  are state variables of a working  object:  
),..,,,..,,,..,(

111 111 lkm nnn ooiippV =          (4.6) 

 
A state space  of a working object defines all possible interpretations of V in DI.  
 

A state X  of a working object seen as a composite is a tuple ( )kXXX ,..,1=  whose 
components are states of (instances of) component working objects. 

 
We distinguish primitive and compound properties in SEAM (Fig. 4-4). Each instance of 

a primitive property has a value, which is a single element of its interpretation domain. This 
value is a state of this instance: 

In Fig. 4-4(a), a property Age is a primitive property (a subset of integers {0..200}). Here 
a:Age specifies an instance of the property Age and has a value in the range 0..200. We can 
write: }200..0{)( ∈astate . {0..200} is the interpretation domain of the property Age.  

 
Figure 4-4: a) a primitive property; b) a compound property with two references on primitive properties.  

 
Interpretation domain DI of a compound property is defined by a Cartesian product of 

interpretation domains of its component properties and properties it refers to:  
A compound property Address in Fig. 4-4(b) references two primitive properties: s: Street 

and n:Number. A pair (s,n) defines a state of addr:Address. We write: 
NumberStreetnaddrsaddrstateaddrstate ×∈= ).,.()( , which is equivalent to: 

}200..1{]30[)( ×∈ Stringaddrstate  
Host relations, property associations and property compositions are defined in SEAM as 

SEAM relations with multiplicities based on relation-partition algebra [41] and a theory of 
multi-relations [40]. To specify the cardinality of a host relation, property association, or 
property composition relation, a multiplicity expression is used. 

4.3.3 Host Relations, Property Associations, and Property Compositions 
The Relation Partition Algebra (RPA) by Feijs and van Ommering [41] defines part-of and 
use relations as special types of binary relations. The theory of multi-relations by Feijs and 
Krikhaar [40] defines formalism, suitable for reasoning about relation multiplicities. 
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We combine these theories and formalize: (1) SEAM host relations and property 
compositions as part-of relations with multiplicities; (2) SEAM property associations as use 
relations with multiplicities.  

Multi-relation m(x,y)= n (Fig.4-5(a)), defined in [40], specifies n occurrences of the binary 
relation ),( yx , where Xx∈  and Yy ∈  .  

SEAM multi-relations part-of and use (Fig. 4-5(b,c)) between properties P and Q, and P 
and T, specify 'relations with multiplicities' between elements x:P, y:Q, z:T of corresponding 
properties. 

yx
1
n
...

m(x,y) = n

xn1

Q...P
y

partinf(P,Q) = n1

partsup(P,Q) = n2

xn

n1 ≤ n ≤ n2

zr1

T
zr

...P
x

useinf(P,T) = r1

usesup(P,T) = r2

r1 ≤ r ≤ r2

(a) (b) (c)
yx n QP

r1..r2|zr1..zr2
TP

n1..n2| xn1,..,xn2

P
n1..n2| xn1,..,xn2

Q

or

 
Figure 4-5: SEAM relations with multiplicities. a) binary multi-relation; b) SEAM property composition 
represented as a ’part-of’ relation: ’P is a part of Q’. This is also valid for SEAM host relations; c) SEAM 
property association as a ’use’ relation: ’P uses T’.  
 
SEAM multi-relations part-of and use are defined by a pair of functions: 

)),(),,(( supinf QPpartQPpart  and )),(),,(( supinf TPuseTPuse , representing cardinalities of 

these relations:  

),()},(),(|:{),(|:

);,()},(),(|:{),(|:

supinf

supinf

TPuseTPusetpTtTPusePp

QPpartQPpartqpPpQPpartQq

≤∈≤∀

≤∈≤∀
             (4.7) 

These functions return an upper (sup) and a lower (inf) bound of an interval:  
;:,,, supinfsupinf ∞∪→Ρ×Ρ Nuseusepartpart   

∞≤≤≤

∞≤≤≤

supinf

supinf

0

;0

useuse

partpart
        (4.8) 

A part of relation ),( QPpart  can be read as ‘P is a part of Q’; A use relation ),( TPuse  can 
be read as ‘P uses T’; here P, Q, T are SEAM properties.  
 

 
Figure 4-6:  SEAM relations annotated with multiplicity and instance expressions. a) A host relation and 
a property composition modeled as part-of relations; b) A property association modeled as use relation; 
c) Well-formedness of host and property composition relations. T,W,Q are free floating properties. 
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Figure 4-6-a illustrates a property composition between P and Q modeled as a part-of 
relation:    

1supinf ),(,0),( MQPpartQPpart ==        (4.9) 
Eq. (4.9) can be read as follows: There exist at most M1 instances of P for each instance of Q. 
x1,..,xM1 specifies a list of component property names in SEAM. In a set-theoretical 
interpretation, x1,..,xM1 specifies a list of names of relations between elements of P and Q.  

 
Property composition relations in SEAM are functional and cycle-free. Functionality 

means that the property P can be a part of, at most, one compound property: 

RQRPpartQPpartRQP =⇔>∧>Ρ∈∀ 0),(0),(|
~

,, supsup    (4.10) 

Ρ~ is a set of all properties of a working object. 
 
A property composition relation is cycle-free, i.e. property P cannot be a direct (or 

indirect) parent of itself (i.e. there is no path of one or more legs that starts at P and leads 
back to P) as defined in [41]: 

∅=Ρ∈∀ + ),(|
~

PPpartP         (4.11) 

),( PPpart+ is a transitive closure.  
 

We define a transitive closure ),( 21 PPpart+  on Ρ~ as a sequence of elements Ρ∈~
iQ , i = 1..n  

such that P1 = Q1 and ),(),(..),( 21221 PPpartPQpartQQpart n
n =oo . Symbol ‘o ’ denotes a 

relation composition; ),( 21 PPpartn is an n-step path from P1 to P2. 
 
Figure 4-6(a) illustrates a SEAM host relation between a working object Spec1and a 

property Q: 1)(;)( infsup == QpartMQpart  - there exist at most M instances of Q in Spec1.  

Similarly to a property composition, a host relation in SEAM is functional, i.e. property Q 
can be a part of at most one working object.  

A maximum and minimum number of instances of property P (denoted )(max PInst , 

)(min PInst ) in a working object can be calculated as follows: 

∑ ∑

∑∑

Ρ∈∀

∞

=

++

∞

=

+

Ρ∈∀

+

=⋅+=

=⋅+=

~ 1
infinfinfinfinfmin

1
supsup

~
supsupsupmax

),(),(),()()(

;),(,)(),()()(

Q n

n

n

n

Q

partQPpartQpartQPpartPpartPInst

partQPpartQpartQPpartPpartPInst

 

           (4.12) 
An association between properties P and T specifies the fact that the property P 

references (uses) property T.  Figure 4-6-b illustrates an association between properties P and 
T modeled as a use relation: 0),(;),( inf2sup == TPpartMTPpart - there exist at most M2 

references on T for each instance of  P.  
A property association relation is non-functional, i.e property T can be referenced by 

multiple compound properties: 

0),'(0),('|
~

',, supsup >∧>∧≠Ρ∈∃ TPuseTPusePPPPT      (4.13) 
 

A property association relation can be cyclic, i.e property T can be referenced by itself: 
∅≠Ρ∈∃ + ),(|

~
TTuseT          (4.14) 
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A maximum number of references to T in the working object (denoted Refmax(P)): 
( )),()(max)(Re supmaxmax TPusePInstTf ii

Pi

⋅=        (4.15) 

Pi  is a property that references T. 

Specification Consistency  
Example 4.2: Specification illustrated in Fig. 4-6 (b) defines a working object with 
properties P and T where each instance of P refers some instances of T. We can calculate how 
many instances of T can be demanded by a system as Refmax(T) = 2MM × . The maximum 
number of instances of T is Instmax(T)=M1   

If M1 < 2MM ×  - we have an insufficient declaration of T that cannot cover its demand. 
Typically, this problem is a subject of dynamic testing; however, based on the proposed 
formalism, insufficient instance declaration can be detected during the static analysis, prior to 
code generation and execution. 

 
We formulate the following criterion of specification consistency. 
 
Definition 4.1. 
A specification of a working object as a whole is consistent if: 

 all host relations and property compositions are functional and cycle-free; 
 instance declaration of all properties is sufficient (covers its potential demand): 

)()(Re|
~

maxmax PInstPfP ≤Ρ∈∃  

 
Specification consistency is a part of the static semantic of the model; it can be also included 
into the well-formedness rules for the SEAM models4. 

4.3.4 Action 
A behavior of a working object is represented in a SEAM diagram by an action A that can be 
modeled as a whole (denoted Aw) or as a composite (denoted Ac). In this section we provide a 
general formalism for actions in SEAM. Specific action types (localized, joint, and 
distributed actions) are discussed in the following sections.  

Action as a Whole 
Action A seen as a whole (Aw) is a tuple ),,,,,( OIAAAA postupreinv . I and O denote input and 

output parameters of action A. These parameters specify the information entering and leaving 
the working object during the action execution. I and O belong to the set of state variables V 
of the working object. Postcondition postA  is a condition that a working object meets after the 

action termination. Precondition preA specifies a condition that must hold prior to the action 

execution: If A is started in a state satisfying preA , it is guaranteed to terminate in a state 

satisfying postA  

Precondition and postcondition are modeled as predicates over state space Σ : 

},{:

},,{:

falsetrueA

falsetrueA

post

pre

→Σ×Σ

→Σ
         (4.16) 

                                         
4 Static semantics of SEAM, including a definition of well-formedness rules for SEAM models is addressed in 
the Ph.D thesis of Lam-Son Le [tbd]. 
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A precondition of the action A specifies a set of states of a working object, where A can be 
triggered. A postcondition of the action A defines a relation between the states of a working 
object before and after this action respectively.   

Invariant invA  is a condition that holds before, after, and during the action execution. It 
constraints action pre-states, post-states, and intermediate states. Fig. 4-7 illustrates how 
action precondition, postcondition and invariant constraints the state space of a working 
object. The region labeled Apre is the set of states that satisfy the action precondition; the 
region labeled Apost is the set of states of the action A, where the postcondition holds; the 
region labeled Ainv is the set of states, which includes pre-states, post-states, and possible 
intermediate states of A.  

 
Figure 4-7: Representation of an action precondition, postcondition, and invariant as constraints over the 
state space . 
 

Any state of a working object must satisfy its global invariants invS . Invariants are formalized as 
predicates over state spaceΣ :  

},{:, falsetrueAS invinv →Σ         (4.17) 

Action A  defines a transition of the working object from state X  to state 'X  (pre-state and post-
state respectively). Action semantics is provided by an FOL-formula },{: falsetrueA →Σ×Σ . We 
specify the SEAM action using logical implication between precondition and postcondition: 

)',()()',( XXAXAXXA postpre

def

→=        (4.18) 

If at a given state X  the precondition Apre of the action A holds, then the working object will be 
transferred to a state 'X , for which the postcondition of A - postA - holds.  

 
For actions with invariants we write: 

)'()'()',()()()()',( XSXAXXAXAXAXSXXA invinvpostpreinvinv

def

∧∧→∧∧=  (4.19) 

If at a given state X  the precondition Apre of the action A, and the invariants invinv AS ,  hold, then the 

working object will be transferred to a state 'X , for which the postcondition postA and invariants 

invinv AS ,  hold.  

Action specifications often contain frame conditions. These conditions are originated from the 
frame problem of declarative specifications [14]: This problem appears when more than one 
implementation of the specification corresponds to its contract. Frame conditions constrain the 
number of such possible implementations by specifying the variables that are supposed to remain 
'unchanged' during the action execution. We consider frame conditions in SEAM as a special case of 
action postconditions, as they must hold upon the action termination. We conjoin a frame 
condition )',( XXA frame with a postcondition to obtain the following action specification: 
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)'()'()',()',()()()()',( XSXAXXAXXAXAXAXSXXA invinv
frame

postpreinvinv

def

∧∧∧→∧∧=  

(4.20) 
 
If the action is specified by input parameters I and output parameters O, then we specify the action as 
follows: 

),',,(),(),,',( OXIXAIXAOIXXA postpre

def

→=      (4.21) 

Here action postcondition relates pre-state, post-state, input, and output parameters of the 
action. 
If at a given state X the working object receives an input I such as the precondition Apre of the 
action A holds, then the working object will be transferred to a state 'X and generate an output O, 
for which the postcondition of A - postA - holds.  

Action input and output parameters can be considered as state variables. 
Note that if the precondition does not hold – the post state 'X is arbitrary. 
 
In Eq. (4.21) we consider input I and output O as parts of the observable external behavior 

(i.e. the input is received in the pre-state and is necessary to trigger the action; the output is 
produced in the post-state). Note that this is not always a case: inputs and outputs can make a 
part of the internal (not necessarily observable) action behavior, i.e. they may appear in the 
intermediate action states. 

Successful Action 
Action specifications in Eq. (4.18) - (4.21) are defined as predicates that evaluate as 'false' only when 
the state transition is incorrect, i.e. when X  satisfies Apre, but 'X does not satisfies postA . Therefore, 

such predicate evaluates to 'true' not only when the action makes a correct state transition, but also 
when Apre is not satisfied (i.e. no action is executed).  

Now we specify a predicate that evaluates to 'true' if the action executes and makes a correct 
transition and as 'false' otherwise. We call this predicate a successful action specification. An 
action is successful if its precondition holds and its postcondition realizes. We write the 
expression for successful action from Eq.(4.17) as follows: 

)',()()',( XXAXAXXA pre

def
success ∧=        (4.22) 

Eq. (4.22) is equivalent to )',()( XXAXA postpre ∧  

Update Statement 
In Eq.(4.18)-(4.21) partial action specifications are defined: these specifications do not show 
how the transition from a pre-state to a post-state is carried out. This transition can be 
explicitly specified using an update statement (or statements). 

 
Example 4.3: An action contract defined by a triple (precondition, invariant, postcondition) 
can be implemented in many ways. Let us consider a working object W having a property x: Int 
(Fig. 4-8). We define an action },{: falsetrueIntIntA →×  with the following contract: 
( xxAtruexA postpre >< ':;;0: ). Here and later in the text we denote by x, y, z,… values of 

variables before the action execution and, respectively, by x‘, y’, z’,… values of the same 
variables after execution of an action.   
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Figure 4-8: Working object W seen as a whole with a localized action A and its contract: (x>o, true, x’>x). 
Action invariant is not specified, i.e. Ainv = true. 
 
An action contract specifies that starting at a pre-state, where x<0, the action A switches the state of 
the system such that in a post-state x’>x. ‘ 
We write the action specification where the transition from the pre-state X  = state(x) = x to the post-
state 'X =state(x) = x’ is explicit:  ( ))',())('()( xxAxAxxA postupre ∧=→  

Au is an update statement. All the update statements below can correctly specify a transition from 
X to 'X :  

 x’ := -x 
 x’ := -x + 1 
 x’ := - x + 2 
 … 

We define an update statement as a function that explicitly specifies how the state of a 
working object is switched during the action: Σ→Σ:uA        

We distinguish two types of update statements: assignments and assumptions. An 
assignment update binds a variable to a (new) value: v := s; An assumption update specifies a 
condition that, if holds, guarantees that some formula F is satisfied: if c then F. 

An action specification with an update statement is written as follows: 

))',())('(|'()(|)',( XXAXAXXXAXXXA postupre

def

∧=∃→∀=    (4.23) 

For functional updates we can also write: 

))(,()(|)',( XAXAXAXXXA upostpre

def

→∀=      (4.24)  

Eq. (4.23)-(4.24) specifies that If at a given state X  the precondition Apre of the action A holds, then 

the working object will be transferred to a state )(' XAX u= , for which the postcondition of A - 

postA - holds.  

Weakest Precondition and Hoare Triple 
We can specify Dijkstra’s Weakest Precondition [18] for the action A. The weakest 
precondition of an action A (denoted ),( upost AAwp ) defines a set of states, such that when the 

action A is started on a state X satisfying ),( upost AAwp , and the update statement uA  is 

executed on X  to produce the state 'X , then 'X meets the action postcondition postA [18]. 

This is illustrated in Fig. 4-9: The region labelled postA  is the set of states that satisfy action 

postcondition; the region labelled ),( upost AAwp  is the set of states of the working object that 

satisfy the weakest precondition. Every state X  on which the execution of the update 
statement uA  leads to a state 'X  in the postA  region must be in the ),( upost AAwp region. This 

is the reason the precondition ),( upost AAwp  is called weakest. By definition, any other 
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precondition can only reduce the set of states X  on which the execution of the update 
statement uA  leads to postA being satisfied.  

 
Figure 4-9: Weakest precondition 

 
For a sequence of update statements 

nuu AA ;..;
1

(operator ';' denotes the sequential 

composition) we denote the weakest precondition as );..;,(
1 nuupost AAAwp . For the action 

postcondition postA to hold after executing the sequence of update statements
nuu AA ;..;

1
, the 

weakest precondition must hold on an initial state of A. This weakest precondition defines the 
set of states 

preAΣ  as follows: 

( )
111

;..;),,();..;,(
−

=
nnn uuupostuupost AAAAwpwpAAAwp     (4.25) 

The postcondition postA  holds if it holds after the last update statement. The weakest 

precondition 1),( −= n
postupost AAAwp

n
can be considered as a postcondition of a 

sequence
11

;..;
−nuu AA of update statements.  

The verification condition for the sequence of update statements is: 
);..;,(

1 nuupostpre AAAwpA →         (4.26) 

The validity of this condition implies that when the precondition Apre holds, then after the 
execution of the sequence of updates of A, the postcondition Apost holds. 
This verification condition is denoted by the Hoare Triple [18]: 
{ } { }postuupre AAAA

n
;..;

1
         (4.27) 

Example 4.4: Consider Example 4.3 with the contract: xxAxA postpre >=<= ';0  and the 

update statement Au : x’ := -x. 
We write the verification condition from (4.27): 
{ } { }

);:','(0

:':'0

xxxxwpx

xxxxx

−=>→<
>−=<

 

We compute this as follows: 
):','( xxxxwp −=>  

xx >−⇔ - by substituting x' with its assignment xx −=:' ; 
xx −<⇔ ; 

We obtain: xxx −<→< 0 , which is valid. 
 

A specification that defines a contract (precondition, invariant, postcondition) and omits 
update statements is called partial. A specification that defines several update statements and 
the order of their execution is called imperative. Update statements (and their order) can be 
considered as an implementation of an action contract.  
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Preconditions, postconditions, update statements, and invariants relate actions and properties of a 
working object. In SEAM graphical specifications, preconditions, postconditions, and update 
statements are modeled using action-property relations with annotations. 

Action as a Composite 
The action A seen as a composite (denoted Ac) is a tuple ),,..,,,,( 21 posttpreinv AAAAAA . 

This action specification is a detailed specification of a corresponding action seen as a whole 
- Aw. tAAA ,..,, 21 are component actions of Ac .These actions make the action structure 
explicit. (Recall that in Aw only the external behavior, specified by the action contract, is 
visible.) In the next chapter we consider the action, modeled as a composite, as a refinement 
of the same action, modeled as a whole.   

   
Ac can be specified declaratively, or imperatively. A declarative specification shows the 

effect of the action application – a transition from a pre-state to a post-state. It conceals the 
intermediate states and omits the specification of a control flow - the order of component 
actions occurrence. An imperative specification reveals the intermediate states resulted from 
ordered execution of component actions. An action control flow is modeled in SEAM using 
action-action relations. 

 
 Ac is a t-ary predicate ρ applied to the set of component actions A1..At: 

( )t

def

c AAXXA ,..,)',( 1ρ=         (4.28) 
 
We call ρ the ordering function. If an action as a composite is modeled declaratively, then 
the ordering function ρ is not specified, i.e. all combinations of component actions are 
possible. We express such an action as follows: 

U
O

t

def

c AAXXA ΟΟ= ..)',( 1         (4.29) 

Here O stands for some ordering between two component actions. The specification in Eq. 
(4.29) is difficult to formulate for many component actions and different ordering types.  
 

If component actions in Eq. (4.29) operate on disjoint states (i.e. do not affect each other), 
these actions are called independent.  

Actions A1..At are independent if and only if for each state variable pij of a working object 
there is at most one component action Ak,  tk ≤≤1 that modifies this state variable during the 
execution of Ac .  

 
Independent component actions A1..At can be executed in parallel. In this case, the action 

seen as a composite will be expressed as a conjunction of its component actions: 

t

def

c AAXXA ∧∧= ..)',( 1         (4.30) 

Here all the component actions make a transition from the same pre-state X to the same post-
state 'X : 

)',(..)',()',( 1 XXAXXAXXA t

def

c ∧∧=        (4.31) 
 

For an action, modeled imperatively, we specify the intermediate states 11,.., −tXX  and 
obtain the following formula: 
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)',(..),(|,..,)',( 11111 XXAXXAXXXXA ttt

def

c −− ∧∧∃=     (4.32) 
 
In Eq.(4.32) specification of intermediate states defines the order in which the component 

actions will be executed. This means that the execution of some action ),( kji XXA  switches 

the state of a working object and enables other action(s) lA , for which a precondition at kX  

holds: )(| kll XAA
pre

∀ .  

4.3.5 Action-to-Property (AP-) relations 
Action to property (AP-) relations in SEAM diagrams are used for the explicit modeling of 
action contracts and update statements. AP-relations in SEAM diagrams are annotated with 
the corresponding expressions (the graphical notation for AP-relations was defined in section 
3.4.5.).  

The expressions for preconditions, invariants, and postconditions are logical expressions 
(predicates). We use the Alloy syntax [59] for these expressions in SEAM diagrams. For 
further validation and refinement verification, we define the mapping rules for the translating 
SEAM specifications to Alloy specifications (these rules are presented in Chapter 6). Thus, 
using the Alloy specification language in graphical specifications facilitates these mapping 
rules.  

Table 4-1 lists the Alloy constructs used for annotating SEAM AP-relations.  
 
Table 4-1 

Alloy expression SEAM 
all a:X|F   
no a:X|F   
some a:X|F  
lone a:X|F   
one a:X|F  

Quantification over property instances. It expresses the following: 
‘for * instances of a property X F holds’. Here * means:  
all – ‘all’; 
no – ‘no’; 
some – ‘at least one’; 
lone – ‘at most one’; 
one – ‘exactly one’; 
F here is a logical expression that usually includes instances of X. For example we 
write: all p:Person | (p.age>0) 

F1||F2   
F1 or F2 

Logical disjunction or ‘inclusive or’. Specifies that either F1 or F2 or both are satisfied;  

F => ..    
F => ..else .. 

Logical implication. Is used for guarder update specification:  ‘if F then …’, or ‘If F 
then .. else ..’ 

F1 && F2   
F1 and F2 

Logical conjunction. Specifies that both F1 and F2 are satisfied; 

!F Negation. Specifies that F must not hold. 
A in X   A:X  
A !in X  

Subset. Specifies that a property instance (or group of instances) A belongs to (or does 
not belong to) a set defined by a property X.  

= <  >  
<=  >= !=  

Operations of comparison: ‘equal to’, ‘less then’, ‘greater then’, ‘less or equal’, ‘greater 
or equal’, ‘not equal’ 

+ - Algebraic operations 

 
For update statements, we use expressions written in Java language. 
 

Example 4.5: Consider the action SellProduct specified as illustrated in Fig. 4-10. The 
expression: [one p:Product | p.id = requested_ID] is a selection of a property instance that 
will be updated by the action. Here, it is a selection of a product with a given id from the set 
of products.  
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An update statement expressed as an assignment p.quantity’:=p.quantity - 1 defines how the 
selected instance will be modified by the action. Here, the quantity of a selected product will 
be reduced by 1. 

Product Quantity
1|quantity

ID
1|id

SellProduct

ProductID
<IN>

1|requested
_ID

U:[one p:Product | p.id = requested_ID] 
p.quantity’:=p.quantity-1

 
Figure 4-10: Update statement expressed as a selection condition followed by the assignment expression. 

4.3.6 Action-to-Action (AA-) relations  
Action-to-action (AA-) relations in SEAM connect component actions and define their order of 
execution. SEAM specifies AA - relations using a subset of graphical elements defined in Business 
Process Modeling Notation (BPMN) [78]. AA- relations defined in SEAM are:  

 Start 
 End 
 Transition  
 Conditional transition 
 Fork (AND, OR, XOR) 
 Merge (AND, OR, XOR) 

Forking and merging of a control flow are defined using BPMN data-based or event-based gateways.  
 

The semantics of SEAM action-action relations can be expressed using combinations of logical 
connectives: 

- ‘ ¬A ‘ - a negation ‘not A’; 
- ‘A1 ∨ A2’ - a disjunction ‘A1 or A2’ ; 
- ‘A1 ∧ A2’- a conjunction ‘A1 and A2’; 
- ‘A1 →A2’- an implication ‘A1 implies A2’. 

The graphical notation of SEAM AA-relations is presented in Table 3-3 of the previous 
chapter; FOL semantics for these relations is presented in Table 4-2.  
 

An AA-relation is specified by a pair (src, dst), where src is a source action(s) of this relation and 
dst is its destination action(s).  

A Start relation defines an entry point for an activity (a sequence of component actions, specified 
for some actions seen as a composite, Fig. 4-11); it has no src action. A destination action of a Start 
relation is the action, which will be executed first. This action is related to a parent action as 
follows: )()( 1 XAXA

preprec → ; 
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Figure 4-11: AA-relations 

 
An End relation specifies a terminating point for a sequence of actions; it has no dst.  A source 

action An of the End relation illustrated in Fig. 4-10 is related to a parent action as follows: 
)',()',( XXAXXA

postpost cnn → ; 

 
Table 4-2: FOL-Semantics of AA-relations in SEAM 
SEAM FOL: 

Start(A1) )...,( 11 XXA  

End(A1) )',(... 11 XXA  

Transition(A1,A2) )..,(),(| 3222112 XXAXXAX ∧∃  

ConditionalTransition 
(A1,A2,C) )..,()(),(| 32222112 XXAXCXXAX →∧∃  

ConditionalTransition 
(A1,{A2,A3},C) 

( ) ( )( )),()(),()(),(| 423232222112 XXAXCXXAXCXXAX →¬∨→∧∃
 

AndFork(A1,{A2,A3}) ( )),(),(),(| 4233222112 XXAXXAXXAX ∧∧∃  

AndMerge({A1,A2},A3) ( ) ),(),(),(| 4333223113 XXAXXAXXAX ∧∧∃   

OrFork(A1,{A2,A3}) 

( )
( ) ( )),(),(),(),(),(

),(),(|,,

863762611533311

422211632

XXAXXAXXAXXAXXA

XXAXXAXXX

∧∧∨∧

∨∧∃
  

 

OrMerge({A1,A2},A3) 
( )

( ) ( )),(),(),(),(),(

),(),(|,,

873722711643422

533311743

XXAXXAXXAXXAXXA

XXAXXAXXX

∧∧∨∧

∨∧∃
  

XOrFork (A1,{A2,A3}) 
( )

( )),()(),(

),()(),(|

52322211

422232112

XXAXAXXA

XXAXAXXAX

pre

pre

∧¬∧

∨∧¬∧∃
 

XOrMerge({A1,A2},A3) 
( )

( ))(),(),(

)(),(),(|,

23643432

4352321142

XAXXAXXA

XAXXAXXAXX

pre

pre

¬∧∧

∨¬∧∧∃
 

 
SEAM transition relation specifies a sequential composition of actions, when after the 
termination of one action, another action is triggered. We formalize a transition from action 
A1 to action A2 as a conjunction of predicates specifying actions:   

),(),(| 3222112 XXAXXAX ∧∃         (4.33) 

here 2X is an intermediate state between A1 and A2; it is a post-state of A1 and a pre-state of 
A2. 
 
Using Eq. (4.18), we rewrite Eq. (4.33) as follows: 
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 ( ) ( )),()(),()(| 32222211112 XXAXAXXAXAX postprepostpre →∧→∃     (4.34) 

If update statements uu AA 21 , are specified – we write the following expression for action 
transition: 

( ) ( ) ( )2112122221111112 )())(,()())(,()(| XXAXAXAXAXAXAXAX uupostpreupostpre =∧→∧→∃  

(4.35) 
Recall the discussion about successful action specification: the expression for action 
transition in Eq. (4.34)-(4.35) will be evaluated to ‘true’ even if one of its actions is not 
successful (i.e. when '')( 11 falseXA pre =  or '')( 22 falseXA pre = ). We call a transition 

successful when the preconditions of both A1 and A2 are satisfied: 
),()(),()(| 32222211112 XXAXAXXAXAX prepre ∧∧∧∃     (4.36) 

 
SEAM conditional transition relation specifies a sequential composition of actions A1 and A2, 
assuming that a condition C holds: 

),()(),(| 32222112 XXAXCXXAX →∧∃       (4.37) 
Note that if C does not hold, then the transition results in an arbitrary state. 
 
By analogy with the successful transition in Eq.(4.36), we write the successful conditional 
transition: 

),()()(),()(| 322222211112 XXAXAXCXXAXAX prepre ∧∧∧∧∃    (4.38) 

 
A conditional transition can be specified as an ‘exclusive OR’ - XOR fork. This means that if 
C holds, then action A2 is triggered, else action A3 is triggered: 

( ) ( )( )),()(),()(),(| 423232222112 XXAXCXXAXCXXAX →¬∨→∧∃   (4.39) 
 

A fork relation in SEAM specifies a split of the control flow, when after a termination of 
an action, several actions can be triggered. A fork relation has one source action (src) and a 
set of destination actions (dst).  

A merge relation in SEAM is the opposite of the fork relation. It specifies a join of 
different branches in the control flow, when several actions should terminate before another 
action is triggered. A merge relation can be used for modeling synchronization or 
concurrency. This relation is specified with a set of source actions (src) and one destination 
action (dst).  

 
We distinguish AND (parallel), OR (inclusive OR), and XOR (exclusive OR) fork and 

merge relations in SEAM.  
 AND fork defines a parallel execution of a set of actions, specified in a dst parameter. 
 AND merge stands for synchronization: all the actions specified in a src parameter of AND 
merge relation must terminate at the same post-state; 
OR fork specifies a nondeterministic performance: any combination of actions from the dst 
set can be triggered. As a result, several different traces of intermediate states can be 
produced;  
OR merge specifies a concurrency.  
XOR fork and XOR merge are exclusive choices, when only one action from the dst set (the 
src set for merge) executes.  
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We use logical connectives and their combinations to connect component actions within a parent 
action seen as a composite. This is shown in Table 4-2. This table complements Table 3-3 where the 
visual SEAM syntax of AA-relations is presented. 

4.3.7 Distributed Action and Distributed to Localized Action (DALA-) Relations  
In contrast to SEAM localized and joint actions, a distributed action does not affect the 
properties of a working object directly. It specifies an interaction between component 
working objects and an invocation of the localized actions of these component working 
objects:  

( )kd

def

LALAXXDA ,..,)',( 1ρ=        (4.40) 
Distributed action does not specify its own precondition, postcondition, and invariants. 
 

If a distributed action is modeled declaratively, then the ordering function ρd is not 
specified, i.e. localized actions can be triggered in any order: 

U
O

k

def

LALAXXDA ΟΟ= ..)',( 1         (4.41) 

Here O stands for some ordering between two localized actions.  Eq. (4.41) specifies all 
possible combinations of action invocations.  

If localized actions in Eq. (4.41) operate on disjoint states (i.e. do not affect each other), 
these actions are independent and can be executed in parallel. We represent a declarative 
specification of a distributed action by a conjunction of these localized actions:  

)',(..)',()',( 1 XXLAXXLAXXDA k

def

∧∧=       (4.42) 

Here all localized actions make a transition from the same pre-state X to the same post-
state 'X . 
 For a distributed action, modeled imperatively, we specify the intermediate states 

11,.., −kXX  and obtain the following formula: 

)',(..),(|,..,)',( 11111 XXLAXXLAXXXXDA kkk

def

−− ∧∧∃=     (4.43) 
 

We use distributed-to-localized action relations (DALA-relations) in SEAM diagrams to 
specify the localized actions, bound by a given distributed action, and their order of 
invocation. 

In the next chapter, we consider a distributed action of a working object seen as a 
composite as a refinement of a localized action of the same working object seen as a whole.   

4.4 Imperative vs. Declarative Specifications 
 
A declarative action specification defines a single transition of a working object from a pre-
state to a post-state and does not show the intermediate states.  

 
An imperative specification of an action introduces the ordered set of the intermediate 

states for this action. Each intermediate state may correspond to: 
- a post-state of some component action (for an action as a composite);  
- a post-state of a localized action executed as a part of a distributed action;  
- an update of a single property (for a localized or a joint actions as a whole).  
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)',(..),(|,..,)',( 11 1 XXAXXAXXXXA rr ttttt

def

c ∧∧Σ∈∃=    (4.44)     

Here rtt XX ,..,1  present intermediate states. Each intermediate state can be associated with 
a time t during specification simulation. By this, actions can be ordered. For example, let the 
intermediate state 1tX be a post state of an action ),( 11 tXXA , and a pre-state of an action 

),( 1 itti XXA . Here we say that A1 precedes Ai. If 1tX  is a pre- state of two actions Ai, Aj, then 

both of these actions are available at 1tX  and can be executed in parallel. 
Imperative action specifications are useful when simulation and dynamic verification 

(testing) is required. A specification simulation usually involves a translation to some 
imperative language (e.g. Java).  

4.5 Instance Creation and Deletion: Local Variables 
 
The creation and deletion of an instance of a component working object, a property, or a 
reference to a property can be seen as a part of a dynamic behavior of a system.  To create a 
new instance means to specify a binding between an instance name and a value in its 
interpretation domain. New instance name is a name, defined by the instance expression and 
not yet allocated to any other instance. Instance deletion respectively releases this binding. 

 

 
Figure 4-12: a) Creation of a new element in a list using a local variable; b) Creation of an element 
modifies an instance counter Mcurrent 

 
Figure 4-12(a) illustrates a creation of a new instance of a property P in a list listP. listP 

specifies an ordered set of instances of P; each instance can be addressed by its position in a 
list, for example listP[1]. Instance creation is carried out using a local variable newP. This 
local variable exists only during the execution of CreateP: this is shown (1) graphically - by a 
relation with a black diamond between the action CreateP and the property P; (2) using a 
quantification ‘one newP’ (this is equivalent to newP∃ ), which is local to the action. 

The result of an action CreateP, expressed by its postcondition specifies that a local 
variable newP is not in listP and it is in listP’. Here listP and listP’ define the state of a 
system before and after the action CreateP, respectively. 

In the specification of a postcondition, we use the Alloy notation: operator ‘in’ is a binary  
predicate that returns ‘true’ if a left hand side of this operator is a subset of right hand  side of 
it. The notation newP in listP is equivalent to listPnewP ⊆ ; quantifier ‘one’ is an existential 
quantifier: one newP which is equivalent to newP∃ . 

In SEAM specifications, creation or deletion operations also modify a current number 
Mcurrent of instances of a given object. This number is usually restricted by a multiplicity 
expression (Fig. 4-12 (b)). Mcurrent can be seen as an instance counter. Its minimum and 
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maximum values are defined by a multiplicity constraint. For the model in Fig. 4-12 it is: 
∞≤≤ currentM0 . The fact that the instance newP becomes an (Mcurrent+1)th element in the listP 

– i.e. increases the instance counter value by 1 - is not explicit in Fig. 4-12 (a).  
 

The deletion of an instance can be specified in a similar way (Fig. 4-13). To delete an 
instance that corresponds to a certain condition c:  

(1) We specify a local variable oldP: one oldP | c(oldP)  
(2) We state that such a variable exists in listP but does not exist in listP’.  

Here listP and listP’ define the state of a system before and after the action DeleteP 
respectively.  

Instance deletion decreases the instance counter value by 1. 
 

 
Figure 4-13: a) Deletion of an ‘old’ element from the list; b) Deletion of an element modifies an instance 
counter Mcurrent 
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Chapter 5   

Transformations of Refinement in SEAM and 
Refinement Verification 
 
To reason about alignment between SEAM visual specifications, we identify the relationships 
between these specifications with a transformation of refinement as defined in Model-Driven 
Engineering (MDE). As MDE does not provide a formal notion of correctness for these 
transformations, it is challenging to specify a verification procedure for them. 

 
Refinement and refactoring are also defined in software engineering; they specify the 

transformations of programs. Compared to MDE, refinement correctness in software 
engineering is formally defined and can be validated using formal methods. 

 
Formal semantics for visual specification increases the precision of these specifications. 

Based on this, we can specify the criteria of refinement correctness for visual specifications 
by an analogy with refinement correctness, defined for programs.  

In software engineering, formal methods allow us to formulate a refinement correctness of 
a program as a first-order logic formula and to validate this formula. Along these lines, we 
represent SEAM visual specifications and relationships between them as first-order logic 
formulas and reduce the problem of refinement verification to a problem of validation of the 
first-order logic formula.  

 
In Section 5.1 we discuss the transformations of refinement and refactoring. In Section 5.2 

we make an overview of simulation techniques for refinement verification. We present in 
more details data refinement [51], forward simulation as a method to prove its correctness, 
and ASM refinement method [16] based on generalized forward simulation.  

Modification, creation, or deletion of model elements in a diagram leads to a specification 
refinement. In sections 5.3 – 5.7 we specify different forms of refinement in SEAM. We 
formulate the criteria of correctness for each form of refinement in terms of forward 
simulation (as defined in [51][27][112]) or in terms of generalized forward simulation (as 
defined in [16]).  

 

5.1 Refinement vs. Refactoring 
 
In software engineering, a technique for transforming an existing code (its internal structure) 
without changing its external behavior is known as refactoring [42][69]. 

We specify the external behaviour of a system, executing an action A, as a pair of system 
states ', XX  before and after the execution of A. Refactoring preserves this pair for each 
execution of the action A and its refactoring Arefact such that whenever the action Arefact  starts 
at X and terminates at 'X , there exists a corresponding run of the action A, which also 
starts at X and terminates at 'X . We formulate this as follows: 
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)'X ,X()'X ,X(| 'X ,X AArefact ⇒Σ∈∀        (5.1) 

Eq. (5.1) is a criterion of refactoring correctness. Various refactoring types are specified in 
www.refactoring.org and in the literature. Automated refactoring is supported by a number of 
tools and environments for automated software development, such as IDEA by IntelliJ, 
Eclipse, NetBeans, Visual Studio, etc.  
 

Refinement [111] is a general technique that specifies a stepwise development of the 
program by adding details or eliminating nondeterminism. As opposed to refactoring, 
refinement can change an observable behavior of a model (including its external behavior), 
thus it specifies a wider class of transformations than refactoring does (www.refactoring.org). 
Adding or removing a field or a method of a class are examples of refinement, but they are 
not refactorings.  

Refinement can be seen as a transformation which preserves the corresponding external 
behavior:  

)','()',(|'

),()',(|,',

caaa
init

a

carefineaaccc

XXRXXAX

XXRXXAXXX

∧Σ∈∃

⇒∧Σ∈Σ∈∀
     (5.2) 

Formula (5.2) denotes that whenever the refined action Arefine starts at cX and terminates at 

'cX , there exists a corresponding run of the action A, which starts at the corresponding state 

aX , related to  cX  by R , and terminates at a state 'aX , which is also related to 'cX  by R. 
The initial action specification is also called abstract; respectively, the refined action 

specification is called concrete. Therefore, we use indexes ‘a’ and ‘c’ to specify states of the 
abstract and concrete specification in Eq. (5.2). 

R is a refinement relation. It defines a relation between observable system states of the 
concrete and abstract specifications: },{: falsetrueR ac →Σ×Σ . A refinement relation can be 

specified as a function acR Σ→Σ: that maps each state of the concrete specification to 
exactly one state of the abstract specification. 

Refactoring can be considered as a special case of refinement: If a state space of the 
concrete (refined) specification is the same as a state space of the abstract (initial) 
specification, i.e. ac Σ=Σ , and R is defined as an identity function:  R: XXRX =Σ∈∀ )(| , 

then the definition of refinement correctness from (5.2) transforms to the definition of 
refactoring correctness from (5.1).  

In this work, we use program refinement as semantics for all transformations defined for 
SEAM specifications. A model development process in SEAM can be also considered as a 
stepwise refinement of graphical specifications [96].  

5.2 Simulation Techniques: the State of the Art 
 
The verification of concurrent systems is largely based on the use of simulation techniques 
[65]. By simulation we understand a correspondence between the states of two systems, 
abstract and concrete; here the concrete system is considered an implementation and the 
abstract system is its specification. The simulation proof is based on the establishing of this 
correspondence. The fact that a simulation exists between two systems shows that any 
behavior of one system can be exhibited (simulated) by the other system. 

Along these lines, we consider two visual system specifications, where one is refining the 
other. The refinement correctness can thus be verified. The proof of refinement correctness is 
based on the establishing of a refinement relation between the abstract and concrete system 
specifications, and on the demonstration that this relation is a simulation. 
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A large number of different types of simulations is presented in the research literature; we 
consider only several of them: forward simulations, backward simulations, hybrid 
simulations (i.e. forward-backward and backward-forward simulations) [65][112][50], 
refinement mappings [1], and the proof method called generalized forward simulation 
[16][98].  

Here we illustrate how different simulations can be used to verify data refinement. In 
software engineering, data refinement is a special case of refinement where one data type in 
program is refined by the other. Later we show that many forms of refinement in SEAM can 
be also considered as data refinements. Thus, the simulation techniques for the verification of 
data refinement (e.g. forward simulation) can be used to verify certain forms of refinement in 
SEAM.  

Data refinement. A data type X can be defined by a state space Σ  and an indexed 
collection of operations Iioi :,: Σ→Σ . Where I is an indexing set. 

A program P(X) on data type X can be seen as a sequence of operations from the indexed 
set performed on X. In data refinement, we replace an abstract data type by a more concrete 
data type in a program while preserving its algorithmic structure. Abstract operations are 
similarly replaced by corresponding concrete operations [72].  

Simulation proof of data refinement correctness is based on forward or backward 
simulation (often specified as functional relation). This relation is established for each pair of 
corresponding operations. We say that data refinement has a (1-1)-refinement proof schema. 
To verify that data type A is a correct refinement of data type B, values produced at each step 
of a program's execution are considered. 

 
Forward simulation for verification of data refinement: 
If data types A and B share the same indexing set I, a forward simulation from A to B is a 
relation BAR Σ→Σ:  over states of A and B, which satisfies: 

- If )(0 Astarts ∈ , then ∅≠∩ )()( 0 BstartsR , where AAstart Σ⊆)( , BBstart Σ⊆)( are sets 

of initial states of A and B respectively; here )( 0sR defines an image of s0 – a start state of 

A – on the state space BΣ . The expression ∅≠∩ )()( 0 BstartsR  means that some states 
in this image are start states of B. 

- For all i:I, if an operation oiA performed on A such that 'ss
Ai

o→  and )(sRu ∈ , then 

there exists a state )'(' sRu ∈ such that it is a resulting state of the corresponding operation oiB 

performed on B: 'uu
Bi

o→ . Expression 'ss
Ai

o→ denotes a transition from s to s’ in A as a 

result of the operation oiA; respectively, 'uu
Bi

o→ is a corresponding transition in B. 

 
The first condition relates respective initial states; the second condition matches the effect 
of each step in A with a corresponding forward step in B.  

 
Backward simulation for verification of data refinement: 
If data types A and B share the same indexing set I, a backward simulation from A to B is a 
total relation BAR Σ→Σ:~  over states of A and B that satisfies: 

- If )(0 Astarts ∈ , then )()( 0
~ BstartsR ⊆ . Compared to forward simulation, backward 

simulation requires that all states in the image of s0 in BΣ are start states of B; 
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- For all i:I, if an operation oiA performed on A such that 'ss
Ai

o→ and )'(' ~ sRu ∈ , then 

there exists a state )(~ sRu ∈ such that it is an initial state of the corresponding operation oiB 

performed on B: 'uu
Bi

o→  

The first condition relates respective initial states; the second condition matches the effect of 
each step at A with a corresponding backward step in B.  
 

There are also cases where a combination of backward and forward simulations is required 
(a complete proof method): A is behavioraly equivalent to B if there is some C such that there 
exists a forward simulation R from A to C and the backward simulation R~ from C to B [65]. 

 
Forward-backward and backward-forward simulations combine in a single relation both a 
forward and a backward simulation. For more details, read [65].  
 
The refinement mappings introduced in [1] are another proof method for refinement 
verification. Refinement mapping from a lower level specification S1 to a higher level 
specification S2 is defined as a mapping from a state space of S1 to a state space of S2. If S1 
implements S2, then by adding auxiliary – history and prophecy - variables to S1 the 
existence of a refinement mapping (and subsequently, refinement correctness) can be 
guaranteed. The connection between history variables and forward simulations and also 
between prophecy variables and backward simulation is shown in [65]. 
 
Generalized forward simulation: 
The ASM-refinement method [15][16] defines the method of refinement verification based 
on forward simulation. The simulation proof specified in [98] is called a generalized 
forward simulation: it generalizes forward simulations from [65][112] by allowing arbitrary 
diagrams, i.e. providing a (m-n)-refinement proof schema.  

ASM-refinements are verified using an informal notion of commuting diagrams. Instead 
of matching the results of execution of corresponding operations oiA, oiB - considered in 
forward and backward simulation methods for data refinement - ASM splits the programs of 
an abstract and a concrete specifications into (finitely or infinitely) many 
‘subcomputations’(of finite length) and matches the results of these subcomputations. The 
idea is to verify that each pair of subcomputations preserves a so-called coupling invariant. 
The coupling invariant may be equal to the refinement relation R between specification state 
spaces. 

5.2.1 Data Refinement with Forward Simulation: (1, 1) - refinement schema 
We adopt the notion of data refinement from [51][72][50][101][102] and consider forward 
simulation, presented in [50][112] as a technique to validate refinement correctness. 
 
Definition of refinement correctness 
Let us consider a working object Wa, specified on the state space aΣ  with an action aA , and a 

working object Wc, specified on the state space cΣ   with an action cA .  

 
Definition 5.1.  
Given a refinement relation between state spaces, Wc is called a correct refinement of Wa if 
and only if for each run of the },{: falsetrueR ca →Σ×Σ concrete action Ac of Wc, which 
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starts at ccX Σ∈  and terminates at ccX Σ∈' , there exists a run Aa of Wa, which starts at 

aaX Σ∈  such that ),( ca XXR  holds and terminates at 'aX , such that )','( ca XXR holds. 
 
This definition can be expressed with the following formula: 

( )
)','()',(|'

)',(),(||',

};,{:

caaaaaa

ccccaaaccc

ca

XXRXXAX

XXAXXRXXX

falsetrueR

∧Σ∈∃

⇒∧Σ∈∀Σ∈∀

→Σ×Σ

     (5.3) 

if refinement relation is a function acR Σ→Σ: , we rewrite (5.3): 

( ) ( );)')'(()',(|')',())((

||',

;:

acaaaaacccac

aaccc

ac

XXRXXAXXXAXXR

XXX

R

=∧Σ∈∃⇒∧=

Σ∈∀Σ∈∀

Σ→Σ

  (5.4) 

This is equivalent to: 

))'(),(()',( ccaccc XRXRAXXA ⇒        (5.5) 
 
Data refinement verification by forward simulation is reduced to a proof of validity of (5.3) - (5.5). 
 

The data refinement schema for SEAM specifications is illustrated in Fig. 5-1, where Wc is a 
concrete specification and Wa is the abstract specification. cA  and aA  are concrete and abstract 

actions respectively. “Wc correctly refines Wa” means that whenever cA  makes a transition from 

cX to cX ' , aA  is also making a transition from aX to aX ' and these states are related by R  as 
defined in (5.3)-(5.5). 

 
Figure 5-1: The (1,1)-refinement for SEAM specifications 

 
The proposed formal semantics allow for a validation of SEAM specifications as well as a validation 
of their refinements (i.e. a transition from one specification to another).  

5.2.2 ASM Refinement: (m,n) – Refinement Schema 
Forward simulation for data refinement preserves the corresponding pre- and post- states,  the 
external behaviour of a working object.  We use the definition 5.1 to express the refinement 
correctness between two SEAM actions modeled declaratively, where only corresponding 
pre- and post- states of these actions are observable.  When the analysis of intermediate 
action states is required, we use the generalized (m,n)-refinement schema, specified by ASM-
refinement method.    
 
The ASM Refinement Method 
In [16][98], the Abstract State Machine (ASM) refinement method is presented. The ASM 
refinement method generalises the notion of refinement for an arbitrary number of transitions 
(called run segments) between an initial (pre-) and a final (post-) states of a transition system. 
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We call a refinement schema, defined by this method, an (m,n)-refinement schema. The 
number of run segments for an abstract and a concrete system in the (m,n)-refinement schema 
can be different. This generalized notion of refinement takes into consideration the 
intermediate system states. We use the (m,n)-refinement schema defined by the ASM 
refinement method  as semantics for refinement between SEAM specifications modeled 
imperatively.   

 
The ASM refinement method specifies a run as a sequence of states that starts from the 

initial state. Runs can be finite and infinite. A finite run terminates at a final state after a 
number of transitions (run segments) have been performed. Each run segment transits the 
system to an intermediate state (respectively, the last segment transits the system to its final 
state). A state is final if it has no successor state.  

In SEAM, by a run we understand an execution of an action (or a set of actions) by a 
working object. It starts at a pre-state, terminates at a post-state, and may include 
intermediate states. For a SEAM (localized, joint, or distributed) action seen as a composite 
and modeled imperatively, intermediate states are post- and pre- states of component actions; 
for a SEAM distributed action modeled imperatively, intermediate states are post- and pre- 
states of the localized actions bound by this declarative action.  

 
The ASM refinement method specifies a relation R* between states of interest of an 

abstract and a concrete transition systems. States of interest are specification states that we 
want to preserve after refinement. They include an initial state, a final state, and a number 
(not necessarily all) of intermediate states: these states represent a particular interest in a 
specification analysis. We formulate R* for SEAM specifications as a relation between the 
states of interest of the abstract and the concrete working objects respectively: 

},{:* ** falsetrueR ac →Σ×Σ , where cc Σ⊆Σ* , aa Σ⊆Σ*       (5.6) 
 

The ASM method gives definitions of partial and total refinement correctness. A partial 
correctness is defined for the terminating abstract and refined runs. It stipulates that the 
refinement is partially correct if the terminating refined run produces the same result (with 
respect to the relation R*) as the terminating abstract run. It is a weak definition of 
correctness because it accepts the possibility of simulating a terminating abstract run by a 
non-terminating concrete run. In other terms, if the concrete run is non-terminating, we 
cannot reason about the refinement correctness. 

A total correctness stipulates that a refinement is [totally] correct with respect to the 
relation R* when it is partially correct and for each non-terminating (infinite) refined run 
there exists an infinite abstract run. The generalized forward simulation, presented in [98], is 
a technique for validating a correctness of ASM-refinement. 

 
In this work we assume that all actions specified in SEAM are terminating actions. 

Therefore, we provide only a definition of partial refinement correctness for SEAM 
specifications. We address in our future work the refinement correctness for possibly infinite 
action runs.  
 
Definition of Refinement Correctness 
The (m,n)-refinement schema can be considered as a generalized (1,1)-refinement schema 
from the previous section. First, we provide a definition of the correct (m,n)-refinement for 
SEAM specifications. It preserves the external behavior of a working object, i.e. its pre- and 
post-states. Then we proceed with a refinement correctness for (m,n)-refinement that takes 
into account the intermediate states (the internal behavior of a working object). 
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Let us consider a working objects Wa, specified on the state space aΣ   with an action aA , and a 

working object Wc, specified on the state space cΣ   with an action cA . cc Σ⊆Σ* and aa Σ⊆Σ* are 

sets of states of interest of corresponding working objects. 
 
Definition 5.2 [preservation of the external behavior] 
Given a refinement relation between states spaces },{**:* falsetrueR ca →Σ×Σ , Wc is called 
a correct refinement of Wa if and only if for each run of the concrete action Ac of Wc, which 

starts at ccX *Σ∈  and terminates in n steps at ccX *' Σ∈ , there exists a run Aa of Wa, which 

starts at aaX *Σ∈  such that ),(* ca XXR holds and after a number of steps m, Aa terminates 

at 'aX  where )','(* ca XXR  holds .  
 
If the intermediate states are not shown, Definition 5.2 corresponds to the Definition 5.1 and 
can be expressed by the following formula: 
 

( )
)','(*)',(|*'

)',(),(*|*|*',

};,{**:*

caaaaaa

ccccaaaccc

ca

XXRXXAX

XXAXXRXXX

falsetrueR

∧Σ∈∃

⇒∧Σ∈∀Σ∈∀

→Σ×Σ

    (5.7) 

 
Fig. 5-2 illustrates the (m,n)-refinement schema that preserves the external behavior, 

adopted for SEAM specifications. Wc is a concrete specification and Wa is the abstract 
specification of a working object. cA  and aA  are concrete and abstract actions respectively. The 

concrete specification makes n steps from its initial state cX to the final state cX ' , whereas an 

abstract specification makes m steps from aX to aX ' . Initial and final specifications states are related 
with R*. 

 

 
Figure 5-2: The (m,n)-refinement for SEAM specifications: preservation of the external behavior 

 
When a refinement is carried out, the preservation of both external and internal behavior of 
the system might be required. By the internal behavior we understand a sequence of 
intermediate states of the working object. The following definition specifies the correctness 
of the (m,n)-refinement the preserves the sequences of intermediate states.  
 
Definition 5.3 [preservation of the external and the internal behavior] 
Given a refinement relation between state spaces },{**:* falsetrueR ca →Σ×Σ , Wc is called a 
correct refinement of Wa if and only if for each run of the concrete action Ac of Wc defined 
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by the ordered sequence of states, including the initial and the terminating states: 
( ) ( )ccic

cicci
cicici XXXXXXXX nnn

'|*,,..,,
0110

=∧=Σ∈
−

, such that i0  i1  . . . in  is a 

monotone sequence of natural numbers; there is a run Aa of the abstract action of Wa, also 
defined by the ordered sequence of states:  

( ) ( )caja
ajaajajajaj XXXXXXXX

mmm
'|*,,..,,

0110
=∧=Σ∈

−
, such that j0  j1  . . . jm  is a 

monotone sequence of natural numbers; and for every k the states of the abstract and concrete 
specifications aajcci kk

XX *,* Σ∈Σ∈  the refinement relation ),(*
ciaj kk

XXR  holds. 

 
We write the following formula to express the definition above: 
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  (5.8) 

The first part of the expression at Eq.(5.8) defines a refinement correctness that preserves the external 
behavior as in the definition 5.2. The second part of this expression specifies the correspondence 
between the intermediate states of the abstract and the concrete specification.  

Refinement verification by generalized forward simulation is reduced to a proof of validity of (5.8) 
for the (m-n)-refinement. 

 
Fig. 5-3 illustrates the (m,n)-refinement schema that preserves the external and the internal 

behavior. Wc is a concrete specification and Wa is the abstract specification of a working object. cA  

and aA  are concrete and abstract actions respectively. The concrete specification makes n steps of 

interest from its initial state cc XX =0 to the final state cn XX c '= , whereas an abstract specification 

makes m steps of interest from aa XX =0 to am XX a '= . States of interest are related with R*. 

    

 
Figure 5-3: The (m,n)-refinement for SEAM specifications: preservation of the external and the internal 
behavior 
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In SEAM, by a refinement we understand a set of modifications applied to a SEAM visual 
specification.  The result of a refinement is a transition of the specification to the next 
functional or organizational level. 

Refinement verification aims at checking that a refined specification (obtained as a result 
of a refinement) preserves the external (or the external and the internal) behavior of an initial 
specification. This can be done by forward (or generalized forward) simulation, using the 
refinement schemas defined above. 

 
A refinement verification procedure can be applied under the assumption that both the 

initial and the refined specifications are well-formed and consistent. A specification is well-
formed if it conforms to the syntax of a modeling language. This is typically controlled by a 
modeling tool. A specification consistency is related to its semantics.  

5.3 Specification Consistency 
 
Formal semantics provided for visual specifications allow for the validation of the 
specification consistency: this analysis can detect overconstrained specifications. A 
specification is overconstrained if it contains contradictory preconditions, invariants, or 
postconditions. For example, a specification with a postcondition 

)'()'()',( axaxXXApost <∧>=  is inconsistent. This postcondition cannot be satisfied, i.e. 

the action A cannot be successfully executed.  
In Chapter 4 we define a successful action as an action, whose precondition holds and, 

postcondition is satisfied. We denote this action as the first order formula:  

)',()()',( XXAXAXXA pre

def
success ∧=         (5.9) 

Eq. (5.9) is equivalent to: 
def

success XXA =)',( )',()( XXAXA postpre ∧ . 

If there exists a pair of states ( ', XX ), such that Eq.(5.9) evaluates to ‘true’, then this 
formula is satisfiable. Satisfiability indicates that the specification is not overconstrained.  

 
Underconstrained specifications represent another class of semantically incorrect 

specifications. These specifications can be also called ‘incomplete’, as they do not restrict the 
unwilling (or meaningless) state transitions. In contrast to overconstrained specifications, 
underconstrained specifications cannot be detected automatically. It is a designer who should 
guarantee that the specification is adequate and complete. 

5.4 Functional and Organizational Refinement in SEAM 
 
Refinement in SEAM specifies a transition of a working object from one hierarchical level 
(n) where this working object is called ‘abstract’, to another hierarchical level (n+1) where 
more details about the working object construction and/or functionality is provided. This 
working object is called ‘concrete’. We say that the concrete specification refines the 
abstract specification. A relation between state spaces of the concrete and the abstract 
working objects is called a refinement relation. 
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Functional + Organizational 

refinement

 
Figure 5-4: a) Functional and organizational refinements in SEAM; b) SEAM hierarchical levels increase 
from top to bottom (for the organizational levels) and from left to right (for functional levels); any 
specification at a higher level must be a correct refinement of any specification at a lower level. 

 
The design process in SEAM is carried along two axes: the organizational level hierarchy 

and the functional level hierarchy. Therefore, we define two classes of refinement for SEAM 
specifications: a functional refinement and an organizational refinement (Fig. 5-4(a)). 

The functional refinement in SEAM defines a set of modifications that results in more 
precise specification of a behavior of a working object. The term ‘functional’ refers to a 
transition of this working object from one functional level, where some property and/or some 
action is presented as a whole, to another functional level, where this property and/or action 
is presented as a composite. Functional refinement can be made by either modifying, or 
creating, or eliminating any actions, properties, and relations between them. It is illustrated in 
Fig. 5-5 – 5.7. 

The organizational refinement in SEAM defines a set of modifications that results in a 
more precise specification of a construction of a working object.  The term ‘organizational’ 
refers to a transition from one organizational level, where the working object is presented as a 
whole, to another organizational level, where this working object is presented as a composite. 
Organizational refinement is made by the specifications of component working objects and 
collaborations between them. It is illustrated in Fig. 5-8. 

 
The refinement of both the construction and behavior of a working object in one 

refinement step is called functional + organizational refinement. This is often seen in 
practice. However, in SEAM, we are interested in modeling traceable concepts, whose 
origins are explicit. This means that every ‘diagonal’ step in SEAM model hierarchy, which 
stands for functional + organizational refinement, must be equivalent to one ‘horizontal’ step 
(functional refinement) followed by one ‘vertical’ step (organizational refinement) or to one 
‘vertical’ step followed by one ‘horizontal’ step (Fig. 5-4 (a)). Semantically, each functional 
refinement step stands for a definition of concepts (action or property or both) and each 
organizational refinement step defines the construction, suitable to hosting these concepts and 
operating with them.  

 
Fig. 5-4 (b) illustrates a SEAM model represented by a set of specifications at different 

functional and organizational levels: 
- Specification b is a functional refinement of a;  
- Specification c is an organizational refinement of a;  
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- Specification d is a functional refinement of c, (it must be also a correct refinement of a 
and b ); 

- Specification f is obtained as a functional refinement of e, which refines c; 
- Specification f must be also a correct refinement of a, b, c, and d. 

Plain arrows stand for functional or organizational refinement steps; dashed arrows stand for 
functional + organizational refinement.  

 
NOTE: when we say that one specification is a refinement of the other, this does not 

necessarily mean that the former is obtained from the latter by adding details: both 
specifications can be created independently and, in general, can be specified in different 
modeling languages. The expression ‘is a refinement of’’ states that there is a refinement 
relation between these specifications. The refinement correctness between specifications can 
be verified using definitions from the previous chapter. 

 
Functional and organizational refinements resulte from manipulations with individual 

model elements or groups of elements in a SEAM diagram. They may take different forms 
depending on the elements modified. In the following sections, we focus on functional and 
organizational refinements and their types.  

5.4.1 Functional Refinement in SEAM 
A functional refinement specifies a transition to the next functional level and may take the 
form of property refinement, behavioral refinement, or a combination of property and 
behavioral refinements.  
 
A property refinement is illustrated in Fig. 5-5, it comprises: 

- A property decomposition (representation of a property by a set of component 
properties)- Fig. 5-5(a); 

- A definition of a new property - Fig. 5-5(b); 
- An elimination of a property from the working object;  
- A definition of a new property association, composition, or a working object to 

property relation (a host relation) - Fig. 5-5(c); 
- An elimination of a property association, composition, or a working object to property 

relation (a host relation); 
- A modification of a multiplicity expression - Fig. 5-5(d). 
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Figure 5-5: Property refinement of a working object as a whole: a) a property decomposition; b) a 
definition of a new property; c) a definition of a property to property (PP-) relation; d) a modification of 
a multiplicity expression . 
 
Property refinement extends or reduces the state space of the working object seen as a whole. 

 
A behavioral refinement is illustrated in Fig. 5-6 and Fig. 5-7. This refinement is defined for 
three types of actions in SEAM and may comprise: 
- An action decomposition (a specification of a set of component actions with implicit or 

explicit ordering) – Fig. 5-6(a); 
- A modification of an action preconditions, postconditions, invariants, and updates (action to 

property (AP-) relations) - Fig. 5-6(b); 
- A modification of an action input/output parameters – Fig. 5-6(c); 
- A definition of a new action - Fig. 5-7(a); 
- An elimination of an action; 
- A modification of the ordering between actions (action to action (AA-) relations) - Fig. 5-7 

(b). 
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Figure 5-6: Behavioral refinements of a working object: a) an action decomposition with implicit/explicit 
action ordering; b) a modification of action AP-relations (defined for joint and localized actions); c) a 
modification of action parameters.  

 
Figure 5-7: Behavioral refinements of a working object: a) a definition of a new action; b) a modification 
of the action AA-relations. 

5.4.2 Organizational Refinement in SEAM 
An organizational refinement specifies a transition to a next organizational level and takes the 
following forms:  

 A working object decomposition and specification of a joint action between 
components – Fig. 5-8(a), which includes: 

- A definition of component working objects;  
- A distribution of properties of the working object between the components; 
- A definition of a joint action and its AP-relations with the properties of its 

components;  
 A working object decomposition and a definition of a distributed action between 

components – Fig. 5-8(b), which includes: 
-  A definition of component working objects;  
- A distribution of properties of the working object between the components; 
- A distribution of responsibilities of the working object between the components 

(where responsibility of each component is specified by a localized action); 
- A definition of a distributed action and its DALA- relations. 
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Figure 5-8:  Organizational refinement: a) a joint action specification; b) a distributed action specification. 
 
In the following sections we specify the refinement correctness for each form of 
organizational and functional refinements.  

5.5 Correctness of Functional Refinement 

5.5.1 Property Refinement 

Property Decomposition 
Refinement by property decomposition is a relation between two working objects Wa and Wc, 
where Wa specifies a property Pk as a primitive property, and Wc specifies this property as a 
compound property by defining component properties for it. We can also say that in Wa, the 
property Pk is seen as a whole, whereas in Wc it is seen as a composite - Fig.5-5(a).  
 

Let us consider a working object Wa seen as a whole, specified on the state space aΣ   with a 

localized action aLA , and properties P1..Pm, and a working object Wc seen as a whole, specified on the 

state space cΣ with a localized action cLA , and properties
skkm PPPP ,..,,,..,

11 .: If Wa defines a 

property Pk mk ≤≤1  as a whole and Wc defines the corresponding property as a composite, (i.e. it 
specifies for Pk component properties

skk PP ,..,
1

) then we say that Wc refines Wa by property 

decomposition.  
We write the expression for the abstract and the concrete state spaces as follows: 

m

P

kkc

mka

PPPP

PPP

k

s
×××××=Σ

××=Σ
......

....

11

1

43421
        (5.10) 

In Section 4.3, we define a state X  of a working object by a tuple of state variables of this 
working object V and interpretation domain DI. By state variables we understand instances of 
properties: nmnnm PppPpp :,..,;..;:,..,

11 111 . 

For simplicity, let us consider that working objects Wa and Wc host one instance of each 

property. Then the state aX of Wa is defined by a tuple ( )mk ppp ,..,,..,1 ; and the state cX of 

Wc is defined by a tuple ( )mkkk ppppp
l
,..,,..,,,..,

211 .  
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To compute a state of a working object means to interpret V on DI: we write for Wa and 
Wc:  

state(Wa) = aX = state ( )mk ppp ,..,,..,1 ;       (5.11) 

state(Wc)= cX = state ( )mkkk ppppp
l
,..,,..,,,..,

211 . 

Considering that mkk pppp ..,,,.., 111 +−  are the same for Wa and Wc, we define a refinement 
relation R between state spaces of Wa and Wc as a relation values of the property pk:Pk in the 
abstract specification and values of the tuple  (

lkkk ppp ,..,,
21

) in the concrete specification: 

( )( ) },{,..,,,),(
21

falsetrueppppRXXR
lkkkk

def

ca ∈=      (5.12) 

 
Similarly, this relation can be defined for an arbitrary number of instances of Pk. We specify 
the correctness of property refinement using the definition of correctness for data refinement by 
forward simulation (definition 5.1):  

 
Definition 5.4.  
Given a refinement relation R as specified in (5.12), Wc is a correct refinement of Wa by 
property decomposition if and only if for each run of the concrete action LAc of Wc, which 

starts at ccX Σ∈  and terminates at ccX Σ∈' , there exists a run of the abstract action LAa of 

Wa, which starts at aaX Σ∈  such that ),( ca XXR holds and terminates at 'aX , where 

)','( ca XXR holds. 
 
Using the expression at Eq. (5.3) that expresses correctness for data refinement by forward 
simulation the expression for correct refinement by property decomposition is written as 
follows: 

( )
)','()',(|'

)',(),(||',

caaaaaa

ccccaaaccc

XXRXXLAX

XXLAXXRXXX

∧Σ∈∃

⇒∧Σ∈∀Σ∈∀
   (5.13) 

Definition of a New Property or Property Elimination 
Let us consider a working object Wa seen as a whole, specified on the state space aΣ   with a localized 

action aLA , and properties P1..Pm, and a working object Wc seen as a whole, specified on the state 

space cΣ with a localized action cLA  and properties ,,..,1 nPP where mn ≠ .  
 If n>m, then Wc specifies a functional refinement of Wa by property definition - Fig.5-5(b); 
 If n<m then Wc specifies a functional refinement of Wa by property elimination.  

 
Considering that working objects Wa and Wc host one instance of each property, we write 

the following expressions for their states:  

state(Wa) = aX = state ( )mpp ,..,1 ;       (5.14) 

state(Wc)= cX = state ( )npp ,..,1 . 

A refinement relation R between state spaces of Wa and Wc is a relation between the 
corresponding tuples from (5.14): 

( ) ( )( ) },{,..,,,..,),( 11 falsetrueppppRXXR nm

def

ca ∈=     (5.15) 
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Correctness of property refinement we specify as a correctness of data refinement by forward 
simulation:  
 
Definition 5.5.  
Given a refinement relation R as specified in (5.15), Wc is a correct refinement of Wa by 
property definition or property elimination if and only if for each run of the concrete action 

LAc of Wc, which starts at ccX Σ∈  and terminates at ccX Σ∈' , there exists a run LAa of Wa, 

which starts at aaX Σ∈  such that ),( ca XXR holds and terminates at 'aX , where 

)','( ca XXR . 

 
NOTE 1. 
1. The elimination of a property from a working object implies the elimination of all 

incoming and outgoing relations of this property in this working object (the opposite is 
not true); 

2. The definition of a new property P in a working object Wa with a multiplicity m implies a 
definition of a host relation between Wa and P with the corresponding multiplicity 
expression m; 

3. The decomposition of a property P into properties P1, P2 with corresponding 
multiplicities m1, m2 implies a definition of a property composition relations between P 
and P1, and between P and P2 with corresponding multiplicity expressions m1 and m2. 

Definition and Elimination of Property Associations, Property Compositions, and 
Host Relations between a Working Object and a Property; and the Modification 
of a Multiplicity Expression. 
In Section 4.3.3, semantics of property associations, property compositions, and host relations 
between a working object and a property was specified as semantics of relations with 
multiplicities. Definition and elimination of these relations as well as modification of their 
multiplicity expressions affects specification consistency introduced in Chapter 4. 
 
NOTE 2. 
The following dependencies between different forms of refinement exist: 
1. The definition or elimination of a host relation between a working object and a property 

is semantically equivalent to a property definition or elimination;  
2. The definition of a property association or a property composition relation is 

semantically equivalent to a property decomposition; elimination of these relation is a 
reversed process; 

3. The modification of a multiplicity expression stands for modification of the number of 
instances of a property. This is semantically equivalent to a definition or elimination of a 
property in the specification (Fig. 5-9). 
 

 
Figure 5-9: Property refinement: modification of a multiplicity expression seen as a property definition.  
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Assuming that manipulations with host- and PP- relations do not violate the specification 
consistency, the correctness of these refinement forms is reduced to the correctness of data 
refinement by forward simulation. 

   
Let us consider a working object Wa seen as a whole (specified on the state space aΣ  with a 

localized action aLA , and properties mPP ,..,1 ), and a working object Wc seen as a whole (specified 

on the state space cΣ with a localized action cLA  and the same set of properties mPP ,..,1 ). Wc refines 
Wa by defining, eliminating, or modifying some of property associations, property compositions, 
or host relations specified in Wa. 
 
Definition 5.6. Wc specifies a correct property refinement of Wa if: 

(1) The refined specification Wc is consistent by Definition 4.1,  
(2) Wc is a correct functional refinement of Wa by definitions 5.4-5.5. 

5.5.2 Behavioural Refinement 

Modification of Action Parameters  

Let us consider a working object Wa specified with an action ),,',( aaa OIXXA , and a working 

object Wc, specified with an action ),,',( ccc OIXXA . Abstract and concrete actions are specified 

with different sets of input and output parameters: caca OOII ≠≠ , . We say that Wc is a behavioural 

refinement of Wa, where the action cA refines the action aA by modifying input and output 
parameters. 

As inputs and outputs make a part of the object state space (Section 4.3), then the refinement by 
modification of action parameters is reduced to a data refinement. In other terms, to prove refinement 
correctness, a refinement relation R between state spaces aΣ  and cΣ is needed: 

},{: falsetrueR ca →Σ×Σ . 
Assuming that only input parameters (or only output parameters) have been refined, we 

can specify RIn or ROut, where RIn is a refinement relation between input parameters of abstract and 
concrete specifications; ROut is a refinement relation between output parameters of abstract and 
concrete specifications. We give the following definition for these refinement relations: 
 
Definition 5.7.  
Given refinement relations RIn and ROut between abstract and concrete input and output 
parameters, Wc specifies a correct refinement of Wa by modifying action input and output 
parameters if and only if for each run of the concrete action Ac of Wc - which starts at some 
pre-state X  and terminates at some post-state 'X  and has an inputs cI  and an output cO - 

there exists a run Aa of Wa - which starts at X , terminates at 'X  - and has an input Ia, such 
that ),( caIn IIR  holds and an output Oa , such that ),( caOut OOR  holds . 

 
If the input is needed to trigger the action (it is a part of the precondition) and the output is 

obtained upon the action termination (a part of the action postcondition), then we can write 
the following expression for refinement correctness: 

),(),,',(|),,',(),(|,,,', caOutaaaaccccaInacc OOROIXXAOOIXXAIIRIOIXX ∧∃⇒∧∀  

(5.16) 
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Modification of an Action Contract and Action Update Statements 
Let us consider a working object Wa, specified on the state space Σ with an action Aa defined as 

follows: 

);'()',()()()',( XAXXAXAXAXXA
invpostpreinv aaaa

def

a ∧→∧=   

for Aa modeled as a whole we may specify an update statement: )(' XAX
ua= ; 

and a working object Wc, specified on the same state space Σ with an action Ac  defined as follows: 

);'()',()()()',( XAXXAXAXAXXA
invpostpreinv cccc

def

c ∧→∧=  

for Ac modeled as a whole we may specify an update statement: )(' XAX
uc=  

If 
uupostpostprepreinvinv acacacac AAorAAorAAorAA ≠≠≠≠  Wc is a behavioural refinement of Wa 

with the action cA refining the action aA by modifying its contract or update statement. 
 
We specify this form of behavioural refinement using the (m,n)-refinement schema:   

 For actions modeled as a whole: m=n=1;  
 For actions modeled declaratively we use the definition of correct (m,n)- refinement 

preserving the external behavior; 
 For actions modeler imperatively we define the states of interests Σ⊆ΣΣ⊆Σ ac *,*  

and specify a refinement relation },{**:* falsetrueR ca →Σ×Σ  between them. Then 
we use the definition of correct (m,n)- refinement preserving the internal and the 
external behavior. 

 
Definition 5.8.  
Given a refinement relation R, Wc specifies a correct refinement of Wa by modifying its 
action contract and update statement if and only if it can be represented as a correct (m,n)-
refinement from Definition 5.2 or 5.3. 
 
If abstract and concrete actions specify update statements uaA , ucA , then for refinement 

correctness we require that for the post-states ca XX ',' of the abstract and concrete actions the 
following holds:  

))(),((*)','(* cucauaca XAXARXXR =        (5.17) 

Behavioral Refinement Using Transformers 
Another way to define the refinement correctness is to leverage the logic of our reasoning by 
introducing relations of higher order. We can specify the relations between ‘new’ (refined) 
and ‘old’ (initial) invariants, preconditions, postconditions, and update statements as 
predicates of higher order - predicate transformers.    

acu

acinvpostpre

T

TTT

ΦΣΦΣ

ΡΣΡΣ

a

a

:

;:,,
 

Here ΡΣ defines a set of predicates on Σ and ΦΣ defines a set of update functions on Σ .  
For example, using transformers, we write: 
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invinv acinv AAT =)(   

 Where Tinv transforms a predicate 
invcA that specifies the invariant of the concrete action to a 

predicate 
invaA that specifies a corresponding invariant of the abstract action. 

Definition 5.9.  
Given a refinement relation between action preconditions, postconditions, invariants and 

update statements as predicate transformers uinvpostpre TTTT ,,, , Wc specifies a correct 

refinement of Wa by modifying its action contract and update statement if and only if the 
following holds: 

( )

( )
44444444444444 344444444444444 21

4444444444 34444444444 21

a

invpostpreinv

c

invpostpreinv

A

acinvaacpostacpreacinvaa

A

ccccccccc

aaccc

XATXXATXATXATX

XAXXAXAXA

XXX

)')(()',)(())(())((|'

)'()',()()(

|',

∧→∧Σ∈∃

⇒∧→∧

Σ∈∀Σ∈∀
 (5.18) 

For update statements we write: 

ccc

aa

A

cuaa

XXA

XXATXA

u

ua

uu

')(

;')()()(

=

==
321

       (5.19) 

Substituting cX ' and aX ' in Eq.(5.18) with their expressions from (5.19), we write: 

( )
( ))))(()(()))((,)(())(())((

))(())(,()()(

|

acucinvacuccpostacpreacinv

ccccccccccc

aacc

XATATXATXATXATXAT

XAAXAXAXAXA

XX

uinvupostpreinv

uinvupostpreinv

∧→∧

⇒∧→∧

Σ∈∀Σ∈∀
 (5.20) 

Action Decomposition 
Action decomposition typically takes place when the abstract action Aa is specified as a 
whole and its run makes one transition from a pre-state to a post- state, whereas the refined 
action Ac executes multiple component actions and makes n>1 transitions from its pre-state to 
its post-state.  
 

Let us consider a working object Wa, specified on the state space Σ with an action Aa (Fig. 5-

10(a)). This action is defined as follows: 

)'()',()()()',( XAXXAXAXAXXA
invpostpreinv aaaa

def

a ∧→∧=  ;  

We can also specify an update statement as follows: )(' XAX
ua= ; 

A working object Wc is specified on the same state space Σ with an 

action ),...,()',( 1 tc AAXXA ρ= , which is a decomposition of aA with the ordering function ρ 
(Fig. 5-10(b,c)). 
 
If the action is specified declaratively and the component actions are independent (they act on 
the disjoint sets of properties), we formalize the action at Wc as follows: 
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)',(..)',()',( 1 XXAXXAXXA t

def

c ∧∧=   
If the action is specified imperatively:   

)',(..),(|,..,)',( 11111 XXAXXAXXXXA ttt

def

c −− ∧∧∃= ; 
 
To prove that Wc is a correct behavioural refinement of Wa with the action cA refining the 

action aA by decomposition, we use the (m,n)-refinement schema as follows: 
 For actions modeled declaratively, we use the definition of correct (m,n)- refinement 

preserving the external behavior; 
 If the concrete action cA is modeled imperatively, we define the states of interests 

Σ⊆ΣΣ⊆Σ ac *,*  and specify a refinement relation },{**:* falsetrueR ca →Σ×Σ  
between them. Then we use the definition of correct (m,n)- refinement preserving the 
internal and the external behavior. 
The idea is to define the refinement relation R* in a way that intermediate steps of the 
concrete action specification reflect the move from a pre-state to a post-state of the 
abstract specification. We use the definition of correct (m,n)-refinement preserving 
the internal and the external behavior. 

 If the abstract action aA  is modeled as a whole, the states of interest a*Σ include only 

the initial and the final states of aA  : 

 
caja

aj

aajaj

XXXX

XX

';

,*,

10

10

==

Σ∈
         

 

 
Figure 5-10: Behavioral refinement: action decomposition 

 
Definition 5.10.  
Given a refinement relation *R  between the states of interests of abstract and concrete 
specifications, Wc specifies a correct refinement of Wa by action decomposition if and only 
if it can be represented as a correct (m,n)-refinement from Definition 5.2 or 5.3.  
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Definition of a New Action or Action Elimination 
Let us consider a working object Wa, specified on the state space Σ with an 

action ),...,()',( 11 ta AAXXA ρ= , and a working object Wc, specified on the same state space Σ with 

an action ),...,()',( 12 sc AAXXA ρ= , where st ≠ . 

If t>s, then Wc is a behavioural refinement of Wa with the action cA refining the action aA by action 
elimination; 
If t<s, then Wc is a behavioural refinement of Wa with the action cA refining the action aA by new 
action definition. 

 For actions cA and aA modeled declaratively (i.e. intermediate states are not shown), 
we use the definition of correct (m,n)- refinement preserving the external behavior; 

 For actions cA and aA modeler imperatively (with explicitly modeled intermediate 

states and their order), we define the states of interests Σ⊆ΣΣ⊆Σ ac *,* , and specify 

the relation },{**:* falsetrueR ca →Σ×Σ between them.  
Then we use the definition of correct (m,n)- refinement preserving the internal and the 
external behavior. 
 

Definition 5.11.  
Given a refinement relation *R between the states of interests of abstract and concrete 
specifications, Wc specifies a correct refinement of Wa by action elimination or by new 
action definition if and only if it can be represented as a correct (m,n)-refinement from 
Definition 5.2 or 5.3. 

Modification of a component Actions’ Ordering 
Let us consider a working object Wa, specified on the state space Σ with an 

action ),...,()',( 11 ta AAXXA ρ= , and a working object Wc, specified on the same state space Σ with 

an action ),...,()',( 12 tc AAXXA ρ= . 1ρ  and 2ρ  define the order of component action 

invocation in abstract and concrete actions. If 21 ρρ ≠ , then we say that Wc is a behavioural 

refinement of Wa with the action cA refining the action aA by modification of a component 
actions’ ordering. 
 
If 1ρ and/or 2ρ specify a formula, we can convert this formula to an equivalent formula in 
conjunctive normal form (CNF) and obtain the equivalent expression in the transformed state 
space:   

)',(..),(|,..,),...,()',( 1111111 YYBYYBYYAAXXA sss

def

ta −− ∧∧∃== ρ   (5.21) 

)',(..),(|,..,),...,()',( 1111112 ZZCZZCZZAAXXA lll

def

tc −− ∧∧∃== ρ  

For action specifications from Eq. (5.21) we identify the states of interest: yyzz Σ⊆ΣΣ⊆Σ *,* , 

and specify the relation },{**:* falsetrueR zy →Σ×Σ between these states of interest. Then we 

use the definition of correct (m,n)- refinement preserving the internal and the external 
behavior. 
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Definition 5.12.  
Given a refinement relation between transformed state spaces },{**:* falsetrueR zy →Σ×Σ , 

Wc specifies a correct refinement of Wa by modification of a component actions’ ordering 
if and only if it can be represented as a correct (m,n)-refinement from Definition 5.3. 

5.6 Correctness of Organizational Refinement 
 
Organizational refinement defines a relation between the working object seen as a whole and 
the same working object seen as a composite. The specification of a working object as a 
composite shows how the component working objects collaborate to implement the behavior, 
specified for the parent working object as a whole. We identify the following modeling 
activities that result in organizational refinement: 

- Definition of component working objects (working object decomposition) 
- Distribution of properties of the parent working object between its component 

working objects; 
- Definition of a joint action as a collaboration between components and its relations to 

properties of these components (AP-relations); or 
- Definition of a distributed action as collaboration between components and its 

relations to localized actions of these components (DALA-relations). 
 

In this section we formalize correctness for each type of organizational refinement.  

5.6.1 Working Object Decomposition and Property Distribution 
Example 5.1. Figure 5-11 illustrates the organizational refinement, where a working object 
Wa (abstract) is refined by a working object Wc (concrete). Wc represents a decomposition of 
Wa into working objects S1 and S2. Properties P1 and P2 are distributed between component 
working objects.  

A property can be fully delegated to one of the component working objects (the property 
P2 in Fig. 5-11) or shared by several working objects (the property P1 in Fig. 5-11).  
- x, y define multiplicities of properties P1 and P2 in the working object Wa;  
- c1, c2 define multiplicities of component working objects S1 and S2 in Wc; 
- x1, x2, y1 are multiplicities of properties P1 at S1, P1 at S2 and P2 at S2.  

 
The state of the abstract working object Wa is defined by a tuple of state variables: 

)2,..,2,1,..,1( 11
)(

yx
W ppppV a =  and can be calculated as follows: 

)2,..,2,1,..,1( 11

)(

yx

W
a ppppstateX

a = .  

Here p1i and p2i are instances of the corresponding properties; 
The state of the concrete working object Wc is defined by a tuple of state variables:  
 

 
Figure 5-11: Organizational refinement: property distribution. 
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and can be also seen as a tuple of states of component working objects: 
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Considering c1=c2=1, we write an expression for 
)'(W

cX as follows: 

 )2,..,2,1,..,1,1,..,1(),( )2(
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)1(
1

)1(
1
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SS
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SS
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SSSW
c ppppppstateXXX

c == ,  

where ;2,1,1 )2()2()1( S
k

S
j

S
i ppp  are property instances in the component working objects, and 

121 ..1,..1,..1 ykxjxi === .  
 
The organizational refinement illustrated in Fig. 5-11 distributes properties correctly if  
- all instances of the property P2 are delegated to the working object S2 such as 

yyc =⋅ 11 ;  
- instances of the property P1 are shared between component working objects S1 and S2 

(possibly with duplications) such as xxcxc ≥⋅+⋅ 2211 .  
 

Let us consider a working object Wa seen as a whole, specified on the state space aΣ , and a 

working object Wc seen as a composite with component working objects ),..,( 1 sWW . We define the 

multiplicities of each component working object by msm ..1 .  
Wc refines Wa by decomposition and property distribution. 
Given xi  - a number of instances of the property Pi specified in Wa; and jix - a number of 

instances of the property Pi specified in the component working object Wj , we calculate the 
maximum number of instances of property Pi in Wc as  ∑=

j
ijji

W xmPInst )(max
)'( , where mj is 

a number of instances of Wj  in Wc.  
 The state space cΣ of Wc can be seen as a Cartesian product of state spaces of the component 

working objects: wswc Σ××Σ=Σ ..1 .  
  

Definition 5.13.  
Wc specifies a correct refinement of Wa by decomposition and property distribution if and 
only if: 
(1) Each property Pi of Wa is delegated to at least one component working object Wj of Wc; 
(2) The maximum number of instances of property Pi in Wc is greater or equal to the number 

of its instances in Wa: 
 ii

W
i xPInstP c ≥∀ )(| max

)(         (5.22) 
 
A refinement relation R , between the states of working objects Wa and Wc, reflects a 
permutation (and/or duplication) of state variables in )( cWV compared to )( aWV . 
   
NOTE: The decomposition of a working object W into component working objects W1, W2 
with multiplicities m1 and m2 expresses a definition of a working object composition relation 
between W and W1 and between W and W2 with multiplicity expressions m1 and m2 
respectively; 
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5.6.2 Refinement of a Localized action with a Joint action 
Example 5.2. Figure 5-12-a illustrates a specification of a working object Wa as a whole with 

a localized action )',( )()(
a

a WW
XXLA . a

WW
a

a
XX Σ∈)()(

', are states of Wa before and after the 

action. Working object Wc refines Wa by decomposing it into working objects S1 and S2 
(Fig. 5-12-b). c1, c2 define multiplicities of component working objects S1 and S2 in Wc. 
Properties P1 and P2 are distributed between component working objects S1 and S2; the 
configuration of properties is the same as in Example 5.1.  

Working object Wc is specified with a joint action )',( )()(
c

c WW
XXJA .  c

WW
c

c
XX Σ∈)()(

', are 

states of Wc  before and after the joint action. These states can be expressed as following 
tuples: 
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where 
)1(S

iX - is a state of the i-th instance of component working object S1, i=1..c1; 
)2(S

jX - is 
a state of the j-th instance of component working object S2, j=1..c2. 

Wa

Wc

S1_w S2_w

P1
x

P2
y

P1
x1

P2
y1

P1
x2

(a) (b)

LA
LApre

LApost
JA

JApre

JApost

LAinv

JAinv

c1 c2

 
Figure 5-12: Definition of a Joint Action from a Localized Action 

 
Joint action JA modifies the properties of component working objects S1 and S2 to change 
the state of parent working object Wc. In other terms, JA implements the localized action LA 
defined for the working object Wa seen as a whole in Fig. 5-12(a). 

 
Wc correctly refines Wa with the joint action JA as a whole refining the localized action LA as a 
whole if JA preserves the external behavior of the localized action LA.  

If localized and joint actions are modeled as composites, then we may be interested in a 
preservation of the correspondent internal behavior.  
 
We proceed with the following definition of correct organizational refinement: 
 

Let us consider a working object Wa seen as a whole, specified on the state space aΣ with its 

properties P1..Pn and a localized action LA, and a working object cW seen as a composite with 

component working objects sWW ,..,1 . Multiplicity of a component working object Wi in Wc is 

mi, where i=1..s. Wc is specified on the state space cΣ with a joint action JA. cΣ  is a Cartesian 

product of state spaces of the component working objects: wswc Σ××Σ=Σ ..1 .  
 
We denote localized action LA as follows: 
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a
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a
a W
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W

inv

def
WW

XLAXXLAXLAXLAXXLA ∧→∧= (5.23) 
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Here a
WW

a
a

XX Σ∈)()(
', are pre- and post- states of the working object Wa carrying out LA. 

These states can be calculated by assigning values to the tuples of state variables of Wa as  
follows: 
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1
)(

1

)(

mn
W

mn

W

ppstateX

ppstateX

a

a

=

=
         (5.24) 

Where nmnnm PppPpp :,..,;..;:,..,
11 111 . 

 
We denote joint action JA of the refined working object Wc as follows: 
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c
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c
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WW

XJAXXJAXJAXJAXXJA ∧→∧= (5.25) 

Here c
WW

c
c

XX Σ∈)()(
',  pre- and post- states of the refined working object Wc carrying out 

JA.  These states are expressed as tuples: 
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      (5.26) 

)(Wi
jX - is a state of j-th instance of component working object Wi, i=1..s, j=1..mi. 

Wc refines Wa by decomposition, with the joint action JA refining the localized action LA. 
 
We identify the states of interest: ccaa Σ⊆ΣΣ⊆Σ *,* , which include initial states 

)'()(
,

WW
XX  and  terminating states )'()( ',' WW XX  of both actions. Then we specify the relation 

},{**:* falsetrueR ca →Σ×Σ between these states of interest and use the definition of correct 
(m,n)- refinement. First we define refinement the correctness that preserves the external 
behavior: This formalization is applicable when both joint action and localized actions are 
modeled declaratively. We continue defining the refinement correctness that preserves the 
external and internal behavior.  

  
Definition 5.14. [preservation of the external behavior] 
Wc specifies a correct refinement of Wa by decomposition, with joint action JA refining 
localized action LA if and only if  
(1) Wc is a correct refinement of Wa by decomposition and property distribution (Definition 

5.13) 
(2) given a refinement relation },{**:* falsetrueR ca →Σ×Σ between states of abstract and 

concrete specifications, for every run of the joint action JA of Wc, which starts at 

c

Wc
X *

)(
Σ∈  and terminates at c

WcX *' )( Σ∈ , there exists a run LA of Wa, which starts at 

a

Wa
X *

)(
Σ∈  such that: 
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holds, and terminates at a
WaX *' )( Σ∈ , for which 
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We rewrite the expression for correctness of data refinement by forward simulation from Eq. 
(5.3) by using the refinement relation R* defined above and we obtain the expression for 
correct organizational refinement as follows: 
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When both localized and joint actions are specified imperatively, preservation of sequences 
of intermediate states (an internal behavior) might be required.  
 
Definition 5.15. [preservation of the external and the internal behavior] 
Wc specifies a correct refinement of Wa by decomposition, with joint action JA refining 
localized action LA if and only if  
(1) Wc is a correct refinement of Wa by decomposition and property distribution (Definition 

5.13) 
(2) given a refinement relation },{**:* falsetrueR ca →Σ×Σ between the states of abstract 

and concrete specifications,  for every run of the joint action JA defined by the ordered 
sequence of states, including initial and the terminating states:   
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i0  i1  . . . in  is a monotone sequence of natural numbers; there is a run LA of the 
abstract action, also defined by the ordered sequence of states:  
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5.6.3 Refinement of a Localized Action with a Distributed Action  
Example 5.3.  
Figure 5-13(a) illustrates a specification of a working object Wa as a whole with a localized 

action )',( )()(
a

a WW
XXLA ;  

Working object Wc refines Wa by decomposing it into working objects S1 and S2 as specified 
in the previous example. Properties P1 and P2 are distributed between component working 
objects S1 and S2; localized actions LA1 and LA2 are specified for component working 
objects.  

Working object Wc is specified with a distributed action )',( )()(
c

c WW
XXDA .  We denote the 

distributed action as follows: 
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Figure 5-13: Organizational refinement by definition of a distributed action 

 
Distributed action DA binds localized actions LA1 and LA2 of all instances of component 

working objects S1 and S2 in Wc; here )',( )1()1(
1

S
i

S
i XXLA  - is a localized action LA1 

specified for the i-th instance of component working object S1, i =1..c1 .  

c
WW

c
c

XX Σ∈)()(
',  are the initial and final states of the refined working object Wc that 

performs DA. These states are expressed via the states of component working objects as 
explained in the previous example. 
      

LA1 and LA2 modify the properties of corresponding component working objects S1 and 
S2 and change their states. The state of the parent working object Wc  is expressed as a tuple 
of states of its component working objects: 
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where 
)1(S

iX - is a state of the i-th instance of component working object S1, i=1..c1; 
)2(S

jX - is 
a state of the j-th instance of component working object S2, j=1..c2. 

 
In our example, Wa with LA can be considered a specification of a certain behaviour; and 

Wc with DA can be considered as an implementation of this behaviour. Here component 
working objects participate in the distributed action to accomplish the behavior specified by 
the localized action LA. Wc correctly implements Wa if its distributed action DA preserves the 
external behavior of LA (for LA modeled declaratively) or its external and internal behavior 
(for LA modeled imperatively).  
 
We proceed with the following definition of correct organizational refinement: 
 

Let us consider a working object Wa seen as a whole, specified on the state space aΣ  with a 

localized action LA, and a working object cW seen as a composite with component working objects 

sWW ,..,1 . Multiplicity of component working object Wi in Wc is mi, where i=1..s. Wc is 

specified on the state space cΣ with a joint action JA. cΣ  is a Cartesian product of state spaces of the 

component working objects: wswc Σ××Σ=Σ ..1 .  
We specify the localized action LA as follows: 

)'()',()()()',(
)()()()()()()( a

a
aaa

a
a W

inv
WW

post

W

pre

W

inv
WW

XLAXXLAXLAXLAXXLA ∧→∧= (5.29) 

 
We specify distributed action DA of the refined working object Wc that binds the localized 
actions of component working objects: 
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Here c
WW

c
c

XX Σ∈)()(
', are states of the refined working object Wc.  These states are 

expressed as tuples: 
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)(Wi
jX - is a state of j-th instance of component working object Wi;  

)',( )()( ii W
j

W
ji XXLA - is a localized action specified for the j-th instance of component 

working object Wi, i=1..s, j=1..mi.. 
 
Wc refines Wa by decomposition, with the distributed action DA refining the localized action 
LA. 
 
We identify the states of interests: ccaa Σ⊆ΣΣ⊆Σ *,* , which include initial states 

)()(
, ca WW
XX  and  terminating states )()( ',' ca WW XX  of both actions. Then we specify the 

relation },{**:* falsetrueR ca →Σ×Σ between these states of interest and use the definition of 
correct (m,n)- refinement. First we define the refinement correctness that preserves the 
external behavior: This formalization is applicable when the localized action is modeled 
declaratively. Second, we define the refinement correctness that preserves the external and 
internal behavior.  
 
Definition 5.16. [preservation of the external behavior] 
Wc  specifies a correct refinement of Wa by decomposition, with distributed action DA 
refining localized action LA if and only if  
(1) Wc is a correct refinement of Wa by decomposition and property distribution (Definition 

5.13) 
(2) given a refinement relation },{**:* falsetrueR ca →Σ×Σ between states of abstract and 

concrete specifications, for every run of the distributed action DA of Wc, which starts at 

c
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Σ∈  and terminates at c

WcX *' )( Σ∈ , there exists a run LA of Wa, which starts at 
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Σ∈  such that: 
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We rewrite the expression for correctness of data refinement by forward simulation from Eq. 
(5.3) by using the refinement relation R* defined above. We obtain the expression for correct 
organizational refinement as follows: 
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For localized and distributed actions, the modeler might require the imperative preservation 
of sequences of intermediate states (an internal behavior). 
 
Definition 5.17. [preservation of the external and the internal behavior] 
Wc specifies a correct refinement of Wa by decomposition, with distributed action DA 
refining localized action LA if and only if  
(1) Wc is a correct refinement of Wa by decomposition and property distribution (Definition 

5.13) 
(2) given a refinement relation },{**:* falsetrueR ca →Σ×Σ between states of abstract and 

concrete specifications,  for every run of the distributed action DA defined by the ordered 
sequence of states, including initial and the terminating states:   
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Chapter 6   

Analysis of SEAM Specifications using 
Formal Specification Languages 

 
In Chapter 4 we specify the FOL-based semantics for SEAM. In Chapter 5 we formulate 
correctness for different refinement types in SEAM as FOL formulas. The refinement 
verification is reduced to a proof of validity of these formulas.  

The algorithm for refinement verification involves the following steps: 

1. Representation of the abstract specification as an FOL-formula; 
2. Representation of the concrete specification as an FOL-formula;  
3. Definition of a refinement relation between states of the concrete and the abstract 

specifications as an FOL-formula; 
4. Checking that abstract and concrete specifications, as well as the refinement relation, 

are not overconstrained (i.e. there exists an interpretation of their state variables that 
evaluates the corresponding FOL-formula to ‘true’); 

5. Application of (1,1)- or (m,n)-schema for refinement correctness as explained in 
Chapter 5: This means a specification of forward or generalized forward simulation 
between the abstract and the concrete specifications. Refinement correctness is also a 
FOL-formula, which is a combination of formulas from 1-3. 

6. Validation of refinement correctness. 

The validation of an FOL formula can be automated using model checkers and theorem 
provers.  

In this chapter, we define the technique for an automated validation of refinement 
correctness, which is based on two model verification tools: the Alloy Analyzer [3]; and the 
Jahob verification system [63][115]. We apply this technique for refinement verification of 
SEAM specifications. 

The idea behind the automated verification is to translate a SEAM specification to a 
(target) specification language, supported by a verification tool.  

Technically, we automate the steps 1 and 2 from the algorithm above by defining and 
implementing the mapping rules for SEAM specifications to a formal specification language;  

Using the verification tool for the target formal specification language, we automate the 
steps 4 and 6 of the algorithm above. These two steps are reduced to satisfiability and 
validity problems for the corresponding FOL-formulas. These problems can be solved by the 
tool. 

The identification of a refinement type, specification of a refinement relation, and the 
formalisation of the refinement correctness as an FOL-formula (steps 3 and 5 of the 
algorithm above) should be done manually, by a designer. 
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In Section 6.1 of this chapter we provide an overview of the approaches to formal 
verification based on model checking and formal theorem proving. We examine in detail the 
Alloy modeling language and its analyzer, which is an example of a model checker; and the 
Jahob verification system, which is an example of a formal theorem prover. In Section 6.2 we 
present a simple example of SEAM specification. This specification is verified with Alloy 
and Jahob in the following sections: In Section 6.3 we specify a mapping of SEAM to the 
Alloy specification language and illustrate the refinement verification in the Alloy Analyzer 
tool. In Section 6.4 we present a prototype tool for automated mapping of SEAM 
specifications to Alloy. In Section 6.5 we formalize the refinement correctness for SEAM 
specifications as a Jahob formula and illustrate the refinement verification in the Jahob 
verification system.  

6.1 Approaches to Formal Verification  
 
There are two main approaches to formal verification: model checking [20] and a theorem 
proving based on logical inference [47] [64]. When a designer specifies refinement 
correctness, for example, based on simulations from Chapter 5, these approaches verify this 
correctness. Not only refinement correctness, but any other property of a specification can be 
verified. 

Model checking is an approach for verifying requirements and design for a vast class of 
systems, including real-time embedded and safety-critical systems. Model checkers analyze 
system models written in some specification language. The fact that the model satisfies a 
certain property is expressed as a logical formula. Model checkers often use counterexample-
based algorithms to validate the formula. If a counterexample (a set of values of system state 
variables that evaluates the formula to 'false') is found - this formula is invalid. The major 
drawback of the model checking is a state explosion problem, which originates from the fact 
that for real systems the size of the state space grows exponentially with the number of 
processes [21]. To avoid this problem, model checkers validate the formula for the limited 
test spaces. Therefore, the validation result is not universal, and related only to this test space 
of a model checker. The absence of a counterexample does not imply the formula validity in 
model checkers. Some examples of model checkers are: Alloy Analyzer [3], BLAST [52], 
SPIN [54].  

 
The second approach is an automated theorem proving based on logical inference. As in 

the previous approach, to be processed by a theorem prover, system models are written in 
some specification languages; the fact that the model satisfies a certain property is expressed 
as a logical formula. The task is to prove the validity of this formula, deducing it from a set of 
axioms that exist for the underlying logic (e.g. first-, second-, higher-order logic etc), and 
hypotheses made about the system. If the theorem prover manages to construct a proof, then 
the formula is valid. The absence of a proof, dually to model checkers, does not necessarily 
mean that the formula is invalid - due to the complexity of a proving procedure. 

Despite the fact that the automated theorem proving is complex and requires much human 
involvement, compared to the model checking, its application is promising: this approach is 
not limited by the state explosion problem and can handle the infinite number of states. The 
examples of theorem provers for the first-order logic are: [100][99]. The examples of 
theorem provers for the higher-order logic are: [48][74][82]. 

 
To prove desired properties of specifications, or to verify the correctness of their 

refinement, a visual modeling language can benefit from model checkers and automated 
theorem provers. In Chapter 4, we introduce our formal semantics for SEAM visual 



 
 

101 

specifications. Based on these semantics, we specify a mapping of SEAM models to (1) the 
Alloy specification language for the refinement verification with the Alloy Analyzer tool [3], 
(2) the Jahob formulas, written in subset of the Isabelle specification language, or Jahob 
programs for proving the refinement correctness in Jahob verification system. Both the Alloy 
Analyzer and Jahob verification system support the automated specification analysis. 

6.1.1 The Alloy Specification Language and the Alloy Analyzer 
The Alloy Analyzer is a tool for the automated analysis of models written in the Alloy 
specification language [59]. This tool is an example of a model checker.  

Alloy is a declarative specification language developed by the Software Design Group at 
MIT. Alloy is a language for expressing complex structural constraints and behaviour based 
on first-order logic. The syntax of Alloy is similar to the syntax of OCL – the Object 
Constraint Language for UML[76]. However, Alloy is a fully declarative, whereas OCL 
combines both declarative and imperative (operational) elements.  

Unlike a programming language, a declarative Alloy model describes the effect of 
behaviour and does not reveal its mechanism. This modeling technique allows for the 
creating and analysis of partial models and is beneficial when a modeler, for example, has a 
limited knowledge about the system or develops an abstract system specification.  

 
Given a logical formula and a data structure that defines the value domain for this formula, 

the Alloy Analyzer decides whether this formula is satisfiable. Mechanically, the Alloy 
Analyzer   attempts to find a model instance - a binding of the variables to values - that 
makes the formula true. A logical formula may correspond to some property of the modeled 
system or its behavior.  The current version of Alloy Analyzer is based on the new SAT-
based model finder Kodkod [106]. 

Analysis with Alloy 
We model the actions performed by a system as Alloy formulas. The parameters of these 

formulas are values of system state variables before and after the action.  
With the Alloy Analyzer, we can (1) validate that the action specification does not contain 

contradictory constraints (i.e. it is not overconstrained); (2) validate a refinement between 
two specifications: to do so, we specify abstract and concrete action specifications (Aa and Ac) 
and a refinement relation R between their states as Alloy predicates. The fact that Ac 
correctly refines Aa, given a refinement relation R, is expressed in the Alloy specification 
language as an assertion.  

Assertions are proven in Alloy by a counterexample, as follows: An assertion is valid if 
and only if it is satisfiable by every model instance (see Chapter 3 for semantics of FOL). If 
there is at least one model instance that falsifies this assertion, then the assertion is invalid. 
Such an instance is called a counterexample. If the analyzer finds no counterexample, then 
the assertion may be valid. The assertion validity is limited by the test space of model 
instances, considered by the analyzer. 

To prove refinement correctness (i.e. to validate it for all possible model instances), the 
same assertion can be examined by theorem provers. If the proof of validity is constructed 
than the assertion is valid without a limitation. We use the Jahob verification system [63] to 
make a formal proof of refinement correctness. 

6.1.2 The Jahob Verification System 
Jahob is a data structure verification system [63][115]. Jahob combines the techniques from 
static analysis, decision procedures, and theorem proving.  The Jahob system analyzes 
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programs written in a subset of Java and annotated with specification constructs. The main 
idea is to verify that the program is consistent with its specification. 

The input language for Jahob is a subset of Java, extended with annotations. These 
annotations contain formulas written in a subset of higher-order logic (HOL) of the Isabelle 
theorem prover [74][82] and represent a program specification.  

Based on this architecture, a Jahob program can be compiled, tested, and executed using 
existing Java tools; and it can be statically verified to satisfy important data structure 
consistency properties. Jahob reduces the verification problem to deciding on the validity of 
HOL formulas; these formulas are used as an input for the Jahob form decider, which carries 
out the proof of validity (Fig. 6-1). 

Specification constructs in Jahob are written in special comments : /*: this is a special 
comment */. These constructs mainly contain formulas denoting a predicate on a program 
state or a relationship between the current and a previous program state.  

Similarly to a state of a working object in SEAM, the program state in Jahob is specified 
by the values of the program’s variables. Jahob distinguishes two types of program variables: 
Standard Java variables called concrete variables, and variables defined as a part of Jahob 
specification called specification variables. Specification variables do not affect program 
execution and exist for verification purposes. 

To specify a program behavior, Jahob uses procedure contracts [71] that contain: 
• A precondition, stating the state of the procedure upon its invocation; 
• A frame condition, listing the components of state that may be modified by the procedure, 
meaning that the other state components remain unchanged; 
• A postcondition, describing the state of the procedure at the end of its invocation. 
To constrain the data structure of a program, apart from procedure contracts, Jahob can 
specify program invariants.  
 

Given the invariants and procedure contracts, the Jahob system statically analyzes the 
program implementation to ensure that (1) it preserves data structure consistency properties, 
and (2) each procedure conforms to its specification. 

When analyzing a procedure p, Jahob assumes that the precondition of p holds and checks 
that p satisfies its postcondition and the frame condition. Dually, when analyzing a call to 
procedure p, Jahob checks that the precondition of p is satisfied, assuming that the frame 
condition and the postcondition of p hold. 

From Jahob programs, the Jahob verification system first generates logical constraints 
(proof obligations) in higher-order logic and then proves their validity using a form decider. 
Jahob attempts to prove these proof obligations using various specialized reasoning 
procedures. Although some procedures may fail in deciding formula validity, the others may 
succeed.  

Fig. 6-1 illustrates an architecture of the Jahob verification system. This system may 
accept for verification both Jahob specifications (Java programs annotated with Jahob 
expressions) and Jahob formulas (expressions, written in a subset of Isabelle specification 
language). Jahob specifications are first pre-processed and transformed into Jahob formulas. 
Then the formulas are validated by using various decision procedures (e.g. Isabelle, SPASS, 
E, etc). Jahob formulas can be entered for validation directly by using the Jahob formDecider 
tool. 
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(b) Jahob formula

(a) Jahob specification
 

Figure 6-2: Jahob Verification system: (a) a Jahob specification is an input for the Jahob verification 
system. It is a program, written in a subset of Java and annotated with Jahob expressions. This 
specification is transformed later into Jahob formula; (b) a Jahob formula is a ‘ready to prove’ 
expression that is an input for the formDecider 

Analysis with Jahob 
1. The possibility of using directly the Jahob form decider (formDecider) allows us to 

verify a refinement of SEAM specifications without writing Jahob programs, but specifying 
Jahob formulas.  

FormDecider is a command-line tool for proving formulas (Fig. 6.1(b)). We map an FOL 
formula that expresses the refinement correctness for SEAM specifications to a Jahob 
formula and pass the latter to the Jahob formDecider. FormDecider attempts to decide 
formula validity. The result is supposed to approve or refute the result obtained earlier with 
the Alloy Analyzer. 

Technically, we specify Jahob formulas from corresponding formulas in Alloy. The 
mapping between Alloy and Jahob formulas is introduced later in this section. 

 
2. SEAM specifications with explicit update statements can be translated to Jahob 

specifications - Java programs annotated with Jahob expressions – for further verification 
with Jahob verification system (Fig. 6-1(a)). The mapping of SEAM action contracts to Jahob 
specification constructs, and the mapping of SEAM update statements to Java statements are 
two main parts of this approach. The representation of a SEAM specification as a Jahob 
program permits us to formally prove that the action implementation (the update statements) 
is consistent with its specification (the action contract). We expect to develop this approach 
in the future.  

6.2 The 'XYZ' Example 
 
In this section we introduce a simple example and use this example in the following sections 
to specify the mapping rules of SEAM to Alloy and then to Jahob for further verification. 
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Fig. 6-2 illustrates the SEAM specification of a working object M seen as a whole (M_w) 
with three primitive properties X, Y, Z. A localized action doMath of the working object specifies the 
operation on the instances of these properties (integer values). One instance of each property is 
specified in the model: x:X, y:Y, z:Z. This is done using host relations with multiplicity and instance 
expressions.  We define the state of the working object M by a tuple of state variables: ),,( zyxV = ; 
The state is calculated as a binding of these state variables and their values: 

),,( zyxstateX = . 
The localized action doMath (denoted as LAdoMath in Fig. 6-2) is specified with the 
following contract:  
 

)'()'(:

;':

;:

yxzzyxyLAdoMath

xxLAdoMath

trueLAdoMath

post

frame

pre

++=∧+=
=        (6.1) 

 

 
Figure 6-2: Specification of a working object M as a whole, with a localized action doMath (LAdoMath) 
and  three properties: x:X, y:Y, z:Z. A frame condition specifies the variables that rest unchanged after 
the action. 

 
The action specifies a transition from a pre-state X  to a post-state 'X . The pre-state and 

the post-state are defined by values of state variables x, y, z before the action execution and 
after the action termination respectively. We denote this as follows: 

statepostzyxstateX

stateprezyxstateX

−−==

−−==

)',','()z y, x,('

),,()z y, x,(
      (6.2) 

The precondition of this action ‘true’ means that the action is available (i.e. can be 
triggered) at any state of the system.  

The postcondition defines relations between values of x, y and z before and after the 
action. The fact that the value of x is not changed by the action is expressed by a frame 
condition. 

We write the action specification as a formula: 

)'()'()'()',',',,,(

)',(

'

xxyxzzyxytruezyxzyxLAdoMath

XXLAdoMath

XX

def

=∧++=∧+=→=

=

43421321
   (6.3) 

This is equivalent to: )'()'()'()',( xxyxzzyxyXXLAdoMath
def

=∧++=∧+== . 
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Preconditions, postconditions, frame conditions, and invariants (if any) are specified as 
annotations for action-property relations in SEAM specifications. These annotations are 
expressed in a subset of the Alloy language.   

 

6.3 Mapping to Alloy 

6.3.1 Model Elements 
A SEAM working object seen as a whole (Ww) and the properties of this working object Pi  
are represented in Alloy as sets and denoted by signatures.  
 
We specify the working object M_w from our example (Fig. 6-2) in Alloy as: 
 sig M_w{...} 
 
An Alloy signature can be considered as a class in the object-oriented paradigm. 
 

Property instances nmpp ,..,11 are relations of a type iw PW → , having Ww as its domain 

and the set iP  as its range.  The expression Ww.p returns a value from its range P. Alloy 
relations can be seen as analogy of fields in the object-oriented paradigm. 

SEAM uses relations with multiplicities to specify host relations, composition relations 
and property to property (PP-) relations (Section 3.4). These relations are annotated with 
expressions of the form M '|' IM   where M = # | #..#|#..*|*; and IM = <inst.name>[, 
<inst.name>]. 

M is a multiplicity expression; IM – an instance expression. Instance names nmpp ,..,11 , 
define the names of relations in Alloy.  M specifies a number of such relations. Table 6-1 
illustrates the most useful expressions of the form M '|' IM in SEAM and their mapping to 
Alloy [59]: 
 
Table 6-1 

 

Alloy: 

1|a a: one X 

0..1|a a: lone X 

1..3|a,b,c a,b,c: one X 

*|b b: set X 

 
SEAM relations with multiplicities are shown in Fig. 6-3: 
Fig. 6-3(a) illustrates a single instance. We denote it in Alloy as: a: one A  
Fig. 6-3(b) illustrates an unbounded set of undistinguishable instances:   b : set B  
Fig. 6-3(c) illustrates a finite (bounded) set of distinguishable instances:  c1,c2,c3 : one C 
 

 
Figure 6-3: SEAM multiplicities 
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Properties A, B, C in Fig. 6-3 are primitive properties; they specify sets of integers: for 
example, each instance of A has a value that is a relation of type IntA → . In Alloy, we 
specify these properties as follows: 
sig A {value : one Int} 
sig B {value : one Int} 
sig C {value : one Int} 
 

we simplify the notation for primitive properties: 
a : one Int 
b : set Int 
c1,c2,c3 : one Int 
 

We provide a specification for the working object M_w from our example as follows: 
sig M_w{ 
x,y,z: one Int 
} 

 

Client Name
1|n

ID1|id

Address

Street

NPA
1|npa

1|s
1..2|a1,a2

,,,

 
Figure 6-4: SEAM compound property 

 
Example 6.1. Considering a data structure illustrated in Fig. 6-4, we specify compound properties 
Client and Address by the following Alloy signatures: 
sig Client { 
id : one ID, 
n: one Name, 
a1, a2: one Address} 
 
sig Address { 
s : one Street, 
npa : one NPA} 
 

SEAM actions are mapped to Alloy predicates. Action parameters are mapped to the parameters of 
these predicates.  
 
Preconditions, postconditions and invariants of a SEAM action are specified as annotated action to 
property (AP-) relations in SEAM diagrams.  
 
In our example (Fig. 6-2), we obtain the action specification by combining corresponding annotation 
expressions as follows: 

 )',()',()()',( XXLAdoMathXXLAdoMathXLAdoMathXXLAdoMath frame
postpre

def

∧→=  (6.4) 

 
If an action precondition, postcondition, or invariant is specified by several annotated AP-relations in 
the diagram, then the corresponding action condition is represented in Alloy as a conjunction of 
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annotation expressions. If an action precondition is not specified - we consider that this action 
is available at each state of the working object. This can be denoted as : Apre = true.   

 
In Fig. 6-2, two AP-relations are stereotyped with a keyword Post:. Thus, the action postcondition 

is a conjunction of the annotating expressions: LAdoMathpost = (y' = y + x) ∧ (z' = z + (y + x)).  

 
The Alloy specification language is based on first-order logic, which allows us to map the 

action specification from Eq.(6.4) to an Alloy predicate as follows: 
 

pred LAdoMath[x,y,z:one Int, x',y',z':one Int]{ - )',( XXLAdoMath  
//true  =>         - precondition )(XLAdoMathpre

  

 y' = y +  x &&       
 z' = z + ( y +  x) &&  

- postcondition ),( XXLAdoMathpost
  

 x = x'          
} 

- frame condition ),( XXLAdoMathframe  

 

Logical conjunction ''∧ is expressed by the operator 'and' or '&&' in Alloy. Table 6-2 illustrates the 
logical connectives and quantifiers of FOL and correspondent Alloy symbols, used in this work. 
 
Table 6-2 
FOL  Alloy: 

FXaFXaFXaFXa |:|:|:|: 1∃∃¬∃∀  all a:X|F  no a:X|F  some a:X|F  one a:x|F 

∨  ||,or 

⇔↔,  <=> 

→ => 

∧  &&, and 
¬  ! 

:∉∈⊆  in  !in  : 
=  < >  = < > 

 
Successful Action 
With the Alloy Analyzer we can verify the consistency of a SEAM action by checking if this action 
specification is not overconstrained (see Section 5.3). This is done by checking the satisfiability of 
the formula that expresses the successful action in Eq. (5.9).  
 
For the successful action LAdoMath in Fig. 6-2 we write: 

)',()',()( XXLAdoMathXXLAdoMathXLAdoMath frame
postpre ∧∧     (6.5) 

 
The satisfiability of this formula means that there exists at least one binding of the properties 
to values such that the action precondition holds and its postcondition is satisfied. To verify 
satisfiability of Eq.(6.5), we translate this formula to the Alloy predicate and run this 
predicate in the Alloy Analyzer:  
 

Action precondition of LAdoMath in the example is ‘true’ (i.e. it always holds). Thus, 
technically, specification of LAdoMathc and specification of the successful action 
LAdoMath_succ are the same. 
  
We run the predicate in the Alloy Analyzer using the command run with the predicate name and 
other (optional) parameters5:  
                                         
5 See the Alloy Analyzer documentation on http://alloy.mit.edu/ for the details  
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run LAdoMath_succ 

6.3.2 Functional Refinement: from an Action as a Whole to an Action as a 
Composite 

We continue working on the example, presented in Section 6.2 and illustrate the mapping of 
the refined SEAM specification illustrated in Fig. 6-5 to Alloy.  

 
SEAM diagram in Fig. 6-5 specifies the working object M seen as a whole with the 

localized action doMath seen as a composite (LAdoMathc). This specification is a functional 
refinement of the specification presented in Fig. 6-2: The computation presented by action 
LAdoMath in Fig. 6-2 is decomposed into two subcomputations, one modifying the property 
y, and another one modifying the property z. These subcomputations are component 
localized actions LAaddToY1 and LAaddToY1.  

 

 
Figure 6-5: Specification of a working object M as a whole, with a localized action doMath seen as a 
composite. LAdoMathc is modeled declaratively. 
 

First, we consider a declarative specification of LAdoMathc: we do not specify the order of 
component actions and do not show the intermediate states of action execution.  
 

Component actions LAaddToY1 and LAaddToZ1 are independent. Therefore, we write the 
following expression for the localized action doMath seen as a composite from Eq.(4.30): 

)',',',,,()',',',,,(

)',',',,,(_)',(_

11 zyxzyxLAaddToZzyxzyxLAaddToYtrue

zyxzyxdeclarLAdoMathXXdeclarLAdoMath c

def

c

∧→
==    (6.6) 

 
Component localized actions are specified with the following formulas: 

( ) ( )xyyxxtrue

zyxzyxLAaddToY

+=∧=→
=

''

)',',',,,(1          (6.7) 

This is equivalent to: ( ) ( )xyyxxzyxzyxLAaddToY +=∧== '')',',',,,(1  

( ) ( )yxzzxxtrue

zyxzyxLAaddToZ

++=∧=→
=

''

)',',',,,(1         (6.8) 

This is equivalent to: ( ) ( )yxzzxxzyxzyxLAaddToZ ++=∧== '')',',',,,(1  
 
Preconditions for both component actions of LAdoMathc are 'true'.  
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Similarly to LAdoMath seen as a whole, we map LAdoMathc and its component actions to 
Alloy predicates: 
pred LAdoMath_c_declar[x, y, z, x', y', z': one Int ]{ 
//true => 
LAaddToY1[x, y, z, x', y', z' ] && 
LAaddToZ1[x, y, z, x', y', z' ]  
} 
 
pred LAaddToY1[x, y, z, x', y', z': one Int ]{ 
  x'=  x &&  
  y' =  y + x   
} 
 
pred LAaddToZ1[x, y, z, x', y', z': one Int]{ 
  x'= x  && 
  z'= z + x + y } 

 
NOTE: Despite the fact that the action LAaddToY1 does not change the value of z, and the 
action LAaddToZ1 does not change the value of y - we do not specify this as a frame 
condition. The declarative specification Eq.(6.6) specifies two actions LAaddToY1 and 
LAaddToZ1 executed within one state transition, where both z and y are changed. Therefore, a 
frame condition would lead here to the action inconsistency.  

The imperative specification of LAdoMathc is illustrated in Fig. 6-6. The SEAM diagram 
specifies the order of component actions - the control flow- using SEAM action-action (AA) 
relations. In our example actions are composed sequentially, using SEAM transition (see 
Section 4.3). 

  

M_w
Y

<Int>

1|y

X
<Int>

1|x

LAdoMath_c

Post: x’=x

Z
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1|z
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Post: y’=y Post: z’= z+y+x

Post: x’=x

Action 
contract

(a) (b)
Figure 6-6: Specification of a working object M as a whole, with a localized action doMath seen as a 

composite. LAdoMath_c is modeled imperatively, with an intermediate state ),,( tttt zzxstateX = . 

Local variables ttt zzx ,, specify the intermediate state of the action as a composite. a) Local variables are 

emphasized; b) action contract is emphasized. 
 

SEAM defines several types of AA-relations: Start, End, Transition, Conditional transition, Fork 
(AND, OR, XOR), Merge (AND, OR, XOR). In Section 4.3.6 we have introduced the FOL 
semantics of these relations. In Table 6-3 we present the semantics of these relations in Alloy. 
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Table 6-3 
SEAM Alloy: 
Start(A1) A1(x,x1) 
End(A1) A1(x1,x') 
Transition(A1,A2) A1(x1,x2) && A2(x2,x3) 
ConditionalTransition (A1,A2,C) A1(x1,x2) && C => A2(x2,x3) 
ConditionalTransition (A1,{A2,A3},C) A1(x1,x2) && C => A2(x2,x3) else A3(x2,x4) 
AndFork(A1,{A2,A3}) A1(x1,x2) && (A2(x2,x3) && A3(x2,x4)) 

AndMerge({A1,A2},A3) (A1(x1,x3) && A2(x2,x3)) && A3(x3,x4) 
OrFork(A1,{A2,A3}) (A1(x1,x2) && A2(x2,x4)) ||  

(A1(x1,x3) && A3(x3,x5)) ||  
(A1(x1,x6) && A2(x6,x7) && A3(x6,x8)) 

OrMerge({A1,A2},A3) (A1(x1,x3) && A3(x3,x5)) ||  
(A2(x2,x4) && A3(x4,x6)) ||  
(A1(x1,x7) && A2(x2,x7) && A3(x7,x8)) 

XOrFork (A1,{A2,A3}) (A1(x1,x2) && !A3pre(x2) && A2(x2,x4)) ||  
(A1(x1,x2) && !A2pre(x2) && A3(x2,x4)) 

XOrMerge({A1,A2},A3) (A1(x1,x2) && A3(x2,x5) && !A3pre(x4)) ||  
(A2(x3,x4) && A3(x4,x6) && !A3pre(x2)) 

 
The action LAaddToY2 seen as a whole specifies a transition of a working object M from a 

pre-state X to an intermediate state tX . We write: 

),,()z y, x,( tttt zyxstateX ==  - intermediate state     (6.9) 

Here ),,( ttt zyx is a tuple of values of state variables x, y, z ‘in the middle of’ the action 
execution (Fig.6-6).  

The action LAaddToZ2 seen as a whole specifies a transition of a working object M from 

tX  to a post- state 'X . We write the following expression for the action LAdoMathc: 

)',',',,,(),,,,,(

|:,:,:

)',',',,,(_

22 zyxzyxLAaddToZzyxzyxLAaddToY

ZzYyXxtrue

zyxzyximperLAdoMath

tttttt

ttt

def

c

∧
∃→

=
   (6.10)  

 
Component localized actions are specified with the following formulas: 

( ) ( ) ( )zzxyyxxtrue

zyxzyxLAaddToY

=∧+=∧=→
=

'''

)',',',,,(2        (6.11) 

 

( ) ( ) ( )xyzzyyxxtrue

zyxzyxLAaddToZ

++=∧=∧=→
=

'''

)',',',,,(2       (6.12) 

 
NOTE: The specifications of component localized actions in Eq. (6.10), (6.11) are different 
from those in Eq. (6.7), (6.8): In Eq. (6.11), (6.12) we specify the frame conditions on the 
variables z and y.  
 

We map LAdoMathc and its component actions to Alloy: 
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pred LAdoMath_c_imper[x, y, z, x', y', z': one Int ]{ 
//t - local time  
//true  => 
(  some x_t, y_t, z_t : Int | 
LAaddToY2[x, y, z, x_t, y_t, z_t ] && 
LAaddToZ2[x_t, y_t, z_t, x', y', z' ]) 
} 
pred LAaddToY2[x, y, z, x', y', z': one Int ]{ 
  x'=  x && 
  z'=  z &&   
  y'=  y + x  
} 
pred LAaddToZ2[x, y, z, x', y', z': one Int ]{ 
  x'= x && 
  y'= y && 
  z'= z + x + y 
} 

 
The imperative and declarative specifications of localized action doMath, seen as a 
composite, are related. The imperative specification refines the declarative specification as it 
reduces nondeterminism. We can check the refinement between these specifications. We call 
the declarative specification ‘abstract’ and the imperative specification ‘concrete’ and specify 
the refinement relation between abstract and concrete states ),( ac XXR . We express the 
refinement correctness as the following Alloy assertion: 
 
assert Declar_Imper{ 
all xc, yc, zc, x'c, y'c, z'c, xa, ya, za: one Int |  
(LAdoMath_c_imper[xc, yc, zc, x'c, y'c, z'c ] &&  
(xa = xc) && (ya = yc) && (za = zc))=>                         //R(Xc,Xa) 
(some x'a, y'a, z'a: Int |  
LAdoMath_c_declar[xa, ya, za, x'a, y'a, z'a ] &&  
(x'a = x'c) && (y'a = y'c) && (z'a = z'c) )                   //R(X’c, X’a) 
} 

The Alloy Analyzer validates this assertion using a counterexample-based algorithm; it 
explores a limited test state space and looks for an example that invalidates the assertion. Not 
discovering such a counterexample, it concludes that the assertion may be valid. 

Refinement Verification 
We formalize the refinement correctness for the working object M performing action 

LAdoMathc (the concrete specification) refining the working object M performing action 
LAdoMath seen as a whole (the abstract specification). LAdoMathc is a functional refinement 
by action decomposition of the action LAdoMath. The correctness of this refinement is 
formulated in Definition 5.10. As we do not introduce new properties, the state spaces of the 
abstract and the concrete specifications are the same, and the refinement relation between 
these state spaces is an identity function. We specify the refinement relation with the 
following Alloy predicate:  
 
pred R_LAC_to_LAW[xc, yc, zc,  xa, ya, za: one Int ]{ 
    ( xc = xa)  && 
    ( zc = za)  &&  
    ( yc = ya)  
} 

Here the tuple (xc,yc,zc) specifies a state of the concrete specification, and a tuple (xa,ya,za) 
specifies a state of the abstract specification. 
We specify the criterion of refinement correctness from Definition 5.10 with the following 
assertion in Alloy: 
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assert LAW_LAC{ 
    all xa, ya, za, xc, yc, zc, xc', yc', zc': Int |  
    (LAdoMath_c_imper[xc, yc, zc, xc', yc', zc'] &&  
    R_LAC_to_LAW[xc, yc, zc, xa, ya, za] ) => 
 
    (some xa', ya', za' : Int |  
    LAdoMath_w_declar[xa, ya, za, xa', ya', za']&& 
    R_LAC_to_LAW[xc', yc', zc', xa', ya', za']) 
 } 
check LAW_LAC 

 
The localized action seen as a whole does not specify the intermediate states, therefore we 
verify only the correspondence of external behavior of LAdoMath and LAdoMathc. 

We check the validity of this assertion in the Alloy Analyzer using the command check 
with the assertion name and other (optional) parameters6:  
 
check LAW_LAC 

6.3.3 Organizational Refinement: from a Working Object as a Whole to a 
Working Object as a Composite 

Fig 6-7 illustrates the working object M seen as a composite (Mc). For Mc we specify 
component working objects A and B and a joint action doMath (denoted: JAdoMath) that 
represents collaboration between these component working objects.  

 
 

Figure 6-7: Specification of a working object M as a composite (denoted Mc) with a joint action doMath 
(denoted JAdoMath) seen as a whole. A and B are component working objects of M. 
 

The properties of M are distributed between A and B such that X and Y are presented in 
both A and B (duplicated), and Z is ‘fully delegated’ to A.  

 
The specifications of component working objects A, B, and their parent working object Mc 

are mapped to Alloy as follows: 

                                         
6 See the Alloy Analyzer documentation on http://alloy.mit.edu/ for the details  
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1. Component working objects are mapped to Alloy signatures. Host relations of 
component working objects specify relations between working objects and properties. 
These relations are annotated with multiplicity/instance expressions of a form M'|'IM. We 
map these relations to the fields of an Alloy signature as specified in Table 6-1: 
 

sig A{ 
Ax,Ay,Az: one Int 
} 
sig B{ 
Bx,By: one Int} 

 
2. Parent working object Mc is mapped to Alloy signature M_c. WO composition relations 

of Mc specify relations between this working object and its component working objects. 
These relations are annotated with multiplicity/instance expressions of a form M'|'IM. We 
map these relations to the fields of an Alloy signature as specified in Table 6-1: 

 
sig M_c{ 
a: one A, 
b: one B 
} 
 
Mc is the organizational refinement of Mw, with JAdoMath refining LAdoMath.  

We can show that Mc correctly refines Mw by decomposition and property distribution by 
Definition 5.13:  
All properties of Mc are delegated to component working objects. Based on Eq. (5.22) we 
write: 
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       (6.13) 

 
Figure 6-7 presents a declarative specification of JAdoMath: We do not specify in which 

order the properties of component working objects are modified and do not show the 
intermediate states of action execution. We define shared properties shared_x:X, shared_y:Y 
for the working object to maintain the common knowledge of Mc.  

The state of the working object Mc is represented by a tuple of states of its component 

working objects: ),(
)()()( BAM

XXX c = , where each component working object is 
characterised by its state variables, and 
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State variables of A and B are disjoint. To distinguish them, we use prefixes as follows: 

( )
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;,,
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B

A

=

=
        (6.14) 

 
We write the following expression for the joint action doMath: 
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 (6.15) 

 
We map this formula to the Alloy predicate as follows: 
pred JAdoMath_w_declar[Ax, Ay, Az, Ax', Ay', Az', Bx, By, Bx', By': one Int]{ 
//true  => 
 Ax'=  Ax &&  
 Bx'=  Bx  && 
 By'=  By + Bx &&  
 Az'=  Az +  Ax + Ay && 
some shared_x, shared_y: Int | 
(shared_x = Ax &&  
Bx = shared_x && 
shared_y = Ay' && 
shared_y= By' )} 

Refinement Verification 
We formalize the refinement correctness for the working object Mc with the action 

JAdoMath (the concrete specification) refining the working object Mw with the action 
LAdoMath (the abstract specification). By Definition 5.14, this is an organizational 
refinement by decomposition, with a joint action refining a localized action. We specify the 
refinement relation between state spaces with the following Alloy predicate:  
 
pred R_JA_to_LA[Ax_t, Ay_t, Az_t, Bx_t, By_t: one Int,  // model concrete 
                    xa_t, ya_t, za_t : one Int ] // model abstract 
{ 
    ( Ax_t=  xa_t)  && 
    ( Az_t=  za_t)  &&  
    ( Ay_t=  ya_t)  
} 

Here (Ax,Ay,Az,Bx,By) is a tuple of state variables of the working object Mc, and  
(xa,ya,za) is a tuple of state variables of the working object Mw (‘a’ – for ‘abstract’). We 
specify the formula for correct refinement with the Alloy assertion and check this assertion in 
the Alloy Analyzer. 

 
assert LA_JA{  
    all Ax, Ay, Az, Ax', Ay', Az', Bx, By, Bx', By': Int ,  xa, ya, za: Int |  
   (JAdoMath_w_declar[Ax, Ay, Az, Ax', Ay', Az', Bx, By, Bx', By'] &&  
    R_JA_to_LA[Ax, Ay, Az, Bx, By,xa, ya, za] ) => 
 
    (some xa', ya', za': Int |  
    R_JA_to_LA[Ax', Ay', Az', Bx', By', xa', ya', za'] &&  
    LAdoMath_w[xa, ya, za, xa', ya', za'] ) 
 }  
check LA_JA 

 
The joint action seen as a whole does not specify the intermediate states, therefore we 

verify only the correspondence of external behavior of JAdoMath and LAdoMath. In 
Appendix A, we provide a listing of Alloy specifications for the ‘XYZ’ example. This listing 
contains other simple refinement verification exercises and comments on them.   
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6.4 Automated SEAM to Alloy Translation 
 
We explore the possibility of automating the translation of SEAM specifications to Alloy and 
we build a technique based on XSLT[105] transformation. This technique is illustrated in Fig. 
6-8.  
 

 
Figure 6-8: Automated SEAM to Alloy transformation. 

 
Based on the SEAM metamodel from Chapter 3, we create the Simple Seam Editor - a EMF-
based Eclipse application [39] that simulates a back-end of a tool for SEAM graphical 
modeling7. This application allows for creating SEAM hierarchical models using textual 
interface, and stores them in XML format.  

Figure 6-9 illustrates the interface of the Simple Seam Editor.  On the left pane, a SEAM 
model is created using a hierarchical tree-structure. 
 

 
Figure 6-9: A screenshot of the Simple Seam Editor application 

 

                                         
7 Currently, an official tool for SEAM visual modeling - SeamCAD tool [66] - is under development. The 
metamodel, presented in this work, and some important elements, required for the model analysis, are not yet 
adopted by this tool. Due to this limitation, the application, simulating a tool back-end, was created. 
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The root object is a model that contains one working object that represents a system. Using a 
contextual menu, new sibling and/or child elements can be added to a current element. This is 
defined by a SEAM metamodel. On the bottom of the screen, element properties are listed in 
the property pane. These properties (e.g. name, parent element, condition expression, etc.) are 
also specified for each element based on the SEAM metamodel. Values of these properties 
are defined by a designer. 

Figure 6-10 shows the model pane in detail and illustrates how the model of the XYZ 
example from Section 6.2 corresponds to the SEAM graphical specification of this example. 

 
The second part of the automated translation is an XSLT script that transforms XML files, 

created in the Simple Seam Editor into Alloy specifications.  
The XSLT transformation of the SEAM model stored as an XML file, results in a 

formatted textual file that can be stored as *.als (native file type for Alloy) and opened in the 
Alloy Analyzer. This file contains a data structure and a specification of SEAM actions, 
extracted from SEAM working object specification and mapped to Alloy as it is specified in 
the Section 6.3. 
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 Figure 6-10: A model pane of the Simple Seam Editor application 
 

Refinement relations and assertions for refinement verification should be provided 
manually: the specification of a refinement relation between models is a designer's choice. To 
simplify this task, we consider an implementation of automated alignment assistant – a 
supplementary function of the SEAM modeling tool SeamCAD [66] - as a part of our future 
work. This assistant will identify a refinement type based on designer's activities and will 
help the modeler to define the refinement relations and refinement verification procedures.  

 
By providing an automated mapping of a SEAM specification to Alloy, we facilitate the 

analysis process; though, understanding of the Alloy model by a designer remains 
indispensable for interpreting results of this analysis. Verification in Alloy, if successful, 
approves the correctness of the design process; however, when it fails - the designer has no 
further support from the tool to find out the reason of the failure. The lack of interpretation of 
the verification result is one of the main drawbacks of this method.  
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 Figure 6-11: A screenshot of an XSLT transformation of a SEAM model to Alloy under Eclipse. 
  
Figure 6-11 illustrates an XML file, representing a SEAM model before the processing, 

the XSL script for processing, and a resulting Alloy file. The Alloy plug-in under Eclipse 
allows us to make all the steps - a model creation, its transformation, and analysis - in the 
common Eclipse environment. 

6.5 Mapping to Jahob 
 
We specify two approaches to a formal verification of SEAM specifications by using the Jahob 
verification system: The first approach uses the Jahob formDecider to validate formulas for 
refinement correctness; the second approach aims at verification of consistency of SEAM 
specifications.  

In the first approach, a Jahob formula that expresses the refinement correctness is written based on 
SEAM action specifications. This formula can also be generated from the Alloy code. We validate the 
obtained Jahob formula with the Jahob form decider (Fig. 6-1(b)).  

The second approach is based on the mapping of SEAM specifications to Jahob programs. Jahob 
programs are further converted to Jahob formulas to be used with the formDecider (Fig. 6-1(a)).  

6.5.1 From an Alloy Specification to a Jahob Formula 
Jahob formulas use Isabelle notation as a semantic and syntactic basis. In this section we explain how 
a Jahob formula can be generated from the Alloy code and illustrate this with XYZ example. 

Jahob Formula as a Lambda-expression 
A Jahob formula consists of two parts: the first part contains the definitions of SEAM abstract and 

concrete actions Aa, Ac, and a refinement relation R; the second part states the refinement correctness, 
expressed using the definitions from the first part. Jahob formula is a lambda expression of lambda 
calculus [9]. A recursive definition of a lambda expression is the following: 
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expression = name | lambda-function | function application 
name = function name | variable name 
lambda-function = λ name . expression 
function application = expression expression 
 
In a Jahob formula, SEAM actions and a refinement relation are formulated as lambda functions. 

For example, for a SEAM action A, expressed as a FOL formula )',()()',( xxAxAxxA postpre →= , 

where x and x’ are values of state variables before and after the action, we can write the following 
lambda function: 

 )',()(. xxAxAxyA postpre →= λ         (6.16) 

Here preA and postA  can also be lambda functions. 

To formulate the refinement correctness, we define (1) the abstract action specification Aa, (2) the 
concrete action specification Ac, and (3) the refinement relation R between the abstract and the 
concrete specifications as lambda-functions. We connect these functions as follows: 

[ ]scorrectnesrefinementRAA ca →=∧=∧= ...)(...)(...)( λλλ    (6.17) 
The refinement correctness follows from the conjunction of lambda-functions. Refinement 

correctness can be written using the expressions defined in sections 5.5 and 5.6. Some modifications 
of syntax, compared to definitions in Chapter 5, are required: 

- symbol ‘|’ is replaced by ‘.’;  
- an application of a FOL formula or predicate is written: A(x1, x2,…, xn); application of a 

corresponding lambda functions is written: A(x1) (x2)… (xn) or A x1 x2… xn. 
 

We write a lambda expression for a SEAM specification W’ with concrete action Ac correctly refines 
the specification W with abstract action Aa given a refinement relation R, as follows: 

( ) ( )( ))')('()')((.'))(()')((.' caaaaacacccacc

defdef
c

def
a

XXRXXAXXXRXXAXXX

RAA

∧∃→∧∀

→∧∧
(6.18) 

In Eq.(6.16) defdef
c

def
a RAA ,, are definitions of corresponding lambda-functions. 

Using the syntax of Jahob formulas, we write: 
Aa & Ac & R --> (ALL Xc Xc_,Xa . (Ac(Xc)(Xc_) & R(Xa)(Xc) & R(Xa)(Xc_)) -->  
EX Xa_ . Aa(Xa)(Xa_)& R(Xa)(Xc_)) 
 
Note that the syntax of Jahob does not accept “ ‘ ” symbol in a variable name. We replace it by “p” 
(which stands for ‘post’).  
 
From an Alloy specification to a Jahob formula  
Table 6-4 illustrates the correspondence between the Alloy syntax and the syntax of Jahob formulas.  
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Table 6-4 
Alloy Jahob formula 
x‘ Xp 
//comment text  (* comment text *) 
pred A [x, y, z, x’, y’, z’: one Int ]{..} 
//predicate specification 

A = (% x y z xp yp zp .  .... ) 
(*lambda function specification *) 

A[x,y] //predicate call A(x) (y) (*lambda function call *) 
=> --> 
&& & 
All ALL 
Some EX 

 
In Alloy, we separately specify the predicates for abstract and concrete action specifications, plus 

the predicate that expresses a refinement relation between them. Then we express the refinement 
correctness as an assertion: 

pred Aa [x, x’: one Int ]{..} 
pred Ac [y, y’: one Int ]{..} 
pred R [x, y: one Int ]{..} 
assert A2_refines_A1{all x,y,y’ | R(x,y)&& A2(y,y’) => A1(x,x’)&& R(x’,y’)} 

 
An analogous Jahob formula starts with a conjunction of lambda function definitions, which 

specify SEAM actions and a refinement relation.  These definitions are followed by an expression of a 
correct refinement: 
Aa = (% x xp.  .... )) &   //function definition (abstract action) 
Ac = (% y yp.  .... )) & //function definition (concrete action) 
(R = (% x y. .... )) -->  //function definition (refinement relation) 
ALL x y yp. Ac(y)(yp) & R (x)(y) -->  
EX xp. Aa(x)(xp) & R (xp) (yp)) //function application (correctness) 
 

The XYZ Example in Jahob 
We map the Alloy code for XYZ example to Jahob formulas by using the rules for specification of 
lambda expressions and the syntax correspondence from Table 6-4.  Than validate these formulas 
with the Jahob form decider. The code below illustrates the mapping of the Alloy predicate for the 
localized action doMath seen as a whole to the lambda function: 
 
Alloy Predicate LAdoMath: Lambda function LAdoMath: 

pred LAdoMath[x,y,z:one Int, x',y',z':one Int]{  

 y' = y +  x &&     
 z' = z + ( y +  x) &&  
 x = x'          
} 

(LAdoMath = (%  x y z xp yp zp. 
 
yp = x + y & 
zp = z +  (y + x) &   
xp = x)) 

 
In Section 6.3.2 the functional refinement for XYZ example is specified in Alloy. We consider the 

localized action doMath (Fig. 6-2) an abstract action, and the localized action doMathc modeled 
imperatively (Fig.6-6) – a concrete action.  

The listing below specifies the Jahob formula that expresses refinement correctness between the 
abstract and the concrete actions: 
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File: final_law_laci.form 

(* action LAdoMath_w *) 
(ActionAbstract = (%  x y z xp yp zp. 
 
yp = x + y & 
zp = z +  (y + x) &   
xp = x)) & 
 

- Localized action as a whole; 

(* component actions *) 
(LAaddToY2 = (% x y z xp yp zp. 
xp =  x & 
zp =  z &   
yp =  y + x )) &  
 
(LAaddToZ2 = (% x y z xp yp zp. 
xp = x & 
yp = y & 
zp = z + x + y ))& 
         

- Component localized actions 

(* LAdoMath_composite - imperative *) 
(ActionConcrete = ( % x y z xp yp zp. 
EX x_t, y_t, z_t. 
LAaddToY2 x y z x_t y_t z_t & 
LAaddToZ2 x_t y_t z_t xp yp zp ))& 
 

- Localized action as a composite; 
 
 
- Application of component actions 

(*Refinement verification*) 
(* refinement relation *)  
(RefinementRelation = (% xc_t yc_t zc_t 
xa_t ya_t za_t.  
 xc_t =  xa_t & 
 zc_t =  za_t &  
 yc_t =  ya_t )) -->  
 

- Refinement relation 

(*assert LAW_LAC *) 
((ALL xa ya za xc yc zc xcp ycp zcp.  
(ActionConcrete xc yc zc xcp ycp zcp &  
 RefinementRelation xc yc zc xa ya za) --> 
(EX xap  yap  zap. 
 ActionAbstract xa ya za xap yap zap & 
 RefinementRelation xcp ycp zcp xap yap 
zap)) 

- Refinement correctness 
 

- Application of functions defined above in the form: 
( )

)','()',(|'

)',(),(|,',

acaaaaa

cccacaaccc

XXRXXAX

XXAXXRXXX

∧Σ∈∃

⇒∧Σ∈Σ∈∀

 

 
The values of  xa, ya, za and xap, yap, zap  define the pre-state and the post-state of the abstract 
action; The values of  xc, yc, zc and xcp, ycp, zcp  define the pre-state and the post-state of the 
concrete action.  

This formula is used for a verification of functional refinement with the Jahob form decider. Jahob 
formulas are stored in a textual file *.form. To verify the formula, the Jahob form decider is called: 

~/Alloy-Jahob$ ../jahob/bin/formDecider.opt final_law_laci.form -usedp e isa z3 
The command –usedp followed by a list of parameters specifies the decision procedures that will 

be used to prove the formula. 
Executing the command above with specified decision procedures we obtain the formula validity 

proven by E: 
 
================================================================= 
E proved 1 out of 1 sequents. Total time : 0.1 s 
================================================================= 
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In Appendix B, we provide listings of several Jahob formulas that are used to verify 
refinement in the XYZ example. These formulas are obtained from the corresponding Alloy 
code in Appendix A. All the results obtained with Alloy Analyzer, are confirmed by Jahob. 

6.5.2 From a SEAM Specification to a Jahob Program 
We specify SEAM actions as untyped lambda functions. The verification of complex data types is 
possible with the Jahob verification system by specifying a Jahob program.  
 

An approach, where SEAM specifications with explicit update statements are translated to 
Java programs annotated with Jahob specification constructs and verified using Jahob 
verification system, is a part of our future work. There are two main tasks to anticipate: 

- A mapping of SEAM action contracts (FOL formulas) to Jahob specification 
constructs;  

- A mapping of SEAM update statements to Java statements. 
At the time of this writing, a student project on the translation of SEAM specifications 

with explicitly modeled update statements into a subset of Java has been completed [tbd]. 
This project is resulted in a prototype tool for the automated SEAM to Java translation. This 
tool is developed on the platform of ATL (Atlas Model Transformation) tool [55].  

A representation of a SEAM specification as a Java program permits us to simulate this 
specification on the Java platform. A representation of SEAM specification as a Jahob 
program will enable us to formally prove that the action implementation (the update 
statements) is consistent with its specification (the action contract). 

 
For the moment, we do not have a theory to interpret the verification results and to provide the 

recommendations on specification improvement for designers. We address this topic in our future 
work. 
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Chapter 7   

Practical Impact: Application of the 
Developed Theory in Practice 
 
In this chapter we focus on the practical contribution of this thesis. We illustrate our 
technique of refinement verification presented in the previous chapter with two examples: 
 

The On-LineBook Store example shows different customizations and designs of the book 
store sale process. The verification of developed business process specifications against each 
other, or against a higher level specification, guarantees that all specifications are 
behaviorally compatible and correspond to the same strategic goal of the company. This 
example is presented in Section 7.1; 

The Gas Incident Service case study shows a service specification at one level and its 
planned implementation by a group of IT applications on the other.  A formal verification of 
a service specification against its planned implementation serves as a proof that the service is 
implemented correctly. This example is presented in Section 7.2; 

In both cases the problem is reduced to a verification of refinement between two 
specifications and solved using the algorithm defined in Chapter 6: We provide the SEAM 
diagrams, the Alloy specifications obtained from these diagrams, and we illustrate the 
refinement verification with the Alloy Analyzer.  

In Section 7.3 we present results of the inquiry conducted among practitioners. We 
discussed the research results of this dissertation with experts who meet the problem of 
Business/IT alignment in practice. This inquiry provided us with valuable feedback and 
helped us to prioritize the directions of our research in future. 

 

7.1 High-Level Design and Analysis of Business Processes: The On-Line 
Book Store Example 

Problem description: 

Aligning business processes with business strategy is an important preoccupation in modern 
organizations. This alignment is made simpler if an adequate level of abstraction for business 
process representation is used.   A business process can be defined as “a set of partially 
ordered activities aimed at reaching a well-defined goal.” [61]. The keyword partial alludes 
to the problem of defining, ahead of time, the exact order in which the activities will be 
executed. Indeed a business process may be subjected to many conditions in which this order 
cannot be identified at design time. The exact sequence of activities is therefore quite 
impossible to predict [61]. Even a simple sale process has been shown to incorporate optional 
execution orders depending on, among other aspects, cultural and legal considerations [90]. 
The example given in [90] describes an on-line book store that needs to adapt its sale process 
to local customs in different countries. The sequence of execution between payment and 
order fulfilment needs to be adapted to different local preferences. In the United States for 
example, payment by credit card is most often required before goods are shipped. In some 
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European countries, e.g. Switzerland, customers are used to paying for goods after they have 
been received. 

Organizations have a marked tendency to limit their interpretations of their environment 
[109]. These interpretations constrain their business processes at the early phases of their 
design [73]. Modeling techniques, such as BPMN [78] and use cases [58], also encourage 
modeling details at an early stage. As a result, in many cases, an organization will commit to 
one of the execution paths (e.g. paying before sending the goods) and later, handle the second 
one (sending the goods before receiving the payment) as an exception.  The number of 
exceptions, however, often results in tangled processes containing many exceptions. This has 
two related consequences. First of all, the alignment between the strategy of the organization 
(i.e. selling on-line) and its detailed business processes is not apparent. Second, the flexibility 
of the processes themselves [91] is limited because they become difficult to manage and 
change. 

We propose a technique that complements imperative business process specifications with 
declarative specifications. This declarative specification enables designers to describe the 
actions that a business process needs to contain, but not their sequence. It omits the 
specification of the control flow between the actions thus keeping the process design 
independent from constraints imposed by an environment in which this process will be 
implemented. The control flow, often specific to a given environment, is later modeled in an 
imperative specification. Our technique includes checking the conformance of the imperative 
and the declarative specifications. 

Our technique can improve the alignment of the business process with the business 
strategy of an organization by giving a synthesis of a set of business processes (abstracting 
the control flow) and maintain a rigorous relationship with the detailed process. Flexibility 
may also be enhanced because alternative paths are modeled as separate business processes 
conforming to an overall process, thereby helping organizations to tailor them to different 
environments without losing the overall view. 

We illustrate our technique with the example of an On-Line Book Store: The company 
wants to design a global view on its sale process in order to maintain the alignment between 
the different customizations of this process for different countries and to simplify the design 
of these customizations.  We illustrate a business process redesign task using the same 
example and show how declarative specifications help designers to understand the relation 
between the redesigned process and the initial one.    

We formalize the concepts of the SEAM modeling language using first-order logic with 
the Alloy specification language [59]. This enables us to check our models using the Alloy 
Analyzer [3].  

 

7.1.1 A Business Process Specification in SEAM  
A SEAM working object, as a composite, specifies a distributed action (DA) between 
components of the working object (Chapter 3). The distributed action can be considered as a 
declarative specification of a business process within a working object. It defines the actions 
to be performed by component working objects, but does not prescribe the order in which 
these actions will be performed. Many execution paths are valid for a given distributed 
action. The selection of one of them is the business process designer’s choice. When a 
designer commits to a concrete control flow, the specification is no longer declarative; it is 
transformed into a traditional imperative business process model. We call it a customization.  
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7.1.2 Example: A Sale Process for the On-Line Book Store  
In this section we illustrate the declarative business process specifications with the example 
of a sale process for an On-Line Book Store. We also clarify the relationships between these 
declarative specifications and traditional imperative business process models.  

 
 The On-Line Book Store Description 

The On-Line Book Store (BS) is a company that collaborates with a publisher (P), and a 
bank (B) to sell books to customers. BS manages requests from customers via the Internet.  A 
sale begins when a customer logs into www.BS.com using an id (customerID) and requests a 
book using a book id (bookID).  If the requested book is available in the publisher’s 
inventory and if the customer’s rating in the data base of the bank is good then the sale is 
successful. The successful sale terminates when the book is delivered by the publisher to the 
customer and the payment for the book is received by the bank from the customer.  

If the ordered book is not available or the customer’s rating is not good, we assume that no action 
is executed (the cash and the inventory remain unchanged).  

 
 The Successful Sale: Process Design 

The company wants to design different customizations of its sale process for different countries by 
maintaining a global view of this process.  

For the sake of simplicity, we limit our discussion to the specification of the successful sale. We do 
not specify the case where the payment is not received or the book is not delivered.  
 
Localized Action sellOk 

In Fig. 7.1 the On-Line Book Store value network is modeled as a working object seen as a whole 
- SVN_w.  The successful sale process is modeled as a localized action LAsellOk of this working 
object. LAsellOk  specifies the strategic goal of the value network: To perform a sale by guarantying 
that if a book is available and if a customer has a good rating then this book will be delivered and 
paid by the customer.  

Action-property relations are used on the diagram in Fig.7-1 to specify pre- and post-conditions of 
LASellOk. In a legend for Fig.7-1 we present a formal specification of pre- and post-conditions for 
LASellOk written in the Alloy specification language.  

 

 
Figure 7-1: Localized Action SellOk. 
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Distributed Action DAsellOk 
To relate the strategic goal of the value network with the specification of a business process that 

supports this goal, we represent the On-Line Book Store value network as a collaboration between the 
bank, the publisher and the book store – the participants in the value network. In Fig. 7-2 the On-Line 
Book Store value network is modeled as a working object seen as a composite - SVN_c.  The SEAM 
distributed action DAsellOk in Fig.5 specifies how the responsibilities in a successful sale are 
distributed between the value network participants. The bank, the publisher and the book store are 
modeled as working objects seen as wholes. The responsibilities are modeled as localized actions of 
the corresponding working objects: for example, the fact that the bank checks the customer’s rating is 
modeled by localized action checkRating within the B working object. 

To specify the communication between the book store, the bank and the publisher, we define 
additional actions preocessRequest and getID, and properties cID, bID in Fig. 7-2. These actions and 
properties serve for information exchange between working objects and are not specific to the 
successful sale process; we show them without shading and place the relations between them and 
another actions and properties as dashed lines.  
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Figure 7-2: Distributed Action DAsellOk. 

 
In our example, sharedBook and sharedCustomer are shared properties. They represent the 

information used by the bank, the publisher, and the book store to manage their tasks within 
the successful sale process of the value network.  

 
The Process Customization 

The distributed action DAsellOk is a declarative business process specification that 
defines the conditions and the results of the process but does not impose any constraints on 
how this process will be conducted in a particular environment.  

Considering that the On-Line Book Store wants to pursue international markets, namely 
US and European markets (including Switzerland), different process customizations have to 
be designed [90].  
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In the US, most on-line orders are paid by a credit card and shipped only after the payment is 
received. A customization of the sale process for the US market is illustrated in Fig.7-3 (a). This 
customization is modeled as a BPMN business process diagram (BPD). 

In countries such as Switzerland most mail order companies and on-line stores have 
traditionally trusted customers enough to deliver ordered goods without an obligation to pay 
in advance. A payment form is shipped with the purchase and customers can then use it to 
pay for their purchases in a post office or through their bank [90]. For the Suisse market, the 
sell process should be customized allowing for the delivery prior to (or simultaneously with) 
the payment procedure as illustrated in Fig. 7-3 (b).  

 

 
Figure 7-3: On-Line Book Store value network performing Sale: 

a. the process customization for US; 
b. the process customization for Switzerland 

 
The distributed action DAsellOk relates business process customizations illustrated in 

Fig. 7-3 with the strategic goal of the On-Line Book Store value network, specified as a 
localized action in Fig. 7-1.  

 
The Successful Sale: Process Redesign 

The second business process modeling task that can benefit from an additional declarative 
specification layer is a business process redesign. A decision of the company to redesign its 
business process (or processes) can be based on different internal or external factors, e.g. the 
emergence of new technologies or new products, the change of a political situation, the 
competitive landscape etc.  Considering our example, let’s imagine that the On-Line Book 
Store discovered that its shipment service suffers from chronic delays and is found 
unsatisfactory by the customers. The On-Line Book Store decides to maintain its own 
inventory and to provide the shipment service by itself, instead of outsourcing this service to 
the publisher.  

Although the strategic goal of the value network remains the same, the value network 
itself is reorganized and, as a consequence, a business process redesign is required. The 
redesign of a successful sale can be rigorously modeled using a declarative specification that 
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reflects a new distribution of responsibilities between participants of the reorganized value 
network. We specify a new (redesigned) distributed action for sellOk in Fig. 7-4. In this 
specification, the book inventory modeled as a set of books, and the localized actions 
checkAvailability and deliverBook become a part of the BS working object specification. 
Working object P that represents the publisher in our specification is removed.  
 

 
Figure 7-4: Distributed action for redesigned sale. 

 
The distributed action DAsellOK in Fig.7-4 is consistent with the localized action 

LAsellOk in Fig.4 because the latter specifies only the work to be done - but not the 
distribution of this work. This illustrates an integration of two declarative specifications of 
the sale process: the initial one and the redesigned one. 

Based on the redesigned distributed action, new process customizations for the US and 
Switzerland are modeled in Fig. 7-5. The redesigned distributed action DAsellOk relates the 
business process customizations illustrated in Fig. 7-5 with the strategic goal of the On-Line 
Book Store value network, specified as a localized action in Fig. 7-1.  
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Figure 7-5: On-Line Book Store value network performing Sale: 

a. the process customization for US (redesigned); 
b. the process customization for Switzerland (redesigned) 

7.1.3 Validation of Declarative Business Process Specifications in Alloy 
A transition from the localized action specified for the working object seen as a whole to the 
distributed action specified for the same working object seen as a composite is a form of 
organizational refinement, defined in Section 5.7.3.  

Specification of Localized and Distributed Actions SellOk Using Alloy  
 

We model SEAM actions as Alloy predicates. In SEAM, an action defines a transition of a 
working object from one state (pre-state) to another (post-state). The SEAM action 
specification uses a pre-state and a post-state as parameters. We use indexes _pre, _post, and 
_prepost to model parameters of the Alloy predicate: 
- all parameters indexed with _pre correspond to the properties of the working object 

before the action and define a pre- state of this working object X ; 
- all parameters indexed with post- correspond to the properties of the working object after 

the action happens and define the post-state 'X  of this working object;  
- index _prepost specifies parameters that are not modified by the action. These 

parameters correspond to the properties that make a part of both X  and 'X . 
We write the following Alloy specifications of pre- and post- states for localized action 
LAsellOk in Fig.7-1:  
 
bInventory_pre: one Inventory,  
customerDB_prepost: one CustomerDB,  
customerID_prepost: one Int,  
bookID_prepost: one Int, 

cash_pre: one Int;   X  
 
bInventory_post: one Inventory, 
customerDB_prepost: one CustomerDB,  
customerID_prepost: one Int,  
bookID_prepost: one Int,  

cash_post: one Int 'X  
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The Alloy code below specifies the LAsellOk localized action as a corresponding Alloy 
predicate. Lines 1-7 in this code correspond to the action’s precondition; lines 8-14 – to its 
postcondition. The predicate LAsellOk holds when its precondition implies its postcondition. 
 
pred LAsellOk [bInventory_pre, bInventory_post: one Inventory, 
customerDB_prepost: one CustomerDB,  
customerID_prepost, bookID_prepost, cash_pre, cash_post: one Int] { 
1. (all requested_book: Book, buyer: CustomerInfo| 

2. ((requested_book.id = bookID_prepost) and  
3. (requested_book in bInventory_pre.content) and 
4. (requested_book.quantity>0) and  
5. (buyer.id = customerID_prepost) and  
6. (buyer in customerDB_prepost.content) and 
7. (buyer.rating > 0) ) =>   
8. ((one b_post: Book |  
9. (b_post.id = requested_book.id) and 
10. (b_post.quantity= requested_book.quantity- 1) and 
11. (bInventory_post.content = bInventory_pre.content - 

requested_book + b_post) and  
12. //(customerToDeliver.id = bookDeliveredToID) 
13. (cash_post = cash_pre + 1 ) ) 
14. // (buyer.id = paymentFromID)  

) )} 

The specification of the localized action LAsellOk in Alloy can be read as follows:  
For all buyers and requested books (line 1): the precondition of LAsellOk holds if the values 
of their id fields are equal to the values of bookID and customerID respectively (lines 2,5), 
and the requested book exists in the inventory (line 3), and is available (line 4), and a buyer 
exists in the customer DB (line 6), and has a good rating (line 7). The postcondition 
expresses that there exists a book_post (line 8) that corresponds to the requested book (line 
9) and its quantity is equal to the quantity of the requested book decreased by one (line 10), 
and the book inventory after the action (bInventory_post) is equivalent to the inventory 
before this action (bInventory_pre) with the requested book substituted by the book_post (line 
11), and the cash value after the action is augmented by one unit (line 13). We also need to 
specify that the requested book is delivered to the proper buyer, and that the payment is 
received from the proper customer (lines 12, 14). For the sake of simplicity we do not model 
it in this example. 
 

The working object SVN_c from the SEAM specification in Fig.7-1 is specified with its 
three component working objects: the bank (B), the publisher (P) and the book store (BS). 
The localized actions of component working objects are modeled as the following Alloy 
predicates: 
pred p_checkAvailability[..]{..} – the publisher checks if the requested book is 
available; 
pred b_checkRating[..]{..}- the bank checks if a rating of the customer is good; 
pred p_deliverBook[..]{..} – the publisher delivers the book to the customer; 
pred b_getPayment[..]{..}- the bank receives payment from the customer. 
 

The following predicates specify communication between the book store, the bank, and the 
publisher, as do so the corresponding localized actions in Fig. 7-2: 
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pred bs_processRequest[..]{..}- the book store gets request and externalizes the 
requested book id and the customer id for the rest of the network.  
pred p_getID[..]{..} – the publisher gets the requested book id; 
pred b_getID[..]{..}- the bank gets the customer id. 
  
 The distributed action DAsellOk binds the localized actions of the component working 
objects. The Alloy code below specifies the DAsellOk distributed action as an Alloy 
predicate. Lines 1-7 in this code correspond to the precondition of a localized action 
LAsellOk from the listing above; lines 8-9 – to its postcondition.  
 
pred DAsellOk[p_bInventory_pre, p_bInventory_post: one Inventory, 
p_requestedID_prepost: one Int, 
b_customerDB_prepost: one CustomerDB, b_requestedID_prepost: one Int, 
b_cash_pre, b_cash_post: one Int,  
bs_customerID_prepost, bs_bookID_prepost: one Int]{  
1. ( one cID,bID: Int | 
2. bs_processRequest[bs_bookID_prepost, bs_customerID_prepost, bID,cID] 

and 
3. p_getID[bID, p_requestedID_prepost] and 
4. b_getID[cID, b_requestedID_prepost]) and  
5. all  sharedBook:one Book, sharedCustomer: one CustomerInfo|  
6.  (p_checkAvailability[p_bInventory_pre, p_requestedID_prepost, 

sharedBook] and  
7. b_checkRating[b_customerDB_prepost, b_requestedID_prepost, 

sharedCustomer]) =>  
8. (p_deliverBook[p_bInventory_pre, 

p_bInventory_post,p_requestedID_prepost,sharedBook, sharedCustomer] and 
9. b_getPayment[b_cash_pre,b_cash_post, sharedCustomer])}  

 
Prefixes p_, b_, bs_ in the names of predicates specifying localized actions and in the names 
of predicate parameters specifying properties refer to the component working objects these 
localized actions or properties belong to (e.g. p_bInventory specifies the book inventory, 
which is the property of the publisher). 

7.1.4 Validation of Refinement from LA to DA Using Alloy Analyzer 4.0 
To relate the designed business process of successful sale to the strategic goal of the On-Line 
Book Store, we have to guarantee: 

1) The correct refinement from the localized action LAsellOk to the distributed action 
DAsellOk; 

2) The correct mapping between the declarative specification DAsellOk and the 
imperative business process specifications (i.e. BPMN diagrams) that specify process 
customizations. 

To check if the distributed action DAsellOk correctly refines the localized action 
LAsellOk in our example, we use the definition of refinement correctness from Definition 
5.16. We write an Alloy assertion that specifies the correct refinement from abstract to 
concrete specification: 
assert DA_LA{ 

all acc XXX ,', | 

(R_LA_to_DA ( ac XX , )and DAsellOk( cc XX ', ) ) =>  

some aX ' | LAsellOk( aa XX ', )and R_LA_to_DA( ac XX ',' )} 
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Here aacc XXXX ',,',  stand for pre- and post- states at concrete and abstract 
specifications respectively. R_LA_to_DA is a refinement function that relates state spaces 
of the SVN_w and SVN_c. We provide the complete specification of this refinement 
function: 
 
pred R_LA_to_DA[p_bInventory_t: one Inventory, p_requestedID_t: 
one Int, b_customerDB_t: one CustomerDB, b_requestedID_t: one Int,  
b_cash_t: one Int, 
bs_customerID_t, bs_bookID_t: one Int, 
// concrete 
bInventory_t: one Inventory,  
customerDB_t: one CustomerDB, customerID_t, bookID_t, cash_t: one 
Int // abstract 
]{ 
p_bInventory_t = bInventory_t  
p_requestedID_t = bookID_t 
b_customerDB_t = customerDB_t 
b_requestedID_t = customerID_t 
b_cash_t = cash_t 
bs_customerID_t = customerID_t 
bs_bookID_t = bookID_t 
}  R[

ac XX , ] 

 
From Declarative to Imperative Business Process Specification 

The mapping between SEAM distributed actions, modeled declaratively, and imperative 
business process diagrams modeled in BPMN can be done in two steps:  

First, we define a control flow for the SEAM distributed actions modeled declaratively. 
This is equivalent to the specification of intermediate states, caused by the execution of 
individual localized action, and the order of their occurrence.  

The second step is a mapping of the obtained imperative specifications to BPMN. This 
mapping and its automation is a part of our future work. 

The conformance of the imperative specification with the declarative specification in SEAM can 
be formally verified in Alloy by using the same approach as for refinement verification and by 
assuming that the imperative action specification is nothing but a correct refinement of this action, 
specified declaratively.  

7.2 Specification and Alignment Verification of Services in ITIL: The 
Gas Incident Service Case Study 

Problem description: 

The Information Technology Infrastructure Library (ITIL) [57] is a collection of good 
practices for the management of IT services. The perceived value of ITIL is the improvement 
of the relationship between the business and its IT service providers. The relationship 
between a business and its internal IT department is defined with the use of of Service Level 
Agreements (SLA). Similar agreements define the relationships between sub-departments of 
the IT department (Operational Level Agreements, OLA) and between the IT departments 
and their external providers (Underpinning Contract, UC). For the IT department to be able to 
live up to its obligations defined in the SLA, it has to make sure that the SLA is 
implementable with the existing and envisioned infrastructure and with its OLAs and UCs. In 
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this paper we propose a formal method for specifying the alignment between and SLA and a 
set of OLAs. 

 
We illustrate our method with a concrete ITIL project currently in progress. This project is 

done for the public utility of Geneva: SIG (http://www.sig-ge.ch/). SIG provides, among other 
services, water, gas, and electricity to Geneva residents. One of the important services is the 
management of gas incidents, i.e. leaks from gas machinery or pipes. The IT department of 
SIG provides support for this service. The expectation of the gas department and the 
possibilities afforded by the IT department are captured in an SLA. In this project, the utility 
company, the consulting company Itecor and the EPFL University have partnered to apply 
the SEAM method for the definition of the SLA.  

Though we are inspired by the real example, we have substantially simplified the actual 
processes. In particular, all process definitions and quantities, e.g. intervention time, are 
illustrative only. To account for the fact that the example is an academic illustration only, we 
use the name City Industrial Service to refer to the utility company. 

7.2.1 Case Study: Gas Incident Service  
In this section, we model a case study that specifies a security service for gas leaks (‘gas 
incident service’), provided by the City Industrial Service (CIS) and supported by the IT 
system GasIncident. We consider the service description as follows: [The gas incident service has] 
to neutralize a gas leak reported by a witness, guaranteing that if the incident site is not secured 
within 45 minutes from the time of the registration of the witness’ call by a CIS operator, then an 
emergency call is made to the local Fire Brigade.  

 
Service Specification  

In Fig. 7-6, we specify the Service Level Agreement (SLA), which represents the service 
specification.  

The IT system IT_GasIncident_w is a service provider in our example (the postfix ‘w’ 
means that the system is represented as a whole). The process of securing an incident is 
modeled as an action LA_GasIncidentService of this IT system. This action specifies the 
service, provided by CIS.  

To support the incident processing, we define an incidentList property for the IT system. 
The incidentList represents a set of records of incident cases. The fields of an Incident record 
are set during the incident processing.  

Action-property relations in Fig. 7-6 explicitly specify the action contract (precondition, 
postcondition, invariant)  

For example, the condition ‘if the incident is not secured after 45 minutes from the time of the 
registration of the call, then the emergency signal (out_emergency) is generated’ is expressed as a 
following postcondition expression: 
((newInc.t3 - newInc.t1 <= 45) and (out_emergency=0)) or  
((newInc.t4 = newInc.t1 + 45) and (out_emergency=1)) 
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Figure 7-6: SEAM specification of the service LA_GasIncidentService (ITIL SLA) 

 
Service specification, illustrated in Fig. 7-6 is declarative. This specification defines the action 

contract but does not show how this contract will be implemented. 
 
Service Construction  

In Fig. 7-7, we specify the Operational Levels Agreements (OLA)s. The service is 
implemented by several applications; each application provides its ‘part of the service’. 
Concretly, IT_GasIncident_c (the postfix c means that the system is represented as a 
composite), which describes the planned construction of the IT_GasIncident_w has three 
component applications: (1) SAP_App, the SAP application, which processes the data from 
the help desk and provides the CIS operator with the GPS coordinates of the site; (2) the 
ECS_App application (Emergency Call Service), which provides an automated call service to 
the local fire brigade; and (3) GasIncident_App application that coordinates the incident 
processing, triggers the call to the fire brigade afterwards and maintains the incident record in 
the incident list. Specifications of the services offered by these applications correspond to 
Operational Levels Agreements (OLAs). Note that Underpinning Contracts (UCs) would be 
specified in a similar manner. Underpinning contracts specificity services offered by third 
parties.  

The action DA_GasIncidentService1 specifies how the responsibilities in the incident 
securing are distributed between the applications. It is, therefore, called a distributed action. 
The distributed action DA_GasIncidentService1 is a declarative process specification that 
defines the conditions and the results of the process, but it does not impose any constraints on 
how this process has to be conducted in a particular environment.  
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Figure 7-7: Service implementation modeled as SEAM distributed action 

 
The GasIncidentProcess action specifies the responsibility of the GasIncident_App 
application and is also modeled declaratively: the set of tasks this action performs is listed, 
but no control flow is defined. 

The SEAM specification of LA_GasIncidentService in Fig. 7-6 corresponds to the SLA; the 
SEAM specification of DA_GasIncidentService1 (as a distributed action) in Fig. 7-7 shows 
the planned construction of this SLA by a collaboration of three applications: SAP_App, 
ECS_App, and GasIncident_App. An OLA is defined for each application. The transition 
from the specification of the SLA (Fig. 7-6) to the specification of the multiple OLAs (Fig. 7-
7) is a result of the organizational refinement (Section 6.3.3). 

7.2.2 Validation of a Service and its Construction in Alloy 
Specification of SLA using Alloy  

To proceed with the specification analysis and alignment verification, we map the SEAM visual 
specifications to Alloy. Figure 5 illustrates the result of the translation of the LA_GasIncidentProcess 
(Fig.1) to Alloy specification language.  

In mapping the SEAM specification to the Alloy specification language, the annotations made to 
the diagrams are used to specify the action in Alloy.  
Similarly to the previous example, we use indexes _pre, _post, and _prepost to model 
parameters of the Alloy predicate. We alco use prefixes in_ and out_ to specify input and 
output parameters of the action.  
 
incidentList_pre: set Incident,  

locationList_prepost: set GEOInfo  X  
 
in_call:one WitnessCall,  

in_securedTime: one Int  I  
 
out_emergency: one Int,  

out_incident: one Incident  O  
 
incidentList_post: set Incident,  
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locationList_prepost: set GEOInfo, 

in_call:one WitnessCall 'X  

  
In the listing below, lines 1-2 defines the Alloy signature that specifies the action, line 3 

specifies the action precondition, and lines 4-13 specify the action postcondition. No 
invariant is defined. 

 

1. pred LA_GasIncidentService [incidentList_pre, incidentList_post: set 
Incident, locationList_prepost: set GEOInfo, in_call:one WitnessCall, 
in_securedTime: one Int, 
2.out_emergency: one Int, out_incident: one Incident] { 
3.  ((in_call.t >0 ) and (in_securedTime >0)) =>  
4. (one newInc: Incident | //local var. newInc 
5. (!(newInc in incidentList_pre)) and //Added to the list: 
6. (incidentList_post = incidentList_pre + newInc) and 
//Initial values from the witness call: 
7. (newInc.t1 = in_call.t) and (newInc.info = in_call.d) and 
//GPS data is obtained from the Address 
8. (one loc: GEOInfo | (loc in locationList_prepost) and  
9. (loc.a = in_call.a) and (newInc.siteInfo = loc)) and 
//secured time as an income call from the technician  
10. ((newInc.t3 = in_securedTime))and 
 //either the site is secured within 45 min or emergency sent 
11. (((newInc.t3 - newInc.t1 <= 45) and (out_emergency=0)) or  
12. ((newInc.t4 = newInc.t1 + 45) and (out_emergency=1))) and 
13. (out_incident = newInc))} 

 
newInc is a local variable introduces in the action LA_GasIncidentService to create a new instance of 
the incident and to add it later on to the list. (See Section 4.5 about instance creation in SEAM). 
 
The Alloy specification of a GasIncidentService localized action, modeled as a predicate 
LA_GasIncidentService can be read as follows:  

Given a system, with its state specified by the incidentList and a locationList, and input 
parameters in_call, in_securedTime, and output parameters out_incident, and 
out_emergency (line 1,2): the precondition of LA_GasIncidentService holds if the witness call 
in_call with non-negative time is registered, and a non-negative securization time in_securedTime 
was obtained (line 3). The postcondition expresses that upon the action termination there will 
be created a record of incident newInc such that this record is not in the list incidentList_pre 
(line 4-6), and the fields of this record are received from the witness call in_call and the 
technician call in_securedTime (line 7-10) and if the incident is not secured after 45 minutes from 
the time of the registration of the witness call then the emergency signal (out_emergency) is generated 
(line 11), and the created incident record is an output parameter of the system – out_incident 
(line 13).  
 

The working object IT_GasIncident_c from the SEAM specification in Fig.7-7 is specified 
with its three component working objects: SAP_App, ESC_App, and GasIncident_App. The 
localized actions of component working objects, defining OLAs, are modeled as the 
following Alloy predicates: 
 
pred LocalizeAddress[locationList_prepost: set GEOInfo,  
in_address: one Int, out_location: one GEOInfo]{ 
//post 
one loc: GEOInfo |  
(loc in locationList_prepost) and (loc.a = in_address) and (out_location = 
loc)} 
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Getting an address as an input, the SAP_App retrieves a site location from the GEOInfo 
database; 
 
pred CallFB[mList_pre, mList_post: set EmergencyMsg, in_inc: one Incident, 
in_emergency: one Int, out_m: one EmergencyMsg]{ 
//pre 
(in_emergency = 1) => 
//post: create an outgoing emergency call and add it to the list 
(one out_m: EmergencyMsg | (out_m.inc = in_inc) and 
(mList_post = mList_pre+out_m)) else (mList_post = mList_pre)} 

 
Getting an emergency signal as an input, the ESC_App generates a phone call to a fire 
brigade; 
 
pred GasIncidentProcess [incidentList_pre, incidentList_post: set Incident, 
in_call: one Int, in_siteInfo: one GEOInfo, in_onSite,in_secured: one Int, 
in_info: one Int, out_emergency: one Int, out_incident :one Incident]{ 
 one shared_incident: Incident | 
 (OpenIncident[incidentList_pre, incidentList_post, 
in_call,in_siteInfo, in_info, shared_incident]and 
 GetTechOnSite[in_onSite,shared_incident] and 
 GetSiteSecured[in_secured, shared_incident] and  
 InciCallFB[out_emergency, shared_incident] and 
 CloseIncident[shared_incident]and  

(out_incident = shared_incident))} 

 
The GasIncident_App manages the process, having a whitness call and information from 
operator as input parameters. 
 

The GasIncidentProcess localized action is specified as a composite with component actions 
OpenIncident, GetTechOnSite, GetSiteSecured, InciCallFB, and CloseIncident, they define 
responsibility of the IncidentGas application within the service in detail.  
 

The distributed action DA_GasIncidentService specifies how localized actions of SAP, ECS, 
and GasIncident applications are bound together to provide the implementation of the 
GasIncidentService. The Alloy code below specifies the DA_GasIncidentService distributed 
action as an Alloy predicate.  
 
pred DA_GasIncidentService[incidentList_pre, incidentList_post: set 
Incident, locationList_prepost: set GEOInfo, mList_pre, mList_post: set 
EmergencyMsg, 
 in_call: one WitnessCall, out_emergencyCall: one EmergencyMsg, 
in_securedTime: one Int]{ 
 
some shared_siteInfo: GEOInfo, shared_inc: Incident,  
  shared_emergency:Int | 
LA_GasIncidentProcess_w[incidentList_pre, incidentList_post,  
in_call.t,  in_call.d, shared_siteInfo, in_securedTime, 
shared_emergency, shared_inc] and 
LocalizeAddress[locationList_prepost,in_call.a, shared_siteInfo] and 
CallFB[mList_pre, mList_post, shared_inc, shared_emergency, 
out_emergencyCall]} 
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7.2.3 Validation of Refinement from SLA (Modeled as SEAM Localized Action) 
to OLAs (Modeled as SEAM Distributed Action) Using Alloy Analyzer 4.0 

 
Based on the Alloy semantics for SEAM specifications, defined in Chapter 6, we transform 
the visual SEAM specifications of the SLA or the OLA/UC (SLA and OLAs+UCs in Fig. 7-
8) to the corresponding programs written in Alloy formal specification language (P1 and P2 
in Fig. 7-8). We can verify the refinement correctness between the Alloy models using the 
Alloy Analyzer tool (http://alloy.mit.edu/).  
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Figure 7-8: Refinement verification 

 
To relate the service specification modeled as a localized action – that corresponds to the 

SLA - with its implementation modeled as a distributed action – that combines the OLAs - , 
we have to guarantee the correct refinement from the localized action 
LA_GasIncidentService to the distributed action DA_GasIncidentService. Similarly to the 
previous example, we use the definition of refinement correctness from Definition 5.16. We 
write an Alloy assertion that expresses the correct refinement from abstract to concrete 
specification 
 

assert DA_LA{ 

all cacacc OIIXXX ,,,,', | 

(R_Input( ac II , )&& R_LA_to_DA ( ac XX , )&& DAsellOk( cc XX ', ) ) =>  

some aa OX ,' | LAsellOk( aa XX ', )&& R_LA_to_DA( ac XX ',' )&& R_Output( ac OO , )} 

Here aacc XXXX ',,',  stand for pre- and post- states at concrete and abstract specifications 

respectively; acac OOII ,,, stand for input and output parameters of concrete and abstract 
specifications. . R_LA_to_DA is a refinement relation that relates state spaces of the 
IT_GasIncident_w and IT_GasIncident _c. R_Input and R_Output are relations between 
input and output parameters respectively. We provide the complete specification of this 
relations: 

 
pred R_LA_to_DA[incidentList_t: set Incident, locationList_t: set GEOInfo, 
mList_t: set EmergencyMsg,  // model concrete 
incidentList1_t: set Incident, locationList1_t: set GEOInfo]{ // model 
abstract 
    ( incidentList_t=  incidentList1_t)  and 
    ( locationList_t=  locationList1_t)} 
 
pred R_Input[in_call: one WitnessCall, in_call1: one WitnessCall, 
in_securedTime, in_securedTime1: one Int ]{ 
in_call = in_call1 and 
in_securedTime = in_securedTime1} 
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pred R_Output[out_emergencyCall: EmergencyMsg, out_Incident: one Incident, 
out_emergency: one Int]{ 
(out_emergency = 1) && 
(out_emergencyCall.inc = out_Incident )} 

 
assert DA_LA{  
all incidentList_pre: IDB, mList_pre: MSG, in_call: WitnessCall, 
in_securedTime: Int, incidentList1_pre: IDB, in_call1: WitnessCall, 
in_securedTime1: Int, incidentList_post: IDB, mList_post: MSG, 
locationList_prepost: GEO, locationList1_prepost: GEO| 

 all cacacc OIIXXX ,,,,', | 
 
(DA_GasIncidentService[incidentList_pre.v, incidentList_post.v, 
locationList_prepost.v, mList_pre.v, mList_post.v, in_call, 
out_emergencyCall, in_securedTime] && 

 DAsellOk( cc XX ', ) 
 
R_LA_to_DA[incidentList_pre.v, locationList_prepost.v, mList_pre.v, 
incidentList1_pre.v, locationList1_prepost.v] && 

 R_LA_to_DA ( ac XX , ) 
 
R_Input[in_call, in_call1, in_securedTime, in_securedTime1])=> 

 R_Input( ac II , ) 
 
(some incidentList1_post: IDB, out_emergencyCall: EmergencyMsg, 
out_Incident: Incident, out_emergency:Int|  

 some aa OX ,' | 
 
LA_GasIncidentService_w[incidentList1_pre.v, incidentList1_post.v, 
locationList1_prepost.v, in_call1, in_securedTime1, out_emergency, 
out_Incident] && 

 LAsellOk( aa XX ', ) 
 
R_LA_to_DA[incidentList_post.v, locationList_prepost.v, mList_post.v, 
incidentList1_post.v, locationList1_prepost.v] && 

 R_LA_to_DA( ac XX ',' ) 
 
R_Output[out_emergencyCall, out_Incident, out_emergency])} 

 R_Output( ac OO , ) 
 

7.3 Practical Feedback 
 
To reason about a practical value of our research, we have conducted an inquiry among 
experts in the domain who meet the problem of business/IT alignment in practice. During this 
inquiry, we propose that the experts read one of our recent research papers that illustrate the 
practical examples above. To state their opinion about our technique, we propose that the 
experts answer the following questions:  

1. Whether the problem discussed in the paper is encountered in practice?  
2. What do you think about the usefulness of the method presented in the paper for a 

practitioner? Please, explain your answer.  
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3. How do you think the validation / verification technique presented in the paper can 
help you (your company)? Please, describe the advantages and disadvantages that you can 
expect.  
 
The list of experts: 

1. Ian F. Alexander 
2. Ilia Bider 
3. Alexander Samarin 
4. Thomas Langenberg 
5. Donald C. Gause 

 
Below, we summarise the results of our inquiry.  

Summary 
1. Experts: 
- All the experts participating in our inquiry have years of experience in consulting. The 

areas of their expertise range from SAP consulting in IT to solutions in enterprise 
architecture and requirements engineering;  

- Four of the experts are active in the research community; 
- Three of the experts have their own consulting companies; 
- One expert is a full academic professor. 

 
2. Modeling methods and tools used in practice: 
- All the experts use visual modeling techniques to develop their solutions, and to 

communicate them with the customers. The following tools were named by the 
experts: Intalio BPM suite, IBM WebSphere Integration Developer, Enterprise 
Architect for UML, i*, and Microsoft Power Point.  

- Most of the experts also admitted that they use their own methods and tools, created 
for specific problems.  

 
3. Problem soundness: 

All the experts confirmed that the alignment of business processes with business 
strategy (as described in Section 7.1) and the alignment between a service level 
agreement (SLA) and the operational level agreements (OLAs) (as described in 
Section 7.2) are important problems for their organizations.  

 
4. The usefulness of the presented method: 

(below we provide the excerpts from the answers) 
- The proposed method is useful as a methodological base for discussing problems and 

finding solutions. It could help to create accurate service specifications for clients;  
- The method sounds useful because it considers the complimentary of declarative and 

imperative techniques. The synergy of these two techniques (complimented by some 
guidance how to combine them) will certainly create more flexible business process 
models. 

- The evaluation of each alternative solution and the validation that this solution does 
not violate the requirements is a typical problem.  Though, having a technique with 
which one can evaluate proposed solutions could save project resources and would be 
a useful instrument for a consultant; 

- It is hard to imagine a computer design problem that would not benefit from a 
refinement tool that is capable of recognizing and correcting inconsistencies between 
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high-level business and systems requirements and implementation instructions 
(functional specifications).   

 
5. Advantages: 
- By expressing the relationships between actions and data graphically, it is highly 

expressive, making it clear what is needed when.  
-  The proposed technique may serve for a consultant to verify solutions against 

requirements and also to evaluate and to compare these solutions. 
- Any formal verification is very useful in daily practical work because such 

verification can bring highly demanded, objective, and scientifically proven reasoning 
into a modern enterprise environment with all its political tensions and power games 
(where it is almost impossible to have something willingly accepted and followed by 
everyone). 
 

6. Disadvantages/Concerns 
- The scalability of the method is questionable: the technique was nicely illustrated with 

the “toy” example, however a big concern is about how such a notation may scale up 
for large problems; the number of relationships may increase rapidly with the number 
of both actions and pieces of data, which could make the diagrams hard to read. It 
could also make a formal proof of correctness long; but as this is supported by the 
Alloy Analyzer tool, this should not be a problem.  

- The complex graphical notation plus the use of formal methods prevents this 
technique from being used for communication with a client. 

- The industrialisation of the approach would involve training for requirements 
practitioners, tooling, and reasonable assurance to both the company and the client 
that the approach is workable in practice (on a real problem, and by practitioners).  

- The utilization of this technique will introduce a new step in the project development 
process, which is promising but time and money consuming. It could be difficult to 
communicate a profitability of this technique to the customer. 

- It is difficult to imagine the use of formal methods of verification/validation in any 
foreseeable future.  
 

7. Suggested improvements: 
- A popular version and texts in methodological style should be written, e.g. manuals, 

etc.  
- Making full use of the methodology will require an introduction of it in a tool that 

helps to design processes/support systems; 
- The visual notation needs some enhancements before meeting non-experts; 
- Several realistic projects in the field have to be accomplished using this technique to 

demonstrate its scalability and potential profitability for a customer; 
- There might be some possibilities for promoting formal verification/ validation, 

provided they are incorporated in some tool, e.g.: 
o As a sales argument for the tool 
o To provide guarantees in cases of extremely importance for the customers (e.g. 

SOX compliance).  
 

The results of the conducted inquiry are valuable feedback for this work and help us to 
prioritize the directions of this research for the future. 
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Chapter 8   

Conclusion 

 
 

In this dissertation we have defined the formal semantics for SEAM language that permit us 
to validate the alignment between models, specified in SEAM. 
 
We have achieved four main advantages for visual SEAM specifications: 

1. The SEAM extension with AP-relations and AA-relations and their semantics. This 
extension allows for the explicit modeling of a system behavior as a change of a 
system state; 

2. The formalization of relations between SEAM Visual Specifications as Refinements. 
This formalization allows for the utilization of theories that already exist in software 
engineering and are dedicated to rigorous program development; 

3. The formalization of SEAM concepts in first-order logic (FOL). This formalizartion  
allows us to be able to reduce the problem of refinement verification in visual models 
to a problem of validity of an FOL-formula; 

4. The definition of a language migration and refinement verification using formal 
specification languages. This migration allows for the utilization of tools (i.e. the 
Alloy Analyzer, the Jahob verification system) for automated verification of 
refinement. 

 
We have illustrated our technique of refinement verification with two examples: In the first 

example, we consider the problem of alignment verification in the context of business 
process modeling; the problem presented in the second example discusses the alignment in 
context of service specification and design. 
 

Using formal semantics for SEAM specifications, we have defined declarative and 
imperative process specifications. We use combinations of these specifications:  

- to integrate different customizations and redesigns of a business process; and 
- to specify services at different levels of abstraction; 

 
We have shown how a refinement theory can be applied to validate the alignment between 

the processes (e.g. business processes, services), specified at different abstraction levels.  
 
We have illustrated how Alloy, a light weight specification language, can be used to verify 

the alignment. We have also explored the alternative method of alignment verification, based 
on the Jahob verification system. 
 

Our contribution establishes a bridge between the formal methods of Software Engineering 
and practical problems in the area of Business/IT alignment (i.e. the verification of alignment 
between process specifications and their implementations).  
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8.1 Future Work 
 

The problem the alignment of Business and IT is gaining an importance. Various methods 
and tools have been developed in this domain in order to support the modeler in creating the 
models and making these models transparent, traceable, and aligned. In conducting this 
research, we have pursued the goal of bringing the visual specifications to such a level of 
precision that they become self-contained means for system validation. To do so, we have 
extended the visual notation with formal concepts and textual annotations. By defining the 
formal semantics for visual SEAM specifications, we were able to create a technique for 
mapping these specifications to the verifiable code. The main directions of our future work 
are: 

(1) To decrease the visible complexity of the method by providing documentation, 
guidelines and by implementing the front-end of the technique in the form of an application. 
This should hide the complexity from the user (see for example [13]). 

(2)  Further exploration of opportunities given by formal semantics in SEAM;  
(3) Further exploration of opportunities given by refinement formalization for SEAM 

visual specifications. 

8.1.1 Complexity Reduction, Usability 
Documentation. At the time of this writing, this PhD dissertation is the most complete 
documentation of the technique created. To enhance the usability of the method, 
documentation, focused on the practical application of the technique (e.g. a tutorial) would be 
very useful.  
The SEAM graphical notation.  
The development of a simpler notation that can be used both in an education process with an 
academic audience (i.e. students, research community), and in practice with a business 
audience (as a technique for business workshops) is the major goal in the future.  
The automated alignment assistant. We consider an implementation of the automated 
alignment assistant – a supplementary function of the SEAM modeling tool SeamCAD [66]. 
This assistant will identify a refinement type based on the modeler’s activities; depending on 
the refinement type, the assistant may propose that the modeler specify the states of interest 
and define a refinement relations between them.  

8.1.2 Formal Semantics 
Deterministic vs. nondeterministic. 
Formal semantics for SEAM and, in particular, a possibility of specifying a system 
declaratively, opens an interesting discussion about nondeterministic specifications and the 
way to specify and validate them. By a nondeterministic specification, we understand a 
specification whose behavior is not explicit. For example, different actions can be triggered 
by a ‘random choice’ or action parameters can be randomly chosen from some range of 
allowed values. Formal semantics provides a mechanism to specify nondeterminism for 
SEAM models. 

Formal semantics allows us to design and implement various applications for the 
simulation and animation of SEAM visual specifications. 
From a visual specification to an executable code. During this work, we have developed 
several tool prototypes for generating executable and verifiable specifications from SEAM 
visual models. The improvement of these prototypes, their testing, and documentation is one 
of the tasks in the future.  
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SEAM to Jahob is an application that we plan to develop based on the theory created in 
this dissertation. This tool will help the modeler to animate her specifications by simulating 
them in Java; providing the Jahob specification constructs will give us an opportunity to 
formally prove that the implementation corresponds to its specification.  
Scalability. The technique we created was tested on realistic, but small problems. 
Considering the integral complexity of the SEAM extended notation, plus the complexity of 
the verification procedure, the scalability of our technique on a real-size problem is 
questionable for the moment. By improving both the notation and the transformation 
procedure, we expect to make our technique scalable. 

8.1.3 Refinement 
From an executable code to a visual specification. For the moment, the lack of interpretation of 
(negative) verification results is a serious drawback of this technique: when the refinement is 
incorrect, the only recommendation that can be given to the modeler is: ‘Change the specification and 
repeat the verification!’.  Several sources of the verification failure can be listed: the refined 
specification is incorrect; the refinement relation is incorrect; the assertion about refinement is 
incorrect; the proof technique failed to construct a proof; the validation technique failed; etc. To 
identify the reasons for failure based on the verification results (error messages, traces, etc. received 
from verification tools) and to provide recommendations on how to solve the problem is an important 
task that makes a topic for the future research. Heuristics  
Refinement propagation 
Significant efforts in future might be invested in the further exploration and development of 
the refinement propagation technique [96] based on refinement theory for SEAM 
specifications: 

In contrast to techniques where a refinement is first proposed and then proved to be 
correct, some techniques allow for the calculation of a refinement step based on the 
refinement laws. The refinement calculus is an underlying theory. This calculation assures 
refinement correctness ’by construction’, and enables the reduction of proof obligations.  

We believe that refinement by calculation [72] can be beneficial for the practical 
application in the context of visual modeling. By exploring the refinement types, specified in 
Chapter 5, we found relations between them in the form “refinementX implies refinement”. 
This implication we call a propagation of refinement. With refinement correctness criteria 
defined, a sufficient part of the calculations can be done without a modeler’s involvement.  
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Appendix A 

Alloy Specification of the XYZ Example 
 //====================Model Abstract================================= // =============M_W with 3 attributes (x, y, z) // =============y = y  + x; z = z  + y (sequence of statements) // =============Two actions:  // =============  - LAdoMath_w (all changes done at one transition)  // =============  - LAdoMath_c_d (changes done separately on y and z - declarative) // =============  - LAdoMath_c_i (changes done on y , then on z - imperative) //=================================================================  //======================================= //==== WO as a whole  //=================================== lone sig M_w{ x, y, z : one Int } //==================================== //==== LAdoMath_whole   //==================================== pred LAdoMath_w_d[x, y, z, x', y', z': one Int] { //  true  =>   ( ( y' =  y + x) &&   ( z' =  z + ( y +  x)) && (x = x') ) } //run  LAdoMath_w_d for 5  //successful action doMath pred LAdoMath_s[x, y, z, x', y', z': one Int] {  ( y' =  y +  x) &&    ( z' =  z + ( y +  x)) && (x = x')  } //========================================= //============ Activity components  //=========================================  pred LAaddToY2[x, y, z, x', y', z': one Int ]{    x'=  x &&    z'=  z &&      y'=  y + x  } pred LAaddToZ2[x, y, z, x', y', z': one Int ]{     (x'= x) && (y'= y) && (z'= z +x+y) } pred LAaddToY1[x, y, z, x', y', z': one Int ]{   x'=  x &&    y' =  y + x   }  pred LAaddToZ1[x, y, z, x', y', z': one Int]{   x'= x  &&   z'= z + x+y } //==================================== //==== LAdoMath_composite - declarative  //==================================== 
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pred LAdoMath_c_d[x, y, z, x', y', z': one Int ]{ // true  => LAaddToY1[x, y, z, x', y', z' ] && LAaddToZ1[x, y, z, x', y', z' ]  } //run LAdoMath_c_d    //==================================== //==== LAdoMath_composite - imperative  //==================================== pred LAdoMath_c_i[x, y, z, x', y', z': one Int ]{  //t - local time stamp // true  => (  some x_t, y_t, z_t : Int | LAaddToY2[x, y, z, x_t, y_t, z_t ] && LAaddToZ2[x_t, y_t, z_t, x', y', z' ]) } //run LAdoMath_c_i  assert Declar_Imper{ all xc, yc, zc, x'c, y'c, z'c, xa, ya, za: one Int |  (LAdoMath_c_i[xc, yc, zc, x'c, y'c, z'c ] && (xa = xc) && (ya = yc) && (za = zc))=>  (some x'a, y'a, z'a: Int | LAdoMath_c_d[xa, ya, za, x'a, y'a, z'a ] && (x'a = x'c) && (y'a = y'c) && (z'a = z'c) ) } //check Declar_Imper  //================================================== //=======Refinement check  //================================================== //Given 2 specifications - abstract Ma and concrete Mc; Mc obtained from Ma by a refinement; //Actions Ac and Aa are defined for both specifications as relations between states at pre and post: //     Aa = Aa(Ma, Ma') && Ac = Ac(Mc, Mc'). //Formal refinement verification states the following: // given a refinement relation R which  // makes a correspondence between Mc and Ma, such as :  Ma_t = R(Mc_t) then the refinement is correct under the following // condition:  For All Mc, Mc' | Ac(Mc, Mc') => Aa(R(Mc), R(Mc')) //Must be read: if a step happenes in a concrete specification, there will be also a step in the abstract specification.  //In particular case, we specify refinement function R as a predicate that is R(Mc -> Ma) -> boolean //And refinement correctness condition is reformulated as follows: // For All Xa,Xa',Xc,Xc' | (Ac(Xc,Xc') && R(Xc ->Xa) && R(Xc'->Xa')) => Aa(Xa, Xa'))  //=========================================================================== // REFINEMENT: Localized action as a whole is refined to a composite  //==    R - refinement relation ; //==    xa - stands for model abstract; xc - for refined model ,  //==    or model concrete (both models represent the system as a whole) //============================================================================ pred R_LAC_to_LAW[xc_t, yc_t, zc_t,  xa_t, ya_t, za_t: one Int ]{     ( xc_t=  xa_t)  &&     ( zc_t=  za_t)  &&      ( yc_t=  ya_t)  }  assert LAW_LAC{     all xa, ya, za, xc, yc, zc, xc', yc', zc': Int |      (LAdoMath_c_d[xc, yc, zc, xc', yc', zc'] &&  
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    R_LAC_to_LAW[xc, yc, zc, xa, ya, za] ) =>     (some xa', ya', za' : Int |      LAdoMath_w_d[xa, ya, za, xa', ya', za']&&     R_LAC_to_LAW[xc', yc', zc', xa', ya', za'])  } //check LAW_LAC  //================================== //========= WO as a composite //================================== // M_C with 2 components: A and B // A with 3 attributes: X, Y, Z // B with 2 attributes: X, Y // y = y  + x; z = z  + y // Two actions:  //    - JAdoMath_w  //    - DAdoMath_w    //================================= //===== Components  //================================= lone sig A{ Ax, Ay, Az: one Int } lone sig B{ Bx, By: one Int } lone sig M_c{ a: one A, b: one B } //==================================== //===== JointAction - declarative  //==================================== pred JAdoMath_w_d[Ax, Ay, Az, Ax', Ay', Az', Bx, By, Bx', By': one Int] { // true  =>  Ax'=  Ax &&   Bx'=  Bx  &&  By'=  By + Bx &&  Az'=  Az +  Ax + Ay && some shared_x, shared_y: Int | (shared_x = Ax &&  Bx = shared_x && shared_y = Ay' && shared_y= By' ) } //run JAdoMath_w_d for 5   //==================================== //===== JointAction - imperative  //==================================== pred JAdoMath_w_i[Ax, Ay, Az, Ax', Ay', Az',  Bx, By, Bx', By': one Int] { some shared_x, shared_y: Int | ( Ax = shared_x &&    Bx = shared_x  &&    Ay' = shared_y &&    By' = shared_y) &&  some Ax_lt, Ay_lt, Az_lt, Bx_lt, By_lt : Int| (( Ax_lt=  Ax) && ( Bx_lt=  Bx) && ( Ax'=  Ax_lt) && ( Bx'=  Bx_lt) &&  
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( By_lt=  By +  Bx) && ( By'=  By_lt) &&  ( Ay_lt=  Ay) && ( Ay_lt=  Ay +Ax) &&  ( Az_lt=  Az) && ( Az'=  Az_lt +  Ay_lt + Ax_lt ) ) } //run JAdoMath_w_i for 5   assert JImper_Jdeclar{ all Axc, Ayc, Azc, Axc', Ayc', Azc', Bxc, Byc, Bxc', Byc', Ax, Ay, Az,  Bx, By: Int |  (JAdoMath_w_i[Axc, Ayc, Azc, Axc', Ayc', Azc', Bxc, Byc, Bxc', Byc' ] && Axc = Ax && Ayc = Ay && Azc = Az  ) => (some Ax', Ay', Az', Bx', By': Int |   JAdoMath_w_d[Ax, Ay, Az, Ax', Ay', Az', Bx, By, Bx', By'] && Axc' = Ax' && Ayc' = Ay' && Azc' = Az'  ) }    check JImper_Jdeclar  //=========================================================================== // REFINEMENT: System is refined from w to c; Localized action is refined to a Joint Action //====  R - refinement relation; //=========================================================================== pred R_JA_to_LA[Ax_t, Ay_t, Az_t: one Int,  // model concrete                     xa_t, ya_t, za_t : one Int ] // model abstract {  ( Ax_t=  xa_t)  &&     ( Az_t=  za_t)  &&      ( Ay_t=  ya_t) } //==================================== assert LAw_JAd{      all Ax, Ay, Az, Ax', Ay', Az', Bx, By, Bx', By', xa, ya, za: Int |     (JAdoMath_w_i[Ax, Ay, Az, Ax', Ay', Az', Bx, By, Bx', By']  &&      R_JA_to_LA[Ax, Ay, Az, xa, ya, za] ) =>     (some xa', ya', za': Int |      R_JA_to_LA[Ax', Ay', Az', xa', ya', za'] &&      LAdoMath_w_d[xa, ya, za, xa', ya', za'] )  } //check LAw_JAd   assert LAc_JAd{      all Ax, Ay, Az, Ax', Ay', Az', Bx, By, Bx', By': Int ,  xa, ya, za: Int |     (JAdoMath_w_d[Ax, Ay, Az, Ax', Ay', Az', Bx, By, Bx', By'] &&      R_JA_to_LA[Ax, Ay, Az, xa, ya, za] ) =>     (some xa', ya', za': Int |      R_JA_to_LA[Ax', Ay', Az', xa', ya', za'] &&      LAdoMath_c_d[xa, ya, za, xa', ya', za'] )  } //check LAc_JAd   assert LAc_JAi{      all Ax, Ay, Az, Ax', Ay', Az', Bx, By, Bx', By': Int ,  xa, ya, za: Int |     (JAdoMath_w_i[Ax, Ay, Az, Ax', Ay', Az', Bx, By, Bx', By'] &&      R_JA_to_LA[Ax, Ay, Az, xa, ya, za] ) =>     (some xa', ya', za': Int |      R_JA_to_LA[Ax', Ay', Az', xa', ya', za'] &&      LAdoMath_c_i[xa, ya, za, xa', ya', za'] )  } //check LAc_JAi  - to check 
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Figure A-1: Specification of a component working objects A and B with their localized actions 
aLAdoMath and bLAdoMath.  //================================= //===== Actions for A  (Fig. A-1-a) //================================= pred aLAdoMath_w[Ax, Ay, Az, Ax', Ay', Az': one Int]{ //true =>     ( Ax'=  Ax &&        Az' =  Az + Ax + Ay) } //================================= //===== Actions for B (Fig. A-1-b) //================================= pred bLAdoMath_w[Bx, By, Bx', By': one Int]{ //true =>   (  Bx'=  Bx &&     By'=  By +  Bx ) } //========================================= //===== Distributed Action - declarative (Fig. A-2) //========================================= pred DA_w_d[Ax, Ay, Az, Ax', Ay', Az', Bx, By, Bx', By': one Int] {  bLAdoMath_w[Bx, By, Bx', By'] &&   aLAdoMath_w[Ax, Ay, Az, Ax', Ay', Az'] &&  some sharedX, sharedY one Int |  Bx' = sharedX && Ax'=sharedX &&  Ay' = sharedY && By'=sharedY  } //run DA_w_d for 10  
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Figure A-2: Specification of a distributed action DAdoMath.  //=========================================================================== // REFINEMENT: Joint action is refined to a Distributed Action  //=============================================================================  pred R_DA_to_JA[Axc_t, Ayc_t, Azc_t, Bxc_t, Byc_t, //model concrete                     Axa_t, Aya_t, Aza_t, Bxa_t, Bya_t: one Int  ]{ //model abstract     ( Axc_t =  Axa_t)  &&     ( Ayc_t =  Aya_t) &&     ( Azc_t =  Aza_t)         } //valid for DAdoMath_w_d JAdoMath_w_d, JAdoMath_w_i  assert JA_DAD{     all  Axc, Ayc, Azc, Axc', Ayc', Azc', Bxc, Byc, Bxc', Byc',          Axa, Aya, Aza, Bxa, Bya : Int  |  (  DA_w_d[Axc, Ayc, Azc, Axc', Ayc', Azc', Bxc, Byc, Bxc', Byc']  &&      R_DA_to_JA[Axc, Ayc, Azc, Bxc, Byc, //model concrete                       Axa, Aya, Aza, Bxa, Bya] ) =>   some Axa', Aya', Aza', Bxa', Bya': Int  |  (  R_DA_to_JA[Axc', Ayc', Azc', Bxc', Byc', //model concrete                       Axa', Aya', Aza', Bxa', Bya'] &&      JAdoMath_w_i[Axa, Aya, Aza, Axa', Aya', Aza', Bxa, Bya, Bxa', Bya']  )  } check JA_DAD  //=========================================================================== // REFINEMENT: System is refined from w to c; Localized action is refined to a Distributed Action  //============================================================================= pred R_DA_to_LA[Ax, Ay, Az, Bx, By, xa, ya, za: one Int ]{     Ax=  xa  &&     Az=  za  &&      Ay=  ya  } //valid for DAdoMath_w_d , LAdoMath_w_i , LAdoMath_w_d, LAdoMath_c_i, LAdoMath_c_d 
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 assert LA_DAD{     all Ax, Ay, Az, Ax', Ay', Az', Bx, By, Bx', By', xa, ya, za: Int |      ( DA_w_d[Ax, Ay, Az, Ax', Ay', Az', Bx, By, Bx', By' ] &&      R_DA_to_LA[Ax, Ay, Az, Bx, By, xa, ya, za] ) =>      (some  xa', ya', za' : Int |      R_DA_to_LA[Ax', Ay', Az', Bx', By', xa', ya', za'] &&     LAdoMath_c_i[xa, ya, za, xa', ya', za']  )  } //check LA_DAD to check    
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Appendix B 

Jahob Formulas for the XYZ Example 
 

1. File: final_law_lacd.form 
 
This formula validates the fact that the localized action as a composite modeled declaratively 
correctly refines the localized action as a whole: 
 
 (* action LAdoMath_w *) 
(ActionAbstract = (%  x y z xp yp zp. 
 
yp = x + y & 
zp = z +  (y + x) &   
xp = x)) & 
 
(* component actions *) 
(LAaddToY1 = (% x y z xp yp zp. 
xp =  x & 
yp =  y + x )) &  
 
(LAaddToZ1 = (% x y z xp yp zp. 
xp = x & 
zp = z + x + y ))& 
         
(* LAdoMath_composite - declarative *) 
(ActionConcrete = ( % x y z xp yp zp. 
 
LAaddToY1 x y z x_t y_t z_t & 
LAaddToZ1 x_t y_t z_t xp yp zp ))& 
 
(*Refinement verification*) 
(* refinement relation *)  
(RefinementRelation = (% xc_t yc_t zc_t xa_t ya_t za_t.  
 xc_t =  xa_t & 
 zc_t =  za_t &  
 yc_t =  ya_t )) -->  
 
(*assert LAW_LAC *) 
((ALL xa ya za xc yc zc xcp ycp zcp.  
(ActionConcrete xc yc zc xcp ycp zcp &  
 RefinementRelation xc yc zc xa ya za) --> 
(EX xap yap zap. 
 ActionAbstract xa ya za xap yap zap & 
 RefinementRelation xcp ycp zcp xap yap zap)) 

 
2. File: final_law_laci.form 

 
This formula validates the fact that the localized action as a composite modeled imperatively 
correctly refines the localized action as a whole modeled declaratively: 

 
(* action LAdoMath_w *) 
(ActionAbstract = (%  x y z xp yp zp. 
 
yp = x + y & 
zp = z +  (y + x) &   
xp = x)) & 
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(* component actions *) 
(LAaddToY2 = (% x y z xp yp zp. 
xp =  x & 
zp =  z &   
yp =  y + x )) &  
 
(LAaddToZ2 = (% x y z xp yp zp. 
xp = x & 
yp = y & 
zp = z + x + y ))& 
         
(* LAdoMath_composite - imperative *) 
(ActionConcrete = ( % x y z xp yp zp. 
EX x_t, y_t, z_t. 
LAaddToY2 x y z x_t y_t z_t & 
LAaddToZ2 x_t y_t z_t xp yp zp ))& 
 
(*Refinement verification*) 
(* refinement relation *)  
(RefinementRelation = (% xc_t yc_t zc_t xa_t ya_t za_t.  
 xc_t =  xa_t & 
 zc_t =  za_t &  
 yc_t =  ya_t )) -->  
 
(*assert LAW_LAC *) 
((ALL xa ya za xc yc zc xcp ycp zcp.  
(ActionConcrete xc yc zc xcp ycp zcp &  
 RefinementRelation xc yc zc xa ya za) --> 
(EX xap  yap  zap. 
 ActionAbstract xa ya za xap yap zap & 
 RefinementRelation xcp ycp zcp xap yap zap)) 

 
3. File: final_laci_lacd.form 

 
This formula validates the fact that the localized action as a composite modeled imperatively 
correctly refines the same action modeled declaratively: 
  
(* component actions *) 
(LAaddToY1 = (% x y z xp yp zp. 
xp =  x & 
yp =  y + x )) &  
 
(LAaddToZ1 = (% x y z xp yp zp. 
xp = x & 
zp = z + x + y ))& 
         
(* LAdoMath_composite - declarative *) 
(ActionAbstract = ( % x y z xp yp zp. 
 
LAaddToY1 x y z x_t y_t z_t & 
LAaddToZ1 x_t y_t z_t xp yp zp ))& 
 
(* component actions *) 
(LAaddToY2 = (% x y z xp yp zp. 
xp =  x & 
zp =  z &   
yp =  y + x )) &  
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(LAaddToZ2 = (% x y z xp yp zp. 
xp = x & 
yp = y & 
zp = z + x + y ))& 
         
(* LAdoMath_composite - imperative *) 
(ActionConcrete = ( % x y z xp yp zp. 
EX x_t, y_t, z_t. 
LAaddToY2 x y z x_t y_t z_t & 
LAaddToZ2 x_t y_t z_t xp yp zp ))& 
 
(* refinement relation *)  
(RefinementRelation = (% xc_t yc_t zc_t xa_t ya_t za_t.  
 xc_t =  xa_t & 
 zc_t =  za_t &  
 yc_t =  ya_t )) -->  
 
(*assert declar_imper *) 
((ALL xa ya za xc yc zc xcp ycp zcp.  
(ActionConcrete xc yc zc xcp ycp zcp &  
 RefinementRelation xc yc zc xa ya za) --> 
(EX xap yap zap. 
 ActionAbstract xa ya za xap yap zap & 
 RefinementRelation xcp ycp zcp xap yap zap)) 

 
4. File: final_dad_laci.form 

 
This formula validates the fact that the distributed action as a whole modeled declaratively 
correctly refines the localized action as a composite modeled declaratively / imperatively: 
 
(* component actions *) 
(LAaddToY2 = (% x y z xp yp zp. 
xp =  x & 
zp =  z &   
yp =  y + x )) &  
 
(LAaddToZ2 = (% x y z xp yp zp. 
xp = x & 
yp = y & 
zp = z + x + y ))& 
         
(* LAdoMath_composite - imperative *) 
(ActionAbstract = ( % x y z xp yp zp. 
EX x_t, y_t, z_t. 
LAaddToY2 x y z x_t y_t z_t & 
LAaddToZ2 x_t y_t z_t xp yp zp ))& 
 
(* WO as a composite = A + B (see Fig. A-1) *) 
(* Actions for A:) 
(aLAdoMath_w = (% Ax Ay Az Axp Ayp Azp. 
Axp =  Ax & 
Azp =  Az + Ax + Ay )) &  
 
(* Actions for B:) 
(bLAdoMath_w = (% Bx By Bxp Byp. 
Bxp = Bx & 
Byp = By + Bx ))& 
         
(* Distributed action - declarative *) 
(ActionConcrete = ( % Ax Ay Az Axp Ayp Azp Bx By Bxp Byp. 
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aLAdoMath_w Ax Ay Az Axp Ayp Azp & 
bLAdoMath_w Bx By Bxp Byp & 
EX x_shared, y_shared. 
Bxp = x_shared & Axp = x_shared & 
Ayp = y_shared & Byp = y_shared ))& 
 
(* refinement relation *)  
(RefinementRelation = (% x_t y_t z_t Ax_t Ay_t Az_t.  
 Ax_t =  x_t & 
 Az_t =  z_t &  
 Ay_t =  y_t )) -->  
 
(*assert LA_DAD *) 
((ALL Ax Ay Az Axp Ayp Azp Bx By Bxp Byp x y z.  
(ActionConcrete Ax Ay Az Axp Ayp Azp Bx By Bxp Byp &  
 RefinementRelation Ax Ay Az x y z) --> 
(EX xp yp zp. 
 ActionAbstract x y z xp yp zp & 
 RefinementRelation xp yp zp Axp Ayp Azp)) 
 

To validate the refinement of the localized action as a composite modeled declaratively and 
the distributed action, the abstract action definition should be replaced with one from the 
previous examples. The rest of the formula will not change. 
 

5. File: final_jad_dad.form 
 
This formula validates the fact that the distributed action as a whole modeled declaratively 
correctly refines the joint action modeled declaratively: 
 
(* Joint action JAdoMath_w - declarative *) 
(ActionAbstract = ( % Ax Ay Az Axp Ayp Azp Bx By Bxp Byp. 
Axp =  Ax & Bxp =  Bx  & 
Byp =  By + Bx &  
Azp =  Az +  Ax + Ay &  
EX shared_x shared_y. 
(shared_x = Ax & Bx = shared_x &  
shared_y = Ayp & shared_y= Byp )))& 
 
(* WO as a composite = A + B (see Fig. A-1) *) 
(* Actions for A:) 
(aLAdoMath_w = (% Ax Ay Az Axp Ayp Azp. 
Axp =  Ax & 
Azp =  Az + Ax + Ay )) &  
 
(* Actions for B:) 
(bLAdoMath_w = (% Bx By Bxp Byp. 
Bxp = Bx & 
Byp = By + Bx ))& 
         
(* Distributed action - declarative *) 
(ActionConcrete = ( % Ax Ay Az Axp Ayp Azp Bx By Bxp Byp. 
aLAdoMath_w Ax Ay Az Axp Ayp Azp & 
bLAdoMath_w Bx By Bxp Byp & 
EX x_shared, y_shared. 
Bxp = x_shared & Axp = x_shared & 
Ayp = y_shared & Byp = y_shared ))& 
(* refinement relation *)  
(RefinementRelation = (% x_t y_t z_t Ax_t Ay_t Az_t.  
 Axc_t =  Axa_t & 
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 Azc_t =  Aza_t &  
 Ayc_t =  Aya_t )) -->  
 
(*assert JA_DAD *) 
((ALL Axc Ayc Azc Axcp Aycp Azcp Bxc Byc Bxcp Bycp Axa Aya Aza 
Bxa Bya.  
(ActionConcrete Axc Ayc Azc Axcp Aycp Azcp Bxc Byc Bxcp Bycp &  
 RefinementRelation Axc Ayc Azc Axa Aya Aza) --> 
(EX Axap Ayap Azap Bxap Byap. 
 ActionAbstract Axa Aya Aza Axap Ayap Azap Bxa Bya Bxap Byap & 
 RefinementRelation Axcp Aycp Azcp Axap Ayap Azap)) 
 

NOTE: Axa – stands for the value of variable x of the component working object A of the 
abstract specification; Axc – stands for the value of variable x of the component working 
object A of the concrete specification; 
Correspondingly, Axap and Axcp are values of these variables after the action termination. 



 
 
168  



 
 

169 

Appendix C 

Practical Feedback 
 
Ian F Alexander 
Company: Scenario Plus (UK) 
Director (consultant, trainer, author) 
 
  - What is your expertise in business/IT alignment? (based on your past projects) 
 
I have worked as a requirements specialist since 1994, running my consultancy and training 
company Scenario Plus. Clients have included Ericsson, DaimlerChrysler, The Post Office, 
London Underground and many others. I am the lead author of Writing Better Requirements, 
Addison-Wesley 2002, and Scenarios, Stories, Use Cases, Wiley 2004. My publications are 
available at http://easyweb.easynet.co.uk/~iany/consultancy/papers.htm  
 
  - Do you use any modeling techniques for your projects? (i.e. UML, BPMN, other.) 
 
I use a wide range of modelling techniques including goal modelling, scenario analysis, 
context modelling, and rationale modelling. I have personally developed stakeholder analysis 
techniques and extended the use of negative scenario analysis with “misuse cases”.  I have 
not found most kinds of UML diagram especially helpful, but make use of them (e.g. class 
diagrams, activity diagrams) from time to time.  
 
  - Do you use any software for automated modeling / documentation /   analysis in your 
projects? 
 
Scenario Plus for Use Cases was originally conceived as a tool which would animate (step 
through) a scenario AND/OR tree to generate specific scenarios which could be used directly 
as test cases. Now I use a range of Scenario Plus tools to edit diagrammatic models (goal 
models, rationale models, etc), as well as Enterprise Architect for UML models, and DOORS 
to automate traceability in requirements documentation.  
 
2. Validation: 
 
  - Whether the problem discussed in the paper is encountered in practice? 
 
Yes. There is no doubt that many SLAs are poorly written and result in poor service to the 
business.  
 
-Here I would refer not only to the fact that the SLA can be poorly written:  What I really 
wanted to address in my work, is the fact that even from the initially well written SLA  one 
can get the poorly constructed service, which will violate this SLA. Do you think this is a 
sound problem? 
 
Yes, certainly. Traceability is a major problem in industry – it is horribly tedious to apply, 
and always error-prone.  
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  - What do you think about the usefulness of the method presented in the paper for a 
practitioner? Please, explain your answer. 
 
Firstly the specification is remarkably clear and easy to read, despite being in an unfamiliar 
notation.  
     Secondly, by expressing the relationships between actions and data graphically, it is 
highly expressive, making it clear what is needed when.  
     These properties of the approach make it an attractive new possibility for practical use. It 
appears far more likely to be practical than the majority of formal methods from research 
projects.  
 
     A possible concern is about how such a notation may scale up for large problems; the 
number of relationships may increase rapidly with the number of both actions and pieces of 
data, which could make the diagrams hard to read. It could also make formal proof of 
correctness long, though as this is supported by the Alloy Analyzer tool that should not be a 
problem.  
 
  - How do you think the validation / verification technique presented in the paper can help 
you (your company)? Please, describe the advantages and disadvantages that you can 
expect. 
 
In principle the techniques could help to create accurate service specifications for clients. The 
industrialisation of the approach would involve training for requirements practitioners, 
tooling, and reasonable assurance to both the company and the client that the approach is 
workable in practice (on a real problem, and by practitioners).  
 
Ilia Bider  
Company: IbisSoft (Sweden) 
Director R&D 
  
 - What is your expertise in business/IT alignment? (based on your past  projects) 
 
Organizational change through introduction of business process support systems  
 
 - Do you use any modeling techniques for your projects? (i.e. UML, BPMN, other.) 
 
Yes (others) 
  
 - Do you use any software for automated modeling / documentation / analysis in your 
projects? 
 
We use (and develop) tools for getting IT support system from (or at the same time as) 
process specification. 
  
2. Validation: 
  
 - Whether the problem discussed in the paper is encountered in practice? 
 
Personally, I have not encountered them in my practice. Nevertheless, I can easily imagine 
who have this kind of problems, one example being vendors of software systems with 
business processes built-in in them, for example CRM vendors, WEB-shopping systems 
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vendors, etc. They need to be able to adjust their systems to each customer needs. 
  
 - What do you think about the usefulness of the method presented in the paper for a 
practitioner? Please, explain your answer. 
 
It could be quite useful as a methodological base for discussing problems and finding 
solutions. To achieve this, a popular version and texts in methodological style should be 
written, e.g. manuals, etc. Making full use of the methodology will require introduction of it 
in a tool that helps to design processes/support systems.  
  
 - How do you think the validation/verification technique presented in the paper can help you 
(your company)? Please, describe the advantages and disadvantages that you can expect. 
 
I cannot see direct use of them in our current practice. I can imagine using them as a 
methodological framework, if we come across an appropriate task in the future. 
 
As far as formal methods are concerned, I do not think we will use formal methods of 
verification/validation in any foreseeable future. As an explanation of my response, I would 
like to draw a parallel with formal verification/ validation of computer programs. The domain 
is quite old, but I have never seen it being used in the development of business applications, 
at a maximum people use formal testing methods. As I understand, these are used for very 
critical applications, like in a space ship sent by NASA to Mars, or in high volume low 
margin cases, like hardware built-in programs. In the latter case the vendors cannot afford 
serious faults in a program, and high volume of production can justify investment in formal 
methods and tools. In addition, their programs, normally, have well-defined formal 
specifications. 
 
I cannot see any signs of the two situations above in the market of BPM/process support 
tools. What is more, tools vendors might not be much interested in formal staff. Considerable 
share of their income is coming from tuning/adjustment of their tools to the customers needs. 
In this area, customers are charged on the consulting basis, i.e. per hour, and the vendors are 
quite happy with that. I cannot se why they suddenly would like to invest in formal 
validation/verification. 
 
Nevertheless, there might be some possibilities to promote formal verification/ validation, 
provided they are incorporated in some tool, e.g.: 

• As a sales argument for the tool 
• To provide guarantees in cases of extremely importance for the customers (e.g. SOX 

compliance).  
  
In general, I believe that there is only one way to answer the question of practical 
applicability of a method of this kind – to implement it as an own toolkit for process design, 
or as an ad on to somebody’s else toolkit. Thus the authors need to develop and market their 
own stuff, or sell the idea to an existing toolkit vendor. Another option is to wait until 
somebody will pick it up, but it may take a long time. 
 
Alexander Samarin 
Company: Teamlog S.A. (Suisse) 
Enterprise solutions architect 
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- What is your expertise in business/IT alignment? (based on your past projects) 
 
Many years of active participation in architecting and implementing flexible enterprise 
solutions.  
 
- Do you use any modeling techniques for your projects? (i.e. UML, BPMN, other.) 
 
BPMN and some proprietary methods 
 
- Do you use any software for automated modeling / documentation / analysis in your 
projects? 
 
IBM WebSphere Integration Developer, Oracle SOA suite, Intalio BPM suite 
 
2. Validation: 
 
- Whether the problem discussed in the paper is encountered in practice? 
 
Use of declarative specifications for complex dynamic systems is very attractive [1] and very 
challenging at the same time. Higher flexibility and higher potentials for optimisation are 
coming together with higher difficultly, especially, for non-experts for creating such 
specifications.  
Experience shows that always we have to find a balance between different techniques for 
coordination of business activities – some aspects/fragments of a business process are better 
to express with an imperative technique and others are better to express with a declarative 
technique.  
A practical example of the problem of customisation has been encountered at a client from 
the international standardisation. The core business process at this client is a well-defined 
sequence of step-by-step enrichments (commenting, balloting, technical editing, translating, 
etc.) of a complex document. We found that it would be better if each document would have 
its own sequence. So, we wanted to customize a template for each instance. We didn’t find an 
easy way to implement this with modern tools. 
 
- What do you think about the usefulness of the method presented in the paper for a 
practitioner? Please, explain your answer. 
 
From a practitioner point of view, the method sounds useful and promising because it 
considers complimentary of declarative and imperative techniques. Synergy of these two 
techniques (complimented by some guidance how to combine them) will certainly create 
better more flexible business process models. 
 
- How do you think the validation / verification technique presented in the paper can help you 
(your company)? Please, describe the advantages and disadvantages that you can expect. 
 
Any formal verification is very useful in daily practical work because such a verification can 
bring highly demanded objective and scientifically proven reasoning into modern enterprise 
environment with all its political tensions and power games (where it is almost impossible to 
have something willingly accepted and followed by everyone). 
So far, I think that the visual notation needs some enhancements before meeting non-experts. 
For example, some traditional modelling artefacts (e.g. events and roles) are expected by the 
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users. Also some diagramming style should be recommended to improve explicitness of 
diagrams and their structuring for better “executability”.  
 
 [1] “DecSerFlow: Towards a Truly Declarative Service Flow Language” by W.M.P. van der 
Aalst and M. Pesic 
 
Thomas Langenberg 
Company:   Accenture (Germany) 
2 years of experience, SAP Consultant, Project manager 
 
  - What is your expertise in business/IT alignment? (Based on your past projects) 
 
Implementation of SAP BW for large corporations (I was working with Siemens, Deutsche 
Telecom, Otto Versand). I was customizing the predefined SAP solutions for controlling and 
performance monitoring units of financial departments within the client organization. 
 
  - Do you use any modeling techniques for your projects? (i.e. UML, BPMN, other.) 
 
Standard document formats accepted in financial departments are typically Microsoft Word, 
Excel, and PowerPoint. Therefore, all as-is and to-be modeling of the work flow and 
processes during my projects was done in MS Power Point. Based on my experience, 
presentations are very efficient for the client (who is typically not used to any modeling 
standard). I was using the ad-hoc graphical notation, similar to BPMN. 
 
  - Do you use any software for automated modeling / documentation / analysis in your 
projects? 
 
 Power Point presentations for discussing and documenting projects; no further analysis. 
 
2. Validation: 
 
     - Whether the problem discussed in the paper is encountered in practice? 
 
The projects I was involved in aimed at substituting an existing system for financial 
monitoring by a more efficient and productive system, such as SAP. These projects usually 
contain two parts: 
1. Initial configuration of a system, using a standard SAP solution. The goal of this part is to 
make a quick solution for the customer that will work as a substitute of the old system;  
2. When the initial configuration is built, we switch to the system optimization. This typically 
involves customization and reorganization of components within the standard solution and 
aims at improving, for example, the speed and responsiveness of the system. Customization 
includes re-programming of some components, and their interconnection. 
 
In context of such projects, the problem of verification that the customized system performs 
as well the standard solution or provides at least the same functionality as an old system is 
important. 
 
 - What do you think about the usefulness of the method presented in the paper for a 
practitioner? Please, explain your answer. 
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Based on my experience, standard development process (typically presented as Requirements 
specification, Development, Testing, and Deployment) is never linear. Many iterations are 
usually required during a development phase. There are several reasons to it:  the 
requirements keep changing; many different stakeholders are involved proposing their own 
solutions; many political interests must be taken into account. Each iteration of the 
development process is costly and time consuming. 
Evaluation of each alternative solution and validation that this solution does not violate the 
requirements is a typical problem.  Though, having a technique with which one can evaluate 
proposed solutions could save project resources and would be a useful instrument for a 
consultant. 
 
- How do you think the validation / verification technique presented in the paper can help you 
(your company)? Please, describe the advantages and disadvantages that you can expect. 
 
As I see it, the proposed technique may serve for a consultant to verify solutions against 
requirements and also to evaluate and to compare these solutions. This is definitely an 
attractive instrument. However I consider several main challenges in adopting such 
technique: 
1. The complex graphical notation plus the use of formal methods prevents this technique 
from being used for communication with a client. (Based on my experience, only a small part 
of the organization, mainly from the IT department, uses and understands UML or other 
modeling techniques). Therefore, the proposed technique can be used only by a trained 
consultant, in the project back-office. 
2. The utilization of this technique will introduce a new step in the project development 
process, which is promising but time and money consuming. As time is essential during the 
project, it can be difficult to communicate a profitability of this step to the customer. Several 
successful projects in a field, accomplished using this technique and illustrating its 
profitability can help. Therefore, some statistics might be needed prior to a commercial use. 
 
Donald C. Gause 
Company:  Savile Row LLC (USA) - Principal and Consultant  
Thomas J. Watson School of Engineering, Binghamton University, State University of 
New York – Research Professor 
 

- What is your expertise in business/IT alignment? (based on your past projects) 
 

The preponderance of my work deals with the application of generic requirements 
processes developed as a result of observing common problems and lost opportunities in 
practice.   

Recent professional and consulting activities include: 
Requirements, design, and process consultant to global banking community on projects 

involving: 
Gap analysis and cross-functional system development for the replacement of divisional 

legacy systems; Formal design reviews of requirements and specifications for systems under 
development; Post-release user reviews of systems and design processes of recently released 
systems; Advising management teams in the enhancement of information flow and 
productive innovation within and across banking functions; etc.   

 Advised a number of commercial and government organizations in concept, function and 
requirements development for: 
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Traumatic brain injury treatment management system; Traumatic brain injury full-care 
delivery information system; FDA drug approval protocol system; etc. 

Directed a corporate task force in the development of advanced computer concepts and 
strategic plans for next generation cars and trucks. 

Advised directors in the integrated development of  the business plan, business 
requirements, feature and function development and design risk analysis for a new Internet 
start-up company. 

 
- Do you use any modeling techniques for your projects? (i.e. UML, BPMN, other.) 
 

My work focuses on the non-functional requirements short of functional specification and 
implementation but does include use scenarios and test cases.   

I have worked with systems in which Parnas’s structured decision tables, Jackson’s 
problem frames, Yu’s i*, Petri nets and UML have been used for algorithm specification. I 
have had graduate professional student projects in which APL was used as a meta-language 
to describe the final system with the advantage that the executable meta-language was used to 
test and refine the algorithm before final implementation was achieved in assembler 
language.  I have also designed evolutionary programs capable of improving their 
performance with experience thus demonstrating their ability to define their own required 
modification and structure based on ill-defined goals as well as explicit goals.  These 
approaches are based on genetic and neural network models.  
   
- Do you use any software for automated modeling / documentation /   analysis in your 
projects? 
 
I have used software of my own design to document the requirements elicitation process 
described above and to test for consistency and completeness based on binary context 
matrices defining pair-wise relationships between users, attributes, and constraints.  
 
2. Validation research: 
 
- Whether the problem discussed in the paper is encountered in practice? 
 
The problem discussed in this paper is a fundamental problem in design and implementation 
of software systems.  It is, in fact, a fundamental problem in the design of computer 
solutions, in general (hardware and software), as it has grown more advantageous to delay 
decisions determining the allocation of required functionality to software, firmware, or 
hardware until the full functionality has been defined.  This is particularly true in the design 
of imbedded process control systems (manufacturing, vehicular stabilizing, traffic, robotic 
control)  as well as with the implementation of distributed computing systems designed to 
take advantage of highly parallel algorithms (genetic and evolutionary programs, neural 
networks, reconstructability and cluster analysis).   
 
- What do you think about the usefulness of the method presented in the paper for a 
practitioner? Please, explain your answer. 
 

It is hard to imagine a computer design problem that would not benefit from a refinement 
tool that is capable of recognizing and correcting inconsistency between high-level business 
and systems requirements and implementation instructions (functional specifications).  Many 
factors contribute to our increasing needs to apply effective specification refinement, a few of 
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which are: 1) we are building larger, more complex systems to be used by more diverse user 
populations, 2) these systems must integrate into even larger systems, 3) systems usability 
has become a stronger differentiating factor in increasingly competitive markets, 4) because 
of these three factors, many critical contextual factors cannot be recognized until the product 
has been released and unintended consequences are discovered giving rise to continual 
change activity. 

The main concern I have with the EPFL white paper8  is that I have not seen enough 
evidence that the proposed method has been properly validated.   
 
- How do you think the validation, verification technique presented in the paper can help you 
(your company)? Please, describe the advantages and disadvantages that you can expect. 
 
Advantages: 
 - Assuming that your claims are correct in all process assumptions you have based your 
study on, the technique will certainly be beneficial to designers, clients, and end users alike.  
The one aspect assures this is the fact that this substantially enhances design visibility to each 
of the targeted constituents enabling the users to say, “No, that’s not what I mean.” Rather 
than, “No, that’s not what I meant.”  This is what we are all striving for. 
 

Potential problems:  
- Your technique was nicely illustrated with the “toy” example because of admitted 

difficulty in describing a more complex (realistic) case in SEAM.  And yet, SEAM is 
described as being a visual tool.   

- I have the advantage of being relatively ignorant of the SEAM visual representation 
schema and, as such, wonder if there might not be a serious difficulty in scaling up to 
more typically complex design problems.  I have no doubt that people working with 
SEAM on a daily basis find the notation to be elegant in its simplicity but doubt that the 
end- users (and many other critical but computer notationally disadvantaged users) will 
find SEAM to be the visually accessible tool that provides enhanced visibility to all.           

- How critical is ITIL to the success of this approach?  I raise this point from a commercial 
perspective because, as I understand it, members of the potential ITIL market have 
criticized the product because of the need to purchase expensive system books and the 
zeal with which the ITIL backers express themselves with respect to their product.  One 
member of the potential customer community felt that his ITIL contact was more full of 
zeal than the pragmatics of his problem. 

- As a last point, what can this SEAM-based model system do that UML, i*, Petri nets or 
other current meta-languages not do?  What does it do better than any of these meta-
languages?   

 
 

                                         
8 Donald C. Gause is mentioning the paper, which shortly illustrates the research result of this dissertation using 
the SIG example from Section 7.2. 
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