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A MULTISCALE METHOD FOR TURBULENT FLOW BASED ON
LOCAL PROJECTION STABILIZATION

M. BRAACK* AND E. BURMANT

Abstract. We propose to apply the recently introduced local projection stabilization for the
Navier-Stokes equation to the numerical computation of turbulent flow. The discretization is done by
nested finite element spaces. We show how this method may be cast in the framework of variational
multiscale methods, indicating what the modelling assumptions are. Using a priori error estimation
techniques inspired by the theory of stabilized finite element methods we prove the convergence of
the method in the case of a linearized model problem. The a priori estimates are independent of the
local Peclet number and give a sufficient condition for the size of the turbulent viscosity parameter
in order to insure optimality of the approximation when the exact solution is smooth.
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1. Introduction. Today one of the major challenges in computational fluid dy-
namics is the accurate computation of different quantities in turbulent flow. The
questions are many and the answers few. What can be computed? To what cost
and to what precision? Therefore, it is not surprising that this subject is receiving
increasing attention. Recently, several new approaches have been proposed such as
the dynamic multilevel methology (DML) of Dubois, Jauberteau & Temam [9] or
the variational multiscale method (VMS) of Hughes, Mazzei & Jansen, [13]. In the
latter work, reference is made to residual free bubble techniques, see Brezzi & Russo
[3], and subgrid viscosity as introduced by Guermond [11] to motivate an approach
to Large-Eddy simulation (LES) where the turbulence model acts only on the fine
scales.

Another very recent claim concerning the computation of turbulent flow is that
certain average quantities such as mean drag can be computed on a PC using stan-
dard stabilized finite element methods of SUPG type together with adaptive mesh
refinement controlled by a posteriori error estimation, see Johnson & Hoffmann [12].
This suggests a combined Large-Eddy / Direct-Numerical simulation (LES/DNS) ap-
proach for the computation of averaged quantities in turbulent flow. The situation
remains somewhat contradictory since it was claimed in [13] that numerical evidence
showed that SUPG alone fails to capture the characteristics of turbulent flow.

In any case, to be able to make a computation at all Reynolds numbers clearly one
has to resort to a method that remains stable independent of the local Peclet number,
unless of course a full DNS is aimed where the mesh is uniformly sufficiently fine to
resolve all scales of the flow. So when working with finite elements the use of stabilized
methods in one form or another seems mandatory for large eddy simulations. It is well
known that the energy conservation property of the standard Galerkin formulation
causes buildup of energy on the small scales which may lead to numerical instabilities.

In this paper, we advocate for the use of the two-level stabilization scheme for
the Navier-Stokes equations (see Becker & Braack [2]). This is one in a group of
more recently developed stabilized methods, as for instance Guermond [11], Becker
& Braack [1], Burman & Hansbo [4, 5]. An attractive feature of this method for the
computation of turbulent flow is that it can be cast in the framework of the variational
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multiscale method of [13] as we shall show. The stabilization is only acting on the
smallest resolved scales of the flow. Other main advantages of this approach is that it
shares similar conservation properties as a standard Galerkin finite element method.
Moreover one does not need to resort to space-time finite elements for time stepping
in order to stay consistent, but can apply any higher-order finite difference scheme for
the discretization in time. By showing how this stabilized method can be formulated
in the variational multiscale framework we give some additional evidence of the close
relationship between stabilized methods and variational multiscale methods. We also
prove optimal order a priori error estimates for the method, giving sufficient conditions
on the length scales used in the subgrid viscosity model for the Galerkin projection
method to remain stable. Finally, we will discuss the relation of this method to other
stabilized finite element methods, and give some indications of its relation to GLS
and residual-free bubbles.

In a forthcoming work we will give numerical evidence of the performance of the
numerical scheme for some high Reynolds number flows in three space dimensions.

2. Variational formulation. Let Q C R?, d € {2,3} be a polygonal domain
with boundary 0. For the theoretical discussion, we consider the Navier-Stokes
equations with, for simplicity, homogeneous Dirichlet boundary conditions:

Ov+divivev) —pAv+Vp=f inQ,
divv=0 in Q,
v=0 onoN,

subject to some initial condition v(-,0) = vo. Above v = v(x,t) denotes the velocities
and p = p(z,t) the pressure. The gradient in space is denoted by V, the divergence
with respect to space by div. Let I := [0,7] be the time interval, V' the Sobolev
space V := [H}(Q)]¢, and @ the space of square-integrable functions with zero mean,
Q = L3(Q). The product space is denoted by X = V x @. The velocities are
sought in the Bochner space V¥ := H!(I,V), and the pressure in VP := L?(I,Q).
The product space will be denoted by V := V¥ x VP. The test functions are in the
space W := L?(I,X). The L?-scalar product over the space-time slab Qp := Q x
will be denoted by (-,-), and its norm by | - |. Introducing now the state vector
u = {v,p} € up +V with a prolongation ug of the initial data vy for the velocities, we
may write the standard variational formulation: Find u € ug + V such that

B(u,p) = (f,9) Yo=A{y,EfeW, (2.1)
where B(u, ) is defined by

B(ua (p) = (6{[),’(/1) - (U ®wv, V¢) + (MVU) Vﬂ’) - (p> lel[J) + (diVU,f) .

3. Separation of scales on the continuous level. The local projection me-
thod that we are going to use can be cast in the framework of the variational multiscale
method. In the VMS as introduced in [13], a scale separation is performed and the
turbulence model acts only on the finer scales. However, as always in turbulence
modeling certain model assumptions on the interaction between the scales are made.

To make clear what our model assumptions are, we use the three-level partition
proposed in Collis [8]. Hence we consider a scale separation in large resolved scales,
denoted by u, small resolved scales denoted by @ and unresolved scales denoted by .
The solution space is partitioned in a corresponding manner

v=vavVaeV.
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The function space WV is partitioned similarly, W = WaeW e W, with corresponding
test functions, for instance, @ = (¥,£) € W. We now write the exact equations of
motions for each scale

B(u,@) = (f,9) VoeWw, (3.1)
B(u,) = (f,¥) YpeW,
B(u,p) = (f,9) VYpeW. (3.3)

Introducing the linearized Navier-Stokes operator

B,(U,’U,I,Lp) = (6tvlﬂ/;) - (’U’ RUV+VE U',VW
_(pl’v : 1/}) + (valav¢) + (v ' UI7§)7

the Reynolds stress projection
R(v,¢) := (v®uv, V),
and the cross stress projection operator
Cv,0,9):=(v®b+ 0 ®@v, V),

we may reformulate the exact equations for each scale in a fashion that makes evident
the coupling between the scales. Following Collis [8], the exact solution for the resolved
large scales fulfills for all ¢ € W the equation

B(’a’:@) +Bl(ﬂ,ﬂ,(ﬁ) - R(f),l/)) = (f,i/))
_Bl(ﬂ7ﬂ7¢) _R(ﬁﬂ/_’) +C(’l~))ﬁ)d—]) (34)

The first line in (3.4) includes the influence of the resolved scales on the large scales,
whereas the second line includes the influence of the unresolved scales on the large
scales. In the same fashion, the small resolved scales fulfill for all ¢ € W:

Bl(ﬂaﬂ)(ﬁ) - R(ﬁ>¢) = (f)dj) - B(ﬂ7¢)
_B,(ﬂ7ﬂ7¢) _R(ﬁﬂ/;) +C(’l~))ﬁ)d‘;) (35)

Note that the large scale residual is driving the fine scales and that the form of the
influence of the unresolved scales on the resolved scales take the same form for large
resolved scales as for small resolved scales. The unresolved scales finally satisfy the
following equation for all ¢ € w

B'(a+@,4,p) + R(6,0) = (f,7) — B(a + @,¢) -

It follows that the equation for the unresolved scales is driven by the residual of the
resolved scales. With the equations written in this form it is easy to state what the
modeling assumptions are:
(M1) The unresolved scales 4 have no “direct” influence on the large scales. This
means that the second line of equation (3.4) is set to zero:

—B'(u,0,9) — R(0,¢) + C(0,0,9) =0 VYo e W. (3.6)
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(M2) The influence of the unresolved scales on the small scales is modeled by an
artificial viscosity term

S:(VeV)x(VaeV) R,

acting only on the small resolved scales. Hence we assume in (3.5) that for
pEW:

S(a,p) ~ B'(u,4,9) + R(0,9) — C(0,0,1) . (3.7)

The first modeling assumption (M1) can be expected to hold true when the main
features of the flow are resolved. This is the large eddy assumption. The second
modeling assumption (M2) seems to imply that the space of the resolved small scales
should be sufficiently big with respect to the space of the large scales. Otherwise why
should the behavior be any different? This is not so promising from a computational
viewpoint. Since the large scales have to resolve the main features of the flow (that
we want to compute) we want to take the space of small resolved scales as small
as possible as it only represents the fluctuations. However one may argue that if
assumption (M1) is satisfied then the exact form or size of the subgrid model is
of less importance as long as it allows for a sufficient rate of dissipation of energy
from the resolved small scales to the unresolved scales. Insufficient dissipation will
cause buildup of energy on the resolved small scales (by the conservation properties
of the Galerkin method) leading to spurious oscillations and eventually divergence.
Excessive dissipation will cause too much damping of the resolved small scales which
will lead to poorer resolution of the large scales through the Reynolds stress coupling.
Using these modeling assumptions we arrive at the formulation

B(a + i, p) = (f,Y) VoeWw,

B(a+1,¢)+ S(i,p) = (f,9) VpeW. (38)
We choose the subgrid viscosity term in such a way that
1) it is coercive on the small resolved scales @
S(a,a) > c|Va|> Yaew,
2) it is symmetric
S(u,p) = S(p,u) Yu,pe WaW, (3.9)
3) it vanishes on the large resolved scales
S(@,") =0, VpeW. (3.10)

The resolved scales will be represented by nested finite element spaces. To this end we
introduce some finite element approximation Vj of V that will represent the resolved
scales V, = V@& V. We now introduce the corresponding decomposition of the discrete
space in large and small resolved scales. To emphasize the fact that the resolved scales
are discrete spaces we may supplement their notation with an A for the small resolved
scales and an H for the large resolved scales so that Vg = V. Since the subgrid
model will depend on the mesh size, it will be denoted in the following with an
subscript, Si(+,-). The same approximation is done with the test space W, = WaeWw.
Backtracking the whole argument to the original weak formulation (2.1) and using the
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modeling assumptions (M1) and (M2) we arrive at the formulation, find uj, € ug+Vp,
such that

B(un, ¢) + Su(tn, ¢) = (f,1) VYo € Wh, (3.11)
or using the scale separation property (3.10) of Sy (-, ")
B(un, ) + Su(un, ) = (f,1) Vo € Wh. (3.12)

Note also that by the properties of Si(-,-) we have Galerkin orthogonality for the
discretization error u — up on the large resolved scales:

Bu—up,p) =0 VY@e Wgy. (3.13)

So far we have kept the discussion on an abstract level, we will end this section with
some remarks discussing our specific choice of subgrid model. As proposed by Hughes
et. al. [13] the subgrid model Sy (@, ) will be chosen as an artificial viscosity type
operator acting only on the small scale. Instead of using a Smagorinsky type model
we will use the simple linear model proposed in the two level formulation of [2]. For
the choice of the artificial viscosity parameter in Sp,(-,-) we will rely on a priori error
estimates that are uniform in the Reynolds number and valid for smooth solutions u
rather than parameters obtained from experimental data or heuristics.

Furthermore, a new feature of this model is that the pressure fluctuations are
included in the subgrid model. This can be motivated by the interaction of unresolved
pressure fluctuation and small scale velocity in the right-hand side of (3.7). Moreover,
as shown in [1] it allows us to use equal-order interpolation for the approximation of
velocities and pressure. This is convenient since there is no reason to take the resolved
small scales of the velocity differently than the resolved small scales of the pressure.

4. Discretization by finite elements. In fact the basic ideas behind the dis-
cretization in space has already been outlined in the previous section. What remains
is the exact choice of finite element spaces, of the subgrid model, and of the discretiza-
tion scheme in time. We will give special focus on the case of d-linear elements but
the analysis extends to d-quadratics in the obvious way.

In the following we consider shape regular meshes 7, = { K} of hexaedral elements
K with the minimum mesh size h = min{hg : K € T} (quadrilateral elements for the
academical case d = 2). We use the finite element spaces P} resulting from r—linear
transformations of r—linear polynomials ¢ on a reference cell K:

P/ R) :={p e C(ULR) : ok = @OTI;l}.

The discontinuous analogon is denoted by Py ;..

Plz‘,disc(gaR) = {90 € LQ(QvR) : ()0|K = ()5 ° lel} -

We will treat d-linear elements (r = 1) and d-quadratic (r = 2) elements simulta-
neously in the analysis. These finite element spaces will be called simply (), in the
case of r = 1, and ()2 elements in the case r = 2. The discrete pressure space @y, is
the subspace of P; with zero mean, and the velocity space V}, is the subspace with
vanishing trace:

Qp = {g € Ph(Q,R);/dix = 0} . V= {v € PL(Q,RY);9]p0 = 0}.
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The product space is denoted by Xp:
Xh = Vh X Qh .

Furthermore, for ¢ € N, H := 2%k let Ty be the coarser mesh obtained by ¢ times
“global coarsening” of 7,. Obviously, the finer mesh 7, contains 2%¢ times more
elements than 7. The corresponding finite element spaces are denoted by Qg C Qp
and Vg C Vj.

Let us partition the time interval I into subintervals I, = (t,—1,tp], n =1,..., N
with 0 =ty <t; <...<tny =T and 7, := t, — tn,_1. We also introduce the space
time slabs @, := I, x Q. As time integration scheme, we use the Crank-Nicholson
scheme. It means that we choose piecewise linears for the ansatz functions, precisely:

VY= PNI,Vyg), V':=P:I,Vi\Vu), V':=V'"\PHI, V),
and as test spaces piecewise constants (discontinuous):
Wy =PI, Vy), W' :=P°I,Vi\Vy), W':=W"\PI, V).

The pressure spaces 17,’;, VP and VP are defined analogously by the use of Qg and Q.
The total ansatz and test spaces of resolved scales are denoted by

V=MW" ® V) x (VP @ VP) =PI, X}),
Wi = (W' @ WY) x WP @ WP) = P2(I,Xp) .

With these finite element spaces we now propose the following finite element method:
Find up € ug + V4, so that in the n-th time step it holds for the restriction u™ =

{o™, "} = unlr,:

(1o 0", ) + A(u", ) + Sn(u", 9) = gn(u" ", ) Vo € Wy, (4.1)
with

A, @) := —(v @ v, V) + (uVo, Vib) — (p,divey) + (divo, &)

gn(u" ) == (F,4) + (1, 0" ) — (Vo Vi)
+(vn_1 ® ,Un—l,v,(/}) - Sh(un_la (p) .

In order to specify the subgrid model Sy (-, -), we have to introduce further notations.
Let D} and D% be the following space for pressure and velocities, respectively, of
functions allowing discontinuities across elements of 7ap:

D} =[Py 4ise (2, RN,
DY .= P;,;;isc(ﬂ, R).

In the case r = 1, these spaces contain patch-wise (K € V) constants; and for r = 2,
they contain patch-wise d-linear elements. We will make use of the LZ—projection
operator (in space)

7 P2(I,L3(Q)) — PX(I,DY), sec{0,1}.
The operator giving the space fluctuations is denoted by

Xy =1 — Th,
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with the identity mapping . Similarly, we define the (space) nodal interpolant 7, :
P5(I,Qn) — P:(I,Q2r) and ¢ := i — m,. We use the same notations 7y, 2, 7, and
s, for the mappings on vector-valued functions, for instance, 7, : P2(I, L*(Q)?) —
P(I,D}).

With these notations, we may take as subgrid model

S¥(u, ) = (urVxpv, Vi) + (vrViep, Viepf) , (4.2)
or
S (u, ) := (ursn Vv, %,Vp) + (vr,Vp, 5, VE) , (4.3)

with parameters pur and vy depending on h. Clearly on tetrahedral nested finite
elements (so-called P; or P, elements) both subgrid operators Sy (-, -) and Sy satisfies
(3.10) exactly. In fact in this case one easily shows that they are equivalent. However,
for the @)1 or Q)2 elements considered here, using the choice (4.3) a small residual may
remain due to the cross-term. Consequently, we do not have exact scale separation
for (4.3) on hexaedrals (quadrilaterals in two space dimensions). On the other hand,
the second form has advantages from a theoretical viewpoint. We will exploit this
in the next section to choose the subgrid viscosity parameter in such a way that the
convergence of the method is optimal whenever the underlying solution is smooth. It
should also be noted that from the practical viewpoint it may be more advantageous
to use the streamline derivative in the part of the subgrid model acting on the velocity
in order to minimize cross-wind diffusion, for instance,

S8 9) 1= (a8 - V), 5B - V) + (ur snciv v, v )
+ (uTﬁth, }_thf) . (44)

However, as we shall see in the next section, this does not affect the order of the
numerical scheme.

5. A priori error analysis. To tune the parameter of the subgrid model we use
a priori error estimation on a linear stationary model problem (of Oseen type) instead
of modeling assumptions. Assuming sufficient regularity of the underlying solution
the parameters are chosen in such a way that the method has optimal convergence
properties independently of the viscosity. The analysis also serves as a priori analysis
for the numerical scheme (4.1). We only treat the interesting case of high Reynolds
number, hence assuming that p < |B|h. First we prove an estimate for a mesh-
depending norm || - || including the H'-norm of the velocities and the subgrid model
error. We then use this estimate to recover control of the pressure and show that
the L?-norm error of the pressure is bounded by the triple norm of the error of
the state vector up. We refer to [2, 6] for more details on a priori error estimate
for similar discretizations applied to the (linearized) Navier-Stokes equation. The
simplified model we propose takes the form

cv+div(B®v) —pAv+Vp = f inQQ,
Vv = 0 inQ, (5.1)
v = 0 ondQ,

with some given solenoidal vector field § and o > 0. This problem is well-posed in
the space V N Hy(div; Q) by the Lax-Milgram Lemma. The L?—scalar product over
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 will be simply denoted by (-, -)q and the corresponding norm by | - |o. The norm
in H*() will be denoted by | - |s.a-

We consider the following two-level finite element formulation, find u;, € X} such
that

A(un, @) + Sp(un, ¢) = (f,9)a Ve € Xp, (5.2)

where now
Alu, ) = (0v,9)a — (B © v, ViP)o — (p,dive))o + (dive,§a + (uVv, Vo .
The subgrid model is given as in (4.3):
Sh(u, ) = (urzn Vo, .,V + (vrznVp, x,.VE)q . (5.3)

with the fluctuation filter 5z, = i — T, and @), : L*(Q) — D} or @, : L*(Q)? — Dy,
defined analogously to the previous section. In the following analysis, we make use of
the interpolation and stability property of .

LeEmMMA 5.1.

I Vola S hlolon Vo € H2(Q), (5.4)
avle Slole Yo e L2(9). (5.5)

Proof. The interpolation property (5.4) is an immediate consequence of the patch-
wise interpolation of 7, for the H' function w := Vu:

|7 Vulk = |w — Thw|k S hrlwlix < hilvle,x VK € Top .
Stability of 5, is due to the L?-stability of 7p:
I7znvle < vle + |Trvle < Jola -

d

We will prove under the assumption of sufficiently regular pressure and velocity
v € H3 Q)2 p e H*(Q) N L3(Q), that a certain scaling of uy and vp gives optimal
convergence of the velocities independent of the Reynolds number. A similar result
is then proven for the L?—norm of the pressure.

To this end we introduce the triple norm in the space X:

1/2
lull = 1w, o} = (Jo*/20l + 12 Vol + S(u,v))

By the following coercivity result we deduce existence and uniqueness of the discrete
velocities.
LEMMA 5.2. We have the following coercivity property:

lull? = A(u,u) + Sp(u,u) VYue€ X. (5.6)

Proof. The proof follows immediately by integration by parts. O
We have the following approximate Galerkin orthogonality
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LEMMA 5.3. Let u € X be the solution of the weak formulation of (5.1) and
up, € X}, the solution of its discrete version (5.2). Then it holds:

A(u —up,p) = =Sh(un, @) ¢ € Xp.

Proof. The proof is obtained by subtracting (5.2) from the weak formulation of
(5.1). O

Since the method is not strongly consistent in the sense that we do not have
full Galerkin orthogonality, we must analyze the asymptotic behavior of the subgrid
model, i.e., the dependence with respect to the mesh size h. We will use the notation
< to indicate that there may arise (mesh independent) constants in the estimates.
We state a result for a modified Clément interpolation operator introduced in [1] with
a generalization to ()2 elements.

LEMMA 5.4. There is an interpolation operator

Jn:V =V
with the orthogonality property
(v—jnpv, ) =0, YYeDy YveV, (5.7)
having optimal approzimation properties in the L>—norm and H' —seminorm

lv = jnvle S W lvlne Yo € [HT(Q))7, (5.8)
IV —jn)le S olne Yo € [HT(Q), (5.9)
with r € {1,2}, and is L>*— and H'—stable:

linvlog S Iloa Vo€ (@)Y, s € {0,1}. (5.10)

Proof. The construction uses the Clément interpolation operator j,?l Vo=
Vi, see Clément [7], which already fulfills the approximation properties (5.8), (5.9),
maintains homogeneous Dirichlet values, and has the stability property (5.10). In
order to ensure (5.7), we modify j&'! by a projection my, : V — V,

g =35+ m .

For the definition of my, we choose a suitable basis of D}, consisting of r® test
functions v i, i = 1,...,7% for each patch K € 7Tap, and certain basis functions
bK.i € Va,i=1,...,r? with support in K. The specific form of these test functions
depends of cause on the polynomial degree r. However, the perturbation mpv will be
of the form

d
”
mpv = Z Z(IK,i(UWK,i ;
KeTap i=1
with appropriate coefficients ag ;(v), so that it fulfills (5.7). In other words:

/ mpv YK, de = / (v — jglv)w;{,i de VK € TopVi=1,...,r%. (5.11)
K K
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Wl Vs

F1G. 5.1. A patch K of four Q2 cells in two dimensions with the bilinears v; and the quadratic
bubbles ¢;, i =1,...,9 used in the proof of Lemma 5.4

This property is equivalent to solving for each K € T3 a linear system with the
matrix M = (my;), i,j = 1,...,r? and entries

mij ::/ ’QZJKJ(?K,]’ dx .
K

Let ¢~>K,z, I =1,...,(2r — 1)¢ denote the nodal basis functions corresponding to the
interior degrees of freedom of K, see Figure 5.1. We now choose the basis ¢x; as

being the L2-projection of ¢k ; onto these basis functions. Find ¢x,; = Y, di 10k,
such that

(br.i» P )k = WK,is b)), [=1,...,(2r — 1)<
With this choice of basis we note that there holds

(Wi xj)e = Y d5(YKi dri)e
[

= Y (K bk
1

= (¢K,i, 9K.,j)a-

It follows that M is symmetric positive definite and that on each patch K € T there
holds:

||mhv||%(§/ mpv Tp(mpv) de . (5.12)
K

For proving the approximation properties (5.8) and (5.9) we estimate on each patch
K € Tap, due to (5.12):

gl < / (v — §C%)mpmpv de
K

< o = 35 vl 17Rmav] &
S v =35 vl fmaol
where we used the L? stability of 7 in the last inequality. It follows |mpv|x <
o — j}?lU"K . Consider now the approximation in the L?—norm, clearly
lo = jnvla = v — j5"v + mpv]o
< o =3 vle + mavla
<o =g vle -
10



For proving (5.9) we proceed in a similar fashion by applying an inverse estimate:

IVmnold, S D b lmavlic

KeTn
_ .C[
=Y bl =il
KeT,
2(r—1
S 3 T
KeTn

SED g,

d

Remark: The interpolation operator j,?l maintains homogeneous Dirichlet condi-
tions on (parts of) 9. For polynomial Dirichlet condition or higher order approxi-
mations, the interpolation introduced by Melenk & Wohlmuth [14] can be used.

The interpolation operator j, acts on the velocity space, but the result holds of
cause true for the scalar space L?(). We will use, therefore, the notation jj also for
the interpolation operator acting on the state variable u = {v, p}.

LeEMMA 5.5. For the interpolation operator j of the previous Lemma we have
for allu € X N [H"(Q)]* with r € {1,2}:

Su(int, jnu)’? S (uy” + vyl )0 (Jolrg + Iplng) -

Proof. We start with adding and subtracting wu:

Sh(jnu, jou) = Sp(u + jru — u,u + jru — u)
< Shlu,u) + Sp(jru — u, jau — u) + 28k (Jru — u,u)
< 2(Sh(u,u) + Sp(jru — u, jru — u)).

For the first term the result follows immediately by the interpolation property (5.4):

Sh(u,u) < pp) 2 Vol + vel 2, Vplg
S urh® D)2 o + vk pl2 g, -

For the second term S(jpu — u, jou — u) we have:

prlzn ¥ (e = )G S prlV(Gne — )5
Surh* D olig,

using the L2-stability (5.5) of the local projector 3, and the interpolation property
(5.9) of jp. For the pressure contribution of course the same holds. O
The following Lemma states the fact that the proposed stabilization term (4.4)
involving only diffusion in in streamline direction can be bounded by the triple norm.
LEMMA 5.6. If 3 € [Wh>°(Q)]?, then it holds for all v € V},

lil*5e4(8 - V)vla < Csll{v, 0}, (5.13)

1/2 _
where Cp ~ uT/ 1Blwree @)0 ™2 + | Bl ,0-
Proof. The proof follows by adding and subtracting 7,3, where 7, denotes the
projection on D} (here denoting the space of piecewise constants on the macro patches,
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regardless of the approximation). We apply the triangle inequality and the H' sta-
bility of 3,

s/ ? 52 (8 - V)ola < |pi/ 254 (B — 7nB) - Vvl + |1s/ 25 (7B) V)0

S ((B = 7nB) - V)ola + i > 50 (71B) V)0l -

The second term on the right-hand side is simply bounded by

1132 52 (70 B) V)0l < [Bloo0liy 25 Vol
< 18loo,0S (v, )12

The first term can be estimated by the approximation property of 7, and a local
inverse inequality:

[((B =mnB) V)vle S Y 1#Blk.cohi lolx

KeTan
<Blwr=@lvla -

This gives

I 58 - V)vla S [Blso,0S(0,0)2 + il *|Blw. @ lole
< Csll{v, 0}

ad

Note that this result is valid immediately (without any assumptions on ) if the
form (4.4) is used since for such a choice this term enters directly in the triple norm
by definition.

We end this section with the following a priori estimate for the discrete solution
of (5.2):

THEOREM 5.7. If the solution u = {v,p} of (5.1) satisfies u € [H"T1(Q)]4+! then
we have the a priori estimate

e = unll S ab" 2 (Jolrtr,0 + [Plrs1,0) (5.14)
with
a=h"2(u? + u;ﬂ + 1/;«/2) + 2 (0% + ,u;l/z + 1/771/2) . (5.15)

Before proceeding with the proof of this Theorem let us briefly comment on
its interpretation. An immediate consequence of the inequality (5.14) is that for
convection dominated flow ur ~ h and v ~ h is the optimal choice of the parameters
yielding an h-independent constant a and the (optimal) convergence order of A™1/2.
The positive powers of pur and vr in ap represent the dissipative character of the
subgrid model. It follows that too much dissipation will have a negative effect on the
precision. The presence of u;lﬂ and 1/;1/2 in (5.15) is due to the stabilizing effect of
the subgrid model: the dissipation of the small scale energy into the unresolved scales
avoids artificial energy concentrations on the small scales due to the conservation
properties of the Galerkin method. As expected, precision deteriorates for small
values of up and vy due to spurious oscillations.

12



Proof. In the standard fashion we decompose the error in v — up = n+ £ in
an interpolation part = uw — jpu and a projection part & = jpu — up. Clearly,
Inll < Cah™+1/2 using the interpolation Lemma 5.4 and the asymptotic bound for the
stabilization term of Lemma 5.5. Consider now the discrete error £. By coercivity
(Lemma 5.2) and the Galerkin orthogonality property (Lemma 5.3) we have

IEI? = A(E, €) + Sn(€,€)
= A, &) + Sn(jnu,§) -

The second term on the right-hand side is bounded by applying the Cauchy-Schwarz
inequality followed by Lemma 5.5
Sh(jnu, &) < S(inu, jau)'/?S(£,€)'?
S (W + v (lesre + Iple0) €D
For the first term on the right-hand side we have using the Cauchy-Schwarz inequality

and integration by parts writing &P and £V for the discrete pressure and velocity error,
respectively:

A, &) < Il Nl = (p = Gnp, divE)a — (v = jnv, VE )o — (B ® (v — jiv), VE¥)a

We now use the orthogonality property of the quasi interpolation operator to obtain
upper bounds:

|(p — jup, divE)a| = |(p — jrp, divE” — T dive?)q]
< iz (0 = jup)le lug* (div € — 7 div €%) g
<1z @ = p)le S(E Y2,

|(v —jnv, VEP)a| = (v — jav, V&P =TV EP)q
< o2 (0 = jnv)la vy (VEP - 7VeEP) o
< ' (0 = jnv)la S Y2,
(8 (v — jav), VE)al = |(v — jav, (B V)E" —7(8 - V)E)ql

< ug' (0 = juv)la SE€)V2.

In summary, we get

A(m,€) < InIEN + (i 0 = wpdlo + 1077 + 57”0 = w0)ll0) S (€, €)'
< (Il + g 0 = jnp)le + Nvr 7 + uTW)(v vl el

The assertion follows using the interpolation properties (5.8) and (5.9) of the quasi
interpolant j;,. O We proceed and prove that the pressure also has optimal convergence
properties in the L?—norm.

LEMMA 5.8. Let u = {v,p} be the solution of (5.1) and up, = {vp,pr} the solution
of (5.2) then there holds

Ip —prle S allu — unll,
where a = a'/? + |Blo™ 2 + pt/? + py 1/2 + vy —1/2y,
13



Proof. Following [10], by the surjectivity of the divergence operator there exists
vp € [H§(Q)]¢ such that p—py, = div, and |vp|i,0 < [p—prle- By the H! —stability
property of the quasi interpolant j, we then have

linvplie S lp —prla - (5.16)

Consider now the equality p — pp, = div v, this gives

Ip = prlé = (p — pr,divuy)e .

We now subtract jpv, from v, in the right-hand side and use the Galerkin orthogo-
nality property in Lemma 5.3 for the test function {jxvp,0}:

Ip = pulé = (p — ph, div (v, — javp))a — (1Y (v = vh), Vinvy)e
+(o(v = wvn), jnvp)a + (B @ (v —vr), V(jrvp))a — Sh(u — un, {jnvp, 0}) -
We estimate the resulting parts separately. For the first term we integrate by parts

and use the orthogonality property (5.7) of the quasi interpolation operator jj to
obtain

(p — P, div (vp — jrvp))o = (V(P — Pu),vp — Jrtp)e

= eV (P — pn),vp — JrUp)o
< Su({0,p = pn}, {0, p — pn}) /2w (vp — jnvp) e
S v hllu = unllloplio
<

Vp
1/2
v P hlu = unll Ip = pale

where we used the stability property of v, in the last inequality. Furthermore, we
have

(o(v —vn), jnvp)a + (B @ (v —vn), V(jnvp))a
= (o(v —vn), jnvp)a — (v — vn, (B - V)jrvp)a
< (2 +|Blo ) lu — wnl |invpli.0-

Similarly we obtain after application of the Cauchy-Schwarz inequality and (5.5),

(uV (v —wvn), Virvp)a — Sh(u — up, {jrvp, 0})

<2V (v = vl Vinvpla + Sh(u — up,u — un)?Sp({jnvy, 0}, {jnvy, 01)/2
< Jlu = unll (12 + i *)jnvnli.o-

Collecting terms and using (5.16) gives the assertion. O
COROLLARY 5.9. For the solution of (5.2) there holds

Ipnld S unll® = Aun, un) + Sn(un, un).

Hence the pressure is unique.
Proof. Modifying the proof of Lemma 5.8 we have

Ipnle S allunll,

and we conclude applying Lemma 5.2. O
14



5.1. Realistic regularities. The aim of the smoothness assumptions above is
to show that the discretization allows for the quasi optimal a priori error estimates
that are characteristic for stabilized methods. However, for the case of turbulent flow
this may seem overly optimistic and we will therefore discuss what we may prove
rigorously in the case where the pressure is only in H'(Q) and the velocities are in
[H2()]?. The regularity of the pressure is only necessary for the upper bound of
the stabilizing term of Lemma 5.5. The lower regularity will give the modified upper
bound

Su(inu. jnu)'/? < il * el + v lpli o
Clearly now the estimates will be dominated by the term 1/;/2 lIpll1,e which leads to a
convergence order of only h'/2 for the previous optimal choice of vr. It is tempting
to decrease the stabilization of the pressure to vr ~ h? in order to recover optimality
of the estimate. However, it follows from the proof of Theorem 5.7 that one then also
has to increase the control of the incompressibility condition, demanding

||2hdiv Uh"Q < S(uh,uh),
so that

|(p — jrp,divE’)e| = [(p — jrp, divE” —TdivE")q]
<|p = jupla S(un, us)-

Numerical experiments indicate that this introduces excessive damping of the small
scales so it is questionable whether this strategy is advisable.

In the case of low local Peclet number, i.e. |8|h < p, and if {v,p} € [H?()]¢ x
H'(Q), one easily shows that the choice u7 = 0 and v ~ h? leads to optimal a priori
error estimates in the energy norm by Theorem 5.7. An error estimate in the L?-norm
for the velocities may then be recovered using a standard Nitsche duality argument.

6. Relation to classical stabilized methods. The VMS approach for large
eddy simulations was inspired by the residual-free bubble techniques which in their
turn were introduced as a theoretical background for the streamline diffusion method.
In this last section, we will try to close the loop by showing the relation between
the local projection method (LPS) analyzed in this paper and the Galerkin Least-
Squares (GLS) method or the residual-free bubble method. A key feature of the
proposed method is the weak consistency: the fact that the stabilization enjoys the
right asymptotic behavior without strong consistency allows us to decouple the sta-
bilization of the pressure and the velocities and even more importantly allows us to
decouple the stabilization from time-stepping terms and source terms. However, to
show the relation to the GLS we will reintroduce the strong consistency. To this end
consider the full differential operator in the stabilization

p(u) :=ov+div(B®v) — pAv+ Vp.
This gives the subgrid viscosity
Sgts (un, @) == (pr2np(un), np(@))n + (prsendivop, 2, dive)a, (6.1)

where (-,-), := >k (-,)x. To make the formulation strongly consistent we perturb
the right hand side and obtain

A(”h:@) +Sgls(’u‘h7(p) = (f,i/l'l-,UTﬁhp((ﬂ))h V(p € Xh' (62)
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The consistency follows noting that for the exact solution u we have

—_
<
u\/

|
=
B
—~
SN
A
=

|

—~

|
S
T
=
ﬂ

|
S
B
—~
S
SN
A
=

Sgis(u, ) — (fs przenp(p))n = (prsnp

We have thus reformulated the local projection method as a GLS formulation
with the stabilization acting only on the small scales. Recalling the form (3.8), this
may be interpreted as solving for the fine scales using GLS and then stabilizing the
large scales using the fine scale information as in a residual-free bubble approach. An
important difference however is that the local projection approach using (6.1) do not
impose any artificial boundary conditions on the fine scale solution contrary to the
case of residual-free bubbles. Therefore, no spatial restrictions are posed on small
scale interaction. This should be a definite advantage for nonlinear problems.

We will outline how to prove an a priori error estimate for (6.1). In fact, after
minor modifications, Theorem 5.7 remains true. We first note that

Sgis(w — jru,u — jau) = (prznp(u — jaun), 2np(w — jaw))n
-l-(,uTﬁhdiV (U — jhvh); apdiv (U — jh'[}))Q ,

has the right asymptotic, which is immediate assuming optimal approximation for
the second derivatives. The key observation that has to be made is then that for the
viscosity term in the expression A(n, &) there holds

4V, VEY) = (0", —pAE ) + Y _(un", VE" -n)ok -
K

The first part now is added to the pressure term, the convection term and the low
order term to form the full residual.

(0", p(E)n = (0", 321.p())n

< = jnv)a Syis (€, €)M

—1/2 .
< s = jav)la 1l

where || - ||lg15 is the analogous norm to || - | where Sy, is replaced by Sgs. For the

second term we have using a Cauchy-Schwarz inequality followed by a trace inequality
and an inverse inequality (recalling that u < h|3|)

>’ VE - n)ox S Y (W Iz + RIVH 7)Y
K K

- (WhTH PV E ke + ph PV E | )M
SH Y2 grs -

7. Concluding remarks. We have proposed and analyzed a stabilized finite
element method based on local projections. We have shown that the method can
be formulated in a multiscale setting, hence rigorously establishing a link between
stabilized methods and the variational multiscale method (VMS) for Navier-Stokes
equations. Moreover, we discussed how the choices of subgrid viscosities may influence
the precision of the computation. To assure stability of the large scales a sufficient
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condition on the characteristic length scale of the subgrid model for a linearized model
problem is established for the case of high Reynolds number. This condition coincides
with the condition for optimal-order convergence for the stabilized method when the
underlying exact solution is smooth. We hope that this contribution will give ad-
ditional insight in the close relationship between VMS and stabilized finite element
methods. Numerical simulations will be reported in a forthcoming paper.
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