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Abstract

In this paper we extend the recently introduced edge stabilization method to the
case of nonconforming finite element approximations of the linearized Navier-Stokes
equation. To get stability also in the convective dominated regime we add a term
giving L2-control of the jump in the gradient over element boundaries. An a priori
error estimate that is uniform in the Reynolds number is proved and some numerical
examples are presented.
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1 Introduction

The solution of the Navier-Stokes equations for incompressible flow using finite
element methods remains a challenging problem, in particular if the objective
is to construct a method which remains robust and accurate for a wide range
of Reynolds numbers. The discretization must assure not only satisfaction
of the Babŭska-Brezzi condition but also stabilization of the convective terms
and sufficient control of the incompressibility condition. Approximations using
non-conforming Crouzeix-Raviart (CR) elements are attractive for the velocity
approximation in combination with elementwise constant pressures, since they
satisfy the Babŭska-Brezzi condition and have local conservation properties.
This discretization was proposed and analyzed in [13] and a stabilized version
using the streamline diffusion stabilization was analyzed in [11]. In neither
of these cases the high Reynolds number limit was treated. Moreover, in a
recent paper, [4], the authors showed that a stabilized nonconforming finite
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element method using the Crouzeix-Raviart element remains uniformly stable
in the vanishing viscosity limit for the generalized Stokes’ equation. However,
the discretization of convection dominated problems using CR-elements are
not stable without both a weak coupling on the element inflow boundary
as in the discontinuous Galerkin method and streamline diffusion stabiliza-
tion of the convective terms in the interior of the element (see [10,9,12]). In
this respect, the element needs stabilization from both the streamline diffusion
method and the discontinuous Galerkin method. Considering the fact that the
method uses more degrees of freedom than the continuous Galerkin approxi-
mation this seems suboptimal. Moreover, the streamline diffusion stabilization
has the drawback that it does not permit lumped mass for time stepping. In
this paper we therefore propose to apply the recently introduced edge stabi-
lization operator (see [2,3]) to the lowest order Crouzeix-Raviart element for
the stabilization of the convective terms. We prove that this operator stabi-
lizes exactly that part of the convective term which is not already included
in the approximation space. In this sense this is the smallest perturbation
needed to make the Crouzeix-Raviart element stable for convection-diffusion
problems. This stabilization method has the advantage, as compared to other
stabilized methods, that we may lump mass for efficient timestepping, we do
not add any additional degrees of freedom, and we do not need any special
structure of the mesh. For Oseen’s equation we prove an optimal a priori error
estimate in the energy norm independent of the Reynolds number. Another
attractive feature of the proposed stabilization is that, unlike SUPG, here the
stabilization parameter is independent of the flow regime; we illustrate this by
proving an L2 a priori error estimate for the velocities in the case of low local
Reynolds number. Finally, we study the performance of the numerical scheme
on some linear and nonlinear model cases.

2 A finite element method for the Oseen’s equation

We consider, in Ω ⊂ R
d with boundary ∂Ω, the problem of solving

σ u + β · ∇u + ∇p − 2µ∇ · ε(u) = f , in Ω

∇ · u = 0, in Ω

u = 0 on ∂Ω

(1)

where u, β ∈ [H1
0 (Ω) ∩ H0(div; Ω)]d, β ∈ W 1,∞(Ω), p ∈ L2

0(Ω), f is a given
source term, σ and µ are bounded positive functions. By H0(div; Ω) we denote
the functions in [L2(Ω)]d such that ∇ · u = 0, and by L2

0(Ω) the functions
in L2(Ω) with zero mean value. The weak form of this problem is to find
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(u, p) ∈ [H1
0 (Ω)]d × L2

0(Ω) such that











a(u, v) + b(p, v) = (f , v)

b(q, u) = 0
(2)

∀ (v, q) ∈ [H1
0 (Ω)]d × L2

0(Ω),

where

a(u, v) := (σ u, v) + (β · ∇u, v) + 2(µε(u), ε(v))

b(p, v) = −(p,∇ · v) and (f , v) := (f , v).

We let (·, ·) denote the L2-scalar product with the corresponding norm ‖ · ‖ =
(·, ·)1/2. The Hs(Ω) norm will be denoted by ‖ · ‖s,Ω. The well posedness of
the above problem follows by the Lax-Milgram lemma applied in the space
[H1

0 (Ω)]d∩H0(div; Ω). The finite element method consists of seeking a piecewise
polynomial approximation uh ∈ Vh, ph ∈ Qh. We let Vh denote the space of the
lowest order non-conforming Crouzeix-Raviart elements. Let Th denote a shape
regular triangulation of the domain Ω, E(K) the set of all faces of an element
K ∈ Th, E := ∪K∈Th

E(K) the set of all faces in Th, E∂Ω := {e ∈ E : e ⊂ ∂Ω},
and E0 := E \ E∂Ω the set of the boundary and inner faces respectively. For a
given piecewise continuous function ϕ, the jump [ϕ] and the average {ϕ} on
a face e ∈ E are defined by

[ϕ](x) :=











lims→0+(ϕ(x + sn) − ϕ(x − sn)) if e 6⊂ ∂Ω

lims→0+ = −ϕ(x − sn) if e ⊂ ∂Ω

{ϕ}(x) :=











1
2
lims→0+(ϕ(x + sn) + ϕ(x − sn)) if e 6⊂ ∂Ω

1
2
lims→0+2ϕ(x − sn) if e ⊂ ∂Ω

where n is a normal unit vector on e and x ∈ e. If e ⊂ ∂Ω we choose the orien-
tation of n to be outward with respect to Ω otherwise n has an arbitrary but
fixed orientation. For the nonconforming finite element functions, continuity
across edges e will only be enforced with respect to

je(vh) :=
∫

e
[vh] ds.

Using this definition our finite element space may be defined as

Vh := {vh ∈ [L2(Ω)]d : vh|K ∈ [P1(K)]d, ∀K ∈ Th, je(vh) = 0, ∀e ∈ E}.

Moreover we introduce the space of piecewise constants with mean value zero,

Qh := {qh ∈ L2
0(Ω) : qh|K ∈ P0(K)},
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and the subspace Wh of Vh such that

Wh := {wh ∈ Vh : (∇ · wh, qh)h = 0, ∀qh ∈ Qh}

where (∇ · wh, qh)h =
∑

K(∇ · wh, qh)K . Since the above spaces are H1-
nonconforming we introduce the broken norm equivalent of the L2-norm

‖u‖2
h =

∑

K

‖u‖2
K .

and the broken H1-seminorm

|u|2h =
∑

K

|u|21,K.

The local mesh size is defined by

hK := max
K

h∂K ,

and we will assume that hK/h∂K < C where C is a fixed constant. We will use
C and c as generic constants taking different values every time. To indicate
their provenance or main dependence, a subscript may be added, e.g., cµ. We
introduce the interpolation operator rhu : [H1(Ω)]d → V h defined by

rhu(xe) =
1

|e|

∫

e
uds,

where xe is the midpoint of the edge e. The L2-projections onto the spaces are
also required for the analysis. Let π0,h : L2(K) → P0(K), πd

0,h : [L2(K)]d →
[P0(K)]d denote the L2-projection onto the constant functions on K and
π1,h : [L2(K)]d → Vh the standard L2-projection onto the finite element space.
For the above defined interpolation operator and projections we need some
approximation and stability properties. These, and some inverse inequalities
are collected in the following lemmas

Lemma 1 For the interpolation operator rh there holds, if u ∈ [H2(Ω)]d then

‖rhu − u‖h + h|rhu − u|h ≤ Crh
2. (3)

Moreover, if ∇ · u = 0 then rhu ∈ Wh.

PROOF. The proof of the interpolation estimate is given by Crouzeix and
Raviart [7]. The second claim is immediate noting that

∫

K
∇ · rhudx =

∫

K
∇ · udx = 0

by the definition of the interpolant.
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Lemma 2 For the L2 projection the following H1 stability holds,

|π1,hu|h ≤ Cs‖u‖1,Ω.

For the error analysis, we shall use the following trace inequality

Lemma 3 For v ∈ H1(K) there holds

‖v‖2
∂K ≤ Ct

(

h−1
K ‖v‖2

K + hK‖v‖2
1,K

)

∀v ∈ H1(K), (4)

where Ct is a constant independent of hK

We also need the following local inverse inequality.

Lemma 4 Let uh ∈ Vh where Vh is defined on a shape regular mesh then

‖∇uh‖K ≤ h−1
K Ci‖uh‖K ,

with Ci independent of K.

PROOF. For proofs of lemmas 2–4, see , respectively, Carstensen [5], Thomée
[14], and Ciarlet [6].

Our finite element method reads: find uh ∈ Vh such that










ah(uh, vh) + bh(ph, vh) + ju(uh, vh) = (f , vh)

bh(qh, uh) = 0
(5)

∀ (vh, qh) ∈ Vh × Qh,

where

ah(uh, vh) = (σuh + β · ∇uh, vh)h −
1

2

∑

K

〈β · n[uh], {vh}〉∂K

+ (2µε(uh), ε(vh))h, (6)

bh(ph, vh) = −(ph,∇ · vh)h. (7)

and the jump terms take the form

ju(uh, v) =
∑

K

∫

∂K\∂Ω
γβh2

∂Kβh · [∇uh]βh · [∇v]ds

+
∑

K

∫

∂K
γa(µ + |β · n|h∂K)h∂K [t · ∇uh][t · ∇v]ds

+
∑

K

γa

∫

∂K
h∂K [(t · ∇uh) · n][(t · ∇v) · n]ds.

(8)
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Here βh is the interpolant of β on Wh and t is a unit vector perpendicular to
n. The gradient jump term serves three purposes. It stabilizes the convective
terms (the first sum in (8)), it assures that Korn’s inequality is satisfied (the
γaµ part of the second sum in (8)), it gives additional control of the divergence
inconsistency error (the third sum in (8)). The last two properties can be
obtained by introducing a lower order penalizing term (see [4]), but the use of
the jump of the gradient has the advantage of allowing for one point quadrature
in the implementation and from the point of view of analysis it is practical.
In the case of three space dimensions the tangent vector should be replaced
by the tangent tensor ∇uh × n. In the following we will for simplicity only
consider the two dimensional case for the tangent vectors.

Remark 5 The analysis below holds with only minor modifications if β is re-
placed by βh also in the convective term. This is convenient when timestepping
the Navier-Stokes equation: β may be taken as the solution uh of the previous
timestep.

In the analysis we will not distinguish between the different stabilization pa-
rameters, they will all be denoted γ. We introduce the following shorthand
notation

A[(uh, ph), (wh, qh)] = ah(uh, vh) + bh(ph, vh) − bh(qh, uh).

To simplify the analysis we will assume that the exact solution (u, p) belongs to
[H2(Ω)]d×H1(Ω); it then follows that the formulation (5) enjoys the following
consistency property.

Lemma 6 For u ∈ H2(Ω) and p ∈ H1(Ω) there holds

A[(u − uh, p − ph), (vh, qh)] + ju(u − uh, vh) = R(u, p, vh) (9)

for all (vh, qh) ∈ V h × Qh. Where the consistency error due to the noncon-
forming approximation is given by

R(u, p, vh) = −
1

2

∑

K

〈2µε(u) · n, [vh]〉∂K +
1

2

∑

K

〈p, [vh · n]〉∂K

PROOF. This is an immediate consequence of the regularity hypothesis: if
u ∈ H2(Ω) then the trace of ∇u is well defined and hence j(u, vh) = 0. The
consistency error is obtained by integration by parts,

∑

K

(2µε(u), ε(vh)) =
∑

K

(−2µ∇ · ε(u), vh) +
1

2
〈2µε(u) · n, [vh]〉∂K ,

and

−
∑

K

(p,∇ · vh)K = (∇p, vh) −
1

2

∑

K

〈p, [vh · n]〉∂K .
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2.1 Preliminary lemmas

In this section we will prove some preliminary results that will facilitate the
analysis. The main result of this section is lemma 7 where we show that that
the jump-term (8) controls the difference between the convective derivative
and its quasi interpolant on the finite element space. This lemma is the key
ingredient to derive error bounds that are independent of the Peclet number.
Then we prove the coercivity of the bilinear form. The triple norm that we
will use is given by

|‖(wh, qh)‖|
2 = ‖σ1/2wh‖

2
h + |µ1/2wh|

2
h + ‖∇ · wh‖

2
h + ju(wh, wh) + cp‖qh‖

2

where cp is a constant depending on the problem parameters σ, µ, β to be
specified later. Note that although for the Crouzeix-Raviart element ∇·uh = 0
on each triangle the formulation must include a stabilization of the jump of the
normal velocity due to the H(div, Ω) consistency error. Therefore the triple
norm must be chosen as a discrete norm on (H(div, Ω) ∩ µ1/2[H1

0 (Ω)]d) ×
L2

0(Ω). The triple norm is dominated, at low Reynolds numbers, by the H1(Ω)
contribution, and at high Reynolds numbers by the part of the jump term
controlling the inconsistency in the divergence. This latter term prohibits the
decoupling of the velocities and the pressure and the order of the estimate
can be no better that the approximation properties of the pressure space. We
introduce the space of functions that are piecewise linear on each element

Yh = [{y ∈ L2(Ω) : y|K ∈ P1(K)}]d.

We now introduce a quasi interpolant based on local averages π̄h : Yh → Vh.
Let xi be the midpoint of the face shared by element K and element K ′ then

π̄hu(xi) =











{u(xi)} for xi an interior node

u(xi) for xi a boundary node

In the following lemma we prove that the projection error is bounded by the
jumps in the gradient.

Lemma 7 Let βh ∈ Vh and wh ∈ Vh then

‖h1/2(βh · ∇wh − π̄h(βh · ∇wh))‖
2 ≤ jβ(wh, wh)

where jβ(wh, wh) is given by

jβ(wh, wh) =
∑

K

γβ

∫

∂K\∂Ω
hKh∂K⊥(βh · [∇wh])

2ds

with h∂K⊥ denoting the triangle size perpendicular to the side on ∂K and γβ

is a parameter depending only on the number of space dimensions.
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PROOF. First note that (Vh ·∇)Vh ⊂ Yh so that the projection π̄h(βh ·∇wh)
makes sense. Now consider any triangle K and note that using the Crouzeix-
Raviart basis functions {ϕi}

d
i=1, with ϕi associated with node xi we may write

βh · ∇wh|K =
d+1
∑

i=1

βh · ∇wh(xi)ϕi(x)

and

π̄h(βh · ∇wh)|K =
d+1
∑

i=1

{βh · ∇wh(xi)}ϕi(x).

Taking the difference of the two functions in a nodal point yields

βh · ∇wh(xi)|K − {βh · ∇wh(xi)} = βh(xi) · [∇wh(xi)].

Note that if the node is on the boundary, the right hand side is zero. It follows
that for any K ∈ Th such that ∂K ∩ ∂Ω = ∅

‖h1/2(βh · ∇wh − π̄hβh · ∇wh)‖
2
K

=
∫

K
hK

(

d+1
∑

i=1

(βh · ∇wh(xi) − {βh · ∇wh})ϕi

)2

dx

≤
∫

K
hK

(

d+1
∑

i=1

βh · [∇wh]ϕi

)2

dx. (10)

We now evaluate the integral using nodal point quadrature and note that since
the nodes of the Crouzeix-Raviart element are on the midpoints of the element
sides this is exact for second degree polynomials in two space dimensions, hence

‖h
1/2
K (βh · ∇wh − π̄hβh · ∇wh)‖

2
K =

3
∑

k=1

hK
mK

3
βh(xk) · [∇uh]

2

=
3
∑

k=1

hKh⊥
∂K

m∂Kk

6
βh(xk) · [∇uh(xk)]

2 (11)

where m∂Kk
=
∫

∂Kk
dx with ∂Kk the face associated with quadrature point k.

In three space dimensions the midpoints of the faces has to be supplemented
with the six midpoints of the edges of the tetrahedron to yield an exact quadra-
ture formula (with weights 1/15 for the midpoints of the faces and 3/20 for
the midpoints of the edges). One may then easily show that

‖h
1/2
K (βh · ∇wh − π̄hβh · ∇wh)‖

2
K

≤
5

6

3
∑

k=1

hKh⊥
∂K

m∂Kk

6
(βh(xk) · [∇uh(xk)])

2 (12)

It follows, using the Simpson quadrature formula in two dimensions and a
quadrature taking the midpoint of the face and the corner-points in three
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dimensions and noting that the weight for the midpoint is d
d+1

, that

‖h1/2(βh · ∇wh − π̄h(βh · ∇wh))‖
2
K ≤ γd

∫

∂K
hKh∂K⊥(βh · [∇uh])

2ds. (13)

Where γd = 1/4 in two dimensions and γd = 10/9 in three dimensions. We
conclude by taking the sum over all triangles K ∈ T noting that all boundary
contributions vanishes thanks to the definitions of the quasi interpolant.

Remark 8 A consequence of the above proof is that the jump term edge in-
tegral may be evaluated using midpoint quadrature on the faces. In fact the
first part of the jump operator given in (8) can be substituted by the discrete
operator given by (11) in two space dimensions and by (12) in three to get op-
timal values of the stabilization constants. The integral formulation however
still remains practical from a theoretical viewpoint since it is consistent for
H2-regular solutions.

As was pointed out in the previous section we only stabilize using the jumps
in the gradient. However we need to establish a result showing the equivalence
between the jumps in the solution and the jumps in the tangential gradient.

Lemma 9 For the interior penalty term (8) there holds

∑

K

‖µ1/2h−1/2[wh]‖
2
∂K ≤ cju(wh, wh),

∑

K

‖h−1/2[wh · n]‖2
∂K ≤ cju(wh, wh)

and
ju(wh, wh) ≤ cγ|wh|h

for all wh ∈ Vh.

PROOF. By the midpoint continuity of the Crouzeix-Raviart element we
note that we may write, with ξ a coordinate along e with midpoint ξi,

[wh(ξ)]|e = [t · ∇wh]|e(ξ − ξi)

and
[wh(ξ) · n]|e = [(t · ∇wh) · n]|e(ξ − ξi).

Hence we have

∫

e
[wh(ξ)]

2dξ =
∫

e
([t · ∇wh](ξ − ξi))

2dξ =
1

12

∫

e
h2

e[t · ∇wh]
2dξ

which proves the first claim. The proof of the second claim is equivalent. The
last claim finally is an immediate consequence of the trace inequality (4).
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Lemma 10 For the consistency error the following upper bound holds

|R(u, p, vh)| ≤ (cµh‖u‖2,Ω + Ch‖p‖1,Ω) ju(vh, vh)

PROOF. Using the zero mean value property of the Crouzeix-Raviart space
followed by the Cauchy-Schwarz inequality we obtain

R(u, p, vh) ≤ c

(

∑

K

‖h1/2(2µ)1/2(ε(u) · n − πd
0,hε(u) · n)‖2

∂K

)1/2

·

(

∑

K

‖µ1/2h−1/2[vh]‖
2
∂K

)1/2

+ c

(

∑

K

hK‖p − π0,hp‖
2
∂K

)1/2 (
∑

K

h−1
K ‖[vh · n]‖2

∂K

)1/2

. (14)

The claim now follows using the trace inequality (4), standard interpolation
and lemma 9.

Let us now investigate the coercivity properties of the discretization of the
convective terms.

Lemma 11 For the convective terms there holds

(β · ∇uh, uh)h =
1

2

∑

K

〈β · n[uh], {uh}〉 (15)

PROOF. The result follows by integrating by parts elementwise in the left
hand side and using the equality [xy] = [x]{y} + {x}[y]. The integration by
parts yields

∑

K

(β · ∇uh, uh)K =
1

2

∑

K

∫

∂K
[β · nuh · uh] ds −

∑

K

(uh, β · ∇uh)K . (16)

We rewrite the edge term in the following fashion

[β · n uh · uh] = 2β · n[uh] · {uh} (17)

and the proof is completed using (17) in (16).

To prove the coercivity of our operator we also need the following discrete
Korn’s inequality
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Lemma 12 For wh ∈ Vh there holds

C2
K |µ1/2wh|

2
h ≤ ‖(2µ)1/2ε(wh)‖

2
h + ju(wh, wh).

PROOF. See Brenner [1].

The coercivity of our formulation is an immediate consequence of lemma 11
and lemma 12.

Lemma 13 For all (wh, qh) ∈ Vh × Qh there holds

C2
K |µ1/2wh|

2
h + ‖σ1/2wh‖

2 ≤ A[(wh, qh), (wh, qh)]

PROOF. First of all notice that the terms bh(uh, ph) cancel. We may write

A[(wh, qh), (wh, qh)] = ‖σ1/2wh‖
2
h + ‖(2µ)1/2ε(wh)‖

2
h + (β · ∇wh, wh)h

−
1

2

∑

K

〈β · n[wh], {wh}〉 .

Using lemma 11 for the convective term we get

(β · ∇wh, wh) −
1

2

∑

K

〈β · n[wh], {wh}〉 = 0.

The proof is then completed by applying lemma 12.

3 Stability

In this section we will prove an inf-sup condition for our discretization vital
for the convergence analysis.

Theorem 14 (Stability). If (uf , ph) ∈ Vh × Qh then there holds

cis|‖(uh, ph)‖| ≤ sup
(wh,qh)∈Vh×Qh

A[(uh, ph), (wh, qh)] + ju(uh, wh)

|‖(wh, qh)‖|
(18)

where the constant cis depends only on the parameters µ,σ,β,γ and remains
bounded from below when µ → 0.
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PROOF. We prove the above inf-sup condition in two steps. First we will
prove that there exists (wh, qh) ∈ Vh × Qh such that

|‖(uh, ph)‖|
2 ≤ A[(uh, ph), (wh, qh)] + ju(uh, wh) (19)

and then we conclude by proving that

|‖(wh, qh)‖| ≤ C|‖(uh, ph)‖|.

For the first step we note that by lemma 13 we have choosing wh = uh, qh = ph

C2
K |µ1/2uh|

2
h+‖σ1/2uh‖

2+ju(uh, uh) ≤ A[(uh, ph), (uh, ph)]+ju(uh, uh) (20)

To control the L2-norm of the pressure we note, following [8], that by the
surjectivity of the divergence operator there exists a function vp ∈ [H1

0 (Ω)]d

such that ∇·vp = ph and |vp|1,Ω ≤ c‖ph‖. Therefore we now choose wh = rhvp

and qh = ∇ · uh. By the stability of the quasi interpolation operator rh we
have

‖rhvp‖ + |rhvp|h ≤ c‖ph‖. (21)

Moreover, using the definition of the quasi-interpolant rhvp we have

‖ph‖
2 = (ph,∇ · vp) =

∑

e

〈[ph], vp · n〉e =

∑

e

〈[ph], rhvp · n〉e = (ph,∇ · rhvp)h. (22)

As a consequence of (22) we may write

A[(uh, ph), (rhvp,∇ · uh)] + ju(uh, rhvp) = ‖ph‖
2 + ‖∇ · uh‖

2

+ (σuh, rhvp) + (µ∇uh,∇rhvp)h + (β · ∇uh, rhvp)

−
1

2

∑

K

〈β · n[uh], {rhvp}〉∂K + ju(uh, rhvp). (23)

Using Cauchy-Schwarz inequality, Young’s inequality, and the stability (21),
we readily deduce

(σuh, rhvp) ≥ −cσ‖σ
1/2uh‖

2 −
1

8
‖ph‖

2, (24)

(2µε(uh), ε(rhvp))h ≥ −cµ|µ
1/2uh|

2
h −

1

8
‖ph‖

2, (25)

and by applying the third inequality of lemma 9

ju(uh, rhvp) ≥ −ju(uh, uh)
1/2ju(rhvp, rhvp)

1/2 ≥ −cγju(uh, uh) −
1

8
‖ph‖

2.

(26)

12



It now remains to bound the convective term. An integration by parts yields

(β · ∇uh, rhvp) −
1

2

∑

K

〈β · n[uh], {rhvp}〉∂K

= (uh, β · ∇rhvp) −
1

2

∑

K

〈β · n{uh}, [rhvp]〉∂K (27)

For the first term we clearly have

(uh, β · ∇rhvp) ≥ −2c‖β‖L∞(Ω)‖uh‖‖ph‖. (28)

For the second we use the H1-regularity of vp, the trace inequality (4) and
the local inverse inequality to obtain

1

2

∑

K

〈β · n{uh}, [rhvp − vp]〉∂K ≥ −2
∑

K

‖β‖L∞(K)‖uh‖∂K‖rhvp − vp‖∂K

≥ −2
∑

K

‖β‖L∞(K)(h
−1
K ‖uh‖

2
K + hK‖uh‖

2
1,K)1/2h

1/2
K ‖vp‖1,K

≥ −2Cic‖β‖L∞(Ω)‖uh‖ ‖ph‖. (29)

Combining (28) and (29) we obtain

(β · ∇uh, rhvp) −
1

2

∑

K

〈β · n[uh], rhvp〉∂K ≥ cβ‖uh‖
2
Ω −

1

8
‖ph‖

2. (30)

Using now (24)–(26) and (30) to find a lower bound for the expression (23)
we get

A[(uh, ph), (rhvp,∇ · uh)] + ju(uh, rhvp) =
1

2
‖ph‖

2 + ‖∇ · uh‖
2

− Cµσβγ(‖σ
1/2uh‖

2 + |µ1/2uh|
2
h + ju(uh, uh)) (31)

where

Cµσβγ = max

(

cσ,
cβ

σ
,

cµ

C2
K

, cγ

)

.

Combining (20) and (31) we conclude that (19) holds for the choice wh =
uh + (2Cµσβγ)

−1rhvp, qh = ph + ∇ · uh. More precisely we have, with cp =
(2Cµσβγ)

−1,

1

2
|‖(uh, ph)‖|

2 ≤ A[(uh, ph), (wh, qh)] + ju(uh, wh). (32)

It remains to prove that

|‖(wh, qh)‖| ≤ C|‖(uh, ph)‖|

this is obtained simply by noting that

|µ1/2wh|
2
h ≤ |µ1/2uh|

2
h + |µ1/2cprhvp|

2
h ≤ |µ1/2uh|

2
h + µc2

pc‖ph‖
2. (33)

13



Proceeding in the same fashion for the other terms in the triple norm yields

|‖(wh, qh)‖|
2 = |µ1/2wh|

2
h + ‖σ1/2wh‖

2 + ju(wh, wh) + ‖∇ · wh‖
2 + ‖qh‖

2

≤ |µ1/2uh|
2
h + ‖σ1/2uh‖

2 + j(uh, uh)

+2‖∇ · uh‖
2 + C‖ph‖

2

≤ C|‖(uh, ph)‖|
2

(34)
and we conclude that

cis|‖(uh, ph)‖||‖(wh, qh)‖| ≤ |‖(uh, ph)‖|
2 ≤ A[(uh, ph), (wh, qh)] + ju(uh, wh).

Clearly the constant cis is independent of h and furthermore it does not vanish
for vanishing µ.

4 Error estimates

We will now proceed to derive a priori error estimates in the triple norm. The
estimate takes the form

|‖(u − uh, p − ph)‖| ≤ Ch

The energy norm estimate is independent of the Peclet number, indicating that
the proposed method should be stable for a wide range of Reynolds numbers
when applied to the full Navier-Stokes equations.

Lemma 15 (Approximation) Consider the projection (π1,hu, π0,hp) of the ex-
act solution

(u, p) ∈ [H2(Ω)]d × H1(Ω)

onto the finite element space Vh × Qh. For the projection error there holds

|‖(π1,hu − u, π0,hp − p)‖| ≤ Ch

where C ≤ c(1 + µ1/2 + |β|1/2h1/2 + σ1/2h + γ1/2)‖u‖2,Ω + cπ‖p‖1,Ω.

PROOF. By the optimal approximation property of the L2-projection we
have

‖σ1/2(π1,hu − u)‖ ≤ cσh
2

and

‖π0,hp − p‖ ≤ Ch.

14



We now consider rhu − π1,hu. Noting that rhu − π1,hu = π1,h(rhu − u) we
obtain using the H1-stability of the L2-projection for the Crouzeix–Raviart
element on locally quasi uniform meshes, (see [5])

‖∇(rhu − π1,hu)‖h ≤ Cs‖∇(rhu − u)‖h ≤ CsCrh (35)

and we conclude that

‖µ1/2∇(u − π1,hu)‖h ≤ cµh

and

‖∇ · (u − π1,hu)‖h ≤ Ch.

Finally we estimate the penalizing term ju(π1,hu − u, π1,hu − u)

∑

K

∫

∂K
[∇(π1,hu − u)]2ds ≤ 2

∑

K

∫

∂K
(∇(π1,hu − u))2ds

≤ 2
∑

K

(h−1
K ‖∇(π1,hu − u)‖2

K + hK‖u‖2
2,K) ≤ Ch

where we have used the trace inequality (4) in the second inequality. We
conclude that

ju(π1,hu − u, π1,hu − u)1/2 ≤ cγ1/2(1 + µ1/2 + |β|1/2h1/2)h‖u‖2,Ω

Lemma 16 (Continuity). Let η = π1,hu−u and ζ = π0,hp−p be the projection
error of the velocity and the pressure respectively, then there holds

A[(η, ζ), (wh, qh)] + ju(η, wh) − R(u, p, wh)

≤ C(|‖(η, ζ)‖|+ (cµ + cβh1/2)h‖u‖2,Ω + Ch‖p‖1,Ω)|‖(wh, qh)‖|

PROOF. Clearly we have using Cauchy-Schwarz inequality

(ση, wh) ≤ C‖σ1/2η‖|‖(wh, 0)‖| ≤ cσ|‖(η, ζ)‖||‖(wh, qh)‖|,

(2µε(η), ε(wh)) ≤ C|µ1/2η|h|‖(wh, 0)‖| ≤ cµ|‖(η, ζ)‖||‖(wh, qh)‖|.

ju(η, wh) ≤ |‖(η, ζ)‖||‖(wh, qh)‖|

We consider now the terms expressing the pressure velocity coupling. By the
orthogonality of the L2-projection π0,h we have

b(ζ, wh) = (π0,hp − p,∇ · wh)h = 0.

Using once again the Cauchy-Schwartz inequality we readily obtain

b(qh, η) = (qh,∇ · η)h ≤ |‖(wh, qh)‖| |‖(η, ζ)‖|.
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It remains to treat the convective term and the nonconsistency term. Let us
first consider the convective term, an integration by parts yield together with
the addition and substraction of βh yields

(β ·∇η, wh)−
1

2

∑

K

〈β · n[η], {wh}〉 = −(η, (β−βh) ·∇wh)− (η, βh ·∇wh)

+
1

2

∑

K

〈β · n, {η}[wh]〉 = I + II + III. (36)

The first term is controlled using a local inverse inequality and a local approx-
imation result for β − βh.

I ≤ ‖η‖

(

∑

K

‖β‖2
W 1,∞(K)h

2
K‖∇wh‖

2

)1/2

≤ cβ‖η‖Ci‖wh‖ ≤ cβh2|‖(wh, qh)‖|‖ ‖u‖2,Ω

Using lemma 7 we have for the term II

II = ((η, (βh · ∇wh − π̄h(βh · ∇wh)))

≤ ‖h−1/2η‖‖h1/2(βh · ∇wh − π̄h(β · ∇wh))‖

≤ γ−1/2‖h−1/2η‖ju(wh, wh) ≤ cγh
3/2|‖(wh, qh)‖| ‖u‖2,Ω. (37)

For the term III we obtain using the trace inequality (4) and the approxima-
tion properties of the L2-projection.

III ≤

(

∑

K

〈

|β · n|1/2[wh], [wh]
〉

∂K

)1/2

‖β · n‖
1/2
L∞(K)‖{η}‖∂K

≤ j(wh, wh)
1/2
∑

K

‖β · n‖
1/2
L∞(K)‖{η}‖∂K

≤ j(wh, wh)
1/2cβh3/2 ‖u‖2,Ω.

Only the nonconsistent residual remains to be bounded and we conclude the
proof by applying lemma 10.

Theorem 17 Let (u, p) ∈ [H2(Ω)]d × H1(Ω) be the solution of (1) and let
(uh, qh) ∈ Vh × Qh be the finite element solution of (5). Then there holds

|‖(u − uh, p − ph)‖| ≤ (cσh + cµ + cβh1/2 + cγ)h‖u‖2,Ω

+ Ch‖ph‖1,Ω (38)
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PROOF. We will consider the discrete error eh
u = π1,hu − uh and eh

p =
π0,hp − ph since using lemma 15 we have

|‖(u − uh, p − ph)‖| ≤ |‖(u − π1,hu, p − π0,hp)‖|

+ |‖(π1,hu − uh, π0,hp − ph)‖|

≤ Ch + |‖(π1,hu − uh, π0,hp − ph)‖|

where C is the constant given in lemma 15. By lemma 14 we have

cis|‖(e
h
u, e

h
p)‖| ≤

A[(eh
u, e

h
p), (wh, qh)] + ju(e

h
u, wh)

|‖(wh, qh)‖|
(39)

Using now Galerkin orthogonality we may write

cis|‖(e
h
u, e

h
p)‖| ≤

A[(η, ζ), (wh, qh)] + ju(η, wh) − R(u, p, wh)

|‖(wh, qh)‖|
(40)

where η = π1,hu − u and ζ = π0,hp − p. We conclude the proof by applying
lemma 16 and lemma 15.

Remark 18 Since the estimate is only first order, due to the low order ap-
proximation of the pressure and the inclusion of the divergence in the triple
norm, the virtues of the streamline stabilization are not obvious. We could
in fact proceed with an inverse inequality in term II of (36) and still have
the same formal convergence order of the triple norm. It is however known
that this would destroy stability of the velocities for problems with important
gradients. This is illustrated in the numerical section.

As we mentioned in the introduction the interior penalty method is indepen-
dent of the Reynolds number. Of course, for low local Reynolds number the
numerical scheme is stable without stabilization (except for the Korn’s in-
equality), so that the stabilization may be eliminated. We will however show
that this is unnecessary for our discretization by proving that even when
keeping the stabilizing terms our discretization has optimal L2-convergence
of the velocities in the local low Reynolds number regime in spite of the fact
that γβ is independent of µ. Consider the dual continuous problem of seeking
φ ∈ [H1

0 (Ω)] and r ∈ L2
0(Ω) such that

σφ − β · ∇φ − 2µ∇ · ε(φ) + ∇r = e in Ω,

∇ · φ = 0 in Ω

(41)

where e := u − uh, and assume that we have the regularity estimate

‖φ‖H2(Ω) + ‖r‖H1(Ω) ≤ ‖e‖. (42)
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We recall that since uh ∈ Wh and rhφh ∈ Wh we have ∇ · e = 0 and ∇ · (φ−
rhφ) = 0 elementwise. Multiply the first line of (41) by e and integrate by
parts to obtain

‖e‖2 = ah(e, φ) + ju(e, φ) −
∑

K

〈2 µn · ε(φ), [e]〉∂K +
∑

K

〈r, [n · e]〉∂K .

Where we have used the partial integration

−(e, β · ∇φ) =
∑

K(β · ∇e, φ)K −
∑

K 〈β · ne, φ〉∂K

=
∑

K(β · ∇e, φ)K − 1
2

∑

K 〈β · n[e], {φ}〉∂K

and the divergence free property of the error and of φ. Using Galerkin or-
thogonality, the divergence free property of the interpolant and the zero mean
value property of the Crouzeix-Raviart element, we obtain

‖e‖2 = ah(e, φ − rhφ) + ju(e, φ − rhφ)

−
∑

K〈2 µ(n · ε(φ) − πd
0,hn · ε(φ)), [e]〉∂K

−
∑

K〈2 µ(n · ε(φ) − πd
0,hn · ε(φ)), [φ − rhφ]〉∂K

+
∑

K〈r − π0,hr, [n · e]〉∂K

+
∑

K〈p − π0,hp, [n · (φ − rhφ)]〉∂K

≤ |‖(e, 0)‖| |‖(φ− rhφ, 0)‖| + cβju(e, e)1/2 (
∑

K ‖φ − rhφ‖2
∂K)

1/2

+
(

∑

K hK‖2µ1/2(n · ε(φ) − πd
0,hn · ε(φ))‖2

L2(∂K)

)1/2
|‖(e, 0)‖|

+
(

∑

K hK‖r − π0,hr‖L2(∂K)

)1/2
|‖(e, 0)‖|

+
(

∑

K hK‖2µ1/2(n · ε(φ) − πd
0,hn · ε(φ))‖2

L2(∂K)

)1/2
|‖(φ − rhφ, 0)‖|

+
(

∑

K hK‖p − π0,hp‖L2(∂K)

)1/2
|‖(φ − rhφ, 0)‖|.

Using lemma 15, the trace inequality (4) and error estimates for rh and for
piecewise constant interpolation, we arrive at

‖e‖2 ≤ Ch
(

|‖(e, 0)‖| + h‖u‖H2(Ω) + h‖p‖H1(Ω)

) (

‖φ‖H2(Ω) + ‖r‖H1(Ω)

)

,

and thus we have

Theorem 19 Under the regularity assumption (42), the L2–error in the ve-
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locities can be estimated as

‖e‖ ≤ Ch2
(

‖u‖H2(Ω) + ‖p‖H1(Ω)

)

. (43)

5 Numerical results

5.1 Convergence study in the case of small viscosity

Let λ = (µ−1 − (µ−2 + 16π2)1/2)/2. Then the exact solution to (1) is given by

u1(x1, x2) = 1 − eλx1 cos 2π x2,

u2(x1, x2) = λx1

2π
eλ sin 2π x2,

p = 1
2
e2λx + C,

with β = u, σ = 0 and a right hand side matching the exact solution. In our
examples, we also chose C to give zero mean pressure. We solved this problem
approximatively on Ω = (−1/2, 3/2) × (0, 2), using stability parameters γu =
γ = 1/100 and γβ = 1/4.

In Figure 1 we show the convergence for µ = 10−3, and in Figure 2 for µ =
10−5. Note that the absolute value of the pressure decreases linearly with the
inverse of µ in L2, which is why the absolute error in pressure is smaller in
Fig. 2.
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Fig. 1. Convergence for µ = 10−3
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Fig. 2. Convergence for µ = 10−5

5.2 Stability in the Navier-Stokes case

We show the influence of the different stabilizing terms for the lid-driven
cavity flow in Ω = (0, 1) × (0, 1) and with µ = 10−3. In Figure 3 we show
the numerical solution of Navier-Stokes equations (with β = u) after 15 fixed
point iterations, we present the solution using only upwind fluxes, as well as
the fully stabilized solution. Note that we do not get a wiggle free solution
without the jump in the convective derivative. On the other hand, in Figure
4 we show the solution obtained using only the jump in convective derivative
as stabilization. This solution is markedly less diffusive, yet still completely
stable.

Fig. 3. Approximate solution of the velocities, left:with fluxes only and right: with
fluxes plus jump of the convective derivative.
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Fig. 4. Approximate solution of the velocities with jump of the convective derivative
only.

5.3 Navier-Stokes flow over a step

Finally, we give an example of Navier–Stokes flow over a step using increasing
Reynolds numbers. The computational domain is given by Ω = (0, 4)× (0, 1)\
(1.2, 1.6) × (0, 0.4), and the boundary conditions are: u = (0, 0) at the upper
and lower parts of ∂Ω; u = (4 x2 (1 − x2), 0) at the inflow; natural boundary
condition at outflow (not traction free: the viscous operator was written as
−µ∆u for this example).

We give the velocities and pressures (shown L2–projected onto the continuous
space {v ∈ C0(Ω) : v|K ∈ P1(K), ∀K ∈ Th} for ease of presentation) com-
puted without the edge fluxes, and compare in Figure 8 with a computation
with fluxes. Clearly, the fluxes introduce too much artificial viscosity into the
method (at least when combined with the gradient jumps). This could be im-
proved by tuning the gradient jump parameter, but the conclusion is that the
flux terms are indeed not necessary.

6 Conclusion

We have studied a nonconforming stabilized finite element method for incom-
pressible flow. The velocities were approximated using the Crouzeix-Raviart
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Fig. 5. Approximate solution of the velocities and pressures at Reynolds number
100.

Fig. 6. Approximate solution of the velocities and pressures at Reynolds number
1000.

element and the pressures were chosen as piecewise constants. The numeri-
cal scheme proposed is of interior penalty type and remains stable in all flow
regimes without streamline-diffusion type stabilization. Instead we stabilize
the jump in the streamline derivative between adjacent elements. We prove
that this stabilization controls the part of the streamline derivative which is
not already in the approximating space, allowing an optimal order a priori
error estimate in the energy norm which is uniform in the Peclet (Reynolds)
number. Moreover the stabilizing term has the right asymptotic behaviour
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Fig. 7. Approximate solution of the velocities and pressures at Reynolds number
10000.

Fig. 8. Approximate solution of the velocities and pressures at Reynolds number
10000, with fluxes.

in the low Peclet regime and optimal order L2 estimates for the velcities are
proved in this case. We present numerical results for different Reynolds num-
bers showing the robustness of the method and indicating optimal convergence
of the error in the L2-norm. We also test the stability of the scheme on the
lid-driven cavity flow and observe that the jumps in the streamline gradient
is the most important stabilizing term.

We believe that this scheme offers an attractive alternative to the ones pro-
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posed in [13] and in [11]. We have stability for all Reynolds numbers and may
still lump mass for efficient timestepping.
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