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Abstract. In the set-agreement problem, n processes seek to agree on at
most n−1 different values. This paper determines the weakest failure de-
tector to solve this problem in a message-passing system where processes
may fail by crashing. This failure detector, called the Loneliness detector
and denoted L, outputs one of two values, “true” or “false” such that:
(1) there is at least one process where L outputs always “false”, and (2)
if only one process is correct, L eventually outputs “true” at this process.
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1 Introduction

The set-agreement problem [1] has no deterministic solution in asynchronous
systems where any number of processes can fail by crashing [2,3,4] and the re-
maining processes have no information about such failures. With failure detection
however, the impossibility can be circumvented [5]. For instance, with a perfect
failure detection mechanism that accurately detects crashes, it is trivial for the
processes to reach agreement. A natural question is what failure information is
necessary and sufficient to reach agreement. In the parlance of [6], this question
can be precisely formulated using the notion of “weakest failure detector”: In
short, the weakest failure detector to solve a problem is one that (a) indeed
solves the problem and (b) can be emulated by any failure detector that solves
the problem. Property (a) conveys the sufficiency of the failure detector whereas
property (b) conveys its necessity.

Several papers have been devoted to determine the weakest failure detector
to solve the set-agreement problem in a distributed system where any number of
processes can fail by crashing [7,8,9,10]. In particular, Zieliński proved recently
that anti-Ω – a failure detector that outputs id’s of processes such that the id of
at least one correct process is output only finitely many times – is the weakest
failure detector for set-agreement in a shared memory system [10]. The proof of
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the result is particularly involved and builds on earlier proof techniques from [6]
and [8].

In the context of message passing however, the weakest failure detector for
set-agreement has not been determined yet and one might have hoped to derive it
somehow from anti-Ω. Indeed, Zieliński conjectured in [11] that failure detector
Σ [12] – the weakest failure detector to build a shared memory in a message pass-
ing system – is both sufficient and necessary to implement set-agreement. This
would mean that some common denominator of anti-Ω and Σ would constitute
the weakest failure detector for set-agreement in message passing. Nevertheless,
Delporte et al. recently disproved Zieliński’s conjecture by showing that Σ is
not necessary, albeit sufficient [13]. The question of the weakest failure detector
to solve set-agreement in a message passing system remained thus open. The
contribution of this paper is precisely to close the question.

We introduce the Loneliness failure detector, denoted L, and we show that
it is the weakest failure detector for set-agreement in a message passing system.
Failure detector L outputs, whenever queried by a process, one of two values:
“true” or “false” such that the following two properties are satisfied: (1) there
is at least one process where the output is always “false”, and (2) if only one
process is correct (does not crash), then the output at this process is eventually
“true” forever. We first give an algorithm that solves set-agreement using L. The
particularity of the algorithm is its non-symmetric nature as it heavily exploits
the total order on the identity of the processes. We then assume that there is
an algorithm A that solves set-agreement (with some failure detector), and we
show how to “extract” from A the output of L. Our approach here is, on the
one hand, different from the approach of [6] where each process locally simulates
several runs of A and, on the other hand, different from the approach of [10],
as well as [8], where the extraction relies on the asynchronous impossibility of a
problem. In our case, the processes execute one instance of A, without knowing
the automaton of A performed at each process. The processes obtain the output
of L by “simply” intercepting communication between these automata. This
leads to a very simple, almost trivial, extraction algorithm.

Our proof that L is the weakest in message passing is thus remarkably simple
and this might be surprising compared to the rather involved proof of Zieliński
[10] in shared memory systems. Somehow, we show that – contrary to a wide
belief – results in message passing systems are sometimes easier to prove than
in shared memory.

We prove that – not surprisingly – failure detector L is strictly stronger than
anti-Ω, the weakest in a shared memory system. (Indeed a message passing sys-
tem can be emulated by a shared memory system but the converse requires ad-
ditional assumptions, e.g., a majority of correct processes [14].) Furthermore, we
show that no failure detector that may behave arbitrarily for any finite amount
of time is stronger than L (but nevertheless such failure detectors can be in-
comparable with L). We also show that for n > 2, Σ is strictly stronger than
L, confirming the result of [13] that emulating a shared memory requires more
information about failures than reaching agreement (Figure 1).
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Fig. 1. Relations between failure detector classes

The rest of the paper is organized as follows. We first define our model in
Section 2. Then we show that L is sufficient for set-agreement in Section 3 and
that L is also necessary in Section 4. In Section 5, we show that L is strictly
stronger than anti-Ω. And finally, in Section 6 we show that for n > 2, Σ is
strictly stronger than L.

2 Model and Definitions

2.1 Processes and Failure Detectors

The system model we consider is that of Chandra et al. [6] which we briefly recall
here. We consider a set Π = {p1, . . . , pn} of n ≥ 2 processes which communi-
cate by message passing over a fully connected network with reliable links. Any
number of processes may fail by prematurely halting, i.e. they crash. However,
no process can otherwise deviate from its protocol. We assume a global clock T
that is used to depict steps in an execution; the clock is not accessible to the
processes.

A failure pattern is a function from time T to 2Π that specifies for every time
t which processes have crashed by time t. A process pi that does not crash in a
failure pattern F is said to be correct in F (pi ∈ correct(F)). A process is said
to be alive until it crashes. Processes that are not correct are called faulty. An
environment E is a set of possible failure patterns. In this paper, we consider
every environment, i.e. any number of processes may crash and in particular any
process may crash at any time.

A failure detector D is a distributed oracle that provides the processes with
information about failures. A failure detector is defined by its histories. Given
a failure pattern F ∈ E , a history H of a failure detector D is a function from
Π ×T to RD, the failure detector range of D, i.e. the set of possible outputs of
D: D(F) denotes a set of failure detector histories that are allowed for F .

An algorithm A is modeled as a set of n deterministic automata, one for every
process in the system. A run of A proceeds in steps and at every time t at most
one process executes a step. We assume only fair runs, i.e. every correct process
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executes infinitely many steps. A step consists of receiving a (possibly empty)
message, reading a value of a failure detector, changing the state accordingly,
and outputting a (possibly empty) message.

A failure detector is said to solve a problem in a given environment E if there
is an algorithm that solves the problem using message passing and that failure
detector (and no other information about failures) for every failure pattern in E .
A failure detector D is said to be stronger than another failure detector D′ in an
environment E if there is an algorithm that uses only D to emulate the output
of D′ for every failure pattern in E . Similarly, detector D is weaker than D′ in E
if D′ is stronger than D in E . Failure detector D is said to be strictly stronger
than failure detector D′ in environment E if D is stronger than D′ in E but not
vice versa.

The weakest failure detector [6] D to solve a given problem in an environment
E is a failure detector that is sufficient to solve the problem in E and that is also
necessary to solve the problem, i.e. D is weaker than any failure detector that
solves the problem in E .

We define D to be (strictly) stronger (resp. weaker) than D′ if D is (strictly)
stronger (resp. weaker) in every environment. Similarly, a weakest failure detec-
tor for a problem is defined to be a weakest failure detector for this problem for
every environment.

2.2 Set-Agreement

In the set-agreement problem, every process pi starts with some proposal value vi

and tries to decide a value such that the following three properties are satisfied:

Agreement: At most n − 1 different values are decided.
Validity: Every value that has been decided must have been a proposal value

of some process.
Termination: Eventually, every correct process decides a value.

2.3 Failure Detector L
We now define the Loneliness detector L. This failure detector outputs one of
two values “true” and “false”. The intuition behind the semantics of this failure
detector is that if the output at some correct process is “false” forever, then
there is another alive process in the system. By convention, we assume that if a
process is crashed at time t, then its failure detector output at time t is “false”.
The following properties are satisfied:

– at least one process never outputs “true”, and
– if only one process is correct, then it eventually outputs “true” forever.

More formally:

Definition 1. The range of L is {“true”, “false”}. For every environment E,
for every failure pattern F ∈ E, and every history H ∈ L(F):

∃pi ∈ Π, ∀t, H(pi, t) �= “true” (1)
∧ ∀pi ∈ Π, correct(F) = {pi} ⇒ ∃t, ∀t′ ≥ t, H(pi, t

′) = “true” (2)
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3 The Sufficient Part

To show that failure detector L is sufficient to solve set-agreement in our model,
we give an algorithm that implements set-agreement with L. The algorithm is
depicted in Figure 2.

To ensure that at most n−1 proposal values are decided, every process tries to
agree with another process on one value. To achieve this, initially some processes
send their values. To prevent a circular value exchange, i.e. a situation where the
proposal values are simply permuted, the values are only sent to processes with
a higher id. This means, that process p1 sends its value to everybody (except
itself), process pi to all processes from pi+1 to pn, and process pn to nobody.

If some process receives1 one of these values, it sends this value to all other
processes and decides. As long as there is another correct process, every correct
process decides either through one of the messages that were initially sent or, if
it does not receive such a message (e.g., because it has a lower id than the other
correct processes), it decides through a message of an already decided process.
Note that it may be possible that a process receives its initial value back in
such a message. In this case, the sender of this message does not decide its own
proposal value.

To deal with crashes, we only execute these steps if the output of the failure
detector is “false”. But in the case of only one correct process in the system,
we do not want to wait for messages of other processes forever. Therefore, if the
output of the failure detector changes to “true” – and by its property (2) in the
case of only one correct process it will eventually do so – this process simply
decides its own proposal value. We can do this without violating agreement,
because by property (1) there will always be one process that does not decide

Algorithm for process pi:

1 to propose(v):

2 initially:
3 send 〈v〉 to all pj with j > i;

4 on receive 〈v′〉 do:
5 send 〈v′〉 to all;
6 decide v′; halt; (∗ decision D1 ∗)
7 on L = “true” do:
8 send 〈v〉 to all;
9 decide v; halt; (∗ decision D2 ∗)

Fig. 2. Implementing set-agreement with L

1 For simplicity of the presentation, we assume that the code Lines 5-6 and Lines 8-9
are executed atomically.
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due to a “true” output, and as we have argued before, processes that decide due
to a message exchange eliminate at least one value.

Proposition 1. The algorithm in Figure 2 implements set-agreement in every
environment E.

Proof. We have to prove the three properties of set-agreement, namely agree-
ment, validity, and termination.

Agreement. We start with the agreement property of set-agreement. We assume
a run where all processes decide and every process pi has a distinct initial value
vi. Without this assumption, agreement is trivially met.

By Property (1) of L, not all processes can have decided by decision D2.
Therefore, in such a run at least one process decides by D1. This means that
it is sufficient to show that if at least one process decides by D1, then at most
n − 1 values are decided.

Among the processes that decide by D1, consider pi as the process with the
highest id and let v′ be the decided value. We distinguish between the two cases
where pi decides its initial value (v′ = vi), and where it does not.

Case 1: The only possibility that the decided value v′ is equal to pi’s value vi

is that a process pj with j > i has received pi’s initial message and decided
vi. Therefore, pi and pj decide the same value and at most n− 1 values are
decided.

Case 2: If v′ is not equal to vi and i = n, then vn will never be decided because
process pn does not send its value to anybody. If i < n, then the only
possibility that vi is decided is if a process pk with k > i has received vi

from pi and decided by D1. But as pi is the process with the highest id that
decides by D1, such a k does not exist. And therefore, vi is never decided.

Validity. The validity property of set-agreement is trivially satisfied, since only
proposal values are sent.

Termination. If some correct process decides by D1 or D2, then it sends its
decided value to all processes and all correct processes that have not yet decided
eventually receive this value and also decide.

Therefore, it remains to show that in every run some correct process decides
by D1 or D2. We distinguish two cases: the case when there exist at least two
correct processes in a run with a failure pattern F ∈ E , and the case with only
one correct process.

Case 1: If there are at least two correct processes and none decides by D2,
then eventually, the one with the highest id receives the initial message of
the other ones and decides by D1.

Case 2: If there is only one correct process and it does not decide by D1, then
by property (2) of L, this process eventually decides by decision D2. 	
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4 The Necessary Part

Following the approach of Chandra et al. [6], we show that failure detector L is
necessary to solve set-agreement in our model by providing an algorithm that
emulates the output of L given any algorithm A and failure detector D, such that
A using D solves set-agreement. Figure 3 presents such an emulation algorithm.
The output of our emulation of L is provided through a special variable output.

The idea for the emulation of L is that if all messages that are sent by algo-
rithm A get delayed for a very long time, the safety properties of set-agreement
still have to hold, while for the case that only one process is correct, even the
liveness property has to hold, i.e. the algorithm has to terminate. Therefore,
every process executes A with D, omits to send any messages that are generated
by algorithm A to other processes, and outputs “false” until A terminates.

Property (1) of L is thus always fulfilled, because otherwise the executions
at all processes would have terminated without ever receiving a message and
therefore agreement could not have been guaranteed. But nevertheless, if there
is only one correct process pi, the algorithm A executed at pi has to terminate
and property (2) of L is also guaranteed.

Interestingly, this technique works for every non-trivial problem in which com-
munication between processes is necessary, i.e. where not all processes may termi-
nate without receiving messages from other processes. Therefore, L is necessary
for all of these problems.

Proposition 2. The algorithm in Figure 3 implements L in every environment
E.

Proof. Assume there exists a run r, where the algorithm in Figure 3 does not
fulfill property (1) of L with a failure pattern F ∈ E . This means, that in run r,
for every process, there exists a time when output = “true”, i.e. the execution of
algorithm A has terminated at all processes without receiving any message from
other processes at all.

Let t be the time at which A has terminated at all processes in run r. Then,
since the system is totally asynchronous, it is possible to construct a valid run
r′ of A with the same failure pattern F , where all messages to other processes
get delayed to a time after t, and all processes have terminated A at time t.

Algorithm for process pi:

1 output := “false”;
2 execute A with value i and detector D, but omit sending messages to others;
3 if A has terminated, then output := “true”;

Fig. 3. Implementing L with an algorithm A and a failure detector D that solve set-
agreement



116 C. Delporte-Gallet et al.

Note that a failure detector is solely specified as a function over a failure
pattern in an execution, i.e. it is not allowed to output any information about
the state of other processes or to give hints about the proposal values.

Therefore, to fulfill the validity property of set-agreement, the decision value
at every process pi can only be its proposal value i. A contradiction with the
agreement property of set-agreement. Therefore, property (1) of L is always
satisfied.

If for some run r of our algorithm, for some process pi, F is the failure pattern
in run r and correct(F) = {pi}, then it is possible to construct a run rA of A in
which no faulty process is able to send a message (because the system is totally
asynchronous) and pi takes exactly the same steps as in r. By the termination
property of set-agreement, eventually algorithm A has to terminate in run rA at
pi. Since r and rA are indistinguishable for pi, it terminates the execution of A also
in r and the output changes to “true”. Thus, property (2) is also satisfied. 	


Theorem 1. L is the weakest failure detector for set-agreement in a message
passing system.

Proof. We have shown in Proposition 1 that L is sufficient and in Proposition 2
that it is necessary for set-agreement in all environments. 	


5 Comparing L and Anti-Ω

To keep our proofs as generic as possible, we first introduce the notion of eventual
failure detectors. We say that a failure detector is an eventual failure detector if
the detector can behave arbitrarily for any finite amount of time. A more formal
definition can be found in [15] where such failure detectors are called strongly
unreliable failure detectors.

Zieliński shows in [16] that every eventual failure detector (that satisfies some
other assumptions that are irrelevant here) is stronger than anti-Ω, the weakest
failure detector for set-agreement in a shared memory [10]. Each query to the
anti-Ω detector returns a process id. The failure detector guarantees that there
is a correct process whose id will be returned only finitely many times. Clearly,
anti-Ω is an eventual failure detector and L is not. We show that L is strictly
stronger than anti-Ω. This means, that to implement set-agreement in message
passing there is a strictly stronger failure detector necessary than in shared
memory.

Lemma 1. L is stronger than anti-Ω.

Proof. An implementation of anti-Ω using L is given in Figure 4. The basic idea
is simple: Every process pi outputs the id j of a process pj such that j is the
lowest id of all processes from which pi has not yet heard that they have had
a “true” as failure detector output. For this, the processes remember the ids
of processes that have received a “true” from L in a set lonely. The output of
anti-Ω is emulated in a special variable output.
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Algorithm for process pi:

1 initially:
2 lonely := ∅;
3 output := {1};
4 on L = “true” do:
5 lonely := lonely ∪ {i};
6 send 〈lonely〉 to all;
7 output := min({1, . . . , n} \ lonely);

8 on receive 〈lonely′〉 do:
9 if lonely �= lonely′ then send 〈lonely ∪ lonely′〉 to all;
10 lonely := lonely ∪ lonely′;
11 output := min({1, . . . , n} \ lonely);

Fig. 4. Implementation of anti-Ω using L

We now show that this transformation indeed emulates anti-Ω. From property
1 of the definition of L, the output of at least one process is never a “true”.
Therefore, there is always at least one id that is output (i.e. it is never lonely =
{1, . . . , n}).

To prove that there is a correct process whose id is output only finitely often,
note that eventually the set lonely is the same at all correct processes because it
can only grow and will always be a subset of {1, . . . , n} (and every correct process
relays it after every change). Therefore, eventually all correct processes have the
same output. Now assume the id of every correct process is output infinitely often
at the processes. This implies that there is only one correct process, because all
processes always output the minimum of {1, . . . , n}\lonely which can only shrink
and therefore never oscillates between different process ids. But from property
2 of the definition of L, a single correct process eventually receives a “true” and
therefore belongs to its set lonely. A contradiction. 	


Lemma 2. No eventual failure detector is stronger than L.

Proof. Assume there exists an algorithm A that transforms an eventual failure
detector D to L. Then, assume for every 1 ≤ i ≤ n, a run ri of A with failure
pattern Fi and correct(Fi) = {pi} and where the faulty processes take no steps.
If A is correct, then eventually the output at process pi in run ri has to be
“true”, say at time ti. Similarly, assume a run r of A with a failure pattern
F with correct(F) = Π , but no process pi receives a message from any other
process before or at time ti and every pi is scheduled as in ri. Let the output
of D at every process pi before time ti be exactly as in run ri (this is possible,
since D may behave arbitrarily for any finite amount of time). Then, for every
process pi, run ri is indistinguishable from run r before time ti and every process
pi outputs “true” at time ti. But this contradicts property 1 of L. 	
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Theorem 2. L is strictly stronger than anti-Ω.

Proof. Follows directly from Lemma 1 and Lemma 2. 	


6 Comparing L and Σ

We now show that Σ, the weakest failure detector to emulate a shared memory
in message-passing systems [12] is strictly stronger than L. In a sense, this indi-
cates that emulating a shared memory in message passing is strictly harder than
solving set-agreement, confirming the result of [13]. By convention, we assume
that if a process is crashed at time t, then its failure detector output is Π at
time t. At each invocation, Σ outputs a list of trusted processes and it satisfies
two properties:

Intersection: Given any two lists of trusted processes, possibly at different
times and by different processes, at least one process belongs to both lists.

Completeness: Eventually no faulty process is ever trusted by any correct
process.

Lemma 3. Σ is stronger than L.

Proof. The reduction is simple: At the beginning, every process outputs “false”.
For every process pi, if the output of Σ is {pi}, output “true”.

Assume that for every process there is some time when the output of L is
“true”. Since this happens only if at every process pi, {pi} is output, the inter-
section property of Σ is clearly violated. Therefore, this will never happen and
property 1 of L is never violated.

From the completeness property follows that if a process pi is the only correct
process, the output will eventually be “true” (property 2 of L). 	


For the special case that the system consists only of two processes, the specifica-
tions of set-agreement and consensus are equivalent. Delporte-Gallet et al. show
in [17] that for this case Σ is the weakest failure detector for consensus. Together
with Theorem 1 this immediately implies that L and Σ are also equivalent for
this case. However, in the following lemma we show that for n > 2 this is not
the case.

Lemma 4. L is not stronger than Σ, if n > 2.

Proof. Assume there exists an algorithm A that transforms L into Σ. Let P =
P1, P2, P3 be any partitioning of Π . Then assume two runs r1 and r2 where the
processes in Pi are correct in run ri and all other processes are faulty from the
beginning, and the output of L at the processes in partition Pi is “true”. Since
A fulfills completeness, it eventually has to output in every run ri a subset of
Pi, say at time ti.

Now imagine a run r in which the processes in P1 and P2 are correct and
the output of L is “true”. Additionally, no message of a process from a different
partition is received in partition P1 and P2 before time t1 (respectively t2) and
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the messages between the processes in P1 and P2 are exactly scheduled as in
runs r1 and r2. The runs r1 and r2 are indistinguishable from run r before time
t1 (respectively t2). Therefore, the output at time ti will be a subset of Pi for
partition i = 1, 2. But this contradicts to the intersection property of Σ. So there
exists no such algorithm A. 	


Theorem 3. If n > 2, then Σ is strictly stronger than L.

Proof. Lemma 3 shows that Σ is stronger than L and Lemma 4 shows that it is
strictly stronger. 	


7 Summary

We have determined the weakest failure detector for set-agreement in a message-
passing system where processes may fail by crashing. The failure detector is
called L and it returns at every invocation “true” or “false”. It ensures that (1)
there is at least one process where the output is always “false”, and (2) if there
is only one correct process, then the output at this process is eventually “true”
forever.

Acknowledgments. We are grateful to Sam Toueg for helpful suggestions on the
sufficient part of our proof. Furthermore, we would like to thank the reviewers
for their helpful comments.
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