View metadata, citation and similar papers at core.ac.uk brought to you by fCORE

provided by Infoscience - Ecole polytechnique fédérale de Lausanne

How to solve consensus
in the smallest window of synchrony

Dan Alistarh', Seth Gilbert!, Rachid Guerraoui!, and Corentin Travers?

! EPFL LPD, Bat INR 310, Station 14, 1015 Lausanne, Switzerland
2 Universidad Politecnica de Madrid, 28031 Madrid, Spain

Abstract. This paper addresses the following question: what is the
minimum-sized synchronous window needed to solve consensus in an oth-
erwise asynchronous system? In answer to this question, we present the
first optimally-resilient algorithm ASAP that solves consensus as soon
as possible in an eventually synchronous system, i.e., a system that from
some time GST onwards, delivers messages in a timely fashion. ASAP
guarantees that, in an execution with at most f failures, every process
decides no later than round GST + f + 2, which is optimal.

1 Introduction

The problem of consensus, first introduced in 1980 [22,25], is defined as follows:

Definition 1 (Consensus). Given n processes, at most t of which may crash:
each process p; begins with initial value v; and can decide on an output satisfying:
(1) Agreement: every process decides the same value; (2) Validity: if a process
decides v, then v is some process’s initial value; (3) Termination: every correct
process eventually decides.

In a seminal paper [10], Dwork et al. introduce the idea of eventual synchrony
in order to cirumvent the asynchronous impossibility of consensus [11]. They
study an asynchronous system in which, after some unknown time GST (global
stabilization time), messages are delivered within a bounded time. They show
that consensus can be solved in this case if and only if n > 2t 4 1.

Protocols designed for the eventually synchronous model are appealing as
they tolerate arbitrary periods of asynchrony: in this sense, they are “indul-
gent” [13]. Such protocols are particularly suited to existing distributed systems,
which are indeed synchronous most of the time, but might sometimes experience
periods of asynchrony. In practice, the system need not be permanently syn-
chronous after GST; it is necessary only that there be a sufficienly big window
of synchrony for consensus to complete.

This leads to the following natural question: For how long does the system
need to be synchronous to solve consensus? In other words, how fast can processes
decide in an eventually synchronous system after the network stabilizes? The
algorithm presented in [10] guarantees that every process decides within 4(n+1)
rounds of GST, i.e., the required window of synchrony is of length 4(n + 1). On

https://core.ac.uk/display/147942373?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

the other hand, in [7], Dutta and Guerraoui show that, in the worst case, at
least ¢t + 2 synchronous rounds of communication are needed. They also present
an algorithm for ¢ < n/3 that matches this lower bound, but they leave open
the question of whether there is an optimally resilient algorithm that decides in
any synchronous window of size ¢ + 2. In this paper, we once and for all resolve
this question by demonstrating a consensus algorithm that guarantees a decision
within ¢ + 2 rounds of GST.

Early decision. Even though, in the worst case, at least t + 2 synchronous
rounds are needed to solve consensus, in some executions it it is possible to
decide faster. Lamport and Fisher [21] showed that, in a synchronous system, if
an execution has at most f <t failures, it is possible to decide in f + 2 rounds.
Dolev, Reischuk, and Strong [5] showed that this bound was optimal. It has
remained an open question as to whether there is an optimally resilient early
deciding protocol for eventually synchronous systems.

Intuitively, eventual synchrony requires one additional round: ¢t 4+ 1 syn-
chronous rounds to compute the decision, and one additional round to determine
that the execution was, in fact, synchronous. Similarly, early-deciding algorithms
require one additional round: f+ 1 synchronous rounds to compute the decision,
and one round to determine that there were only f failures. Thus, the question
at hand is whether these rounds can be merged: can we verify in just one round
both that the execution was synchronous and that there were only f failures?
The algorithm presented in this paper achieves exactly that feat, terminating
within f 4 2 rounds after GST in an execution with at most f failures.

Results. In this paper, we present the ASAP algorithm which solves consensus
and ensures the following properties: (1) Optimal resilience: ASAP can tolerate
up to t < n/2 crash failures; notice that no consensus algorithm can tolerate
> n/2 failures in an eventually synchronous system. (2) Early deciding: in every
execution with at most f < ¢ failures, every process decides no later than round
GST + f + 2; again, notice that this is optimal.
Key ideas. The ASAP algorithm consists of three main mechanisms. The first
mechanism is responsible for computing a value that is safe to decide; specifically,
each process maintains an estimate, which is updated in every round based
on the messages it receives. The second mechanism is responsible for detecting
asynchrony; processes maintain (and share) a log of active and failed processes
which helps to discover when asynchronies have occurred. Finally, the third
mechanism is responsible for determining when it is safe to decide; specifically,
a process decides when it has: (1) observed < f failures for some f < t; (2)
observed at least f + 2 consecutive synchronous rounds; and (3) observed at
least two consecutive rounds in which no process appears to have failed. The
ASAP algorithm combines these mechanisms within a full information protocol,
meaning that in each round, each process sends its entire state to every other
process. (Optimizing the message complexity is out of the scope of this paper.)
Perhaps the key innovation in the ASAP algorithm is the mechanism by
which a process updates its estimate of the decision value. We begin with the
naive approach (as in [24]) in which each process adopts the minimum estimate

received in each round. In a synchronous execution with at most f < ¢ failures,
this guarantees that every process has the same estimate no later than round
f + 1. We augment this simple approach (generalizing on [7]) by prioritizing an
estimate from a process that is about to decide. Moreover, we break ties among
processes about to decide by giving priority to processes that have observed
more consecutive synchronous rounds. This helps to ensure that if a process
does, in fact, decide, then every process has adopted its estimate. This same
prioritization scheme, however, poses a problem when a process that has been
given priority (since it is about to decide), finally does not decide (due to a newly
detected asynchrony). To resolve this issue, we sometimes waive the priority on
an estimate: when a process p; receives an estimate from another process p;
that is about to decide, p; examines the messages it has received to determine
whether or not p; (or any process that has received p;’s message) can decide. If
p; can prove that process p; does not decide, then p; can treat the estimate from
process p; with normal priority. Otherwise, if p; cannot be certain as to whether
p; will or will not decide, p; makes the conservative decision and prioritizes the
estimate from p;. This notion of selective prioritization is at the heart of our
ASAP algorithm, and may be of use in other contexts, such as k-set agreement
and Byzantine agreement.

2 Related Work

Beginning with Dwork et al. [10], a variety of different models have been used
to express eventual synchrony, including failure detectors [3,4] and round-by-
round failure detectors (RRFD) [12]. These approaches have led to the concept
of indulgent algorithms [7, 13, 14]—algorithms that tolerate unreliable failure
detectors, expressed in the RRFD model. More recently, Keidar and Shraer [17,
18] introduced GIRAF, a framework that extends the assumptions of RRFD.

An important line of research has approached the question we address in this
paper in a different manner, asking how fast consensus can terminate if there are
no further failures after the system stabilizes. Keidar, Guerraoui and Dutta [8]
show that at least 3 rounds are needed after the system stabilizes and failures
cease, and they present a matching algorithm?®. Two further papers [17,18] also
investigate the performance of consensus algorithms under relaxed timeliness
and failure detector assumptions after stabilization.

Paxos-like algorithms that depend on a leader form another class of algo-
rithms in this line of research. Work in [19,23] and [1, 2] minimizes the number
of “stable” synchronous communication rounds after a correct leader is elected

3 It may appear surprising that we can decide within f-+2 rounds of GST, as [8] shows
that it is impossible to decide sooner than three rounds after failures cease. Indeed,
a typical adversarial scenario might involve failing one processor per round during
the interval [GST +1, GST + f], resulting in a decision within two rounds of failures
ceasing. However, this is not a contradiction as these are worst-case executions in
which our algorithm does not decide until 3 rounds after failure cease.

that are needed to reach agreement, matching lower bounds in [20] and [16], re-
spectively. A related algorithm is presented in [9], which guarantees termination
within 17 message delays after stabilization, for the case where no failures occur
after stabilization. In fact, it is conjectured there that a bound of O(f) rounds is
possible in the case where f failures occur after stabilization. Our paper resolves
this conjecture in the affirmative.

Note that our approach to network stabilization differs from both of these
previous approaches in that it focuses only on the behavior of the network,
independent of failures or leader election.

Finally, Guerraoui and Dutta [6,7] have investigated the possibility of early-
deciding consensus for eventual synchrony and have obtained a tight lower bound
of f + 2 rounds for executions with f <t failures, even if the system is initially
synchronous. They also present an algorithm for the special case where t < n/3
(not optimally resilient) that solves consensus in executions with at most f
failures within f + 2 rounds of GST, leaving open the question of an optimally
resilient consensus algorithm, which we address in this paper.

3 Model

We consider n deterministic processes I = {p1,...,pn}, of which up to t < n/2
may fail by crashing. The processes communicate via an eventually synchronous
message-passing network, modeled much as in [7,10, 17]: time is divided into
rounds; however, there is no assumption that every message broadcast in a round
is also delivered in that round. Instead, we assume only that if all non-failed
processes broadcast a message in some round 7, then each process receives at
least n — ¢ messages in that round 4. We assume that the network is eventually
synchronous: there is some round GST after which every message sent by a
non-failed process is delivered in the round in which it is sent.

4 The ASAP Consensus Algorithm

In this section, we present an optimally-resilient early-deciding consensus algo-
rithm for the eventually-synchronous model that tolerates ¢ < n/2 failures and
terminates within f + 2 rounds of GST, where f < t is the actual number of
failures. The pseudocode for ASAP can be found in Figures 1 and 2.

4.1 High-Level Overview

The ASAP algorithm builds on the idea of estimate flooding from the classi-
cal synchronous “FloodSet” algorithm (e.g., [24]) and on the idea of detecting
asynchronous behavior introduced by the “indulgent” A; o algorithm of [7].

4 A simple way to implement this would be for each node to delay its round r + 1
message until at least n — ¢ round r messages have been received, and ignoring
messages from previous rounds; however, this affects the early-deciding properties of
the algorithm, as a correct process can be delayed by asynchronous rounds in which
it does not receive n — t messages.

Each process maintains an estimate, along with other state, including: for
each round, a set of (seemingly) active processes and a set of (seemingly) failed
processes; a flag indicating whether the process is ready to decide; and an in-
dicator for each round as to whether it appears synchronous. At the beginning
of each round, processes send their entire state to every other process; ASAP
is a full-information protocol. Processes then update their state and try to de-
cide, before continuing to the next round. We briefly discuss the three main
components of the algorithm:

Asynchrony Detection. Processes detect asynchrony by analyzing the mes-
sages received in preceeding rounds. Round r is marked as asynchronous by a
process p if p learns that a process ¢ is alive in a round 7’ > r, even though it be-
lieves ° ¢ to have failed in round 7. Notice that a process p may learn that process
q is still alive either directly—by receiving a message from ¢—or indirectly—by
receiving a message from a third process that believes ¢ to be alive. The same
holds for determining which processes have failed. Thus, a process merges its
view with the views of all processes from which it has received messages in a
round, maximizing the amount of information used for detecting asynchrony.

Decision. A process can decide only when it is certain that every other process
has adopted the same estimate. There are two steps associated with coming to
a decision. If a process has observed f failures, and the previous f + 1 rounds
are perceived as synchronous, then it sets a “ready to decide” flag to true. A
process can decide in the following round under the following circumstances: (i)
it has observed f failures; (ii) the last f + 2 rounds appear synchronous; and
(iii) there are no new failures observed in the last two rounds. Once a process
decides, it continues to participate, informing other processes of the decision.

Updating the Estimate. The procedure for updating the estimate is the key
to the algorithm. Consider first the simple rule used by the classic synchronous
consensus protocol, where each process adopts the minimum estimate received in
every round. This fails in the context of eventual synchrony since a “slow” process
may maintain the minimum estimate even though, due to network delays, it is
unable to send or receive messages; this slow process can disrupt later decisions
and even cause a decision that violates safety. A natural improvement, which
generalizes the approach used in [7], is to prioritize the estimate of a process
that is about to decide. Notice that if a process is about to decide, then it
believes that it has seen at least one failure-free synchronous round, and hence
its estimate should be the minimum estimate in the system. However, this too
fails, as there are situations where a process has a synchronous view of f + 1
rounds with f failures without necessarily holding the smallest estimate in the
system. Thus, we award higher priority to messages from processes that are
ready to decide, but allow processes to de-prioritize such estimates if they can
prove that no process decides after receiving that estimate in the current round.

It remains to describe how a process p can prove that no process decides
upon receiving ¢’s message. Consider some process s that decides upon receiving

5 Note that, throughout this paper, we use terms like “knowledge” and “belief” in
their colloquial sense, not in the knowledge-theoretical sense of [15].

1 procedure propose(v;);
2 begin
3 est; «— v;; r; — 1; msgSet; «— 0; sFlag; «— false
4 Active; <« []; Failed; < []; AsynchRound; «— []
5 while true do
6 send(est;, vy, sFlag;, Active;, Failed;, AsynchRound;, decide;) to all
7 wait until received messages for round r;
8 msgSet;[r;] < messages that p; receives in round r;
9 Active;[r;] < processes from which p; gets messages in round r;
10 Failed;[r;] < II \ Active;[r;]
11 f «— |Failed;[r;]|
12 updateState() /* Update the state of p; based on messages received */
13 if (checkDecisionCondition() = false) then
14 est; « getEstimate()
15 if (sCount; > f+ 1) then sFlag; = true
16 else sFlag; = false
17 end
18 r; —1r; +1
19 end
20 end

Fig.1. The ASAP algorithm, at process p;.

q’s message. If p can identify a process that is believed by ¢ to be alive and which
does not support the decision being announced by ¢, then p can be certain that s
will not decide: either s receives a message from the non-supporting process and
cannot decide, or s does not receive its message and thus observes a new failure,
which prevents s from deciding. Thus, a sufficient condition for discarding ¢’s flag
is the existence of a third process that: (i) ¢ considers to be alive in the previous
round, and (ii) receives a set of messages other than ¢’s in r — 1 (Proposition 9).
Although this condition does not ensure that p discards all flags that do not lead
to decision, it is enough for ASAP to guarantee agreement.

4.2 Detailed Description

We now describe the pseudocode in Figures 1 and 2. When consensus is initiated,
each process invokes procedure propose() (see Figure 1) with its initial value. A
decision is reached at process p; when decide; is first set to true; the decision is
stored in est;. (For simplicity, the algorithm does not terminate after a decision;
in reality, only one further round is needed.)

State Variables. A process p; maintains the following state variables: (a) r; is
the current round number, initially 1. (b) est; is p;’s estimate at the end of round
;. (c) Active;[] is an array of sets of processes. For each round ' < r;, Active;[r']
contains the processes that p; believes to have sent at least one message in round
r’. (d) Failed;[] is an array of sets of processes. For each round r' < r;, Failed;[r']
contains the processes that p; believes to have failed in round 7. (e) msgSet; is
the set of messages that p; receives in round r;. (f) AsynchRound,[] is an array
of flags (booleans). For each round r’ < r;, AsynchRound,[r'] = true means that

r’ is seen as asynchronous in p;’s view at round r;. (g) sCount; is an integer

denoting the number of consecutive synchronous rounds p; sees at the end of r;.
More precisely, if sCount; = x, then rounds in the interval [r; — z 4+ 1,r;] are
seen as synchronous by p; at the end of round r;. (h) sFlag, is a flag that is set
to true if p; is ready to decide in the next round. (i) decided; is a flag that is set
to true if process p; has decided.

Main algorithm. We now describe ASAP in more detail. We begin by outlining
the structure of each round (lines 5-18, Figure 1). Each round begins when p;
broadcasts its current estimate, together with its other state, to every process
(line 6); it then receives messages for round r; (line 7). Process p; stores these
messages in msgSet, (line 8), and updates Active;[r;] and Failed;[r;] (lines 9-11).

Next, p; calls the updateState() procedure (line 12), which merges the newly
received information into the current state. It also updates the designation of
which rounds appear synchronous. At this point, checkDecisionCondition is called
(line 13) to see if a decision is possible. If so, then the round is complete. Oth-
erwise, it continues to update the estimate (line 14), and to update its sFlag;
(line 15-16). Finally, process p; updates the round counter (line 18), and pro-
ceeds to the next round.

Procedure updateState(). The goal of the updateState() procedure is to
merge the information received during the round into the existing Active and
Failed sets, as well as updating the AsynchRound flag for each round. More
specifically, for every message received by process p; from some process p;, for
every round 7’ < 7;: process p; merges the received set msg ;. Active;[r'] with its
current set Active;[r']. The same procedure is carried out for the Failed sets.
(See lines 3-8 of updateState(), Figure 2).

The second part of the updateState procedure updates the AsynchRound
flag for each round. For all rounds r’ < r;, p; recalculates AsynchRound;[r'],
marking whether 7/ is asynchronous in its view at round r; (lines 9-14). Notice
that a round r is seen as asynchronous if some process in Fuailed;[r] is discovered
to also exist in the set Active;[k] for some k > r, i.e., the process did not actually
fail in round r, as previously suspected. Finally, p; updates sCount;, with the
number of previous consecutive rounds that p; sees as synchronous (line 15).

Procedure checkDecisionCondition(). There are two conditions under which
p; decides. The first is straightforward: if p; receives a message from another

process that has already decided, then it too can decide (lines 3-6). Otherwise,

process p; decides at the end of round ry4 if: (i) p; has seen < f failures; (ii) p;

observes at least f + 2 consecutive synchronous rounds; and (iii) the last two

rounds appear failure-free, i.e. Active;[rq] = Active;[rq — 1] (line 8). Notice that

the size of Failed;[r;] captures the number of failures that p; has observed, and

sCount; captures the number of consecutive synchronous rounds.

Procedure getEstimate(). The getEstimate() procedure is the key to the
workings of the algorithm. The procedure begins by identifying a set of pro-
cesses that have raised their flags, i.e., that are “ready to decide” (lines 3—4).
The next portion of the procedure (lines 5-13) is dedicated to determining which
of these flagged messages to prioritize, and which of these flags should be “dis-
carded,” i.e., treated with normal priority. Fix some process p; whose message is

being considered. Process p; first calculates which processes have a view that is
incompatible with the view of p; (line 6); specifically, these processes received a
different set of messages in round r; — 1 from process p;. None of these processes
can support a decision by any process that receives a message from p;.

Next p; fixes f; to be the number of failures observed by process p; (line 7),
and determines that p;’s flag should be waived if the union of the “non-supporting”
processes and the failed processes is at least f; + 1 (line 8). In particular, this
implies that if a process ps receives p;’s message, then one of three events oc-
curs: (i) process ps receives a non-supporing message; (ii) process p, receives a
message from a process that was failed by p;; or (iii) process p, observes at least
f; + 1 failures. In all three cases, process p; cannot decide. Thus it is safe for p;
to waive p;’s flag and treat its message with normal priority (lines 9-11).

At the end of this discard process, p; chooses an estimate from among the
remaining flagged messages, if any such messages exist (lines 14-19). Specifically,
it chooses the minimum estimate from among the processes that have a maximal
sCount, i.e., it prioritizes processes that have seen more synchronous rounds.
Otherwise, if there are no remaining flagged messages, p; chooses the minimum
estimate that it has received (line 18).

5 Proof of Correctness

In this section, we prove that ASAP satisfies validity, termination and agree-
ment. Validity is easily verified (see, for example, Proposition 2), so we focus on
termination and agreement.

5.1 Definitions and Properties

We begin with a few definitions. Throughout, we denote the round in which
a variable is referenced by a superscript: for example, est] is the estimate of
p; at the end of round r. First, we say that a process perceives round r to be
asynchronous if it later receives a message from a process that it believes to have
failed in round r.

Definition 2 (Synchronous Rounds). Given p; € IT and rounds r,r,, we say
that round r is asynchronous in p;’s view at round r, if and only if there exists
round r' such that r < r' < r, and Active;*[r'| N Failed;"[r] # 0. Otherwise,
round r is synchronous in p;’s view at round r,,.

A process perceives a round r as failure-free if it sees the same set of processes
as alive in rounds r and r + 1.

Definition 3 (Failure-free Rounds). Given p; € II and rounds r,r,, we
say that round r < r, is failure-free in p;’s view at round r, if and only if
Active]” [r] = Active;*[r + 1].

Note that, by convention, if a process p,, completes round r but takes no steps
in round 7 + 1, p,, is considered to have failed in round r. We now state two

simple, yet fundamental properties of ASAP:

1 procedure updateState()
2 begin
3 for every msg; € msgSet;[r;] do
/* Merge newly received information */
4 for round r from 1 to r; — 1 do
5 Active;[r] « msg ;. Active;[r] U Active;[r]
6 Failed;[r] < msg;.Failed;[r] U Failed;[r]
7 end
8 end
9 for round r from 1 to r; — 1 do
/* Update AsynchRound flag */
10 AsynchRound;[r] — false
11 for round k from r + 1 to r; do
12 | if (Active;[k] N Failed;[r] # () then AsynchRound;[r] — true
13 end
14 end
15 sCount; «— max,(Vr; — £ < r’ < r;, AsynchRound;[r'] = true)
16 end
1 procedure checkDecisionCondition()
2 begin
3 if Imsg, € msgSet; s.t. msg,.decided, = true then
4 decide; +— true
5 est; «— msg,.estp
6 return decide;
7 end
/* If the previous f 4 2 rounds are synchronous with at most f failures */
8 if (sCount > |Failed;[r;]| + 2) and (Active;[r;] = Active;[r; — 1]) then
9 decide; «— true
10 return decide;
11 end
12 end
1 procedure getEstimate()
2 begin
3 flagProcSet; «— {p; € Active;[r;]| msg;.sFlag; = true}
4 flagMsgSet; — {msg; € msgSet; | msg;.sFlag; = true}
/* Try to waive the priority on flagged messages. */
5 for p; € flagProcSet; do
/* Find the set of processes that disagree with p;’s view. */
6 nonSupport! — {p € Active;[r;] : msgy.Activey[r; — 1] # msg;. Active;[r; — 1]}
7 fj < Imsg;.Failed[r; — 1]|
8 if (JnonSupport! U Failed;[r; — 1]| > f; + 1) then
9 msg;.sFlag;[r; — 1] < false
10 flagMsgSet; — flagMsgSet,; \ {msg;}
11 flagProcSet; — flagProcSet; \ {p;}
12 end
13 end
/* Adopt the min estimate of max priority; higher sCount has priority. */
14 if (flagMsgSet; # 0) then
/* The set of processes that have the highest sCount */
15 highPrSet «— {p; € ﬂanggSet,i\msgj.sCountj = maxpleflanggseti(sCountl)}
16 est < miny, chighPrset (est;)
17 else
18 est «— minpj emsgSet; (€st;)
19 end
20 return est
21 end

Fig.2. ASAP procedures.

Proposition 1 (Uniformity). If processes p; and p; receive the same set of
messages in round r, then they adopt the same estimate at the end of round r.

Proposition 2 (Estimate Validity). If all processes alive at the beginning of
round r have estimate v, then all processes alive at the beginning of round r + 1
will have estimate v.

These properties imply that if the system remains in a bivalent state (in the sense
of [11]), then a failure or asynchrony has to have occured in that round. Propo-
sition 7 combines these properties with the asynchrony-detection mechanism to
show that processes with synchronous views and distinct estimates necessarily
see a failure for every round that they perceive as synchronous.

5.2 Termination

In this section, we show that every correct process decides by round GST + f+2,
as long as there are no more than f < ¢ failures. Recall that a process decides
when there are two consecutive rounds in which it perceives no failures. By the
pigeonhole principle, it is easy to see that there must be (at least) two failure-free
rounds during the interval [GST 4+ 1, GST + f + 2]; unfortunately, these rounds
need not be consecutive. Even so, we can show that at least one correct node
must perceive two consecutive rounds in this interval as failure-free.

We begin by fixing an execution a with at most f failures, and fixing GST
to be the round after which « is synchronous. We now identify two failure-free
rounds in the interval [GST+1, GST + f+2] such that in the intervening rounds,
there is precisely one failure per round.

Proposition 3. There exists a round ro > GST and a round ry > ro such that:
(a) r¢ < GST + f+2; (b) rounds ro and r¢ are both failure free; (c) for every
rire <71 <71y, there is exactly one process that fails in r; and (d) Vi > 0 such
that ro + i < r¢, there are no more than (ro +1i) — GST — 1 failures by the end
of round ro + 1.

The claim follows from a simple counting argument. Now, fix rounds rg and 7y
that satisfy Proposition 3. For every ¢ < £: denote by r; the round r¢+1; let ¢; be
the process that fails in round r;; let g = L. Let S; be the set of processes that
are not failed at the beginning of round r;. We now show that, for every round
r in the interval [rq,ry_1], if a process in S, receives a message from g, then it
decides at the end of round r. This implies that either every process decides by
the end of 7y, or, for all rounds r, no process in S, receives a message from g,.

Lemma 1. Assume rqg+ 1 < rp, and some process in Sy does not decide by the
end of rp. Then Vi :0 <i<4¥:

(i) For every process p € Sit1 \ {qi+1}, process p does not receive a message
from q; in round r;.

(ii) If process q;+1 # L receives a message from g; in round r;, then process g; 41
decides at the end of r;.

We can now complete the proof of termination:

Theorem 1 (Termination). Every correct process decides by the end of round
GST + f +2.

Proof (sketch). If ro+1 = ¢, then it is easy to see that every process decides by
the end of 7y, since there are two consecutive failure-free rounds. Otherwise, we
conclude by Lemma 1 that none of the processes in Sy receive a message from
qe—1 in round ry_1. Thus every process receives messages from Sp_1 \ {qe—1}
both in rounds ry_; and rp, which implies that they decide by the end of r,.

5.3 Agreement

In this section, we prove that no two processes decide on distinct values. Our
strategy is to show that once a process decides, all non-failed processes adopt
the decision value at the end of the decision round (Lemma 2). Thus, no decision
on another value is possible in subsequent rounds.

Synchronous Views. The key result in this section is Proposition 7, which
shows that in executions perceived as synchronous, there is at least one (per-
ceived) failure per round. The idea behind the first preliminary proposition is
that if an estimate is held by some process at round r, then there exists at least
one process which “carries” it for every previous round.

Proposition 4 (Carriers). Letr > 0 and p € II. If p has estimate v at the end
of round r, then for all rounds 0 < 1’ < r, there exists a process q¢" € Activey, [r']
such that est ./ [r' — 1] = v.

Next, we prove that processes with synchronous views see the same information,
with a delay of one round. This follows from the fact that processes communicate
with a majority in every round.

Proposition 5 (View Consistency). Given processes p; and p; that see rounds
ro+1,...,70 + €+ 1 as synchronous: Vr € [ro + 1,79 + 4], Active;""*'é‘|r1 [r+1] C
Active’?).

The next proposition shows that if a process observes two consecutive syn-
chronous rounds r and r + 1 with the same set of active processes S, then
all processes in S receive the same set of messages during round r.

Proposition 6. Let r,r. be two rounds such that r. > r. Let p be a process that
sees round r as synchronous from round r.. If Active,’[r] = Active,®[r +1], then
all processes in Activezc [r] receive the same set of messages in round r.

The next proposition is the culmination of this section, and shows that in periods
of perceived synchrony, the amount of asynchrony in the system is limited. It
captures the intuition that at least one process fails in each round in order to
maintain more than one estimate in the system. Recall, this is the key argument
for solving consensus in a synchronous environment.

Proposition 7. Given processes p;,p; that see roundsro+1,...,70 +¢+1 as
synchronous and adopt distinct estimates at the end of round ro+£€+1, then for
all v € [ro + 1,70 + £, | Active]> ™ r 4-1]| < |Active]> ™ [r]|.

Proof (sketch). We proceed by contradiction: assume there exists a round r €
[ro+ 1,79 4 /] such that Activel* ™ [r 4 1] = Active[* T [r]. This implies that
all processes in Active?“”“[r] received the same set of messages in round r by
Proposition 6. Proposition 1 then implies that all processes in Activef“““[r]
have fzdflpted the same estimate at the end of round r, that is, they have adopted
est;® .

Proposition 4 implies that there exists a process p € Active§°+e+1 [r+1] that

adopts estimate est?“““ at the end of r. By the above, this process is not in

Activef"““[r]. This, together with the fact that est;‘ﬁ'“'1 + est;°+e+1 implies
that p € Active;ﬁ”l[r + 1]\ Active[* T [r], which contradicts Proposition 5.

Decision Condition. In this section, we examine under which conditions a
process may decide, and under what conditions a process may not decide. These
propositions are critical to establishing the effectiveness of the estimate-priority
mechanism. The following proposition shows that every decision is “supported”
by a majority of processes with the same estimate. Furthermore, these processes
have a synchronous view of the previous rounds.

Proposition 8. Assume process pg decides on vgq at the end of ro+ f+2, seeing
f+2 synchronous rounds and f failures (line 10 of checkDecisionCondition). Let

S = .%1ctivefioﬂur2 [ro + f +2]. Then:

(i) For allp € S, Activelo ™+t rg + f +1] = S and estio T+ = vg.
(i) At the end of ro+ f +1, processes in S see rounds ro+1,r0+2,...,70+f+1
as synchronous rounds in which at most f failures occur.

The proposition follows from a careful examination of the decision condition.
Next, we analyze a sufficient condition to ensure that a process does not decide,
which is the basis for the flag-discard rule:

Proposition 9. Let p be a process with sFlag = true at the end of round r > 0.
If there exists a process q such that q € Activey[r] and Activey[r] # Activey[r],
then no process that receives p’s message in round r + 1 decides at the end of
round r + 1.

Notice that if a process receives a message from p and not from ¢, then it sees ¢
as failed; otherwise, if it receives a message from both, it sees a failure in r—1. In
neither case can the process decide. The last proposition is a technical result that
bounds a process’s estimate in rounds in which it receives a flagged estimate:

Proposition 10. Let r > 0 and p € II. Let flagProcSet; be the set of pro-
cesses in Active;[r] with sFlag = true. Assume flagProcSet; is non-empty,
and let ¢ be a process such that, Vs € flagProcSet;,est;'_l <est'=! also q ¢
Failed; "[r—1] and p receives a message from q in round r. Then est), < est;~!.

Safety. We now prove the key lemma which shows that if some process decides,
then every other non-failed process has adopted the same estimate. The first
part of the proof uses Propositions 5 and 7 to determine precisely the set of
processes that remain active just prior to the decision, relying on the fact that
there must be one new failure per round. The remainder of the proof carefully
examines the behavior in the final two rounds prior to the decision; we show
that in these rounds, every process must adopt the same estimate. This analysis
depends critically on the mechanism for prioritizing estimates, and thus relies
on Proposition 10.

Lemma 2 (Safety). Let rq be the first round in which a decision occurs. If
process pg decides on value v in round rq, then every non-failed process adopts
v at the end of round rq.

Proof (sketch). Assume for the sake of contradiction that there exists a process
g such that esty? = u # v. Fix f to be the number of failures observed by process
pa and fix round 79 > 0 such that rq = rg + f 4+ 2. The case where f € {0,1}
needs to be handled separately; in the following, we assume that f > 1.

Since pg decides at the end of ro+ f+2, Proposition 8 implies that there exists
a support set S of at least n— f processes such that py receives a message in round
ro + f + 2 from all processes in S, and Vp € S, Active;”fﬂ[ro +f4+1 =5
Furthermore, processes in S have sCount > f + 1 and est = v at the end of
ro + f 4+ 1. Since process g receives at least n — ¢ messages in round rg + f + 2,
it necessarily receives a message from a process in S. Denote this process by p;.
We make the following claim:

Claim. Process g receives a message from some process p; in round ro + f + 1
such that est; = u, p; ¢ S, sFlag; = true and sCount; > f + 1.

The claim follows from the observation that ¢ cannot discard p;’s flag (as per
Proposition 9), therefore there has to exist a process p; with estimate v and flag
set with priority at least as high as p;’s. Hence, at the end of round ro+ f +1 we
have two processes p; and p; that see rounds ro+1,...,70+ f +1 as synchronous
and adopt distinct estimates. This leads to the following claim:

Claim. For every process p € SU{p;}, Active;‘)"’f“[ro + f1=SU{p;}.

In particular, Proposition 7 implies that p; sees one failure per round, and hence
|Active§°+f+1[ro + f]l <n— f+1. Since Activel* ™ T rg + f +1] = S, Propo-
sition 5 implies that SU{p;} C Active;o+'f+1[r0 + f]. Since p; ¢ S, we conclude
that S U {p,;} = Active§°+f+l[ro + f]. A similar argument yields that, for all
p € S, Activey> ™+ rg + f] = S U {p;}.

In the remaining portion of the proof, we show that no process in SU {p;}
adopts estimate maz(u, v) at the end of ro+ f+1, which leads to a contradiction.
Let m := min(u,v) and M := max(u,v). Proposition 4 ensures that there exist
processes pp,, par € S U {p;} such that est’¢T/~1 = m and est?&ﬂf*l = M. Let
fi= \Failed§°+f+1[r0 + f + 1]|. We can then conclude:

Claim. There exists a set S’ of at least n — f; — 1 processes in S such that every
process in S'U {p;} receives messages from S’ in round 79 + f + 1 and processes
in S’ have est™+/ < min(u,v).

To see this, notice that process p; receives exactly n — f; messages in round
ro + f + 1; one of these messages must have been sent by p; itself, while the
remaining n — f; — 1 of these messages were sent by processes in S. We denote
these processes by S’. Notice that the processes in S’ are not considered failed
by other processes in S in round ry 4+ f 4 1 since they support pg’s decision in
round 7¢ + f 4 2. It follows that the processes in S’ have received messages from
every process in S U {p;} in round ro + f. With some careful analysis, we can
apply Proposition 10 to conclude that for all s € S’, est?™+/ < m, from which
the claim follows. Finally, we show that, because of S’, no process in S U {p,}
can adopt M at the end of ro + f + 1, which contradicts the existence of either
p; or p;, concluding the proof.

Claim. For every process p in SU{p;}, estrot/T1 <m.

This follows because every process p in S receives a message from a process s € S’
in round r¢ + f + 1, and no other process in S could have failed s in ry 4 f; thus
we can again apply Proposition 10 to conclude that est;ﬁf 1 <estlotf < m,
and the claim follows, which concludes the proof of Lemma 2.

We can now complete the proof of agreement:
Theorem 2 (Agreement). No two processes decide on different estimates.

Proof (sketch). Let rq be the first round in which a decision occurs. Since major-
ity support is needed for a decision (see Proposition 8), all processes deciding in
rq decide on the same value. Lemma 2 shows that all processes adopt the same
estimate at the end of r4, and by Proposition 2, no other value is later decided.

6 Conclusions and Future Work

We have demonstrated an optimally-resilient consensus protocol for the eventu-
ally synchronous model that decides as soon as possible, i.e., within f+ 2 rounds
of GST in every execution with at most f failures. It remains an interesting
question for future work as to whether these techniques can be extended to k-
set agreement and Byzantine agreement. In particular, it seems possible that
the mechanism for assigning priorities to estimates based on what a process can
prove about the system may be useful in both of these contexts. Indeed, there
may be interesting connections between this technique and the knowledge-based
approach (see, e.g., [15]).

References

1.

2.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.
25.

R. Boichat, P. Dutta, S. Frolund, and R. Guerraoui. Deconstructing paxos.
SIGACT News, 34(1):47-67, 2003.

R. Boichat, P. Dutta, S. Frolund, and R. Guerraoui. Reconstructing paxos.
SIGACT News, 34(2):42-57, 2003.

T. Chandra, V. Hadzilacos, and S. Toueg. The weakest failure detector for solving
consensus. J. ACM, 43(4):685-722, 1996.

T. Chandra and S. Toueg. Unreliable failure detectors for reliable distributed
systems. J. ACM, 43(2):225-267, 1996.

. D. Dolev, R. Reischuk, and H. R. Strong. Early stopping in byzantine agreement.

J. ACM, 37(4):720-741, 1990.

P. Dutta and R. Guerraoui. The inherent price of indulgence. In PODC, pages
88-97, 2002.

P. Dutta and R. Guerraoui. The inherent price of indulgence. Distributed Com-
puting, 18(1):85-98, 2005.

P. Dutta, R. Guerraoui, and Idit Keidar. The overhead of consensus failure recov-
ery. Distributed Computing, 19(5-6):373-386, 2007.

P. Dutta, R. Guerraoui, and L. Lamport. How fast can eventual synchrony lead
to consensus? In DSN, pages 22-27, 2005.

C. Dwork, N. Lynch, and L. Stockmeyer. Consensus in the presence of partial
synchrony. J. ACM, 35(2):288-323, 1988.

M. Fisher, N. Lynch, and M. Paterson. Impossibility of distributed consensus with
one faulty process. J. ACM, 32(2):374-382, 1985.

E. Gafni. Round-by-round fault detectors: Unifying synchrony and asynchrony
(extended abstract). In PODC, pages 143-152, 1998.

R. Guerraoui. Indulgent algorithms (preliminary version). In PODC, pages 289—
297, 2000.

R. Guerraoui and M. Raynal. The information structure of indulgent consensus.
IEEE Transactions on Computers, 53(4):453-466, 2004.

J. Y. Halpern and Y. Moses. Knowledge and common knowledge in a distributed
environment. J. ACM, 37(3):549-587, 1990.

I. Keidar and S. Rajsbaum. On the cost of fault-tolerant consensus when there are
no faults: preliminary version. SIGACT News, 32(2):45-63, 2001.

I. Keidar and A. Shraer. Timeliness, failure-detectors, and consensus performance.
In PODC, pages 169-178, 2006.

I. Keidar and A. Shraer. How to choose a timing model? In DSN, pages 389-398,
2007.

L. Lamport. Generalized consensus and paxos. Microsoft Research Technical Re-
port MSR-TR-2005-33, March 2005.

L. Lamport. Lower bounds for asynchronous consensus. Distributed Computing,
19(2):104-125, 2006.

L. Lamport and M. Fisher. Byzantine generals and transaction commit protocols.
Unpublished, April 1982.

L. Lamport, R. Shostak, and M. Pease. The byzantine generals problem. ACM
Trans. Program. Lang. Syst., 4(3):382-401, 1982.

Leslie Lamport. Fast paxos. Distributed Computing, 19(2):79-103, 2006.

N. Lynch. Distributed Algorithms. Morgan Kaufman, 1996.

M. Pease, R. Shostak, and L. Lamport. Reaching agreement in the presence of
faults. J. ACM, 27(2):228-234, 1980.

