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Correspondence

Zero-Error List Capacities of
Discrete Memoryless Channels

İ. Emre Telatar,Member, IEEE

Abstract—We define zero-error list capacities for discrete memoryless
channels. We find lower bounds to, and a characterization of these
capacities. As is usual for such zero-error problems in information theory,
the characterization is not generally a single-letter one. Nonetheless, we
exhibit a class of channels for which a single letter characterization exists.
We also show how the computational cutoff rate relates to the capacities
we have defined.

Index Terms—Acyclic channels, cutoff rate, list decoding, zero-error
list capacity, zero undetected-error capacity.

I. INTRODUCTION

It is sometimes desirable that the decoder of a communication
system declare not just one, but several estimates of the transmitted
data [1]. For example, the encoder and the decoder may be the inner
code of a more complex transmission system, the structure of the
outer code can then be used to choose among the estimates the inner
code provides. Or, the data source that is driving the transmission
system may have redundancy (which for some reason, e.g., delay
considerations, has not been removed). This redundancy can be used
at a later stage to pick one of the estimates. A decoder that may
produce more than one estimate is called alist decoder. In this
correspondence, we will investigate the performance of list decoders
on discrete memoryless channels under azero-error constraint.

Suppose we are given a discrete memoryless channel (DMC) with
input alphabetX , output alphabetY, and transition probabilities
fP (yjx); y 2 Y; x 2 Xg. The extension of the transition probability
matrix to blocks ofn inputs and outputs is denoted byPn, and
by the memoryless property forx = (x1; � � � ; xn) 2 Xn and
y = (y1; � � � ; yn) 2 Yn

P
n

(yjx) =

n

i=1

P (yijxi):

A block code of lengthn for a DMC with input alphabetX is
a collection C � Xn of sequences of input letters of lengthn.
Elements ofC are called codewords. Azero-error list decoderfor
a block codeC is a decoder that assigns to every outputy 2 Yn

the set of codewordsL(y; C) � C that could have produced that
output with positive probability:L(y; C) = fc 2 C: Pn

(yjc) > 0g.
That is, the decoder decides on a list of codewords rather than a
single codeword. It is clear that if a codewordc is transmitted and
an outputy is received, the transmitted codewordc always appears
on the list (hence, the name “zero-error”), and that among the zero-
error schemes this one produces the shortest list for any outputy.
Let L(y; C) = jL(y; C)j be the size of the list. We assume that the
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codewords are equally probable, and define the�th moment of the
list size by

E[L
�
] =

1

jCj
c2C y2Y

P
n
(yjc)L(y; C)

�
:

For � > 0 defineM(n; P; �; �) as the maximum size of codes of
blocklengthn such that the�th moment of the list size is at most
1 + � when these codes are used over the DMCP . Now define the
zero-error�th-moment list capacityof a DMC P as

C0`(�; P ) = lim
�!0

lim sup
n!1

1

n
ln M(n; P; �; �): (1)

In the following, we will give lower bounds toC0`(�; P ) and
also a non-single-letter characterization of it. As is typical for
such “singular” problems in information theory, no single-letter
characterization ofC0`(�; P ) is known. Nonetheless, we will exhibit
a nontrivial class of channels for which a single-letter characterization
is possible. Furthermore, in the special case of�!1, a single-letter
characterization exists for all channels.

II. CHARACTERIZATION OF C0`

For C0`(�; P ) to be positive, there must be an output which is
not reachable from all inputs. Formally there must exist a triple
(x1; x2; y) 2 X � X � Y such that

P (yjx1) = 0 and P (yjx2) > 0:

If there is no such triple, whatever the output word, all input words
are possible and the decoder has to declare the entire codebookC.
Thus no rate larger than zero is possible. If, on the other hand, there
is such a triple thenC0` > 0.

Theorem 1: For � > 0

C0`(�; P ) � max
Q

min
V;W : W�P
WQ=V Q

I(Q; W ) + �
�1
D(V kP jQ) (2)

whereQ ranges over the probability distributions onX . Moreover, if
we compute the lower bound forPn, normalize, and pass to the limit

C0`(�; P ) = lim
n!1

1

n
max
Q

min
V;W :W�P
WQ=V Q

I(Q; W )

+ �
�1
D(V kP

n
jQ): (3)

The notationW � P meansW (yjx) = 0 wheneverP (yjx) = 0,
(WQ) denotes the output distribution of the channelW when the
input distribution isQ

D(V kP jQ) =

x; y

Q(x)V (yjx) ln
V (yjx)

P (yjx)

and

I(Q; W ) =

x; y

Q(x)W (yjx) ln
W (yjx)

(WQ)(y)

are the conditional divergence and the average mutual information,
respectively.

We will give a proof of this theorem after we discuss some of its
applications. Note thatC0`(�; P ) is nonincreasing in�. This is clear
both from the definition and the formulation in Theorem 1.
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Remark: In the minimization overV andW in (2), we may add
the constraintV � P to the constraintsW � P andWQ = V Q.
This is because ifV 6� P then there are only two possibilities:

1) for somex; y for which Q(x) > 0, V (yjx) > P (yjx) = 0,
and thusD(V kP jQ) = 1;

2) for all x; y, Q(x)P (yjx) = 0 implies Q(x)V (yjx) = 0. In
this case, we can replaceV with V 0 defined as

V
0

(yjx) =
V (yjx); if Q(x) > 0

P (yjx); else.

ThenV 0 � P andQ � V 0 = Q � V , thus the value of the
objective function and the other constraints are not changed.

The case of� = 1 is of particular interest, the corresponding
capacityC0`(1; P ) is called thezero-error average list size capacity.
Theorem 1 implies

C0`(1; P )� max
Q

min
V;W : W�P
WQ=V Q

I(Q; W )+D(V kP jQ)

and

C0`(1; P )= lim
n!1

1

n
max
Q

min
V;W :W�P
WQ=V Q

I(Q; W )+D(V kP
n
jQ)

recovering the results of [2].
Another special case is obtained by letting� become vanishingly

small. The constraint on the�th moment of the list size is then
equivalent to demanding thatPr [L > 1] gets arbitrarily small.
As � ! 0, we see that in the minimization (2)V needs to be
chosen so as to satisfyD(V kP jQ) = 0, equivalentlyV (yjx)Q(x) =

P (yjx)Q(x) for all x 2 X andy 2 Y, and we get

C0`(0
+
; P ) � max

Q
min

W :W�P
WQ=PQ

I(Q; W )

recovering the previously known lower bound forzero-undetected-
error capacityC0u [2]–[5].

As a further special case, consider� ! 1. Let us define

C0`(1; P )
�
= lim

�!1
C0`(�; P ): (4)

One might think thatC0`(1; P ) should equal the zero-error capacity
C0 as defined by Shannon [6] by arguing that demanding the1th
power of L(y; C) to be arbitrarily close to1 is equivalent to
demanding thatL(y; C) equal1 with probability 1. This is not the
case, because of the order we take limits: for any large but finite�,
we can make the�th moment ofL decay to1 without requiring that
the probability ofL > 1 equals zero. Surprisingly, one can give a
single-letter expression forC0`(1; P ).

Theorem 2:

C0`(1; P ) = min
W :W�P

C(W )

whereC(W ) = maxQ I(Q; W ) denotes the ordinary capacity of a
discrete memoryless channelW .

Proof: That

C0`(1; P ) � min
W :W�P

C(W )

follows from omitting the second term in (2) to obtain

C0`(1; P ) � max
Q

min
V;W : V Q=WQ
V�P;W�P

I(Q; W )

observing that choosingV =W enlarges the feasible set forW and
thus

C0`(1; P ) � max
Q

min
W :W�P

I(Q; W )

and finally noting thatI is concave in its first and convex in its second
argument and thatfW : W � Pg is a convex set thus concluding
that the maximization and minimization can be interchanged to give

C0`(1; P ) � min
W :W�P

C(W ):

We now need to show the converse inequality

C0`(1; P ) � min
W :W�P

C(W ):

To do this, letW � � P be such that

C(W
�
) = min

W :W�P
C(W ):

Then, by choosingV = W = W �n in (3)

C0`(�; P ) � lim
n!1

max
Q

n
�1
I(Q; W

�n
)

+ (n�)
�1
D(W

�n
kP

n
jQ)

Now observe that

n
�1
D(W

�n
kP

n
jQ) � max

x2X
y2Y

W
�
(yjx) ln (W

�
(yjx)=P (yjx))

<1

and thus

lim
�!1

C0`(�; P ) � lim
n!1

max
Q

n
�1
I(Q; W

�n
) = C(W

�
)

completing the proof.
Remark: For a discrete memoryless channelP with input alphabet

X and output alphabetY, for y 2 Y define

Sy = fx 2 X : P (yjx) > 0g

and let

�0 = min
Q

max
y2Y

x2S

Q(x):

It is known [6] that if the zero-error feedback capacityC0f(P ) of
the channelP is positive it equalsln (1=�0). In [7], it is proved that
ln (1=�0) = minW :W�P C(W ). Furthermore, in [8] it is proved
that if C0(L; P ) denotes the zero-error capacity of the channelP

for a fixed list sizeL, then

lim
L!1

C0(L; P ) = ln (1=�0)

(without the positivity condition). We thus see that

lim
�!1

C0`(�; P ) = lim
L!1

C0(L; P ) = C0f(P )

where the second equality holds wheneverC0f(P ) > 0.
We have thus seen thatC0`(1; P ) has a single-letter characteriza-

tion. A more surprising result is that for a special class of DMC’s one
can obtain a single-letter expression forC0`(�; P ) for any � > 0.

Theorem 3: Given a DMCP with input alphabetX and output
alphabetY, construct the bipartite graphG(P ) with verticesX [ Y

and edges

f(x; y): x 2 X ; y 2 Y; P (yjx) > 0g:

If G(P ) is acyclic then

C0`(�; P ) = E0(�; P )=�

where

E0(�; P ) = max
Q

� ln
y x

Q(x)P (yjx)
1=(1+�)

1+�

:

This result is similar to that of [9] where it is shown that for
the same class of channels the zero-undetected-error capacityC0u is
equal to the ordinary capacityC.
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Proof: We claim that for such channels

(V � P; W � P; V Q =WQ) =) Q� V = Q�W:

From this claim and the remark following Theorem 1 it follows that

max
Q

min
V;W : W�P
V Q=WQ

I(Q; W ) + �
�1
D(V kP jQ)

= max
Q

min
W :W�P

I(Q; W ) + �
�1
D(WkP jQ):

From [10, Prob. 23, pp. 192, 193] the expression on the right is equal
to E0(�; P )=�. Noting thatE0(�; P

n
) = nE0(�; P ) [11, Theorem

5], the proof follows.
It remains to prove the claim: GivenW � P andV � P with

WQ = V Q note that

x

Q(x)W (yjx) =
x

Q(x)V (yjx) (5)

and

y

Q(x)W (yjx) =
y

Q(x)V (yjx): (6)

Suppose that there existx0 2 X , y0 2 Y, such that

Qx Wy jx 6= Qx Vy jx :

Then, to satisfy (5) there must existx1 6= x0 such that

Qx Wy jx 6= Qx Vy jx :

To satisfy (6), there must existy1 6= y0 such that

Qx Wy jx 6= Qx Vy jx :

Continuing in this manner, we find a sequencex0; y0; x1; y1; � � �
such thatxn 6= xn+1, yn 6= yn+1, Qx Wy jx 6= Qx Vy jx , and
Qx Wy jx 6= Qx Vy jx . The inequalities imply that at
least one ofWy jx andVy jx and at least one ofWy jx and
Vy jx must be positive. SinceV � P andW � P , we conclude
thatP (ynjxn) > 0 andP (ynjxn+1) > 0. Furthermore,x0; x1; � � �
must be all distinct, otherwise, if sayxn = xn+m then the sequence
of nodesxn; yn; � � � ; xn+m would form a cycle inG(P ). SincejX j
is finite, this is a contradiction.

Example (Binary Erasure Channel):Consider a channel with a
binary inputX = f0; 1g and ternary outputY = f0; 1; Eg with
transition probabilities as below:

The channel is clearly acyclic, and thus

C0`(�; BEC) = E0(�; BEC)=� = ��
�1

ln (�+ (1� �)=2
�
):

It is instructive to compare the zero-error list capacityC0` to its
nonzero-error counterpart. To that end, forc 2 C, let Lc(y; c; C) be
the set of codewords inC whose likelihood is at least as great as that
of c, when y is received, i.e.,

Lc(y; c; C) = fk 2 C: P
n
(yjk) � P

n
(yjc)g:

Let Lc(y; c; C) = jLc(y; c; C)j be the number of codewords which
are as likely asc when y is received. We will assume that the
codewords are equally probable and we will define the�th moment
of the number of codewords as likely as the transmitted codeword by

E[L
�
c ] =

1

jCj
c2C y2Y

P
n
(yjc)Lc(y; c; C)

�
:

For � > 0, defineMc(n; P; �; �) as the maximum size of codes
with blocklengthn such thatE[L�c ] < 1 + �. Now let

C`(�; P ) = lim
�!0

lim sup
n!1

1

n
ln Mc(n; P; �; �):

An equivalent way of thinking aboutC` is as follows. Suppose we
have a decoder aided by a genie that answers the questions of the
form “is c the correct codeword?” LetG(c) be the random variable
whose value is the number of questions the decoder needs to ask the
genie until it is answered in the affirmative.C`(�; P ) is the highest
rate for which the�th moment ofG(c) can be made arbitrarily close
to 1 for all codewordsc. C`(1; P ) is known as thecutoff rateof the
channelP . It is clear thatC`(�; P ) � C0`(�; P ).

Theorem 4. ([12]–[17]): For � > 0

C`(�; P ) =E0(�)=�

= max
Q

min
W

I(Q; W ) + �
�1
D(WkP jQ): (7)

The formal similarity of (2) and (7) is remarkable.
Corollary 1: For the channels described in Theorem 3

C0`(�; P ) = C`(�; P ):

We will now prove Theorem 1.
Converse Part of Theorem 1:Suppose we are given a codeC �

Xn of rateR and that the�th moment ofL(y; C) is less than1 + �

jCj
�1

c2C y2Y

P
n
(yjc)L(y; C)

�
< 1 + �:

Now let D = fy 2 Yn: L(y; C) > 0g and choose a distribution
Q on Xn with

Q(x) =
1=jCj; if x 2 C
0; else.

Fix any two auxiliary channelsV � Pn and W � Pn with
WQ = V Q. Let Ŵ be the reverse channel

Ŵ (xjy) = Q(x)W (yjx)=(WQ)(y):

Then,

ln (1 + �)

> ln

x2X y2D

Q(x)P
n
(yjx)L(y; C)

�

= ln

x2X y2D

Q(x)V (yjx)
Pn

(yjx)L(y; C)�

V (yjx)

� �

x2X y2D

Q(x)V (yjx) ln
V (yjx)

Pn(yjx)L(y; C)�

= �D(V kP
n
jQ) + �

x2X y2D

Q(x)V (yjx) ln L(y; C)

= �D(V kP
n
jQ) + �

x2X y2D

Q(x)W (yjx) ln L(y; C)

� �D(V kP
n
jQ) + �(H(Q)� I(Q; W ))

= �D(V kP
n
jQ)� �I(Q; W ) + �nR

and thus we obtain
1

n
(�
�1
D(V kP

n
jQ) + I(Q; W )) � R�

1

n�
ln (1 + �)

proving the converse. Note that we have proved more than we
claimed. Namely, for any positive sequencef�ngn�1 with

lim sup
n!1

(1=n) ln (1 + �n) = 0
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and for any� > 0

lim sup
n!1

(1=n) ln M(n; P; �; �n) � C0`(�; P ):

In particular, for rates aboveC0`(�; P ) the �th moment of the list
size grows to infinity exponentially in the blocklengthn.

To prove the direct part of Theorem 1, we will need some
preliminaries. Forx = (x1; � � � ; xn) 2 X

n let T [x] denote its type;
T [x] is a probability distribution onX with

T [x](u) =
1

n
jfk: xk = ugj:

For an input distributionQ, let T n
Q � Xn denote the set of allx

with T [x] = Q. Forx 2 Xn andy 2 Yn let T [x; y] denote the joint
type ofx andy. T [x; y] is a probability distribution onX �Y with

T [x; y](u; v) =
1

n
jfk: xk = u; yk = vgj:

Note that ifT [x] = Q thenT [x; y] is necessarily of the form

T [x; y](u; v) = Q(u)V (vju)

for some conditional distributionV . If T [x] = Q we let

T [yjx] = V

to meanT [x; y] = Q � V , and say thaty has conditional typeV
with respect tox.

Lemma 1: Let V andW be conditional types. Let(C1; C2; Y )

be a random variable onXn�Xn�Yn with probability distribution

Pr (C1 = c1; C2 = c2; Y = y)

=
jT n
Q j
�2Pn

(yjc1); if c1 2 T n
Q and c2 2 T

n
Q

0; else.

Then

PrfT [Y jC1] = V g � exp [�nD(V kP jQ)] (8)

and

PrfT [Y jC2] = W j T [Y jC1] = V g

'
exp [�nI(Q; W )]; if WQ = V Q

0; else
(9)

where we use the notationa(n) ' b(n) to mean

lim
n!1

(1=n) ln a(n) = lim
n!1

(1=n) ln b(n)

that is, if two codewords are chosen independently and uniformly
from T n

Q and the first is transmitted, then the conditional type of the
received sequence with respect to the transmitted codeword equals
V with probability exp [�nD(V kP jQ)] and the conditional type of
this received sequence with respect to the other codeword equalsW

with conditional probabilityexp [�nI(Q; W )].
Proof: Let a 2 Xn andb 2 Yn be such thatT [x; y] = Q�V .

Then

P
n
(bja) =

n

k=1

P (bkjak) =
x; y

P (yjx)nQ(x)V (yjx)

=V
n
(bja) exp [�nD(V kP jQ)]:

Thus

PrfT [Y jC1] = V g

=

a; b: T [bja]=V

Prf(C1; Y ) = (a; b)g

=

a; b: T [bja]=V

PrfC1 = agPn
(bja)

�
a; b

Pr fC1 = agV n
(bja) exp [�nD(V kP jQ)]

= exp [�nD(V kP jQ)]

proving the first part of the lemma. To prove the second part,
first observe that sinceT [C1] = T [C2] = Q, T [y] = WQ, and
T [y] = V Q. Thus if V Q 6= WQ, then no triple(c1; c2; y) satisfies
T [yjc1] = V andT [yjc2] = W and hence

PrfT [Y jC2] = W jT [Y jC1] = V g = 0:

If, on the other hand,V Q = WQ, let for y 2 T n
V Q

A(y) = fx 2 T n
Q : T [yjx] = Wg:

Then

PrfT [Y jC2] = W jT [Y jC1] = V g = PrfC2 2 A(y)g

= jA(y)j=jT n
Qj:

The size ofA(y) given by

jA(y)j =
v

(nT [y](v))!

u

(nQ(u)W(vju))!

is independent ofy and

jA(y)j ' jT n
Q j exp [�nI(Q; W )]

proving the second part of the lemma.
Another result we will need is about the sums of independent0–1

random variables:
Lemma 2: Given � > 0, r > 0, � � 0. For n = 1; 2; � � � ; let

Sn = 1 +B(mn; pn)

whereB(m; p) is a binomial random variable with parametersm
and p, mn = dexp (nr)e, and pn = exp (�n(� � o(n))) with
lim
n!1

o(n) = 0. Then

E[S
�
n] �

1 + o0(n); if r < �

exp (n�(r � �+ o0(n))); if r � �

whereo0(n) satisfies lim
n!1

o0(n) = 0. These two inequalities can be

summarized as

E[S
�
n] � 1 + o

0
(n) + exp (n�(r � �+ o

0
(n))):

Proof: We will consider the two cases indicated in the lemma:

1) r < �: Consider the moment generating function ofSn

�S (�) = E[exp (�Sn)] = e
�
(1 + pn(e

� � 1))
m

:

Since lim mn = 1 and limmnpn = 0, the moment gener-
ating function ofSn tends to that of a random variable that
takes the value1 with probability 1. Thus we conclude that
[18, p. 408]

E[S
�
n] = 1 + o1(n):

with

lim
n!1

o1(n) = 0:

2) r � �: Let ~pn = pne
n� where�n is chosen such that

lim �n = 0 pn � ~pn � 1 and lim mn~pn =1:

Such a choice always exists; for example, one can take

�(n) =
0; if r > �

min fjo(n)j+ 1=
p
n; �� o(n)g; if r = �.

Let ~Sn = 1 + B(mn; ~pn). Clearly,

E[S
�
n] � E[ ~S

�
n] = (mn~pn)

�
E

~Sn

mn~pn

�

:
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As n gets large,mn~pn tends to1 and the moment generating
function of ~Sn=(mn~pn)

�(�) = e
�=(m ~p )

1 + pn e
�=(m ~p ) � 1

m

tends toe�, that of random variable that takes the value1 with
probability 1. We conclude that

E[S
�
n] �E[ ~S

�
n]

= (mn~pn)
�
(1 + o2(n))

� exp (n�(r � �+ o(n) + �(n))) exp (o2(n))

= exp (n�(r � �+ o3(n)));

where lim o2(n) = 0 and o3(n) = o2(n)=(n�)+o(n)+�(n)

also satisfieslim o3(n) = 0.

Letting o0(n) = max fo1(n); o3(n)g completes the proof.
Direct Part of Theorem 1:Consider an ensemble of codes of

blocklength n with M = dexp (nR)e codewords where the
codewordsCk are chosen independently and according to a uniform
distribution overT n

Q , the set ofQ-typical sequences of lengthn. We
will upper-boundE[L(y; C)�]:

Without loss of generality, suppose the first codeword is transmit-
ted. The probability space we have is then

Xn � � � � � Xn � Yn

with the probability measure

Pr f(C1; � � � ; CM ; Y ) = (c1; � � � ; cM ; y)g

=
jT n
Q j
�MPn(yjc1); if 8 k ck 2 T n

Q

0; else.

From Lemma 1, we know that

Pr [T [Y jC1] = V ] � exp [�nD(V kP jQ)]:

Conditional on T [Y jC1] = V , the probability p(V ) that
Pn(Y jC2) > 0 is given by (again by Lemma 1, by summing
over W and noting that there are polynomially many distinct
conditional types)

p(V ) = exp �n[ min
W : W�P
V Q=WQ

I(Q; W )� o(n)]

where limn!1 o(n) = 0. For i � 2, let Xi be the indicator
random variable of the eventfPn(Y jCi) > 0g. Conditional on
T [Y jC1] = V , X2; � � � ; XM are independent, identically distributed
0–1 random variables with meanp(V ). Furthermore, the list sizeL
is given by

L = 1 +

M

i=2

Xi:

Using Lemma 2 with

� = min
W : W�P
V Q=WQ

I(Q; W )

and r = R, we conclude that

E[L
� jT [Y jC1] =V ]

� 1+o
0

(n)+expf�n�( min
W :W�P
V Q=WQ

I(Q; W )�R�o0(n))g

where limn!1 o0(n) = 0. Removing the conditioning by multi-
plying by the probabilityPrfT [Y jC1] = V g and summing over

V (and noting again that there are only polynomially many distinct
conditional types) we see that

E[L
�
] � 1 + o

0

(n) + exp �n min
V

[D(V kP jQ)

+ �( min
W : W�P
V Q=WQ

I(Q; W )�R)� o
00

(n)]

= 1 + o
0

(n) + exp �n[ min
V;W : W�P
WQ=V Q

[D(V kP jQ)

+ �I(Q; W )]� �R� o
00

(n)] :

Now observe that for allR less than the right-hand side of (2)
the exponential term decays to zero with increasingn, proving (2).
Applying (2) to Pn instead ofP we complete the proof of the
theorem.

III. CONCLUSION

For zero-error list decoding we find achievable rates for which
the �th moment of the list size remains bounded. We give a single-
letter lower bound for the capacity and also a non-single-letter
characterization of it. We show that in the limit as� tends to
infinity, the capacity can be found by a single-letter expression. We
demonstrate that for acyclic channels the capacity has a single-letter
characterization. We also show how the computation cutoff rate is
related to the quantities investigated in this correspondence.
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A Non-Shannon-Type Conditional Inequality
of Information Quantities

Zhen Zhang,Senior Member, IEEE, and
Raymond W. Yeung,Senior Member, IEEE

Abstract—Given n discrete random variables
 = fX1; � � � ; Xng,
associated with any subset� of f1; 2; � � � ; ng, there is a joint entropy
H(X�) where X� = fXi: i 2 �g. This can be viewed as a function
defined on2f1; 2; ���; ng taking values in [0; +1). We call this function
the entropy function of 
. The nonnegativity of the joint entropies implies
that this function is nonnegative; the nonnegativity of the conditional
joint entropies implies that this function is nondecreasing; and the
nonnegativity of the conditional mutual informations implies that this
function is two-alternative. These properties are the so-called basic
information inequalities of Shannon’s information measures. An entropy
function can be viewed as a2n � 1-dimensional vector where the
coordinates are indexed by the subsets of the ground setf1; 2; � � � ; ng.
As introduced in [4], �n stands for the cone inIR2 �1 consisting of all
vectors which have all these properties. Let��

n
be the set of all2n � 1-

dimensional vectors which correspond to the entropy functions of some
sets ofn discrete random variables. A fundamental information-theoretic
problem is whether or not �

�

n
= �n: Here �

�

n
stands for the closure

of the set ��
n

. In this correspondence, we show that�
�

n
is a convex

cone,��
2
= �2, ��

3
6= �3, but ��

3
= �3. For four random variables,

we have discovered a conditional inequality which is not implied by the
basic information inequalities of the same set of random variables. This
lends an evidence to the plausible conjecture that�

�

n
6= �n for n > 3.

Index Terms—Entropy, I-Measure, information inequalities, mutual
information.

I. INTRODUCTION AND SUMMARY

Let 
n = fXi: i = 1; � � � ; ng be n jointly distributed discrete
random variables with finite entropies. The basic Shannon’s infor-
mation measures associated with these random variables include all
joint entropies, all conditional entropies, all mutual informations, and
all conditional mutual informations involving some of these random
variables. For any subset� of Nn = f1; � � � ; ng let

X� = fXi: i 2 �g: (1)

Let X�, where� is the empty set, be a random variable taking a
fixed value with probability1. Define

I(�; �j) = I(X�; X� jX): (2)
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We see that when� = �

I(�; �j) = H(X�jX) (3)

which is the conditional entropy; when = �

I(�; �j�) = I(X�; X�) (4)

which is the unconditional mutual information, and when� = � and
 = �

I(�; �j�) = H(X�) (5)

which is the joint entropy. This means that the functionI(�; �j)
covers all the basic Shannon’s information measures. In this corre-
spondence, all logarithms are in base2.

It is well known that Shannon’s information measures satisfy the
following inequalities.

Proposition 1: For any three subsets�, �, and of Nn, any set
of n jointly distributed random variablesXi, i = 1; � � � ; n; with
finite entropies

I(�; �j) � 0: (6)

These inequalities are called thebasic inequalitiesof Shannon’s
information measures [4].

Let H(�) = I(�; �j�) be the joint entropy function. For any
set ofn jointly distributed random variablesXi, i = 1; � � � ; n; the
associated entropiesH(�) can be viewed as a function defined on
2
N

H: 2
N

! [0; 1): (7)

The goal of this correspondence is to study this function for all
possible sets ofn random variables with finite entropies.

All basic Shannon’s information measures can be expressed as
linear functions of the joint entropies. Actually, we have

I(�; �j) = H(� [ ) +H(� [ )�H(� [ � [ )�H(): (8)

The basic inequalities can be interpreted as a set of inequalities for
the entropy function as follows.

Proposition 2: For any set ofn jointly distributed random vari-
ablesXi, i = 1; � � � ; n; with finite entropies, the entropy functionH
associated with these random variables has the following properties.

1) For any two subsets� and� of Nn

H(� [ �) +H(� \ �) � H(�) +H(�): (9)

Functions having this property are called two-alternative func-
tions.

2) � � � implies

H(�) � H(�): (10)

Functions satisfying this property are called monotone nonde-
creasing, and

H(�) = 0: (11)

It is easily seen from (8) that the first property corresponds to
the nonnegativity of all mutual informations and condition mutual
informations, and the second and third property correspond to the
nonnegativity of all entropies and conditional entropies.
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