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Abstract
In a virtualized environment, device drivers are often run in-
side a virtual machine (VM) rather than in the hypervisor,
for reasons of safety and reduction in software engineering
effort. Unfortunately, this approach results in poor perfor-
mance for I/O-intensive devices such as network cards. The
alternative approach of running device drivers directly inthe
hypervisor yields better performance, but results in the loss
of safety guarantees for the hypervisor and incurs additional
software engineering costs.

In this paper we present TwinDrivers, a framework which
allows us tosemi-automaticallycreatesafe and efficient
hypervisor drivers from guest OS drivers. The hypervisor
driver runs directly in the hypervisor, but its data resides
completely in the driver VM address space. ASoftware Vir-
tual Memorymechanism allows the driver to access its VM
data efficiently from the hypervisor running in any guest
context, and also protects the hypervisor from invalid mem-
ory accesses from the driver. Anupcall mechanism allows
the hypervisor to largely reuse the driver support infrastruc-
ture present in the VM. The TwinDriver system thus com-
bines most of the performance benefits of hypervisor-based
driver approaches with the safety and software engineering
benefits of VM-based driver approaches.

Using the TwinDrivers hypervisor driver, we are able to
improve the guest domain networking throughput in Xen by
a factor of 2.4 for transmit workloads, and 2.1 for receive
workloads, both in CPU-scaled units, and achieve close to
64-67% of native Linux throughput.

Categories and Subject Descriptors D.4.8 [Operating Sys-
tems]: Performance

General Terms Performance, Measurement

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.

ASPLOS ’09 March 7–11, 2009, Washington, DC, USA.
Copyright c© 2009 ACM 978-1-6-558-215-3/09/03. . . $5.00

1. Introduction
In a virtualized environment it is desirable, for reasons of
safety and reduction in software engineering effort, to run
device drivers inside a virtual machine (VM) rather than in
the hypervisor. By running the drivers in a VM, a bug in the
driver does not compromise the hypervisor or other VMs.
Furthermore, it avoids having to (re)implement the entire
driver support infrastructure in the hypervisor. Instead,one
can simply re-use the driver support infrastructure already
present in the guest operating system. This strategy is used
in the Xen virtual machine environment [3] and in L4 [10].

The drawback of this approach is loss of performance.
Since the device driver is located in a different driver VM,
and thus a different address space than the guest VM, ex-
tra context switching overhead is incurred in invoking the
device driver and in interrupt handling. Thus, for instance,
it has been reported that network performance in Xen is
a factor of 3 to 4 lower than native Linux performance
[11, 12, 15].

The alternative to this approach is to run the device driver
directly in the hypervisor. This approach gives better perfor-
mance because it avoids context switches for calls between
the hypervisor driver and the guest VM. Unfortunately, this
approach requires the entire driver and its support libraryto
be either developed anew for the hypervisor, or to be ported
from an existing operating system. Both approaches incur a
significant software development effort. In addition, thisap-
proach also leaves the hypervisor vulnerable to bugs in the
device driver.

This paper tackles the tradeoff between performance on
the one hand and safety and reduction in coding effort on
the other hand. Our goal is to combine the performance
benefits of the hypervisor-based driver approach with the
safety and software engineering benefits of the VM-based
driver approach.

We take a driver developed for a guest operating system,
such as Linux, and wesemi-automaticallyproduce from
it, by binary rewriting, a driver thatefficiently and safely
runs in the hypervisor. At runtime, two instances of the
driver are run at the same time: The original one, which
we call the VM instance, runs in a VM. The derived one,
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which we call the hypervisor instance, runs in the hypervisor.
The hypervisor instance takes care of performance-critical
operations of the device driver. For instance, for a network
card driver, this includes transmitting and receiving packets.
The VM instance takes care of the other operations such as
device configuration, management, error handling, etc.

Although there are two separate instances of the driver
running, there is only a single instance of the driver data,
residing in the VM address space. The hypervisor instance
accesses only the driver and VM data structures in the VM,
and does not access any hypervisor data structures. From this
simple rule derives thesafetyof the approach: The hypervi-
sor instance cannot access, and therefore cannot corrupt the
hypervisor data structures.

Although the driver data is located in the VM address
space, the hypervisor instance can access this data while run-
ning in any guest VM context by using an address translation
mechanism calledSoftware Virtual Memory(SVM). This al-
lows the hypervisor to invoke its driver instance while run-
ning in any guest context without switching address spaces.
This is the key to achieving goodperformance.

Keeping only a single copy of the data in the VM address
space also allows the hypervisor instance to invoke the driver
support routines in the VM for operations on these data
structures. This is done through anupcall mechanism from
the hypervisor to the VM. Theupcall approach avoids the
implementation in the hypervisor of the entire set of driver
support routines. Instead, the hypervisor only implementsa
small set of performance-critical support routines neededto
achieve good performance. This is the key to reducing the
software engineering effortto support the hypervisor driver
instance.

We have implemented the ideas described above in the
TwinDrivers system. Our implementation is targeted at the
Xen hypervisor and Linux network drivers, but we believe
the ideas are generally applicable. We have used our binary
rewriting system to twin the Intel e1000 driver. The Twin-
Drivers system allows us to improve the Xen guest domain
networking throughput in CPU-scaled units by a factor of
2.4 for transmit workloads, and by a factor of 2.1 for re-
ceive workloads. The resulting throughput is also within 64
to 67% of native Linux throughput.

The outline of the rest of this paper is as follows. Sec-
tion 2 provides some background on the Xen I/O system.
Section 3 presents the principles underlying the TwinDrivers
approach. Section 4 presents in more detail the design of the
TwinDrivers approach, and Section 5 presents our current
implementation. Section 6 presents our performance results
for network I/O. Section 7 discussed related work. Section 8
presents our conclusions.

2. Background on Xen I/O
The Xen VMM uses the so called ‘hosted’ virtual machine
model in which device drivers are run in a ‘driver domain’

(dom0), which provides device I/O services for guest do-
mains (guest VMs). Figure 1 shows a high-level picture of
the network driver architecture in Xen. Guest domains are
provided with afrontendvirtual network interface, which is
connected to the physical interface (NIC) driver in the driver
domain through a networkbridge and abackendinterface.
Transmit requests from the guest domain and NIC interrupts
result in switches to the driver domain to invoke the device
driver. More details of the Xen architecture can be found in
[7].

NIC Driver

Physical NIC

Bridge

Backend Interface Virtual Interface

Driver Domain Guest Domain

I/O Channel

Xen VMM

Figure 1: Xen I/O Architecture

The ‘hosted’ driver architecture incurs a significant per-
formance overhead for guest domains, which has been stud-
ied in [15, 21, 12]. The biggest overhead is incurred due to
the frequent context switches between the driver domain and
guest domains for driver invocation and interrupt handling,
which results in increased TLB and cache misses [12]. There
are additional overheads as well, incurred because of the ex-
pensive bridging andgrant tableoperations in the driver do-
main [15]. The overall performance impact of these over-
heads is a reduction in the network performance of Xen guest
domains by a factor of 3-4 [11, 15].

In contrast, in a hypervisor-based driver model, the device
driver executes directly in the hypervisor, and thus avoidsthe
context switches on device invocation.

3. Principles
We discuss the design and principles underlying the Twin-
Drivers approach in the context of the Xen VMM, using the
example of a network interface card driver. Figure 2 shows
the overall architecture of the TwinDrivers approach. Twin-
Drivers uses two driver instances, one running in dom0 and
one running in the hypervisor, but only one instance of the
driver data, residing in dom0.

3.1 Two Driver Instances

We take a device driver from the Linux driver domain, and
rewrite the binary to produce a driver that can execute in the
hypervisor. At runtime, two instances of the driver are run at
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Figure 2: TwinDrivers Architecture

the same time: the original VM driver instance runs in dom0,
and the derived hypervisor driver runs in the hypervisor.
We first load the VM driver into the dom0 kernel where it
performs the initialization of the NIC and the driver data
structures. After the initialization is complete, we load the
hypervisor driver into the Xen hypervisor. TwinDrivers uses
this driver for performing the performance-critical send and
receive operations on the NIC.

We develop a new paravirtual driver for guest domains,
which interfaces with the Xen hypervisor through a hyper-
call interface and allows it to invoke the hypervisor driverto
transmit and receive packets on its behalf. No context switch
is incurred in invoking the hypervisor driver from the guest
context.

The VM driver instance continues to run in dom0 to pro-
vide support for all other NIC operations which are not per-
formance critical. These include reconfiguring NIC parame-
ters usingethtool-like tools, doing periodic error checks
on the NIC using timers, collecting and reporting device
statistics, etc. Keeping the VM driver instance running in
the driver domain for these functions allows us to restrict
the hypervisor interface to the driver to just the transmit and
receive functions, and avoids the need to port existing user-
space tools (such asethtool) to use the new hypervisor
driver instead of the VM driver.

3.2 Single Instance of Driver Data Structures

In the TwinDrivers architecture, although there are two in-
stances of the driver running, there is only a single instance
of the driver data structures residing in the dom0 address
space. The hypervisor driver instance accesses the shared
dom0 driver data structures for all its operations.

We introduce a new mechanism calledSoftware Virtual
Memory(SVM) that allows the hypervisor instance to ac-
cess the dom0 data structures from any guest domain ad-
dress space. Software Virtual Memory is a runtime address
translation and protection mechanism which is incorporated

into the hypervisor driver during binary rewriting of the VM
driver.

The SVM mechanism is the key to combiningefficiency
and safety in the hypervisor driver. By allowing the hy-
pervisor instance to access the dom0 driver data structures
from any guest domain context, expensive context switches
are avoided on driver invocation, and highperformanceis
achieved. By restricting all memory accesses from the hyper-
visor instance to the dom0 address space,safetyis achieved
and the hypervisor is protected from memory corruption
bugs in the driver.

A third advantage of keeping a single copy of all data in
dom0 address space is that it allows the hypervisor instance
to reuse driver support routines present in the dom0 kernel.
The driver support routines form a large body of code in the
VM (Linux) kernel, and it requires significant engineering
effort to provide identical support routines in the Xen hyper-
visor in order to run the dom0 drivers [10].

However, since the driver data resides in the dom0 ad-
dress space, the hypervisor instance can reuse the driver sup-
port routines in the VM using anupcallmechanism. Theup-
call mechanism allows the hypervisor to avoid having to im-
plement the majority of the driver support routines which are
invoked only infrequently by the driver. Instead, the hypervi-
sor implements only a small set of performance-critical sup-
port routines which are needed for good performance. The
upcall mechanism thus allows us to reduce thesoftware en-
gineering effortneeded to support the driver while retaining
the performance benefits.

We now describe these mechanisms in more detail in the
following sections.

4. Detailed Design
4.1 Software Virtual Memory

Software Virtual Memory (SVM) is the key mechanism that
enables the hypervisor driver instance to access the driver
data residing in dom0 address space. SVM uses a combina-
tion of runtime virtual address translation and page remap-
ping to allow memory accesses to the dom0 address space
from the hypervisor without a context switch, and to prevent
invalid access to the hypervisor address space.

At the core of the SVM mechanism is aSoftware trans-
lation table (stlb) which maps from virtual memory page
addresses in dom0 address space tomappedvirtual page ad-
dresses in the hypervisor address space. Themappedpage
address in anstlb entry is a hypervisor page which maps
to the same physical page as the corresponding dom0 page
address.

To produce the hypervisor driver, every instruction which
references memory locations in the original VM driver is
rewritten to make use of SVM to perform the memory access
(except for stack-relative memory references). Thus, at run-
time, every memory access to dom0 address space from the
hypervisor driver instance is first translated using thestlb



movl %(r_src), %r_dest

Figure 3: Indirect memory reference in original code

1. leal %(r_src), %r1

2. movl %r1, %r2

3. andl 0xfffff000 , %r1

4. movl %r1, %r3

5. andl 0xfff000 , %r1

6. shrl $9, %r1

7. cmpl stlb(%r1), %r3

8. jne .L_slow_path

9. xorl 4+stlb(%r1), %r2

10. movl (%r2), %r_dest

Figure 4: Rewritten code using SVM

table into amappedaddress, and the memory access is made
using the translated address. Attempts to access the hyper-
visor address space by the driver are detected and prevented
because thestlb table does not contain valid mappings for
hypervisor addresses. On such an illegal memory access by
the driver, it is aborted.

Figures 3 and 4 give an example of how rewriting works,
using an example (figure 3) of an indirect memory reference
instruction which loads the value at the memory location
in r src into the registerr dest. Figure 4 shows how the
rewritten code translates the address using thestlb table
and uses the translated address to load the value.1

The stlb table acts as a hashtable storing translations
from dom0 virtual page addresses to themappedvirtual page
addresses in the hypervisor. In lines 1 to 6, the lower 12 bits
of the dom0 page address (for a 32 bit system) are used as an
index into thestlb table. In line 7, we check if the indexed
stlb entry for the dom0 page is valid, i.e., if the page has
been previously mapped into the hypervisor address space
(and there are no hash collisions). If so, thestlb entry is
used to compute the final translated address and this address
is used for the memory reference (lines 9 and 10).

If the stlb translation entry for the virtual address ac-
cessed is not valid (line 8), control is transferred to a slow-
path lookup routine. If thestlb lookup failed because of a
hash collision, the slow-path routine looks up a hash chain
and fills in the correct mapped virtual page address.

If, however, the lookup failed because the virtual address
was being accessed for the first time, the slow-path routine
checks the permissions of the memory access and, if the
access is permitted (i.e., the memory page belongs to dom0
address space), it creates a new hypervisor mapping for the
dom0 address. It allocates a new hypervisor virtual page, and
maps it to the physical page corresponding to the accessed

1 We discuss how the instruction rewriting works for more complicated x86
instructions in section 5.

page. It then fills in thestlb table with the new translation
entry. Subsequent accesses to this dom0 page are translated
directly from thestlb table. 2 Entries in thestlb table
are thus dynamically filled in as memory accesses to dom0
address space are made by the hypervisor driver instance.
In our implementation, we use anstlb hashtable with 4096
entries, mapping up to 16MB of dom0 virtual memory.

The fast path of the SVM-based memory access replaces
one memory instruction in the original code with ten instruc-
tions in the rewritten code.3 While this may seem prohibitive
at first, in practice its impact on overall performance is much
smaller. Firstly, in a typical driver, only roughly 25% of the
instructions reference memory, and are rewritten to use SVM
(we measured this for some network drivers). Secondly, in a
typical network-intensive workload, the device driver itself
incurs roughly 10-15% of the total overhead. As we show in
section 6, the overall performance impact of using an SVM-
based device driver is quite small.

The stlb based SVM memory access is not used for
stack-relative memory accesses (i.e., it is used only to trans-
late heap memory access and not stack memory access).
This is because the hypervisor driver instance uses a separate
stack of its own in the hypervisor address space, and over-
flow on this stack is prevented by the use of guard pages.

4.2 Upcalls from the hypervisor into dom0

The hypervisor uses the upcall mechanism to reuse the
driver support routines present in dom0. An upcall is a syn-
chronous, cross-address-space function invocation and re-
turn mechanism. Upcalls are used by the hypervisor to link
infrequently called support routines from the driver to the
corresponding routines in the driver VM using special stub
routines in the hypervisor. On a call to a stub routine by the
hypervisor driver, the stub routine first saves the parameters
of the call and then initiates anupcall into the driver domain
by sending a special synchronous virtual interrupt to dom0.
If the support routine is invoked while the driver is running
in a guest domain context, a synchronous context switch to
dom0 is done first. Additionally, before the virtual interrupt
is sent to dom0, the stub routine also switches from the hy-
pervisor stack to an ‘upcall’ stack. This is because, in the
Xen hypervisor, the state of the hypervisor stack is not saved
on transition to the guest domain.

An upcall handler is registered in the driver domain to
receive upcall requests via synchronous virtual interrupts. It
recovers the upcall parameters, sets up the stack and register
parameters, and then invokes the driver support routine. On

2 Actually, two consecutive dom0 pages are mapped into the hypervisor for
eachstlb ‘miss’. This is because the Intel instruction set permits unaligned
memory accesses, so a memory access may straddle two pages.
3 Additional scratch registers are needed for computing the address transla-
tion, which may require spilling some registers to memory, and can increase
the length of the fast path. However, we avoid the cost of spilling registers
most of the time by doing a register liveness analysis to determine the set of
free registers available at each instruction.



return from the driver support routine, the upcall handler
saves the return values of the routine and ‘returns’ to the stub
routine via a hypercall. The stub routine eventually returns
to the hypervisor driver with the support routine’s return
values (possibly after doing another domain switch back to
the guest domain).

For the upcall mechanism to work correctly, the environ-
ment in which the driver support routine is called from the
upcall handler in dom0 must be identical to the environ-
ment in which it is called from the hypervisor driver. The
call environment of the routine comprises of three compo-
nents: the heap, the stack and the registers. The heap envi-
ronment is identical in the two invocations because there is
a single driver data instance which resides in dom0 address
space. The register values for the two calls are made iden-
tical by the upcall mechanism. Although the stack parame-
ters passed are identical in the two cases, the stack address
is different. This could be problematic, for instance, if the
hypervisor driver passes addresses of its stack variables as
parameters to the dom0 support routines. In this case, the
dom0 support routine would try to dereference a hypervi-
sor driver stack address and would cause a protection fault.
One possible solution would be to use instruction emulation
to trap and emulate the access from the dom0 support rou-
tine to the hypervisor driver stack, after making appropriate
validity checks. In practice, since it is uncommon to pass
stack variables by reference, we have not encountered the
stack dereference problem for any upcall to driver support
routines from network drivers. Thus, currently we have not
implemented the proposed solution.

4.3 Support routines in the hypervisor

Upcalls can be expensive because they potentially involve a
context switch and transition to the driver domain. To avoid
the cost of an upcall on invocation of every driver support
routine called by the driver, the hypervisor provides imple-
mentations of some support routines which are frequently
called during the execution of performance-critical partsof
the driver. For a typical driver, the set of such routines is a
small fraction of the total number of support routines that are
called by the driver.

For instance, table 1 lists the Linux driver support rou-
tines that are called during error-free execution of the trans-
mit and receive routines of the Intel e1000 driver. There are
only 10 such functions, compared to the 97 routines called
by the e1000 driver for all its operations.

The support routines which are implemented in the hy-
pervisor make use of thestlb translation table explic-
itly while accessing driver data in dom0 address space.
For support routines that need to allocate and free mem-
ory in the dom0 heap, such asnetdev alloc skb and
dev kfree skb any, we use a preallocated pool of buffers
from dom0 heap which are reserved for use by the hyper-
visor routines. We use a simple reference counter trick to

Routine name Description
netdevalloc skb allocate skbuffs

dev kfree skb any free skbuffs
netif rx receive network packets

dma mapsingle map DMA buffer
dmamappage map DMA page

dma unmapsingle unmap DMA buffer
dma unmappage unmap DMA page

spin trylock acquire spinlock
spin unlock irqrestore release spinlock, restore interrupts

eth type trans process MAC header

Table 1: Functions called frequently from the e1000 network
driver

prevent other routines in the dom0 kernel from accessing
these buffers.

4.4 Synchronization

Concurrent access to the shared data instance from the hy-
pervisor and VM driver instances introduces the issue of
synchronization. Fortunately, this is easily resolved. Ifthe
original driver is compiled for an SMP environment, then it
already uses the correct synchronization primitives to access
shared data. These synchronization operations continue to
work correctly for the hypervisor driver instance since they
operate on atomic synchronization variables which are also
shared between the hypervisor and VM driver.

Disabling interrupts is a common synchronization mech-
anism used when sharing data structures between the de-
vice driver and the operating system. Since the original VM
driver runs inside dom0, the dom0 kernel masks and un-
masks avirtual interrupt flag instead of the real CPU in-
terrupt flag, when it wants to prevent the driver interrupt
handler from running. Thus, the hypervisor must respect the
virtual interrupt flag of the dom0 kernel before invoking the
interrupt handler of the hypervisor driver. This is ensuredby
invoking the hypervisor driver interrupt handler routine in a
schedulable ‘softirq’ context, instead of directly in the inter-
rupt context.

4.5 Safety of Derived Hypervisor Driver

The SVM mechanism ensures memory safety of the derived
hypervisor driver. Since every heap access from the hyper-
visor driver is translated before the access is made, invalid
accesses to the hypervisor address space, or to other domain
memory, are detected and prevented by SVM.

Although the derived hypervisor driver is secure against
the most common kind of driver bugs, namely memory cor-
ruption bugs, it still suffers from some safety issues that are
already present in the current Xen driver domain architec-
ture. Specifically, since the network driver has full, privi-
leged access to the network interface, a buggy or malicious
driver can set up illegal DMA transfers that allow it to read



from or write to memory regions it is not allowed to access.
This is a safety violation that already exists with the current
Xen driver domain model, where the dom0 driver has priv-
ileged access to the NIC. A complete solution to this prob-
lem requires the use of an IOMMU that can be programmed
to restrict the memory regions accessible from the network
card.

There are some additional unsafe situations that are not
currently handled in the TwinDrivers framework. However,
these can be handled using existing mechanisms. We de-
scribe some of these below.

4.5.1 Stack Corruption

Currently, the SVM memory protection mechanism is ap-
plied only to heap accesses, and not for stack-relative ac-
cesses. This is done because the hypervisor driver does not
require address translation in order to access its hypervisor
stack. However, this mechanism is not sufficient to prevent
stack corruption errors. For instance, a buffer overflow error
in the hypervisor driver can cause the driver to return to an
invalid address, which is a security violation.

The stack corruption problem can be addressed by us-
ing SVM-like mechanisms to insert checks in the hypervi-
sor driver to ensure the safety of stack-relative memory ac-
cesses. These checks are required only for those memory ac-
cesses that cannot be statically determined to be safe. For
instance, accesses to constant offsets from the stack pointer
can be potentially statically verified. For the small number
of variable-offset accesses from the stack pointer, additional
validity checks would need to be inserted. Alternatively, the
problem of control flow integrity can also be solved using
techniques similar to those used in XFI [5].

4.5.2 Non-memory related errors

The TwinDrivers framework does not currently handle non-
memory related errors in the hypervisor driver. For instance,
if the hypervisor driver goes into a deadlock or an infinite
loop, it can prevent the hypervisor from regaining control.
Such resource hoarding bugs can be prevented by mecha-
nisms similar to those used, for instance, in VINO [16]. The
VINO extensible kernel makes use of timeouts to limit the
duration of execution of the extension code. Similar mecha-
nisms can be used to limit the execution time of the hypervi-
sor driver.

Another category of bugs that is not currently handled
is the use of privileged instructions, such as modifying the
page tables to corrupt the system. These kinds of bugs can
be detected and prevented by static inspection of the driver
code during binary translation.

5. Implementation
5.1 Deriving the hypervisor driver

The hypervisor driver is created by binary rewriting of the
VM driver. In the first step, we produce the assembly file of

the VM driver, either by disassembling the VM driver bi-
nary, or, if the driver source is available, by directly com-
piling the driver into assembly. Since we work with Linux
drivers, which are available in source form, we take the lat-
ter approach.

This VM driver assembler file is fed into an assembler-
level rewriting tool, which generates the hypervisor assem-
bler file as output. Conceptually, assembler-level rewriting
is equivalent to binary rewriting, although working at the as-
sembly level significantly simplifies the implementation of
parsing and code generation. The hypervisor assembler file
generated is eventually compiled into the hypervisor driver
binary.

The rewriting tool performs a set of transformations to
incorporate the SVM mechanism into the hypervisor driver.
For memory reference instructions in the VM driver, the
transformation applied is described in section 4.1. We now
describe the transformations for other x86 instructions inthe
VM driver that reference memory in more complex ways.

5.1.1 String instructions

The x86 instruction set contains a number of ‘string’ instruc-
tions that can be used to perform string operations on blocks
of contiguous data in memory, such as copying, string com-
parison, etc. Examples of such instructions includemovs,
cmps, lods, stos, scas, etc. These instructions take as
operands the source and/or destination memory address, and
an implicit length operand. For instance, therep; movs in-
struction copiesecx bytes of data from source addressesi

to destination addressedi.
When translating such instructions to use the SVM mech-

anism, it is not sufficient to simply translate the source and
destination address operands. This is because the string
operands of these instructions may span multiple pages,
whereas thestlb translations for the string addresses may
not necessarily map the contiguous dom0 pages containing
the string to contiguous hypervisor pages.

Thus, for translating string instructions, we generate code
that loops over the entire string in chunks of page length, and
use the string instruction on the individual string chunks that
are guaranteed to lie within a single page. Within the loop
body, the regular address translation mechanism is used for
the starting string source and destination addresses.

5.1.2 Indirect calls

The x86 instruction set allows routines to be ‘indirectly’
called by specifying the address of the routine as a registeror
memory operand. For example, the instruction ‘call %eax’
makes an indirect call to the routine whose address is given
in the eax register. Since all data is shared between the
hypervisor driver and the VM driver (including the values of
function pointers), the address of the indirectly called routine
in the hypervisor driver actually points to the routine in the
VM driver.



Thus, for indirect calls, the address of the called VM
driver routine is first translated to the address of the corre-
sponding hypervisor driver routine, and then the actual call
is made. Similar to thestlb table for memory addresses,
an stlb call table caches translations from VM-driver
routine addresses to hypervisor-driver routine addresses.
In order to translate from VM-driver routine addresses to
hypervisor-driver routine addresses the first time, we need
to know the correspondence between the original driver’s
code addresses and the translated driver’s code addresses.
Although this information can be generated while creating
the hypervisor driver from the VM driver, overall, this ap-
proach is quite cumbersome.

We reduce the complexity of translating from the VM
driver’s addresses to the hypervisor driver’s addresses byus-
ing the same rewritten driver for both the VM driver instance
and hypervisor driver instance. For running the rewritten
driver as the VM driver, thestlb table for the VM driver
instance is filled with identify mappings. Thus, the VM
driver instance continues to use its original data addresses
and functions correctly as before, except that it runs a little
slower.

Using this approach, the code addresses in the VM driver
and the hypervisor driver always differ by a constant offset
for all routines, and thus address translations between the
two can be done in a simple manner.

5.2 Loading the hypervisor driver

The rewritten hypervisor driver is loaded into the Xen ad-
dress space using a modified ELF loader.

During loading, all data references in the hypervisor in-
stance (i.e., the driver’s data symbols and the ‘imported’
Linux data symbols) are resolved to the corresponding sym-
bol addresses of the driver and Linux variables in the dom0
address space. This is done with the help of the module
loader in the dom0 kernel, which saves the necessary driver
relocation information at the time the original driver is
loaded into the dom0 kernel. This ensures that all hyper-
visor driver data references point only to memory locations
in dom0 address space.

Hypervisor driver calls to external driver support routines
are also resolved in a special way. Calls to support routines
which are implemented in the hypervisor itself are resolved
to the hypervisor’s implementation. For other driver support
routines which are not implemented by the hypervisor, the
driver calls are resolved to ‘stub’ routines in the hypervisor.
A separate stub routine is provided for each unimplemented
driver support routine. The mapping between the stub rou-
tine number and the corresponding support routine in dom0
is saved by the loader. At runtime, when the stub routine
is invoked, it initiates a cross-address-space call to the cor-
responding dom0 routine using theupcall mechanism de-
scribed in section 4.2.

The hypervisor needs some additional information for
actually invoking the transmit and interrupt handler routines

in the hypervisor driver. It needs to know the driver entry
points for the transmit and interrupt routines, and also some
additional parameters that the driver expects to be passed
on each invocation (such as a pointer to the Linuxnetdev

structure for the transmit routine). This information is passed
to the hypervisor from the dom0 process which initiates the
driver loading.

5.3 Invoking the hypervisor driver

The hypervisor transmits and receives packets on behalf of
the guest domains by invoking the transmit and interrupt
handler routines of the hypervisor driver respectively. The
guest domains interface with the hypervisor driver using a
new paravirtualized network driver.

For all invocations of the hypervisor driver, all parameters
passed to the driver must be valid heap addresses in dom0
address space. Thus, all packet buffers (sk buff structures
in Linux) allocated to the hypervisor driver reside in dom0
address space, and are also persistently mapped into hyper-
visor address space using thestlb mapping mechanism.

For transmit operations from guest domains, the hypervi-
sor acquires a pre-allocatedsk buff in dom0 address space,
copies the header of the guest packet (up to the first 96
bytes) into thesk buff header, and chains together the rest
of the guest packet using the page fragment pointers in the
sk buff (using pre-allocated page frames from dom0). It
then invokes the hypervisor driver transmit routine with the
dom0sk buff parameter.

The DMA transfers set up by the hypervisor driver work
correctly because the hypervisor implementation of the
DMA mapping functions,dma map single anddma map page

return the correct guest machine page addresses.4

For receive operations, the hypervisor calls the driver in-
terrupt routine on receiving an interrupt from the NIC. Net-
work packets are received by the hypervisor driver into dom0
sk buffs which are persistently mapped into the hypervi-
sor. The hypervisor demultiplexes the received packets based
on the destination MAC address, and queues the packet to
the appropriate guest domain. When the guest domain is
scheduled next, the hypervisor copies the packets into guest
domain buffers, and raises a virtual interrupt to notify the
guest domain paravirtual driver.

6. Evaluation
6.1 Experimental setup

We have implemented TwinDrivers in Xen-3.2.1 (change-
set 16485) running Linux version 2.6.18.8 in dom0 and in
the guest domains. We evaluate the network performance
of a guest domain using TwinDrivers, comparing it with

4 Alternatively, the hypervisor makes use of thephysicalto machinemap-
ping table in the dom0 kernel to map from physical page framesof the skb
in dom0 to the correct machine page frames in guest domains. This way,
the DMA mapping driver functions can be even invoked using upcalls and
would still work correctly.



the performance of an unoptimized Xen guest domain, Xen
dom0, and native Linux. We evaluate the performance for
two workloads. Our first workload uses a netperf [1] like mi-
crobenchmark to measure the transmit and receive network
performance in guest domains. Our second workload con-
sists of a web server serving concurrent HTTP requests for
files from a SPECweb99 [2] like file-set.

The testbed consists of a 3.0 GHz Intel Xeon server ma-
chine equipped with five Intel Pro1000 Gigabit Ethernet
cards. This machine is connected to five client machines (3.0
GHz Intel Xeon) equipped with one Intel Pro1000 Gigabit
Ethernet card each.

6.2 Microbenchmark Results

The microbenchmark workload measures the maximum
TCP streaming throughput achievable over a small set of
TCP connections. In the experiments (both transmit and
receive), the server machine is connected to each client
machine using a separate TCP connection over a differ-
ent NIC. The experiment measures the maximum aggregate
TCP throughput (transmit or receive) the server can achieve
using all five NICs.

Figures 5 and 6 show the transmit and receive perfor-
mance of a Xen guest domain using TwinDrivers (“domU-
twin”) and compare it with the performance achieved in an
unoptimized guest domain using standard Xen networking
(“domU”), the driver domain (“dom0”), and a native Linux
system (“Linux”). For the domU-twin configuration, all 10
functions required for fast-path operation of the hypervisor
driver (see table 1) were implemented in the hypervisor, and
no upcalls were made.
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Figure 5: Transmit Performance for netperf Benchmark

For the transmit benchmark (figure 5), the native Linux
system saturates all 5 NICs to achieve an aggregate through-
put of 4690 Mb/s while using only 76.9% of the CPU, while
Xen dom0 achieves a throughput of 4683 Mb/s with full
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Figure 6: Receive Performance for netperf Benchmark

CPU saturation. The performance of the TwinDrivers guest
domain (domU-twin) is 3902 Mb/s with full CPU saturation,
which is within 83% of the dom0 performance, and is within
64% of the native Linux performance, in CPU-scaled units.

The performance of the unoptimized guest domain (domU)
itself is only 1619 Mb/s at 100% CPU saturation. Thus,
compared to the unoptimized guest domain, the TwinDriver
guest domain achieves a performance improvement of a fac-
tor of 2.41.

For the receive benchmark (figure 6), the native Linux
performance is 3010 Mb/s at full CPU saturation, and the
Xen dom0 performance is 2839 Mb/s. The performance of
the TwinDrivers guest domain (domU-twin) is 2022 Mb/s
at full CPU saturation, which is roughly 71% of the dom0
performance, and close to 67% of the native Linux perfor-
mance.

The performance of the unoptimized guest domain is only
928 Mb/s at 100% CPU saturation. Thus, the TwinDrivers
guest domain improves upon the guest domain performance
by a factor of 2.17.

Figure 7 shows the breakdown of packet processing over-
head for the transmit workload in the four systems. This pro-
file was obtained with the microbenchmark running only on
a single Gigabit NIC. Thus, the relative numbers obtained
here differ a little from the throughput results. We show the
CPU overhead in terms of cycles per packet incurred in four
categories: the dom0 kernel (dom0), the guest domain kernel
(domU), the Xen hypervisor (Xen) and the network driver
(e1000). For the native Linux case, we show the Linux ker-
nel overhead in the dom0 kernel.

The unoptimized guest domain per-packet overhead is
more than twice the overhead of the TwinDriver guest do-
main (21159 cycles/packet vs. 9972 cycles/packet). Most of
this overhead is incurred in invoking dom0 (8394 cycles/-
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Figure 7: CPU cycles per packet for transmit workload

packet) and in the additional hypervisor overhead for switch-
ing and transferring packets between the guest and driver
domain [15]. The TwinDrivers guest avoids both these over-
heads by directly invoking the hypervisor driver.

Compared to native Linux, both the dom0 and the Twin-
Drivers guest incur the virtualization overhead of runningon
top of a hypervisor (1184 cycles/packet for dom0, and 1726
cycles/packet for domU-twin). In the TwinDrivers configu-
ration, there is additional overhead relative to dom0 in two
main areas: the overhead of running a rewritten driver in-
stead of native driver (2218 cycles/packet vs. 960 cycles/-
packet), and the additional hypervisor overhead of the hyper-
call interface between the paravirtual driver and the hyper-
visor driver. Overall, the TwinDrivers guest incurs roughly
20% higher overhead than dom0.

Figure 8 shows a similar breakdown of the overhead for
the receive workload.

Here again, the unoptimized guest domain incurs almost
twice the per-packet overhead as the TwinDrivers guest do-
main (35905 cycles/packet vs. 20089 cycles/packet), and
most of this overhead is incurred in invoking dom0 (14384
cycles/packet) and in additional hypervisor overheads. By
invoking the hypervisor driver directly, the TwinDrivers
guest avoids most of these overheads.

Compared to dom0 and native Linux performance, the
TwinDrivers per-packet overhead is quite large (20089 cy-
cles/packet vs. 14308 and 11166 cycles/packet). Part of this
can be explained as the overhead of running the rewritten
driver (2445 cycles/packet vs. 972-1422 cycles/packet), but
a large part of the TwinDriver receive overhead is incurred
in the hypervisor itself (6514 cycles/packet). More detailed
profiling shows that most of this overhead (3525 cycles/-
packet) is incurred in copying the packet from the hypervisor
driver to the guest domain driver.
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Figure 8: CPU cycles per packet for receive workload

For both the transmit and receive workloads, the overhead
incurred by running a binary rewritten driver instead of a
native driver is relatively small. The rewritten driver runs
slower by a factor of roughly 2 to 3, but, the impact of this
slowdown on the overall overhead of the guest domain is
relatively low, less than 15%.

6.3 Web Server Workload

We now compare the performance of the guest domain using
TwinDrivers with the original guest domain, dom0 and a
native Linux system, for a web server workload. In this
experiment, the server machine runs theknot web server, a
bare-bones, lightweight web server developed as part of the
Capriccio project [18]. It serves a static set of files generated
from the file size distribution specified in the static content
part of SPWECweb’99 [2]. Since we are only interested in
the network performance, we use a file-set consisting of only
a single directory. This entire file-set fits in memory and does
not stress the disk I/O subsystem.

The workload for the web server is generated by running
httperf [14] on a set of client machines. Requests are gen-
erated in an ‘open’ loop, and responses from the server are
discarded if they are not received within a certain timeout.

Figure 9 compares the performance of the web server run-
ning in the guest domain using TwinDrivers (“domU-twin”),
the original guest domain (“domU”), dom0 (“dom0”), and a
native Linux system (“Linux”). The figure plots the aggre-
gate throughput of responses received by all httperf clients
(in Mb/s) as a function of the total connection request rate
issued by the clients. In the figure, all configurations could
not be tested to the same request rate because some con-
figurations could not sustain high connection rates, and thus
effectively ran at a lower connection rate even when a higher
rate was requested.
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Figure 9: Web Server Workload

The overall trends seen in the web server workload are
similar to the trends seen for the microbenchmarks. The
maximum throughput achieved by the native Linux config-
uration is is 855 Mb/s. dom0 achieves a peak throughput of
712 Mb/s. The original Xen guest domain achieves a peak
throughput of 269 Mb/s, which is only 31% of the native
Linux performance. The TwinDrivers guest domain achieves
a peak throughput of 572 Mb/s, which is a more than factor
of 2 improvement over the unoptimized guest domain per-
formance, and is roughly within 67% of native Linux perfor-
mance.

6.4 Cost of Upcalls

To achieve good performance in the hypervisor driver, up-
calls to driver support routines must be avoided during the
performance critical parts of the driver. Table 1 shows that
for the Intel e1000 driver, there are 10 driver support rou-
tines that are called on the fast path. Figure 10 shows how the
transmit performance of a TwinDrivers guest domain drops
when not all the necessary upcalls are implemented in the
hypervisor.

The X axis shows the number of performance-critical
support routines for which the hypervisor has to make an
upcall. When no upcalls are made (first bar), transmit perfor-
mance is 3902 Mb/s. As soon as the hypervisor has to make
even one upcall per driver invocation, the performance drops
to 1638 Mb/s (second bar). The performance drops progres-
sively as more and more upcalls are needed, until finally it
drops to 359 Mb/s when all but the network receive function
(netif rx in Linux) are implemented as upcalls.

6.5 Engineering Effort

The 10 driver support routines listed in table 1 were imple-
mented in the Xen hypervisor. The entire implementation
took 851 lines of commented C code and header files. This is
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Figure 10: Transmit throughput as a function of number of
upcalls

a very small development effort compared to the effort that
would be needed to support the entire driver support inter-
face.

7. Related Work
Device drivers have received an enormous amount of interest
from the research community, and space constraints limit us
to only a sampling of the most related work.

As mentioned in the introduction, our work builds on the
notion of running device drivers in a virtual machine [7, 10],
but we go beyond that work in allowing safe execution of
the performance-critical parts of the driver in the hypervisor.
The idea of executing device drivers in user-level processes
[9] is similar, and we project that it can benefit from our
techniques as well.

The VMware ESX server [20] runs selected drivers in the
hypervisor by porting the drivers and their support routines
to the VMM. Not only does this involve significant develop-
ment effort, it also leaves the hypervisor vulnerable to bugs
in the driver. Our work ensures that the rewritten hypervi-
sor driver executes safely in the hypervisor. Additionally,
since the number of driver support routines needed to run
the error-free performance-critical path in the driver is very
small, the software development costs of our approach are
significantly smaller.

Reusing drivers developed for one environment in a new
environment is a difficult task. In the Flux OSkit [6], driver
sources are ported from the original OS into a new OS by re-
implementing the entire driver-kernel API support library.
The kernel driver support library is a large and poorly docu-
mented body of code. Reimplementing this library requires
a deep understanding of the internals of the original OS, and
can be a a source of subtle bugs. The issues arising from the



semantic differences between the old and new OS environ-
ments are discussed in detail in [10].

Numerous attempts have been made to reduce the vulner-
ability of the kernel to device driver crashes, without going
all the way to running the device driver in a virtual machine
[17, 19]. These approaches typically constrain memory ac-
cesses by the drivers to prevent wild writes that corrupt the
kernel data structures, either by erecting address space bar-
riers or by checking memory accesses. In our approach, we
avoid any vulnerability of this nature as a by-product of leav-
ing all the driver data structures in the VM address space
and not allowing the driver any access to the hypervisor data
structures.

A number of research efforts have looked at mechanisms
to safely extend operating system functionality with third-
party extensions [4, 16]. The SPIN extensible kernel [4]
guarantees safe execution of extension code by requiring
that the kernel and all extensions be written in a type-safe
language (Modula-3). In contrast, the TwinDrivers approach
does not requires extensions to be written in any particular
language, and works with existing compiled driver binaries.
The VINO extensible kernel [16] uses software fault isola-
tion [19] as its safety mechanism. It does not require a trans-
lation mechanism such as SVM, because the extension ex-
ecutes in the same address space as the kernel. In contrast,
TwinDrivers uses SVM to implement both a protection and
a translation mechanism, and this is required because the de-
vice driver data is located in an address space that is different
from the hypervisor address space.

We borrow from the Microdrivers project [8] the idea of
running performance-critical parts of the driver in the ker-
nel/hypervisor and other parts in user-space processes or
in a virtual machine. Many differences, however, exist be-
tween the two approaches. First, our hypervisor instance
cannot corrupt the hypervisor data structures, while the part
of the Microdrivers that runs in the kernel has the potential
of crashing the kernel. Methods like those used in SFI [19]
or Nooks [17] have to be used to reduce this vulnerability,
potentially leading to extra performance overhead. Second,
the Microdrivers approach requires manual annotations for
all kernel and driver data structures that can be shared be-
tween the user-space and kernel-space driver. These anno-
tations are necessary because Microdrivers use explicit data
marshaling to keep the (separate) data structures of the ker-
nel and user driver consistent with each other. In contrast,we
use a single copy of all data structures mapped at different
virtual addresses in the hypervisor and the VM, providing
us trivially with consistency and obviating the need for mar-
shaling and annotations. Thus, no driver-specific knowledge
or engineering effort is required in out approach; our frame-
work works with unmodified binary drivers. Third, unlike
Microdrivers we do notsplit the driver. Both instances of
our driver are complete, and we can choose what instance to
use for what aspects of the functionality of the driver. This

allows us, for instance, to leave all of the support function-
ality for the error handling code in the transmit and receive
parts of the network driver out of the hypervisor.

A number of recent efforts have focused on ways to im-
prove networking performance in virtual machines, using ei-
ther software [11, 13, 15], or hardware [21] mechanisms.
The software techniques proposed include using packet ag-
gregation techniques [11, 13], interrupt coalescing [15],etc,
to reduce per-packet processing overheads in the Xen net-
work I/O architecture. We believe these techniques are com-
plementary to our approach, and can be used in the Twin-
Drivers architecture to yield additional benefits. Hardware
techniques [21] involve using virtualization-aware network
interfaces which can be directly accessed from guest do-
mains, yielding better performance and scalability. Whilethe
hardware approach offers improved performance, it does so
at the cost of tying down the guest VM to a specific NIC,
and does not address the safety issues associated with run-
ning drivers in the hypervisor.

8. Conclusions
We presented TwinDrivers, a framework which allows us to
create safe and efficient hypervisor drivers from guest OS
drivers. The derived drivers run directly in the hypervisor
and execute the performance-critical operations of the de-
vice on behalf of guest domains, such as transmitting and
receiving packets for network cards.

TwinDrivers uses binary rewriting to ensure memory
safety and efficiency in the hypervisor driver. The Software
Virtual Memory mechanism allows the hypervisor driver
to efficiently access its data in the VM address space, while
protecting the hypervisor address space from memory access
from the driver. The upcall mechanism allows the hypervi-
sor to implement only a small set of performance-critical
support routines to run the driver, reducing the software en-
gineering costs.

We used TwinDrivers in the Xen virtual machine envi-
ronment to create a hypervisor driver which can be directly
invoked by Xen guest domains. Using the hypervisor driver
improves the Xen guest domain networking performance by
a factor of 2.4 for transmit workloads, and by a factor of 2.1
for receive workloads. The resulting transmit performance
is within 64% of native Linux performance, and the receive
performance is within 67% of Linux performance.
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