
Game Theoretic Considerations for the Gaussian
Multiple Access Channel

Vojislav Gajic and Bixio Rimoldi
Mobile Communications Laboratory

EPFL
Lausanne, Switzerland

{vojislav.gajic, bixio.rimoldi}@epfl.ch

Abstract— We study the behavior of users in a classical
Additive White Gaussian Noise Multiple Access Channel. We
model users as rational entities whose only interest is to maximize
their own communication rate, and we model their interaction
as a noncooperative one-shot game. The Nash equilibria of the
two-user game are found, and the relation between the pure-
strategy and mixed-strategy Nash equilibria is discussed. As in
most games, the absence of cooperation and coordination leads to
inefficiencies. We then extend our setting using evolutionary game
theory, which we use to model a large population of users playing
the MAC game over time. A unique evolutionary stable strategy
is found for this case, corresponding to the strategy achieving
the Nash equilibrium in a simplified one-shot game. Finally, we
investigate what happens to the distribution of strategies in a
population when we assume that the number of offsprings of a
user is equal to the payoff of this user in a one-shot game. We
find that the system converges to a state in which the average
strategy of the population is the evolutionary stable strategy.

I. INTRODUCTION

In this paper we focus on the Additive White Gaussian
Noise (AWGN) Multiple Access Channel (MAC). We are
interested in describing the behavior of users in a situation
where users make independent decisions about their coding
rate, assuming that prior offline agreements are not possible
and any central authority is absent. This is in contrast to the
standard setup that implicitly assumes some sort of coordina-
tion in choosing the individual rates.

We adopt a game-theoretic approach [1], assuming rational
users whose only interest is to maximize their own com-
munication rate. We propose and analyze a one-shot non-
cooperative game. For this game, all of the points on the
dominant face of the capacity region are Nash equilibria. These
equilibria are Pareto optimal (there exist no component-wise
better outcome), but it is not clear which one of them would
be played. Alternatively, we study randomized strategies, and
find the probability distributions that constitute the mixed
strategy Nash equilibria. Next, we model the situation where
a large number of users interacts through the one-shot AWGN
MAC game. The game is played repeatedly by users randomly
chosen from a large population, and over a long period of
time. We model this situation using evolutionary game theory
[2]. We show that the strategy achieving the mixed strategy
Nash equilibrium in a simplified one shot game is the unique
evolutionary stable strategy when users are playing this game.
This means that a population of users playing this strategy

would be getting better rates than a mutant population playing
any different strategy. Finally, we investigate what happens to
the distribution of strategies in a population when we assume
that the number of offsprings of a user is equal to the payoff of
this user in a one-shot game. We find that the system converges
to a state in which the average strategy of the population is
the evolutionary stable strategy.

In our model, users are operating under a power constraint
over a scalar Gaussian channel. This is in contrast to previous
work on a fading channel model, where users can exploit
different fading states to reach a sum-rate optimal operating
point [3]. In our work, the optimal power allocation of a user
is to transmit at maximum power, so power control is not
an issue. The strategies of the users then consist in choosing
their communication rates, and the receiver’s only role is to
decode, if possible. Previous work investigated the behavior
of users in CDMA ([4], [5], [6] and [7] just to name a few).
In this case the rate is calculated directly from the SINR, and
the strategy of a user consists in choosing the transmit power.
In a similar setting [8], the authors describe how users reach
the optimal sum-rate power allocation for the limiting case
where the number of users goes to infinity and the choice
of the decoding order is up to an arbitrator. In this case the
users’ choice is again limited to a power allocation. Similarly,
in [3], the receiver imposes a specific decoding order, which
leads to users adopting optimal power allocations on different
degrees of freedom. Once more the users’ rates are uniquely
determined from the power allocations. Evolutionary game
theory has already been applied in a communication setting
in [9] and [10]. Finally, behavior of users in the AWGN MAC
was investigated in the cooperative game theoretic setting in
[11].

II. COMMUNICATION MODEL

We consider a Gaussian MAC with two senders and one
receiver. The signal at the receiver is

Y = X1 +X2 + Z, (1)

where Xi ∈ R is the transmitted signal of user i and Z ∈ R
is zero mean Gaussian noise of unit variance. Each user has
an individual average input power constraint E[|Xi|2] ≤ Pi.
The capacity region C for this channel [12] is the set of all
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rate pairs (R1, R2) such that

Ri ≤
1
2

log(1 + Pi), i ∈ {1, 2}

R1 +R2 ≤
1
2

log(1 + P1 + P2).

We denote by Ci = 0.5 log(1 + Pi) the capacity of user i
and by r0

i = 0.5 log(1 + Pi

1+P3−i
), i ∈ {1, 2}, the rate of user

i when the signal of the other user is treated as noise. Notice
that the message of user i is decodable when ri ≤ r0

i even if
the rate pair (r1, r2) lies outside the capacity region C. This
is illustrated by the shaded regions in Figure 1. For obvious
reasons we will refer to r0

i as the “safe rate”.
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Fig. 1. AWGN MAC Capacity Region

III. GAME THEORETIC MODELS AND NOTATION

We assume that users are only interested in maximizing
their own communication rate, and that they are aware that
the other user has the same goal. The power constraints are
also common knowledge. Users have to choose independently
their own coding rate at the beginning of the communication,
where the rate selected by a user may be either deterministic,
or chosen from some distribution. If the chosen rate tuple lies
in the capacity region, users will communicate at that operating
point. Otherwise, either the receiver is unable to decode any
signal and the observed rates are both zero, or only one of the
signals can be decoded (if one of the users is transmitting at
or below the safe rate). With these assumptions we can define
a non-cooperative one-shot game, which we call the Gaussian
MAC game. The set of allowed strategies for user i is the set
of all probability distributions over [0, Ci], and the payoff is
the obtained rate.

We will denote the (random) attempted rate of user i as Ri,
and ri as its sample value. Notice that ri and Ri are not the
actual rates. If the attempted rates are r1 and r2, the utility
(i.e. actual rate) of user i, denoted ui(r1, r2), is:

ui(r1, r2) =

{
ri, if (r1, r2) ∈ C or ri ≤ r0

i

0, else.

We denote the probability density function of user i as
fRi

(ri) = fi(ri). We call fi(·) the mixed strategy of user
i, and the tuple (f1(r1), f2(r2)) a strategy profile. A mixed
strategy that chooses some coding rate ri with probability 1
is called a pure strategy, denoted δri

. The quantity of interest
for the users is their expected utility Ui(f1, f2), or simply Ui,

where Ui(f1, f2) = E [ui(R1, R2)]. Since the users are making
independent decisions, the joint density of (R1, R2) is simply
the product of the individual densities.

IV. NASH EQUILIBRIA

We are interested in finding strategy profiles that users
participating in this game might adopt. We focus on the
concept of Nash equilibrium. Nash equilibrium is a strategy
profile for which it is not beneficial for any user to play
a different strategy. In general Nash equilibria are desirable
operating points since users have no incentive to deviate from
them unilaterally. Problems may arise when there is more than
one Nash equilibrium in a given game, in which case some
other method needs to be used to determine which of these
equilibria will be played.

Any pure strategy profile (δr1 , δC1,2−r1), where r1 ∈
[r0

1, C1] and C1,2 = 0.5 log(1 + P1 + P2), is a pure-strategy
Nash equilibrium of the Gaussian MAC game. These strategy
profiles are exactly those for which (r1, r2) is a point on the
dominant face of the capacity region. Therefore the Gaussian
MAC game has an infinite number of (pure strategy) Nash
equilibria. As discussed in the previous paragraph, it is not
clear which of these equilibria would be played. In the
remainder of this section we study mixed strategies. A mixed
strategy Nash equilibrium is a tuple (f∗1 , f

∗
2 ) of probability

density functions such that U1(f∗1 , f
∗
2 ) ≥ U1(f1, f

∗
2 ) and

U2(f∗1 , f
∗
2 ) ≥ U2(f∗1 , f2) for all f1 and f2.

To find mixed strategy Nash equilibria of the Gaussian MAC
game, we start with the following observation: a rational user
will never transmit at a rate below r0

i , since that rate can
always be improved upon. Therefore, in the mixed strategy
equilibrium, user i will have a probability density function of
support in [r0

i , Ci]. We call this interval the set of rational
strategies. In Theorem 1 we show that there is a unique Nash
equilibrium with the entire set of rational strategies of that
user as support set.

The following Lemma reveals the crucial property of a
mixed strategy Nash equilibrium.

Lemma 1: Let g1 : [r0
1, C1]→ R+ be defined as

g1(r) = E[u1(r,R2)] =
∫ C2

r02

f2(ξ)u1(r, ξ)dξ,

and, similarly, let g2(r) = E[u2(R1, r)].
For i ∈ {1, 2}, let λ̄i = maxr∈[r0i ,Ci] gi(r) and let

J̄i = g−1
i (λ̄i). The mixed strategy profile (f1, f2) is a Nash

equilibrium iff∫
J̄i

fi(ξ)dξ = 1, i = 1, 2. (2)

Proof: By definition, the mixed strategy profile (f1, f2) is
a Nash equilibrium iff, for i = 1, 2, the expected utility of user
i cannot be increased by unilaterally changing fi. Concerning
user 1, observe that

E[u1(R1, R2)] =
∫ C1

r01

g1(r)f1(r)dr ≤ λ̄1



and that the inequality holds with equality iff (2) is true for
i = 1. Similarly, E[u2(R1, R2)] ≤ λ̄2 with equality iff (2) is
true for i = 2.

We begin by finding the unique mixed strategy Nash equi-
librium in which users have positive probability density almost
everywhere on the set of rational strategies.

Theorem 1: The following probability distributions consti-
tute the unique Nash equilibrium for which the density of Ri,
for i ∈ {1, 2}, is strictly positive almost everywhere on the
interval [r0

i , Ci]:

Pr {R1 ≤ r} =

{
r02

C1,2−r , r ∈ [r0
1, C1]

0, else
(3)

Pr {R2 ≤ r} =

{
r01

C1,2−r , r ∈ [r0
2, C2]

0, else
(4)

Proof: Suppose that there exist f1 and f2 such that
gi(ri) = λi, for all ri ∈ [r0

i , ci], i = 1, 2, where λi’s are
some constants. Then, as an immediate corollary to Lemma
1, the mixed strategy profile (f1, f2) is a Nash equilibrium.
To find such probability distributions, we begin by noting that
g1(r0

1) = r0
1 , regardless of f2. Hence, λ1 = r0

1 . Then, f2 needs
to be such that g1(r1) = r0

1 , for all r1 ∈ [r0
1, C1]:

r0
1 = λ1 = E[u1(r1, R2)] =r1Pr {R2 ≤ C1,2 − r1} .

By substituting C1,2 − r1 = r, r ∈ [r0
2, C2], we can find the

probability distribution of user 2 in the mixed strategy Nash
equilibrium:

Pr {R2 ≤ r} =
r0
1

C1,2 − r
, r ∈ [r0

2, C2].

Similarly, we find the probability distribution of user 1. These
probability distribution are unique by construction, hence so
is this mixed strategy Nash equilibrium.

Recall that, due to rationality, user i will not choose any
rate below r0

i . On the other hand, (3) evaluated at r0
1 implies

that Pr{R1 ≤ r0
1} = r02

C2
. Therefore,

Pr{R1 = r0
1} =

r0
2

C2
.

So, in this mixed strategy Nash equilibrium, a user chooses
the safe rate with a positive probability, and the remaining
rates in (r0

i , Ci] by sampling from a continuous probability
distribution.

The following result generalizes Theorem 1.
Theorem 2: Let fi(ri) > 0 almost everywhere on Ii ⊂

[r0
i , Ci], i = 1, 2, where Ii is the union of finitely many

closed disjoint intervals. Let a = min{r1|r1 ∈ I1}, b =
max{r1|r1 ∈ I1} and I2 = {r2 s.t. r1+r2 = C1,2, r1 ∈ I1}.
Then, the following probability distributions constitute a Nash
equilibrium

Pr {R1 ≤ r} =

{
0, r < a
C1,2−b
C1,2−r̂1 , else

Pr {R2 ≤ r} =

{
0, r < C1,2 − b

a
C1,2−r̂2 , else

where r̂i = max{r̃|r̃ ∈ Ii and r̃ ≤ r}, i = 1, 2. An example
of such a distribution for one of the users can be seen in Figure
2, for the case when I = [r0, r1] ∪ [r2, C]. The proof of this
Theorem (omitted for brevity) also relies on Lemma 1.

r

Pr{Ri ≤ r}

1

Cr1 r2r0

Fig. 2. An example of a probability distribution achieving Nash equilibrium

The result of Theorem 2 seems to be more relevant if the
sets I1 and I2 are fixed ahead of time, which is prevented
by the no coordination assumption. One exception (when this
assumption is automatically true) is when I1 and I2 are
[r0

1, C1] and [r0
2, C2], respectively, in which case Theorem

2 reduces to Theorem 1. For this reason we consider the
mixed strategy Nash equilibrium of Theorem 1 to be the most
interesting one.

The expected payoff of a user in this Nash equilibrium is
Ui = r0

i . One can then wonder why users would not simply
transmit at the safe rate with probability 1, resulting in the
outcome (r0

1, r
0
2). But if this were the case, a user would be

tempted to transmit at capacity. Therefore, each user has some
incentive to code at the safe rate, and some incentive to try
out higher rates with positive probability. This is exactly what
is predicted by the mixed strategy Nash equilibrium found
in Theorem 1. The price for the lack of cooperation and
coordination is that the mixed strategy Nash equilibrium is
not Pareto optimal since any point on the dominant face is
component-wise better.

V. EVOLUTIONARY GAME THEORY

One of the principal assumptions of non-cooperative game
theory, considered in the previous section, is user rationality.
This implies not only that users are interested in maximizing
their payoff, but also that they are able to calculate a precise
probability in order to go about their daily communication.
In general we would rather expect to observe learning by
trial-and-error through many interactions with many different
individuals. To study this setting, we introduce a model from
evolutionary game theory. Evolutionary game theory assumes
that the one-shot noncooperative game is played repeatedly by
players that are randomly chosen from a large population of
users. Users are considered non-rational in the sense that they
are playing pre-programmed strategies that are not necessarily
optimal. However, the payoff of a user may change either due



to a change in strategy of a subpopulation (mutation) or due
to the fact that a fraction of a population playing a certain
strategy can change (evolution).

In this section we consider both scenarios. We begin by
asking if there is a strategy that, if adopted by the entire
population, will have a greater payoff than a subpopulation
of mutants playing some different strategy. In the second part
of the section we study how the distribution of strategies in a
population evolves. We pose these questions for the population
of users who are all playing a simplified symmetric Gaussian
MAC game, where symmetric refers to P1 = P2.

Formally, we consider a large population of communication
users whose power is limited by P . Furthermore, let r0 =
log(1 + P

1+P ) and C = log(1 + P ) be the only two allowed
coding rates for any user drawn to play the game. Then, the
set of allowed distributions is Σ = {f(·) : f(r) = σδr0 +
(1− σ)δC , σ ∈ [0, 1]}. If a fraction ε̄ = 1−ε of the population
is programmed to play strategy fI = σIδr0 + (1− σI)δC
(the incumbent strategy), and the remaining fraction ε adopts
strategy fM = σMδr0 + (1− σM )δC (the mutant strategy),
then the average strategy of the population fA is defined as

fA =εfM + ε̄fI

=(εσM + ε̄σI)δr0 + (εσ̄M + ε̄σ̄I)δC .

We shall refer to this game as the simplified Gaussian MAC
game. This game has three Nash equilibria: two involving pure
strategies ((δr0 , δC) and (δC , δr0)), and one involving mixed
strategies. The latter is (f∗, f∗), where f∗ = r0

C δr0 + (1 −
r0

C )δC , which can be verified using Lemma 1. If a user plays
against an opponent who is using strategy f∗, then he will
get the same payoff regardless of his own strategy. Indeed:
U1(δr0 , f∗) = U1(δC , f∗) = U1(f, f∗) = r0, for all f ∈ Σ.

This shows that, if the entire population plays f∗, no single
user has an incentive to deviate from this strategy. In the
following we prove a stronger property, that no subpopulation
of any size has an incentive to deviate from f∗. We prove
this using the concept of evolutionary stable strategy which is
central to evolutionary game theory.

Definition 1: f is an evolutionary stable strategy if for every
strategy f̂ 6= f there exists some ε̂ = ε̂(f̂) ∈ (0, 1] such that
the inequality

U1(f, ε̄f + εf̂) > U1(f̂ , ε̄f + εf̂)
holds for all ε ∈ (0, ε̂).

In other words, an evolutionary stable strategy is an incum-
bent strategy that, when played against an average strategy,
earns strictly higher expected payoff than any mutant strategy
played by a sufficiently small fraction of the population.
Hence, for a population of users playing an evolutionary stable
strategy no sufficiently small subgroup will have an incentive
to change strategy.

Theorem 3: The mixed strategy f∗ = r0

C δr0 +(1− r0

C )δC is
the only evolutionary stable strategy for the simple Gaussian
MAC game. Furthermore, ε̂(f̂) = 1 for all f̂ , i.e. users
playing f∗ are earning higher average payoff than the mutants
regardless of the size of the mutant population.

Proof: To prove the theorem, we need to show that the
strategy f∗ is strictly better than any other mutant strategy.
We begin by checking that f∗ is better than any strategy of
the type f̂ = ( r

0

C − t)δr0 + (1 − r0

C + t)δC , for t ∈ (0, r
0

C ].
We suppose that fraction ε of the population plays the mutant
strategy f̂ , and that the remaining ε̄ fraction of users stick with
the incumbent strategy f∗. Then,

U1(f∗, ε̄f∗ + εf̂) =r0 − εtC(1− r0

C
) and

U1(f̂ , ε̄f∗ + εf̂) =r0 − εtC(1− r0

C
+ t).

So we see that U1(f∗, ε̄f∗+εf̂) > U1(f̂ , ε̄f∗+εf̂) for all t ∈
(0, rC ), for all ε ∈ (0, 1). This means that, whatever the size of
the mutant population, the users playing strategy f∗ are strictly
better off. Similarly, for all f̂ = ( r

0

C + t)δr0 + (1− r0

C − t)δC ,
where t ∈ (0, 1− r0

C ] we have:

U1(f∗, ε̄f∗ + εf̂) =r0 + εtC(1− r0

C
) and

U1(f̂ , ε̄f∗ + εf̂) =r0 + εtC(1− r0

C
− t),

which shows that f∗ is an evolutionary stable strategy.
Since f∗ is an interior point (i.e f∗ ∈ Σ\{δr0 , δC}) of the
set of probability distributions on r0 and C, we can invoke
Proposition 2.2 of [2], which states that an interior strategy that
is evolutionary stable is necessarily the unique evolutionary
stable strategy of the game.

What Theorem 3 does not concern itself with is how a pop-
ulation gets to playing this strategy. Fortunately, evolutionary
game theory has a framework, called replicator dynamics, that
investigates the dynamics of the change of the strategies being
played by a population.

Replicator dynamics is a system of ordinary differential
equations that models how the state of the population is
changing, by assuming that the number of offsprings of a user
is equal to the payoff of this user in a one-shot game. The
assumption is that all the offsprings play the same strategy as
their predecessor.

We assume that individuals are programmed to only play
pure strategies r0 and C. We also assume that each of
these two strategies is present in the population. Without this
assumption, a system that starts in a state where no user plays
some pure strategy will necessarily never play that strategy.

Let Nr0 > 0 and NC > 0 denote the number of users
playing strategy r0 and C, respectively, and let Ṅr0 and ṄC be
their time derivatives. The key variable in replicator dynamics
is the population state, labeled σ, where σ = Nr0

Nr0+NC
is

the fraction of users playing strategy r0. The fraction of the
population playing strategy C is σ̄ = 1−σ (In a general setup
with K strategies played, the state of the system is an N -tuple
that indicates the relative frequency of strategies present in the
population.). The average strategy of a population with state
σ is f = σδr0 + (1− σ)δC . Hence, there is a 1-to-1 map
between a population state and its average strategy.



We assume that the number of offsprings per unit of time of
a user is equal to his expected payoff, and that each offspring
inherits its (single) parent’s pure strategy1:

Ṅr0 = U1(δr0 , f)Nr0 , (5)

ṄC = U1(δC , f)NC , (6)

where f = σδr0 + (1− σ)δC is the average strategy of a
population with state σ. This model and its analysis are treated
in detail in Chapter 3 of [2]. For brevity, we only revisit
the key points and equations that are of interest to us. After
some manipulations, the fundamental equations of replicator
dynamics become:

∂σ

∂t
= (U1(δr0 , f)− U1(f, f))σ, (7)

∂σ̄

∂t
= (U1(δC , f)− U1(f, f))σ̄. (8)

Therefore, the growth rate of a population share is equal to the
difference between the average payoff that the users playing
this strategy are getting, and the average population payoff.

It can be proved that (7) and (8) define a continuous solution
mapping ξ : R× (0, 1)→ (0, 1), where ξ(t, σ0) is the state of
the population at time t, if the initial state at t = 0 was σ0.

In general, we are interested in the steady state behavior of
the system, i.e. what is the value of ξ as t → ∞. As it turns
out, if the users are playing a game that has an evolutionary
stable strategy, the state of the system will converge to one
corresponding to this mixed strategy. The statement holds
regardless of the initial state. The only condition is that the
evolutionary stable strategy is an interior point of the set
of mixed strategies (i.e. every pure strategy is played with
non-zero probability). This is proved formally in Proposition
3.11 of [2]. The following result is a consequence of this
Proposition.

Theorem 4: For any initial state x0 of the replicator dynam-
ics described by (7) and (8),

lim
t→∞

ξ(t, σ0) = σ∗,

where σ∗ is the state of the system with average strategy f∗ =
r0

C δr0 + (1− r0

C )δC , the unique evolutionary stable strategy of
the simple symmetric Gaussian MAC game.

As an example, consider a population whose initial state is
σ0 < r0

C . This population has too many users that code at C.
These users receive a payoff of 0 when playing against each
other, and payoff of C when playing against users coding at
the safe rate. However, due to the relative frequency of the
two strategies, their expected payoff is less than r0. On the
other hand, the users that code at the safe rate will have a
payoff of r0, regardless of the system state. In this case, r0

is more than the expected average payoff, so σ will grow, as
predicted by equation (7). By equation (8), the proportion of
users that code at capacity will shrink. The rate of growth of σ

1The model treated in [2] assumes that a population has an underlying birth
rate β and death rate δ which do not depend on the strategies being played.
We do not consider these since they do not change anything in our analysis.
In particular (7) and (8) hold regardless of the value of β and δ.

and the rate of decline of σ̄ will slow down as the state of the
system approaches σ∗. The system will eventually converge
to the state in which its average strategy is f∗. On the other
hand, a system with the initial state σ∗ will always stay in that
state since U1(δr0 , f∗) = U1(δC , f∗) = U1(f∗, f∗) = r0, so
∂σ
∂t = 0 and ∂σ̄

∂t = 0.

VI. CONCLUSION

In this work we considered the behavior of users in a clas-
sical AWGN Multiple Access Channel (MAC). We modeled
the interaction of users as a noncooperative one-shot game,
in which users were modeled as rational entities whose only
interest is to maximize their own communication rate, and the
payoffs were the obtained rates. We found the pure strategy,
as well as the mixed strategy Nash equilibria of the two-user
game. In order to better understand user behavior over time,
we have introduced models from evolutionary game theory for
a simpler version of the communication game. We found that
the population of users will converge to the state in which the
average strategy is the strategy that achieves the mixed strategy
Nash equilibrium in the simplified one-shot game, defined in
Section V, and that the expected payoff is equal to the safe
rate.
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