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ABSTRACT
Topological changes in mobile ad hoc networks frequently
render routing paths unusable. Such recurrent path failures
have detrimental effects on the network ability to support
QoS-driven services. A promising technique for addressing
this problem is to use multiple redundant paths between
the source and the destination. However, while multipath
routing algorithms can tolerate network failures well, their
failure resilience only holds if the paths are selected judi-
ciously. In particular, the correlation between the failures
of the paths in a redundant path set should be as small as
possible. However, selecting an optimal path set is an NP-
complete problem. Heuristic solutions proposed in the liter-
ature are either too complex to be performed in real-time,
or too ineffective, or both. This paper proposes a multipath
routing algorithm, called Disjoint Pathset Selection Proto-
col (DPSP), based on a novel heuristic that, in nearly linear
time on average, picks a set of highly reliable paths. The
convergence to a highly reliable path set is very fast, and
the protocol provides flexibility in path selection and rout-
ing algorithm. Furthermore, DPSP is suitable for real-time
execution, with nearly no message exchange overhead and
with minimal additional storage requirements. This paper
presents evidence that multipath routing can mask a sub-
stantial number of failures in the network compared to sin-
gle path routing protocols, and that the selection of paths
according to DPSP can be beneficial for mobile ad hoc net-
works, since it dramatically reduces the rate of route discov-
eries.

Categories and Subject Descriptors
C.2 [Computer-Communication Networks]: Routing
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1. INTRODUCTION
A Mobile Ad Hoc Network (MANET) typically undergoes

constant topology changes, which disrupt the flow of infor-
mation over the existing paths. Path breakage requires dis-
covery of new routes within the MANET, leads to excessive
delay, and affects the quality of service for delay sensitive ap-
plications. A promising technique for coping with frequent
route failures is to enhance the diversity of routes used in
MANETs. Traditional routing protocols use a single path
between the source and the destination. When that path
fails, they need to perform a potentially costly operation to
locate an alternate route for the given destination. In the
case of reactive protocols, each route disruption may lead
to excessively long delays at the routing layer on the order
of seconds, which in turn prohibit higher-level protocols to
take full advantage of the network bandwidth even after the
route is restored [9]. Proactive protocols, on the other hand,
pay a high premium in order to have alternative routes at
hand, especially when mobility rates are low. Without a
technique to shield the clients from possibly long-running
route discovery and maintenance operations within the net-
work, single-path routing algorithms directly expose nodes
to long network latencies and excessive overhead when paths
fail.

A promising approach is to use not just a single path, but a
set of redundant paths, to mask link failures in the network.
This approach requires three components. Specifically, it
requires a mechanism for route discovery, a mechanism for
sending a packet along a selected route, and a high level pro-
tocol for selecting the most reliable set of routes from the
many redundant paths that may exist in the network. The
first two of these, discovery and forwarding mechanisms, are
relatively well-understood. The third issue, however, poses
a fundamental, and quite difficult, question: which of the
potentially exponentially many paths within the network
should the routing layer use to achieve the highest reliabil-
ity?
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This paper addresses multiple path selection and proposes
a simple, effective and efficient protocol, called the Disjoint
Path Selection Protocol (DPSP), for selecting a set of paths
to maximize network reliability. We term the measure of
path stability or resistance to failure as the path’s reliabil-
ity. Simply put, a reliable path is one with low probability
of failure. For a set of paths to achieve high reliability in
aggregate, the correlation of failures between the paths in
the set should be as low as possible. Shared links and nodes
between paths present common failure points which can dis-
able many or all of the paths in the set. In order to provide
high resistance to failure, we concentrate on finding paths
with no link or node overlap; that is, disjoint paths.

The problem of finding disjoint paths to improve reliabil-
ity is non-trivial. What we are looking for is a set of disjoint
paths between a source and destination such that the prob-
ability that all the paths in the set will fail simultaneously
is very low. For the sake of simplicity, let us assume that all
the links in the network are characterized by the same prob-
ability of failure, or link failure rate. Two general principles
for selecting a reliable path set can be easily stated. First,
a long path is less reliable than a short one. And second, a
larger number of disjoint paths increases the overall reliabil-
ity. Thus, in general, one should be looking for a large set
of short and disjoint paths. A simple solution to the prob-
lem would be to employ an iterative procedure, in which
the shortest paths are found one after the other, removing
the links of the path after it is found [11]. Unfortunately,
such a solution does not work well in practice. Figure 1 il-
lustrates the potential pitfall. In this example, discovering
the path {s,B,C,t} first would prevent this simple algorithm
from finding the two other paths, {s,A,C,t} and {s,B,D,t},
although these two paths combined have greater reliability
than the first path alone.

In principle, we wish to find as many disjoint paths as
possible that are, at the same time, as reliable as possible.
But finding as many disjoint paths as possible and finding
the most reliable paths are two contradictory goals. This is
because the largest possible number of disjoint paths does
not guarantee that these will be the most reliable ones, while
finding the most reliable paths does not guarantee that we
will find many of those. Consequently there is a complex
trade-off, which causes the simple solution to select an infe-
rior path set. The problem of finding the most reliable path
set has already been shown to be computationally hard [24],
with a number of viable approximate solutions surveyed in
section 2. Nevertheless, the cost of these algorithms may be
prohibitively large, preventing a real-time application in the
MANET communication environment.

This paper presents DPSP, a real-time protocol for reli-
able disjoint path selection, and makes three contributions.
First, it outlines an online, nearly-linear, effective proto-
col for selecting disjoint path sets to maximize reliability.
This protocol is driven by an accurate path reliability met-
ric that guides the route selection process, and a unique
negative weight assignment algorithm that allows certain
edges to be temporarily reused during pathset construction.
Second, through simulation results, it makes a case for mul-
tipath routing. We show that the mean time to failure under
a multipath routing algorithm is roughly a factor of three
higher than that of a single path routing algorithm. Finally,
it demonstrates that the scheme outlined in this paper is
twice as effective as currently proposed schemes that select

Figure 1: A first attempt.

a pathset by minimizing the number of hops. Moreover,
the path selection is 15% more effective than simpler mul-
tipath routing strategies that take the link reliabilities into
account, while its running time is comparable.

The key insight behind DPSP is that a search algorithm
can discover reliable path sets by temporarily considering
overlapping paths. This, in turn, avoids committing early
to short paths that limit the choice of other, potentially more
reliable, routes. Our proposed algorithm starts by finding
the first most reliable path. Then it continues by finding the
second most reliable path, while maintaining the ability to
allow a temporary re-use of links that were included in the
first path. For example, in Figure 1(b), during one of the
later iterations, the path {s,A,C,B,D,t} (dark solid line) is
found, which interlaces with the previously found {s,B,C,t}.
Our algorithm will allow us to replace these two interlac-
ing paths with two disjoint paths {s,A,C,t} and {s,B,D,t}
(shown in Figure 1(a)), to yield a path set with higher reli-
ability.

In the next section, we survey the applied work on multi-
path routing and the theoretical results in path set selection.
Section 3 provides an overview of our approach. Section 4
describes the detailed operation and termination conditions
of our path selection. Section 5 describes an optimization
to further reduce the running time of our protocol. Section
6 demonstrates the efficiency and effectiveness of our tech-
nique through a simulation study. Section 7 discusses the
results and concludes.

2. RELATED WORK
Past work on multipath routing protocols has focused on

quick failure recovery and load-balancing, but not examined
how to effectively select multiple paths. On-demand mul-
tipath routing algorithms discover more than one route in
order to replace a broken one with one of the backup routes
[15, 18]. They rely on variants of on-demand routing proto-
cols, such as DSR and AODV, to discover multiple routes.
The goal is to improve the packet delivery ratio and the
average delay per packet by falling back to an operational
backup route when the primary route breaks. An alternative
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approach is to use both primary and backup paths simulta-
neously to route data. Such a multipath routing approach
can better distribute load, resulting in significant decreases
in packet loss [21], and, in the case that packets are dispersed
across the path set [30], increased fault tolerance. Follow-
on work [14] has examined how to establish two maximally
disjoint paths and select routes on a per-packet basis. None
of these protocols addresses the issue of path selection. [14]
and [18] are limited to route replies provided by the routing
protocol, and [15] does not provide a specific method for
selecting the maximally disjoint path. [21] selects the two
routes with the least number of hops after decomposing the
route replies into their constituent links. Furthermore, these
protocols do not provide a metric or model to justify a par-
ticular route selection scheme. For example, selecting paths
based on a small number of hops does not imply that paths
will undergo less frequent breakages, while the appropriate
number of paths may be far from two.

Although the selection of paths based on reliability as a
routing metric has not been proposed before, other protocols
have examined how to relate path availability to routing de-
cisions. The (α,t)-Cluster algorithm [17] uses path availabil-
ity to organize a MANET into clusters and provide a hybrid
routing approach that is proactive within the cluster and re-
active between clusters. While this protocol can group nodes
into clusters among which path availability can be bounded,
it does not help the selection among competing paths. Signal
Stability-Based Adaptive (SSA) [6] and Associativity-Based
(ABR) [29] routing protocols propose two different mecha-
nisms for assessing link stability. They both rely on periodic
beaconing in order to estimate the link failure rates. ABR
nodes determine which neighbors they are associated to af-
ter receiving five consecutive ”ticks”. SSA nodes also collect
statistics of the quality of their incident links based on the
link utilization. Both protocols employ on-demand flooding
of the network with route requests, which accumulate the
corresponding stability metrics, and the destination chooses
the most stable route. However, none of these protocols in-
vestigate the use of multiple paths or a way to select a set
of such redundant paths.

While there is an extensive body of past work on network
reliability, most of it does not examine how to find a set
of reliable paths between two network nodes. Rather, past
work has focused on means for calculating the probability
that, for a given pair of nodes, there is at least one route
from the source to the destination node. This probability is
defined as the two-terminal or terminal-pair reliability, and
is related to the problem of finding reliable path sets. Since
knowing a set of paths between two nodes allows to calculate
the reliability of this set of paths, the two-terminal reliability
is bound from below by this calculated value; that is, this
is a lower bound of the network reliability. But the two-
terminal reliability metric does not immediately lend itself
to an algorithm for selecting reliable path sets.

The problem of calculating the two-terminal reliability
has been shown to be computationally hard even in spe-
cial cases [22]. It is highly unlikely for an efficient exact
algorithm to be found, since it belongs to the class of #P −
complete problems [32, 23, 26], which are at least as diffi-
cult as the ones in the class of NP-complete problems. As
an alternative, approximate solutions have been proposed,
with approximations focusing on the special case of equal
link reliability values [13, 5]. While these approximate al-

gorithms are effective, the central assumption that all links
are equally reliable makes them unsuitable for practical use.
Other methods for algebraic calculation [3, 28] have pro-
hibitive costs.

On the other hand, edge-packing methods offer an efficient
means for calculating a two-terminal reliability lower bound.
The simplest and very effective approach for calculating an
edge-packing bound, which can readily be employed for the
selection of multipaths, is the greedy algorithm [11]. This
algorithm starts by finding the most reliable path, removes
its edges, and continues in this way until no more paths can
be found in the remaining graph. It is a simple and effi-
cient method, but, as the example in Figure 1 shows, it may
fail to find a path set of large cardinality, thus producing
a very loose lower edge-packing bound. A different heuris-
tic [4] approach determines the set of edges of all maximum
flows for values from 1 to c, the maximum number of dis-
joint paths. The lower bound is calculated for each possible
set of s → t paths, and among all such path sets the one
that provides the maximum bound is chosen. While the
complexity of this method is not presented, it is likely to be
expensive; the maximum flow method [7], which is a compo-
nent of these heuristics, has O(|V ||E|2) running time, with
|V | and |E| the number of nodes and links of the network
[12]. Especially in a dense multihop topology, the number
of existing paths and path sets may be very large, rendering
solutions that produce large number of candidate path sets
computationally expensive.

3. THE PROPOSED SCHEME

3.1 Model and Assumptions
We define the reliability of a network element as the prob-

ability of that element being operational. We denote the
probability of proper operation of a vertex, edge, and arc,
by pv

i , pe
ij , pa

ij respectively. We model a MANET as a prob-
abilistic graph GP = (V,E) with probabilities of proper op-
eration assigned to the edges; an edge eij ∈ E operates
with probability pe

ij and fails with probability qe
ij = 1− pe

ij .
Accordingly, for a source node s and a destination t, t �= s,
Rels→t(GP ) denotes the probability that there exists at least
one path connecting s and t over GP .

The failures of the edges are assumed to be statistically
independent, while the nodes are considered to be flawless,
that is, operational with probability pv

i = 1. The assump-
tion on the flawless vertices may seem to be unrealistic; how-
ever, with a simple transformation of the graph, node failure
rates can be incorporated into a graph with flawless vertices
and failing edges [2, 5].

Furthermore, nodes are assumed to operate autonomously
in a truly ad hoc manner so that the overall mobility can be
modelled as random and the link breakages due to mobility
as independent. However, correlated mobility patterns, such
as group motion, may imply correlated link lifetimes. Such
correlation is captured by our scheme through the generation
of high reliability estimates for long-lived, correlated links,
without explicitly determining the extent and causes of such
correlation.

The correlation between the paths in a network is highly
dependent on the operation of the medium access control
(MAC) protocol. We have assumed in this work that the
MAC layer is implemented over channels that are well sepa-
rated in time and frequency. Consequently, we assume that
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there is little correlation between transmissions from one
node to its neighbors. Application of this work to the case
of a single shared channel is possible, although we do not
investigate such an extension in this paper.

3.2 System Components
While we rely on an underlying routing protocol to pro-

duce a set of candidate paths, our approach for path set
selection is independent of the routing protocol. Reactive
protocols can provide a number of alternative paths with low
overhead in response to query, while proactive schemes can
do so through periodic beaconing. Hybrid ad hoc routing
protocols [19] are the middle ground in this tradeoff. In par-
ticular, schemes such as ’diversity injection’ [20] can provide
a larger and more diverse set of paths, without additional
route replies. The choice of a particular routing algorithm
is orthogonal to the operation of DPSP, as it uses the rout-
ing layer only to discover a partial view of the underlying
network topology.

DPSP starts by locally constructing a partial view of the
network based on the routes found by the underlying proto-
col. The route replies are decomposed into their constituent
links and GP is constructed from the available information.
Consequently, the selection of paths in DPSP is not limited
to the routes discovered by the underlying route discovery
protocols. Protocols which select only among the routes
found by the routing layer are unlikely to recover the most
reliable (and disjoint) routes, because the propagation of
route query packets is not related to the corresponding link
reliabilities. As a result, discovered routes may comprise
unreliable links, and the choice of the most reliable route
from a number of such replies, as is the case in SSA and
ABR, will not yield a reliable route. Each node in DPSP
continuously monitors the reliability of each of its incident
links and appends this information to the route reply pack-
ets returning to the source node. In order to acquire link
reliability estimates with minimal overhead and exploit ex-
isting functionality, we use the measurement of the strength
of the received signals (RSSI) [25] from each neighbor. This
is similar to SSA, but the inference on whether the signal
level will be above a nominal value adequate for error-free
communication is added. Such a solution has been widely
used in the cellular networks context, and it does not require
long estimation delays.

Furthermore, the additional information for each link pro-
vides for relatively accurate topology validation and decreases
the chances of using stale routes. In particular, the link reli-
ability is directly related to the expected link lifetime and is
used as an additional explicit criterion for nodes to remove
possibly stale links from their topology view. This is a great
advantage for schemes that use caching and update the per-
ceived link stability/lifetime only whenever a route/link is
used [10]. Instead, our protocol distributes the task and the
processing overhead of the link reliability estimation to all
nodes, with each of them responsible for its incident links.
This way, significantly higher estimation accuracy and time-
liness is achieved. Moreover, our algorithm is performed in-
dependently on each node, and does not require inter-node
coordination. It also preserves the on-demand nature of ad
hoc routing, does not increase the message overhead, and
thus does not constrain scalability.

3.3 Path Selection Outline
Intuitively, we can view the selection of a highly reliable

set of edge-disjoint paths as the maximization of the reliabil-
ity of a parallel-series system/graph. In order to make the
analogy clearer, we can split each perfectly reliable shared
vertex v to a number of replicas, equal to the number of
paths that contain v. This way the set of edge-disjoint paths
becomes a set of node- (and consequently edge-) disjoint
paths that is a parallel-series structure.

The steps to take are indicated by the following straight-
forward arguments. For any graph, if the reliability of a sin-
gle link increases the overall graph reliability will increase.
For a path, i.e., a series system, the reliability decreases as
the number of links increases, and the overall reliability is
worse than the reliability of each of its links. Finally, for a
parallel system, in our case a set of disjoint paths, the reli-
ability decreases as the number of paths decreases, and the
overall reliability is better than the reliability of every single
paths.

Consequently, our goal is to choose as many paths as pos-
sible and at the same time include paths that are as reliable
as possible. Given that we allow only edge disjoint paths,
the maximum number of paths equals the cardinality c of
a minimal s → t cut-set [8]. Nevertheless, the attempt to
include all c edge-disjoint paths may not satisfy the second
of our goals; the c paths are not necessarily the most reli-
able ones, since we may be forced to include long un-reliable
paths. On the other hand, a choice of fewer, but shorter and
thus more reliable paths may yield a greater overall reliabil-
ity.

We propose a solution based on an iterative procedure of
four steps: (1) a search for the most reliable s → t path,
(2) a decision on whether this newly found path improves
the path set reliability, and if so, (3) a means of augmenting
the path set, and finally, (4) a simple transformation of the
underlying graph, so that the path search may temporarily
use edges of paths already included in the set. Such edges
cannot belong to more than one path, since we seek a set of
disjoint paths. At step (1), a path may include one or more
such edges, but at step (3) the path set will be appropriately
transformed, so that the new set once again contains disjoint
paths, after the temporary use of some edges.

4. DETAILED DEFINITION OF THE PATH
SELECTION

4.1 Overview and Definitions
The directed counterpart of GP is a directed probabilistic

graph, DP , with a probability of operation assigned to each
arc. It is solely used as an internal representation of the
network for our algorithm, with the corresponding reliabil-
ity values satisfying Pmin < pa

ij < Pmax, for Pmin,Pmax ∈
(0, 1). In order to change the path reliability from a multi-
plicative to an additive form, a weight wa

ij = − log(pa
ij) is as-

signed to each arc. Then, for an s→ t path Pi, with (vi, vj)
the arcs that belong to Pi, log(Rels→t(Pi)) =

∑
(vi,vj)∈Pi

wa
ij .

Our algorithm works in stages and Dk denotes the set of
edge-disjoint paths constructed at the k-th stage. A stage
is defined as the attempt to augment the path set, or to
conclude that no further addition of a path and thus mod-
ification of the path set will improve its reliability. At the
end of the execution of the algorithm, Dk is a complete set
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of edge-disjoint paths. As shown in the correctness proof
(Appendix B.) it is guaranteed that the path set is maximal
in the sense that no more edge-disjoint paths can be found
from the underlying graph and consequently added to it.

A forward arc ∈ DP corresponds to an edge that belongs
to one of the paths Pi ∈ Dk and ’follows’ the direction from
s to t with respect to the path. A forward arc is not allowed
to belong to a temporary path. For example, in Figure
1(b)b, arcs (s,B), (B,C), (C, t) belonging to the {s,B,C, t}
path are forward arcs. We also define the constant Cp =
− log(P l

min) = −l log(Pmin) for l = |E| as the value assigned
to forward arcs.

Similarly, a backward arc ∈ DP corresponds to an edge
that belongs to one of the paths Pi ∈ Dk and ’follows’ the
opposite direction to the corresponding forward arc. A back-
ward arc can belong to a temporary path. For example, in
Figure 1(b), backward arcs are (B, s), (C,B), (t, C). And,
Cn = log(Pmax) is the weight assigned to backward arcs,
excluding the ones incident to s and t.

At each stage, our algorithm uses a Shortest Path algo-
rithm, SP, to select the shortest, i.e., most reliable, candi-
date path denoted by path. SP can be any shortest path al-
gorithm that operates on graphs with negative weights and
no negative cycles. For example, a FIFO implementation
of the modified label-correcting algorithm achieves the best
strongly polynomial running time, with other variations be-
ing more efficient in practice [1].
path may or may not contain backward arcs; if it does,

the set of backward arcs temporarily used by path constitute
an interlacing I. For example, in Figure 1(b), I = (C,B)
belongs to path = {s,A,C,B,D, t} (thick solid line). As
mentioned above, an interlacing has to be removed so that
the paths remain disjoint. For example, in Figure 1, if the
interlacing is removed, the two edge-disjoint paths of Figure
1(a) will be constructed. In general, path may interlace
with more than one of the Pi ∈ Dk, and the removal of the
interlacing is generalized in a straightforward manner.

t

Figure 2a.

Figure 2b.
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Figure 2: Interlacing Removal.

This is illustrated in Figure 2(a), where path, shown by
the solid arrow, interlaces with three of the paths in the
current path set. Without loss of generality, assume that
path interlaces with Pi1 , Pi2 , · · · , Pin ∈ Dk in this order,

that is, it first uses a backward arc of Pi1 , then one of Pi2 ,
and so on, with a path re-appearing in the above-mentioned
sequence if path interlaces multiple times with it. For each
pair (Pim , path), 1 ≤ m ≤ n, the interlacing is removed
by forming two new temporary paths npath1, npath2. On
Figure 2(b), npath1 = {s,B, t} (thick dashed line) results
from the removal of the interlacing between {s,A,B, t} and
path. And, npath2 = {s,A,D,C, F,E, t} interlaces with the
rest of the Pim paths.

This process is repeated until all parts of the interlac-
ing are removed. Eventually, from a current set of paths
A={Pi1 , Pi2 , · · · , Pin} and path (Figure 2(a)), a set of edge-
disjoint paths, B = {P ′

i1 , P
′
i2 , · · · , P ′

in
}⋃

path′ is constructed
(Figure 2(b)). Dk is the union of B and the set of the remain-
ing paths in Dk−1 that were not affected by the interlacing
removal. Finally, list contains the backward arcs that corre-
spond to an interlacing that was not removed. For example,
in Figure 1(b), arc (C,B) would belong to list if the algo-
rithm concluded to a path set containing only {s,B,C, t}.
These arcs are ”marked” so that SP does not consider them
in the following stage.

4.2 Algorithm Description
The DPSP path selection algorithm constructs a set of

reliable disjoint paths iteratively. It begins by finding the
most reliable path on the given graph, and when no inter-
lacing is present (that is, path is already edge-disjoint to
all Pi ∈ Dk) it simply appends the newly found path to
the existing path set. Otherwise, the algorithm has to de-
termine whether removing the interlacing and consequently
re-arranging Dk would lead to a more reliable path set.

We provide two metrics to decide when to augment a given
a given path set with a new path. The motivation for the
selection of the metric is given by the formulation of the
edge-packing bound, which is related to our problem. The
edge-packing of a graph G is defined as the problem of finding
a (maximum) collection of edge disjoint sub-graphs of G. In
this work, the sub-graphs of G are simple paths, i.e., minimal
sets of edges connecting s and t. If λi is the i − th out of
S complete sets of edge-disjoint paths, and pj the reliability
of the j − th edge, then, according to the discussion of [31],
the best (largest) lower edge-packing bound L is defined as:

L � max
1≤i≤S

Li = max
1≤i≤S

{[
1−

∏
Pk∈λi

(
1−

∏
j∈Pk

pj

)]}
(1)

The first metric, metric1, captures the reliability of the
original path set and the candidate shortest path, and the
second one, metric2, the reliability of the resulting path
set after removing the interlacing. The metrics calculation,
shown by Algorithm 1, involves only the paths that path
interlaces with (set A), and the result of the re-arrangement
(set B). If metric1 is higher than metric2, then the interlac-
ing is not removed. Before the method continues with the
next iteration, the weights of the graph are transformed in
the following three cases:

• Given a pathset Dk, after an additional path is ap-
pended, the weights of all forward arcs are changed to
a high positive value Cp and the weights of backward
arcs to a negative value Cn. The former transforma-
tion guarantees that SP will not choose any of these
forward arcs at any of its subsequent executions, as
shown in Appendix B. The latter one allows SP to
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Algorithm 1 Metric Calculation

Input: A, path,B
Output: Decision (default : NOTRemove)
I = Compute Interlacing(A, path)
for all Pi ∈ A do
producti =

∏
j∈Pi

pj ;
end for
pathop = {∏k∈path pk} × {

∏
m∈I ⋂

path pm};
metric1 = 1− {∏i(1− producti)} × (1− pathop);
for all P ′

i ∈ B do
product′i =

∏
j∈P ′

i
pj ;

end for
metric2 = 1−∏

i(1− product′i);
if metric1 < metric2 then
Decision← Remove

end if

follow any of these arcs and possibly find a path that
interlaces with the path set. Note that DPSP uses a
negative value is instead of zero to distinguish between
interlacings with different numbers of backward arcs.

• If the interlacing removal is not performed, one or more
backward arcs in list have their weights set to Cp. This
guarantees that SP will not include these arcs in a
possible solution during a subsequent execution, and
that no negative cycles will be formed during one of
the subsequent iterations, as Appendix B shows.

• If an interlacing is removed, the weights of the back-
ward arcs that belonged to the interlacing are changed
back to their original values. This happens with the
corresponding forward arcs as well, because they be-
longed to Dk, but after the removal they should be-
come again available to SP.

This procedure continues until no new s→ t path can be
found.

4.3 DPSP Operation - An Example
In Figure 3, we see an example of a MANET topology

graph. For the sake of simplicity in presentation, we assume
only three different link reliability values: pe = 0.9 for links
shown as thick dashed lines, pe =0.95 (thick solid lines) and
pe =0.7 for the rest. The algorithm starts by finding the
shortest path from node s to node t, i.e., path ={1,2,4,5,8,9,
11} and appends it to D1, the path set constructed after the
first iteration. The weights of the forward arcs are set to Cp,
and the ones of the corresponding backward arcs to Cn.

At the next iteration, the shortest path found on the
transformed graph is P2={1,4,8,11} and D2 = {P1, P2}.
This clearly shows that an interlacing path may not neces-
sarily be the shortest one. We note that this would have
been the solution produced by the approach in [13], since
P1, P2 are the two shortest edge-disjoint paths and, with
their edges removed, s, t become disconnected.

At the third iteration, path ={1,3,7,8,5,4,6,10,11} inter-
laces with P1, i.e., I={(8,5),(5,4)}. The interlacing removal
would result in constructing two new paths, npath1 ={1,2,4,
6,10,11} and npath2 ={1,3,7,8,9,11}, that do not share any
edge. metric1 > metric2 (actual values: 0.7632 > 0.5233)
and the removal of the interlacing is rejected. In other
words, the method does not proceed with constructing D3
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Figure 3: Example graph.

by including npath1 and npath2; instead, list ← I. Then,
SP finds the path= {1,3,7,8,4,6,10,11}, using (8,4). The
metrics comparison (0.7577 > 0.5221) is again in favor of
rejecting the interlacing removal. Finally, SP declares that
there is no s → t path and the method concludes with D2

as the most reliable path set.
Now, let us assume that pe

(4,8) =0.5. The algorithm pro-
ceeds by generating D2 and rejecting the interlacing removal
between path and P1, as described above. But, when path
interlaces with P2, metric2 > metric1 (0.5221 > 0.4480).
The interlacing is removed and D2 is augmented by {1,4,6,
10,11} and {1,3,7,8,11}. The resulting D3 is more reliable
than D2.

5. DPSP OPTIMIZATION
The method presented to this point and the experimental

results in Section 6 show that in practice the method is much
less expensive than its worst-case computational complexity,
which is still polynomial as shown in Appendix A. However,
in order to avoid excessive computation while still produc-
ing highly reliable path sets, we define the following early
stopping criterion: If the improvement in the reliability of
the path set drops below a given threshold, the method can
conclude.

The threshold value can be a design parameter regulat-
ing a trade-off between path set reliability and computa-
tional overhead. In essence, the early stopping criterion
acts as a separator between two regions: computation that
contributes to the increase of the path set reliability, and
excessive computation that does not result in a substantial
reliability improvement. The key observation is that in early
stages the majority of solved SP problems results in aug-
menting the path set, while in late stages, with path sets
corresponding to near-maximal flows, only long and low re-
liability paths remain to be considered.

The experimental results that follow show that the appli-
cation of the early stopping criterion further optimizes the
efficiency of our method without harming its effectiveness.
In fact, the construction of a highly reliable path set is re-
duced to a small, possibly one-digit, number of shortest path
problems.
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6. EVALUATION
In this section, we show that DPSP selects path sets that

are more reliable than other algorithms and does so effi-
ciently. We first perform an end-to-end evaluation in a sim-
ulated mobile ad hoc network, and show that the lifetime
of the path sets chosen by DPSP exceed those selected by
the Kaustov algorithm [11], and, not surprisingly, outper-
form a single or a pair of shortest paths. We also show
that DPSP outperforms Kaustov while using fewer, better
selected paths, and entails less load on the clients. We then
examine the behavior of the DPSP algorithm in depth using
Monte Carlo simulations with randomly generated network
topologies and reliabilities, and show the effects of iterative
path set refinement and early termination on the quality of
the overall path set.

The initial experimental setup comprises 100 nodes with
transmission radius of 220 meters in a coverage area of 1000
meters x 1000 meters. The simulation time is 1000 seconds,
the node velocity is uniformly distributed in the range of 0
to 20 m/sec, the direction angle is uniformly distributed in
[0, 2π] and nodes move independently. The mobility model
assumes constant node mobility and is an extension of the
one presented in [16] - here, both the node velocity and an-
gle of direction evolve over time as two independent Gauss-
Markov processes, with correlation (coefficients av, ath) be-
tween subsequent velocity and direction angle values for each
single node. For each link, we estimate the reliability mea-
sure in a simplified manner. Each node maintains seven (7)
past estimates, Ri, of the distance to its neighbors, calcu-
lated based on the Received Signal Strength Index (RSSI)
samples. It generates a reliability estimate as the weighted
average of the ratios (Rthr − Ri)/Rthr, where Rthr is the
nominal distance below which successful communication is
possible. The weights of the averaging are allocated so that
higher values correspond to more recent measurements. In
all cases, the entire network topology is assumed known so
that the path selection evaluation remains independent of
the underlying protocol.

For each run we compare two instances of DPSP - each
with a different early-stopping threshold, 4% forDPSP1 and
1% for DPSP2 - against the shortest path in number of hops
(SP ), the two shortest paths in number of hops (TwoSP ),
and the disjoint path set generated by the Kaustov algo-
rithm. In the case of Kaustov, we provide the link reliabil-
ity values collected by the DPSP protocol. The collected
results, averaged over all generated path sets, are shown in
Table 1. We note that the two shortest-path set is calculated
as minimum cost flow of value equal to two, and not merely
by successive SP runs or by selecting the two shortest route
replies. This way the comparison is made against a better,
lower-cost, pair of paths than the one used in most cases by
existing solutions reviewed in section 2.

DPSP1 DPSP2 SP TwoSP Kaustov

Lifetime 8.25 8.30 1.99 2.75 7.43
TBF 8.67 8.65 2.48 3.24 7.96
|Dk| 6.78 7.89 1 2 8.61

Queries 190 189 600 460 212

Table 1. Comparison of algorithms.

A node is assumed to use a path set until all paths fail,
and only then initiate a new route discovery. This path set
usage intuitively agrees with the selection criterion, that is,

the maximization of the probability that at least one path
exists. We also expect that high path set reliability acts as
a proxy for increased path set lifetime. In Table 1, the path
set lifetime, or time to failure, is the time period from the
construction of the path set to the breakage of all paths, the
time between failures (TBF) is the period between successive
path set failures, the number of queries is the number of
attempts to construct a path set, and |Dk| is the cardinality
of the resultant set.

Figure 4: Comparison of algorithms.

As shown by Figure 4 and Table 1, the selection of the
most reliable path set by DPSP dramatically improves over
the simple shortest and two-shortest paths. In particular,
the average life time is four and three times longer, re-
spectively, with a much lower number of route discoveries.
Furthermore, we see that our algorithm achieves a lifetime
which is 11% higher than the one achieved by the method
proposed by Kaustov. Accordingly, the number of route dis-
coveries performed increases by a 11.5%. It is interesting to
note that the Kaustov algorithm generates path sets with
22.6% more paths on average. In other words, our scheme
achieves better results due to a better path set selection,
while Kaustov appears to take advantage of the large num-
ber of available paths. Moreover, the high path set cardinal-
ity produced by Kaustov implies that DPSP’s improvements
do not entail extra processing overhead because DPSP solves
a small number of ’excess’ SP problems in addition to the
executions that produced the path set.

The abundance of paths is one reason for the relatively
small difference between DPSP and Kaustov. In the ma-
jority of path set constructions, DPSP augments the path
set without interlacing with existing paths and thus creates
sets structurally similar to those of Kaustov. An additional
reason is that the average link reliability value is about 0.4
throughout the simulation, which implies that DPSP will
tend to increase the set cardinality, as it will become clear
from Figure 8. In practice, the improvement, stemming
mainly from a relatively low number of DPSP path sets with
15 to 30% longer lifetimes, is “averaged out”.

We also observe that the lower threshold value leads to the
construction of higher cardinality path sets. Nevertheless, as
the cardinality of the reliable path set increases from 6.78 to
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7.89 paths on the average, the improvement is not significant
in terms of the lifetime and the time between failures (TBF).
This agrees intuitively with our previous observation: by
increasing the cardinality of the path set, its reliability does
not improve significantly above a certain path set size. We
should also note that the relatively small number of paths
needed to achieve the above-mentioned improvements, may
imply that the coupling among them is also relatively low.

Kaustov counterbalances DPSP’s processing overhead by
naively generating path sets of higher cardinality than DPSP.
As it will be shown below, the total number of shortest path
problems solved by DPSP is significantly close to the resul-
tant path set cardinality. Moreover, it does not depend on
the size of the path set, viewed either as a number of paths
or number of edges and thus potential ways to discover inter-
lacing paths. This is the case in the current dense network,
and it suggests that the growth of the network size would
not deteriorate the processing overhead.

The experimental results support the choice of a highly
reliable path set, as constructed by our method, despite the
limitations imposed by the link reliability estimates. The
significant increase of the path set lifetime and decrease of
route discovery rates suggests that significant decrease in
delays and routing traffic overhead can also be achieved.
Moreover, long-lived data transports will be interrupted less
frequently, thus reducing both jitter and delay. Finally, the
overlying transport protocol will be throttled back less fre-
quently, and, as a result, higher throughput will be achieved.

We next examine the internals of the DPSP algorithm to
provide insights into its performance and evaluate the ef-
fectiveness of the early stopping criterion we introduced in
section 5. We generate random multihop topologies for 100
nodes distributed in an area of 1000 m. x 1000 m. The
node transmission radius is once again 220 meters, node lo-
cations are uniformly distributed, and nodes establish links
with nodes within their transmission radius. To facilitate
the evaluation of a large number of scenarios, we assign ran-
dom reliability values to links from a normal distribution
with mean pe ={0.25, 0.5, 0.85, 0.97} and standard de-
viation 0.0707, with values outside [Pmin,Pmax] truncated
to the closest one within the range. For each setting, 1000
Monte Carlo iterations are performed. The four settings are
simply indicative of different conditions, with low reliabil-
ity values corresponding, for example, to a highly dynamic
MANET topology. The choice of a relatively high transmis-
sion radius results in an average number of twelve neighbors
per node. This is almost twice as high as the number of six
or seven neighbors per node that is needed to avoid, with
high probability, a network partition [27]. This choice leads
to significantly dense graphs and represents a worst-case for
DPSP, as the load on the selection algorithm is proportional
to the number of redundant paths in the network. Conse-
quently, the following discussion examines how DPSP acts
under load.

First, we examine the number of interlacing paths consid-
ered by DPSP, as these paths represent extra work DPSP
needs to perform to achieve higher reliability than simpler
algorithms like Kaustov. Figure 5 presents histograms of the
numbers of interlacing paths, both with and without the ap-
plication of the early stopping criterion. First, we observe
that for all pe values there is no occurrence of an interlacing
path for almost 60% of the algorithm executions. Second,
the maximum number of interlacing paths per problem is
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Figure 5: Numbers of interlacing paths.

eight (8), which is significantly small, given the density of
the generated graphs. Although the cardinality of the path
sets is high, the aggregate number of disjoint paths and in-
terlacing occurrences is often dominated by the cardinality
of Dk. In other words, although many interlacing paths
could have been found, this does not happen.
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Figure 6 provides a detailed view on the method behavior
with respect to the removal of an interlacing. The upper
subplot depicts the ratio of the rejected, over the total num-
ber of interlacing paths. The lower subplot shows the aver-
ages of the two ratios for each one of the four pe values. In
most cases, approximately 10% of the interlacing removals
are the ones that are not performed, with a slight varia-
tion for pe equal to 0.25 or 0.5. Equivalently, not only does
a small number of interlacings occurs, but also interlacing
occurrences mostly result in augmenting the path set.

In Figure 7, we see the average effect of augmenting the
path set from k-1 to k paths. The first point of each curve
is the average reliability of D1, the second one is the im-
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provement resulting from adding a second path and so on.
For example, for pe =0.97, augmenting D4 or D5 yields a
zero improvement. Eight or nine paths are needed for the
same result for pe =0.85, and for pe =0.5 and pe =0.25 16-
17 and 21-22 paths respectively. In short, the higher the
link reliability, the steeper the curve is, or, the marginal im-
provement of the path set reliability decreases fast as the
number of paths increases.

Figure 8 shows the average ratio of the percent improve-
ment of the path set reliability over the percent change in
the number of paths. This plot supports the previous dis-
cussion, while it shows that the nature of the path set aug-
mentation is very similar for pe equal to 0.25 or 0.5. For low
link reliabilities, it appears that the number of paths may be
the most important factor in approaching the most reliable
path set, at the expense of slower convergence.
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Figure 8: % Improvement due to path set augmen-
tation from k − 1 to k paths.

In summary, the previous observations lead us to the fol-

lowing conclusions:

• First, most of the shortest paths found will result in
augmenting the path set, often because the shortest
path is edge-disjoint to the path set, or, because the
interlacing removal is usually performed.

• Second, the number of iterations is low and more im-
portantly, there is no indication of excessive number
of iterations that do not contribute to the path set
augmentation.

• Third, interlacing removals depend on link reliability
values. For relatively high (low) link reliability values,
most of the removals are performed (rejected).

• Fourth, the average improvement of the reliability es-
timate is a concave, monotonically decreasing function
of the path set cardinality. Moreover, the rate of con-
vergence to a highly reliable path set depends on the
average link reliability; the more reliable the network
links, the smaller the number of disjoint paths that
yield a highly reliable path set.

7. DISCUSSION AND CONCLUSIONS
The dynamically changing topology of mobile ad hoc net-

works motivated us to identify the path resistance to fail-
ures or path reliability as the criterion for selecting a set
of paths that can support QoS-driven applications. Our in-
tention was to determine a small number of diverse paths
that remain operational with high probability and can be
used simultaneously by the communicating end nodes. In
order to construct the most reliable set of disjoint paths, we
proposed a new protocol, called the Disjoint Path Selection
Protocol (DPSP). The main features of DPSP are flexibility,
use of easy-to-compute metrics, fast convergence, and a cri-
terion for early termination that renders the method highly
efficient. The lifetimes of the path sets discovered by DPSP
are significantly longer than those found by previously pro-
posed protocols.

The direct benefits include less frequent route discover-
ies, significantly lower routing overhead, lower transmission
delays, and load balancing due the use of multiple paths.
Furthermore, more accurate topology validation reduces the
chance of using stale routing information. The incurred
overhead, amortized per node, remains low due to the use of
existing functionality (reliability measure estimation, no ad-
ditional route replies) and the efficiency of the algorithm. In
short, we propose an effective, efficient and practical scheme
that can determine a long-lived set of diverse paths without
excess inter-node communication.

The utilization of such a resistant to failure path set de-
pends on the supported application. This is, to some ex-
tent, orthogonal to the path selection, since, for example,
the source might want to route data only over a fraction
of the total number of paths, or alternate over the set of
paths. However, we should stress that the selection of, say,
the single, two or three most reliable paths would not achieve
comparable results. Our simulations show that the set pro-
duced by DPSP yielded a significantly longer lifetime than
the one resulting when DPSP is forced to one, two, or three
paths - the improvement of the “full” execution was 74%,
46%, and 29% respectively.

We intend to extend this work by investigating the prob-
lem of constructing sets of paths that are correlated to each
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other, that is, they may share links. Such a selection could
be proven very effective if for example a very reliable link
was shared. Then the overall reliability would improve over
a pair of disjoint paths, and accordingly the longevity of the
path set would support the communication of the two nodes.
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APPENDIX

A. WORST CASE COMPLEXITY
SP has worst-case complexity O(|V ||E|2). The number of

arcs of A and B is bound by |E|, and each arc weight is in-
volved once, thus O(|E|) for metric calculations. The path
set augmentation has constant cost O(1) and the weight
transformation O(|E|). The total worst-case cost per itera-
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tion is O(|V ||E|) +O(|E|) +O(1) = O(|V ||E|). The worst-
case number of ’excess’ SP problems solved is bound above
by the number of backward arcs, when path always inter-
laces with Dk using a single backward arc and no interlacing
removal is performed. Then, the algorithm concludes after
checking all possible cases, i.e., after O(|E|) iterations at
most, and O(|V ||E|) ∗O(|E|) = O(|V ||E|2) in total.

B. CORRECTNESS PROOF

i . A path will not contain any forward arcs that already
belong to Dk

ii . A path will not contain any backward arcs that corre-
spond to paths in Dk and belong to list.

iii . The removal of an interlacing of path with Dk produces
k + 1 edge-disjoint paths.

iv . An edge of GP may only be shared between a single
Pi ∈ Dk and path. This happens only temporarily.

v . The transformed graph, after weight assignments, con-
tains at no point a cycle of negative length.

vi . Based solely on sets A and B, we can infer whether
the augmented path set will yield a higher end-to-end
reliability.

vii . Dk is a complete set of edge-disjoint paths, i.e. one of
the λi of section 4.2.

Proof:

i . This is guaranteed by setting the wa
ij = Cp, the length

of the longest path on any graph (GP ) with |E| edges.
Let d(i) be the distance label of the trailing vertex of
the forward arc (i, j), and d(j) the distance label of its
leading vertex. SP will never update the label of the
leading vertex, because it holds that d(j) ≤ d(i) +wa

ij .
All distance labels (excluding s) are initialized to Cp,
and for any forward arc we have Cp ≤ Cp+Cp or 0+Cp =
Cp, and consequently vi will not be designated as the
predecessor of vj and path will not contain eij .

ii . wa
ji ∈ list are set to Cp. The reasoning of (i) holds.

iii . Dk+1 can be constructed, if and only if Dk exists, and
either an additional edge disjoint path can be found
(without using backward arcs), or an interlacing path
exists. In the latter case, the description of the inter-
lacing removal in Section 4 suffices.

iv . From (iii), the Pi ∈ Dk are edge-disjoint. From (i) and
(ii), the remaining possibility is that path contains a
backward arc /∈ list. Otherwise, it will be edge-disjoint
to all Pi ∈ Dk. The edge is shared temporarily either
because of (iii), or because the backward arc is added
to list.

v . The choice of the value of Cn as the negative of the
shortest link cost guarantees that no negative cycles
occur. First, it holds that pa

ij > Pmin. It follows eas-
ily that for any link weight wa

ij > − log(Pmin), i.e.,
wa

ij > −Cn and thus wa
ij + Cn > 0. If the cycle is con-

sisted of two arcs, then it can only contain the back-
ward and forward arc of the same edge eij ∈ Dk, and it
holds that wa

ij + wa
ji = Cp + Cn > 0. For a single back-

ward arc of eij and two other edges eik, ekj it holds
that wa

ik + wa
kj + Cn > −Cn > 0. For any segment of

more than two backward arcs between two non-incident

nodes i and j of a path, the positive segment of the cy-
cle will have length, lpos, at least equal to the length,
lfor, of the i → j forward segment of the path (before
the weight transformation). If not, there must have
been a shorter s → t path using the shorter segment.
But this is a contradiction, since that path would have
been found by the shortest path algorithm, instead of
the path whose backward arcs now consist the negative
segment of the cycle. lfor cannot be shorter than the
shortest path with a number of arcs equal to the one of
the i→ j segment: this would occur when all arcs are
as short as possible, which, trivially, is larger in magni-
tude than the length of the negative segment (for any
positive integer m, mwa

ij > −mCn > 0). Finally, the
possibility of negative cycle due to arcs of an interlac-
ing that was not removed is eliminated, by assigning Cp

to all backward arcs ∈ list.
vi . If Ai are the events that the paths Pi ∈ Dk operate

successfully, the lower bound is
∑k

i=1 Pr{Ai}. If path
interlaces with paths {Pi1 , Pi2 , · · · , Pim}, then∑m

i=1 Pr{Ai} < metric({Pi1 , Pi2 , · · · , Pim}
⋃
path),

since the metric calculation treats the event that path
is operational as disjoint to Ai. Moreover, for {P ′

i1 ,
P ′

i2 , · · · , P ′
im
}, path′ the newly formed paths, and A′

i

and P ′ the events of successful operation respectively,
we have metric({P ′

i1 , P
′
i2 , · · · , P ′

im
}⋃

path′) =∑m
i=1 Pr{A′

i}+ Pr{P ′}.
If the interlacing is removed, we have:
metric({Pi1 , Pi2 , · · · , Pim}

⋃
path) < metric({P ′

i1 , · · ·
P ′

i2 , · · · , P ′
im
}⋃

path′).
Thus,

∑m
i=1 Pr{Ai} < ∑m

i=1 Pr{A′
i}+Pr{P ′}, i.e, the

inequality between the metrics forces the inequality
between the (partial) sums of the reliabilities of the
edge-disjoint paths. The remaining k − m paths in
Dk (not involved in the interlacing removal) are dis-
joint to both Pij and P ′

ij
and path′. By adding their

reliabilities to both sides of the above inequality we
get

∑k−m
j=1 Pr{Aj}+

∑m
i=1 Pr{Ai} < ∑k−m

j=1 Pr{A′
j}+∑m+1

i=1 Pr{A′
i}. path′ is simply appended to the sub-

set of Pi′j and augments them from m to m+ 1 (Dk is

augmented to Dk+1). Apparently, the sums at the left
and right-hand side are the reliability values for sets of
k and k + 1 paths respectively.

vii . By definition, paths in λi cannot use backward arcs.
Such paths will be found and added to the path set even
if in earlier iterations the method did not remove inter-
lacing instances. If no more paths exist and |Dk| < c,
then Dk can be augmented (iii). If no more interlacings
are removed, the algorithm will conclude through a se-
quence of removal rejections, and the resulting path set
is complete.
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