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A Local Nonlinear Model for the Approximation
and Identification of a Class of Systems

Heinz Koeppl

Abstract—Based on Volterra series the work presents a novel \Volterra series, Wiener series [1] have been shown to exibi
local nonlinear model of a certain class of linear-analyticsystems. plock cascade structure similar to that of the proposed inode
The special form of the expressions for the Laplace-domain 41 An important distinction though is that for the Wiener
Volterra kernels of such systems is exploited to obtain an . the di . lity of the i lved filter bank i
approximation structure that results in an appealingly simple senes the dimensionality ol the involved prefiiter bank 1S
feed-forward block structure. It comprises a composition ¢ Undetermined and can be arbitrarily large (as the resugtysol
the linearization and the multivariate nonlinear function of the relies on the application of the Stone-Weierstrass theorem
original system. Although based on Volterra series the mode [4]) while for the presented model it is determined by the
does not involve a truncation in the power series expansionar  dimension of the original nonlinear system.

in the memory depths. Compared to the exponential increase .
in parametersyof cFI)assicaI mgmory truncatedeoIterra modes, Th.e remaining part of the work procegds as follows. In
the structure offers an economic parametrization. The modeis  Section Il we introduce the class of nonlinear systems that
shown to be linear identifiable in one step if a priori information ~ we aim to approximate and give its exact Laplace-domain
about the linearized dynamics is provided. We present simaltion  \plterra series representation. The proposed approximadi
rﬂ?g(‘jgf for a simple nonlinear circuit showing the validity of the  gjyen in Section Ill, where we first exemplify the derivation
: for a two-dimensional system. An identification algorithan f
the model is proposed in Section IV. Simulation results are
l. INTRODUCTION given in Section V, while Section VI draws the conclusions

. . _and provides an outlook.
The proposed model is based on a Volterra series description

of the forced dynamics of a nonlinear state space system Il. THE SYSTEM AND ITS VOLTERRA SERIES

around a locally stable equilibrium point. Applying an apgr - \ye consider the class of linear-analytic systems [5] of the
mation step we are able to distill the corresponding Vodtes- particular form

ries into a feedforward block arrangement involving onlptw )

types of well characterized blocks, namely the linearoratf x =f(x) + bu 1)

the system and its original multivariate state space foncti y=c'x with x(0) =0,

(see Fig. 4). The approximation is not based on a truncation

N N . . i
of the series expansion nor on the truncation of the memafy hf:RY — R assumed to be an analytlc fur!ct|0n. Al
depth as normally done for Volterra models. Due its feedough here we concentrate on the single-input-singletdut

forward structure the model inherits the stability projeart (S1SO) case, the main results of the paper can be generalized
of the linearization. The corresponding \olterra kerndl¢he to the mult|-|nput-mult|-0utpqt (MIMO) case. .Fu_rthermore
model are exactly equivalent up to the second order (up td thiV€ @ssume a local asymptotically stable equilibrium point a

order for anti-symmetric state space functions) to the ddsrn X0 :d'o. With the introduction of z;\]n ap_p_ropriateb cha(r;ge gf
of the original nonlinear system. It is the author’s opintbat  co0rdinates, systems witk, not at the origin can be reduce

the model's simple composition in terms of well charactediz to system (1) withxo =0. I_f the inputu pertyrbs_ th_e system
sub-block and its novelty, renders the model interestingson (1) such that the trajectories always remain within the rbasi

own. Nevertheless, he position it to other approaches in thgattraction ofx, the system locally has fading memory [4]
following. and a local nonlinear input-output (i/0) model in terms of a

\olterra series provide an elegant description of the Idgal VOlt€ra series expansion exists. To develop the expanséon

namics of a forced nonlinear system [1], [2]. Although treter Make use of our above assumptionsfoand write

ically sound, Volterra series have several shortcomingkeir e

practical implementation, i.e., their exponential ina®aof f(x) =) Anx®", (2)
parameter with order of the series permits only low suchmsrde n=1

and short memory lengths. There are several approximatiaisere the applied Kronecker notation means the— 1)-

to Volterra series that circumvent this combinatorial esn fold Kronecker product ofx with itself and A, denote
at the cost of generality, such as the Wiener model, thige rectangular coefficient matrices of the expansion. & th
Hammerstein model, the linear-nonlinear-linear (LNL) rabd following we develop our results for the space of square
(see [3] for an overview). An advanteguous feature of Vdterintegrable functiond.,, but other formulations are naturally
models, that is not shared among all its approximations p®ssible. We define the \Volterra series operator that magus in
the linear identifiability. The proposed model is able tai®t to state as the multi-linear operator: u — x with u € Lo (R)
this feature in a situation of practical interest. Equisél®do andx € LY (R), V = 3°°° | V,, with V,,(au) = a™V,,(u) for

everya € R. Utilizing this definition the first line of (1) reads
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where ‘©” denotes operator composition that for clarity is [1l. THE LOCAL NONLINEAR MODEL
also applied to functions throughout the work. We use theSubsequentIywe give an intuitive derivation of the propbse

gonven_tion ;c]hat the operators proceedl_ktheir argumefntﬁ. Mddel by studying the structure of the second-order kernel
etermine the operator¥,, we equate like powers of the, 5 tyo-dimensional system (1) in diagonal represematio

input_. Switching to a representatic_m in terms of kernels Nterwards we derive the model from the general composition
V, yields the following set of equations. The Laplace-domajiy e for multivariate Volterra operators for arbitrary dim
\olterra kernel of ordern associated with/,, are denoted as ions in the original non-diagonal representation.

V(s1,...,8,). We introduce the convention that the order o? As the i/o behavior of the system (1) is unchanged by a

homogeneity of the kernel can be read off from the numbgpgingular state transformation we apply the linear trans
of its arguments. For the first order we obtain from (3}, ¥ — px Assuming thatA, is diagonalizable we

sV(s)U(s) = A1V (s)U(s) + bU(s) and thus chooseP that rendersA; = PA;P~! diagonal, i.e.,A; =

diag(Ai 11, .., 41,n~), Where the notationd,, ;,,, means the
Im-th element of the matrixA,,. The functionf(x) in the

transform domain reads

V(s) = (s — Aj)"'b, (4)

whereU (s) denotes the Laplace transform oft). Equating _
terms withU (s1)U (s2) gives the second-order Volterra kernel f(x) = Pf(P'%). 9

) The corresponding higher-order coefficient matridesof the

V(st52) = [(s1+ s2)1 = A1) Az V(51) @ V(s2), series expansion (2) df(x) transform as

where we applied the Kronecker formulation for multivagiat A,=PA,P '@ ---@P (10)
Volterra operators developed in [6]. Throughout this doeam ] .
we use the hierarchy of operatioms — x — +. For the Where a(n — 1)-fold Kronecker product is applied. The

third-order kernel we obtain diagonalized representation is useful to see more easdly th
possible decomposition of higher-order \olterra opesaiar
V(s1, 82, 83) = [(s1 + 52+ s3)T — Aq] " terms of interconnections of linear operators. Consider no

6 the case of the second-order \olterra kerié(s, s2) in
X {A2V(51,52) ® V(s3) + V(s3) ® V(s1,52)  (6) (5) of (1). Applying the diagonal representation and taking
+ A3V(s1) @ V(s2) @ V(s3)} . the output function withé = (P~!)”c into account, i.e.,
H(s1,s2) = ¢7V(sy,s2), one can map the second-order

The general form of the Volterra kernels for system (1) fafyjterra operator to a cascade and multiplicative struectfr

n > 2 can be obtained by applying the general compositigfe,, systems. For example the explicit terms for the séeon

rule for muIti\(ariate Volte_rra operators [6]. The resulgisen 4y kernelH (s1, s2) in correspondence to (5) and (4) for a
by the following expression, where exceptionally for eabe @, _dimensional ’system (1) are

reading the order of the Volterra kernels is also indicated b

their SUbSCriptS, H(S s ) . c1 T Tll(sl + 82) ~ 0
vV I_ A 1 7 1,52/ = Co 0 ng(sl + 82)
n(517 A ,:n) : [(51 +n -+ Snl) - 1] ( ) (%2711 %2712 42,13 42,14> (T11(81) ] 0 )
A A A A 0 T
= Z Z Z A£®mG(81(k),---,8u(k)), l221 Az22 A2z Aaoaa/ 22(s1)
=2 my1=1 me=1 k=1 ® (Tll(SQ) _ 0 ) ([31> ® (131)
u(t)=n 0 T22(s2)) \b2 by)’

@y
ith the definition of the diagonal transfer matriR(s) =
sI — A;)~! and with the following property for Kronecker

products [7]

with the wupper and lower index bound function
(k) = Ilmi,...,memr) = 1+ Y5!m; and
u(k) = u(mi,...,mp) = S5 mj, respectively, with T S o
I(1) = 1. For later reference let us rewrite (7) by splitting the (T(s1)b) @ (T(s2)b) = T(s1) ® T(s2)b ® b.

sum as The second-order i/o Volterra kernel then reads

V(81 8n) = N NN
" H(sus2) = > >
(51 +~-~+sn)I—A1]71An®V1(Sk) Fa=1ha=1ks=1 o (12)
k=1 Chy A2 k1 kg +N (ko —1)Dka Oy
+ (514 +s)I— A" (8) (514 82— Aty k) (51 — At gy k) (52 — At g s)
n—1

n n 4
Each summand of the second-order transfer fundidosy , so
x D 2 AR Vst sum) in (12) is a particular instance of a cascade cannecti)on of
linear filters shown in Fig. 1. Every term in (12) can be
u(l)=n realized by a multiplicative connection of two first order
low pass filters cascaded by another first-order low pass
The scalar kernels for the i/o map— y with y € Lo(R) are filter. The representation (12) of the Volterra kernel can be
obtained asH (s1,...,8,) = ¢ V(s1,...,8n). seen as the analog to the partial-fraction expansion for the




domain with A; having general form. The same line of
argumentation leads to the final approximative structuvergi
in the original coordinates, shown for arbitrary dimensign
in Fig. 4. Subsequently we prove this claim.

Thus, the proposition is that the cascade operator with the
Fig. 1. General cascade structure of linear filters and @iadnonlinearity. composition

W=V;+TogoV; (13)

transfer function of linear systems. With this observatimd exhibits Volterra kernels that are identical to the first suend
a rearrangement of the linear blocks we give in Fig. 2 thetexan (8) for n > 2 and (4) forn = 1 of the kernel expressions
representation of the second-order transfer functidn,, s;) for (1). HereT denotes the linear MIMO operatdr : bu —
of the operatoe”V, for system (1) withV = 2. 9 with the kernelT(s) = (sI — A;)~!. Using the results
of [6] we first determine the kernelK(sy,...,s,) of the
u(t) At - 2840

compositionK = T o g. One obtains
2b1by¢1 Ao 1o

] K(Sla"'asn):T(Sl+"'+5n)Ana
| . b6 As1a

(s = Apan)~! .
for n > 2 and K(s) = 0 for all s by construction ofg.

Utilizing this intermediate result we can compute the ké&rne
of Ko V; that in turn with (13) coincide with the kernels
W(sy,..., s,) of the cascad®V for ordersn > 2. Thus, they
read

Weighted sum

Sum
J=

W(s1,...,8,) = K(sl,...,sn)®V(sk)
k=1

Weighted sum

(s = App) 7t

n
=T(s1+ -+ sn)A, ®V(sk),
Fig. 2. Block diagram equivalent to the i/o behavior of a sekorder k=1
\olterra operator of the system (1) for state space dimensio= 2. for n > 2 and W(s) — V(s) for the linear part, = 1. We
observe that this is identical to the first summand in (8) for

g M 2 and (4) forn = 1. We conclude the prove. The kernels
be thought of consisting of three parts, namely the CeNRA} the i/o mapu — y of the cascade structure are obtained
block that realizes a general quadratic vector function o} TW (s, s )for all n

yeeeySn .

N = 2 arguments and the two adjacent parts comprising
the diagonal linear transfer functidi'(s). Considering the
general expression for the higher-order kernels (8), rleveaﬂ(t
that its first summand is analogous to the above discussesd
expressions in (12) for higher orders. For example the third
order kernel would involve a cubic vector function &f = 2 D D
arguments and the same adjacent transfer functibfs.
Thus, these particular terms present in all higher-orderéde
can be collectively accounted for in the same structure Eig.
by just replacing the purely quadratic function by a two-
dimensional polynomial function. Consequently, if we s@p@ Fig. 4.  Block diagram of the approximate linear-nonlintaear cascade
the contributions frong andb this polynomial function can be fealization W of the \olierra, operatory for the system (1); no- state
expressed ag(’ﬂ) = f(’ﬂ) . A1’19 Wlth ’l? = (1917 o ,19]\] )T ranstormation matri IS applied; aroitrary dimensIorv .

the output of the first linearization block(s) (cf. Fig. 3). To This local model has the following intriguing property. It

this end the approximate i/o realization for a system (1hWit.o he considered an augmentation of a local linear model of

N = 2 becomes the system shown in Fig. 3, where also e, ,pjinear system. In fact, the lower branch of the strectur
first-order Volterra operator (4) is taken into account. &ll ;. Fig. 4 is identical to the linear approximation of (1). The

— — second parallel branch, containing the original nonliitganf

Some remarks are in order. First, the system in Fig. 2 c

V1 — —

T(s) i | -are T(s)

y(t)

Sum

1
1
1
1
i
p =

U ———————

(o =A™ (1), gives the nonlinear correction to the linear model.
e As indicated the exact equivalence between the second-
i )  order operatorc’V, and the cascade structure in Fig. 2

Sum

does not hold for higher orders. For ordets > 3 and

n > 4 for general and anti-symmetric nonlineariti€&x)

respectively, additional terms are present in the \Voltkerael

| L representation (8) o¥,, that can not be cast into a cascade

Fig. 3. Block diagram of the approximate linear-nonlintaear realization structure -(13)' Qonfer for instance to the first Summand )n (6

of 'thé \olterra operator of the system (1), with' = 2 in diagonal To derive this mOdeI we assumed_complete 'r_]formatl_on

representation. about the underlying system (1), while another interesting
application of the model is in situations, where the model

the above considerations can also be performed in the afigiparameters have to be estimated from noisy input-outpait (i/




measurement of a partially unknown system. This applicatiovherevec(-) denotes the columwise concatenation of a matrix
is discussed subsequently. into a vector. The linear estimation problem then reads

IV. THE IDENTIFICATION OF THE MODEL y=%w, (20)
In many situation, only i/o measurements of a nonlinegjith the vector of output measurements =

system is available and the problem is to estimate an aecurgy(At),...,y(N,At))T and the matrix of filtered bgsis
local /o0 model of it. Throughout this section we assumgectors® = (1(At),..., 9% (N,At))” at N, different time
model matching conditions, i.e., the structure of the systepoints. This linear, in general overdetermined problem can
to be identified exhibits the structure of the model. Studiegw be solved by any standard linear regression algorithm.

investigating the effect of model mismatch for this modedahe For the example in Section V we deploy sparse Bayesian
to be done but are not subject of this paper. Due its particulggression [12].

structure we can distinguish two variants of the identifarat

problem for this model. The general case comprises the-situa 1277771
tion where both the linearizatidB(s) as well as the nonlinear

functiong(19) is unknown. In the second situation we do have
BFN,

a priori information about the linearization and only have t . 900
identify the functiong(d9). Although, this condition seems " T(s)
to be ad-hoc at first, it actually corresponds to a situation
encountered in practice. For instance in the generation of
macromodels for large-scale weakly-nonlinear circuitsshs
as transceiver front-ends [8] the linear part of the systam c <!
accurately be extracted from a small-signal analysis. B th r
absence of a priori knowledge about the linear charadsiat -
sequential procedure can be applied, where first the lingr prig. 5.  Block diagram of the nonlinear cascade model with rtbalinear
is estimated [9], [10], [11] (possibly with a smaller amptie function realized by a set of basis function networks.
than nominal) and second the functig(i?) is estimated.

In the following we detail on a particular implementation
for the estimation of the functiog(d) in the presence of V. SIMULATION RESULTS
information about the linearizatioT'(s). We model every

component of the vector functiog(9) as a basis function ear model we apply it to the simple nonlinear circuit depicte
network (BFN) with (cf. Fig. 5) in Fig. 6. Naturally, this does not account for a full assemsm
ge(9) = qbf(ﬂ)wk, of the approximation capabilities of the model but merely

with ¢, = (el (9) x1(9))T and wy, denoting the serves as a first prove of principle. The parameters of the
k = k,1 see ey PRM k

column vector of parameters for compondntErom Fid. 5 circuit are chosen such that its linear characteristic trestc
) paral P ) | Flg. a second-order Chebychev type | low pass filter. The system
one realizes that this is not the classical regression sasup

the target vector for the regression is not directly avzkHabiS made nonlinear by assuming thLat the inductor exhibits a
; o Ly X
but merelyy(t) is available. Therefore we have to filter a"magnetlc flux characteristias(;) = U tanh(n;) [13, p.36].

regressors with the known linear operaiorThe model output The resulting differential equation has the form (1) with

T(s) 1 S e
y(t)

Sum

To show the practical validity of the proposed local nonlin-

can thus be written as 1 1
T T TR,Ct T2
y(t) =Tr {(TO)" ()W} + 9" (t)wo, (14) £0) = | cosh?(rya) : (21)
with the matrix of regressors Lo (21 — Rizs)
O(t) = (¢, (9(1)),. ... on(F(1))) (15 andb = (7=,0)", ¢ = (0,R;)", where the components
and theM x N matrix of parameters x; and zz of x denote the capacitor voltage-(¢t) and
B inductor currentj, (), respectively. First, assuming complete
W= (wi,..,wy). (16) knowledge about the system a linear approximation as well

The symbolTr(-) denotes the trace operation on a matrix. Thas the novel approximation is computed. Their responses are
additional termd” (t)wy in (14) corresponds to the linear partcompared to the output of the nonlinear circuit by applying a
i.e., the lower branch in Fig. 5. In the estimation the readofroadband discrete-muilti-tone (DMT) signal wiih2 carriers
vector c for the linear as well as for the nonlinear branch ignd phases drawn from a uniform distributitfd, 2). This
absorbed into the parameter,. Another way to write (14), broad-band signal was chosen in order not to bias the results

more suitable for estimation, is due to a particular choice of input signal and to guarantee a
T persistent excitation [11] of the system for the identifimat
y(t) =" (H)w, (17)  experiment discussed below. A normalized mean square error

with the N (M + 1) x 1 vector of filtered basis functions 1S computed for different peak voltages of, (1) = u(t),
ranging from5—50V. The error is normalized to single out the

Y(t) = (97 (1), vec" (TO)(1)))" (18) obvious scaling of the error with the input signal amplitude

The results are given in Fig. 7. The linear as well as the

and theN' (M +1) x 1 vector of all BFN parameters nonlinear model show the natural tendency of local models to
w = (wl,vech (W))T, (19) give less accurate prediction for larger amplitudes. Foalbm



amplitudes the proposed model achieves a large improvem
of up to 20dB with respect to the linear model.

In the second experiment only knowledge of the linear che
acteristics of the circuit is assumed. To approximate the tw
dimensional nonlinear functiog(¥) the algorithm outlined
in Section IV is applied. A radial basis function network is
used for each of the two dimensions (although from our
priori knowledge of (21) we know that the first componer
of the nonlinear functiong(¥) = f(¥) — A9 is zero). For
the estimation of the network parameters with (20), thealine
regression algorithm [12] is deployed. Each basis functic

network initially consists of spherical Gaussian kernels 05 10 15 20 25 30 35 40 45 50
Peak voltage [V]

Normalized MSEz, [dB]
5 & & A& N
o o o (=] o
T T T T T
i

KR

N

(=]
:

55

1 2
Ori(9) = exp(o5 19— cill*) for k=12 o

. . . L . circuit and the output of three different models: linearrappmation (dashed),
W|th. centersc; placed on a two-_dlmen5|or.1al equidistant g”(ﬁovel local nonlinear model (solid); with complete knowded(circle) and
of size10 x 10 over a predetermined amplitude rangedgt), estimation of the nonlinear function using radial basiscfions (square);

i.e., the accessible output signal of the linearizafiofs) (cf. amplitude of the training signal iB0V.

Fig. 5). The width of all kernels is chosen to be= 0.7.

The model is trained with a signal @0V peak, while the ) _

validation is done in terms of its normalized mean squafdror bounds for Taylor series and Volterra series [14] rehir
generalization errok, with different phase distributions butimportant challenge is to derive corresponding error bsund
same peak-to-average-ratio of the validation DMT inpunalg for this structure.

over the range fronb — 50V. Due to the deployment of a

sparse regression algorithm only a small subséB8dfom the ACKNOWLEDGMENT

initial 200 parameters remain non-zero and constitute the finalThe author would like to thank Prof. Martin Hasler for

model parameters. In Fig. 7 the performance of the ide_ntifi@,@pfm discussions. The work is supported by the Swiss
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Normalized mean-square error between the outputefeference

of the functiong(«?) can have superior performance than the
analytically obtained cascade model (also shown in Fig. 7).
The reason for this is that the least squares fit can compensat
for the model mismatch between the generative system (1) afd
the model (13). 2]

Rin ” L (.7 ) .
— vc(®) *m(t) E}
in (1) =C Ry | u(t) 5]

(6]

Fig. 6. Simple exemplary circuit including the inductd(;) as nonlinear
component used to test the proposed approach.

(7]

(8]
VI. CONCLUSION

We derived a novel local nonlinear model for a certain clasgy
of linear-analytic systems. Although based on the \olterra
series representation of the i/o behavior of the originatey,
it alleviates some of the shortcomings of classical Vo#teryi1)
series modeling. Furthermore, we proposed an identificatio
algorithm for the new model and showed first simulatioH?
results for a simple nonlinear circuit. The model gives an
improvement to a linear model of up &9dB in terms of the [13]
mean square error. This paper serves as an introductioreof [tp‘]
novel model or approximation structure and is completeim th
respect. Clearly as for any new model, many things remain to
be done and the author proposes the following two important
research avenues. First, to be applicable to general reamlin
circuits it has to be investigated whether the formulatian be
extended to circuit equations being more general than @), i
of differential-algebraic type. Paralleling the approzion
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