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Abstract— Recent work in the study of interacting particles
has demonstrated the effectiveness of gyroscopic interactions
in producing desired stable spatial patterns (formations) of
motion of a collective of particles. In this paper, we discuss
the problem of how a single particle might interact with a fixed
structure in space by exploiting gyroscopic feedback laws. We
derive a gyroscopic feedback law modeling the interaction of
a particle in the plane with an image particle representing the
closest point on a simple closed curve bounding an obstacle and
show that this law produces boundary-following behavior. We
also provide a preliminary discussion of the three-dimensional
case.

I. I NTRODUCTION

We consider a vehicle moving at unit speed in the
presence of an obstacle, and the prototype problem we
consider is boundary-following with collision avoidance. In
the plane, the moving vehicle is subject to steering (i.e.,
curvature) control. From the point of view of mechanics,
we are considering particle motion subject to gyroscopic
forces; i.e., forces which change the direction of motion
of the particle without altering its kinetic energy (and
hence its speed). Recently, the idea of using gyroscopic
forces for obstacle avoidance in robotics has gained renewed
attention [1], [2], [3], and similar ideas have also started
appearing in behavioral psychology [4]. In this work, we
draw strong analogies with recent work on two-vehicle
interaction laws developed for formation control [5], [6]
to develop a novel formulation of a gyroscopic boundary-
following and collision avoidance law. In the planar setting,
we prove global convergence results for circular and linear
obstacle boundaries. The key calculations are also shown to
carry over to the three-dimensional setting, but a rigorous
proof of convergence in three dimensions is left for a future
paper.

II. B OUNDARY-FOLLOWING MODEL

A. Dynamical equations

In the planar setting, consider a vehicle moving at unit
speed (and subject to steering control) in the presence of a
single obstacle (i.e., the region enclosed by a simple closed
curve) whose boundary is twice continuously differentiable.
Suppose that at each instant of time, the point on the
obstacle boundary which is closest to (i.e., the minimum
Euclidean distance from) the moving vehicle is unique.
This point on the obstacle boundary, which we will call
the “closest point” (or “shadow point”), moves along the

boundary curve. (We assume uniqueness of the closest point
in order to streamline the discussion and bring out the
key ideas. Of course, in dealing with real-world obstacles,
nonuniqueness of the closest point is an important issue.)

Let r1 denote the position of the closest point, letx1

denote the unit tangent vector to the boundary curve at the
closest point, and lety1 denote the unit normal vector. We
use the convention that a unit normal vector completes a
right-handed orthonormal frame with the corresponding unit
tangent vector. In terms of the arc-length parameterization,
the boundary curve can be described by

r′1 = x1,

x′1 = y1κ1,

y′1 = −x1κ1, (1)

where the prime denotes differentiation with respect to arc-
length parameter, andκ1 is the plane curvature function for
the boundary curve. Using the chain rule, we can express
the time-evolution of the closest point as

ṙ1 = ν1x1,

ẋ1 = y1ν1κ1,

ẏ1 = −x1ν1κ1, (2)

where

ν1 =
ds

dt
, (3)

with s denoting the arc-length parameter. Because the
closest point depends on the motion of the moving vehicle,
ν1 depends on both the boundary curve and on the trajectory
of the moving vehicle.

Letting r2 denote the position of the moving vehicle,
x2 the unit tangent vector,y2 the unit normal vector,
and u2 the steering control for the moving vehicle, we
have the following system of equations for the “formation”
consisting of the moving vehicle and the closest point:

ṙ1 = ν1x1, ṙ2 = x2,

ẋ1 = y1ν1κ1, ẋ2 = y2u2,

ẏ1 = −x1ν1κ1, ẏ2 = −x2u2, (4)

whereκ1 may be considered given (in practice,κ1 is derived
from sensor data, e.g., from a laser rangefinder);ν1 is a
deterministic function of(r1,x1,y1), (r2,x2,y2), andκ1;
andu2 is the control input we apply to avoid colliding with
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Fig. 1. Positions and frames for the trajectory of the moving vehicle (r2,
x2, y2) and for the closest point on the boundary curve (r1, x1, y1).

the obstacle and to achieve boundary following (see figure
1). Our objective is to determineu2, as a feedback function
of (r1,x1,y1), (r2,x2,y2), andκ1, such that we can prove
analytically that collision avoidance and boundary following
are achieved. Here we focus on certain special cases - linear
boundary curves and circular boundary curves - because the
analysis is more straightforward for these special cases than
for general boundary curves, while the key ideas are still
adequately illustrated.

B. Boundary-curve frame convention

We define
r = r2 − r1, (5)

to be the vector from the closest point on the boundary
curve to the moving vehicle. We assume that initially

|r| > 0, (6)

and we will prove that under this assumption (as well
as other appropriate hypotheses), our boundary-following
control law guarantees (6) for all future time. Then

d

dt
|r| =

r · ṙ
|r|

=
r
|r|
· (x2 − ν1x1)

=
(

r
|r|
· x2

)
− ν1

(
r
|r|
· x1

)
. (7)

The first-order necessary conditions for the closest point to
be an extremum of the Euclidean distance from the moving
vehicle to the curve are

r · x1 ≡ 0, (8)

and
y1 ≡ ±

r
|r|
, (9)

where the correct choice of sign depends on whether the
boundary curve is to the right or left of the moving vehicle,
and on what convention is chosen for the positive direction
along the boundary curve.

In order to fix a convention for the positive direction of
the boundary curve, we assume that initially

r · y2 6= 0, (10)

i.e., that the moving vehicle is not initially heading directly
toward or directly away from the closest point on the
boundary curve. We will prove that under this assumption
(and other appropriate hypotheses), our boundary-following
control law guarantees (10) for all future time. We may thus
choose the positive direction of the boundary curve such that

x1 · x2 > 0. (11)

With this convention, the choice of sign in (9) is determined
by whether the boundary curve is to the left or right of
the moving vehicle. Furthermore, because of our convention
that (x1,y1) forms a right-handed frame, (11) implies that
the sign ofκ1 depends not just on the boundary curve,
but on the position and orientation of the moving vehicle,
as well. (Although curvature is a property of an oriented
boundary curve alone, we are allowing the orientation of
the boundary curve to depend on the relative position and
orientation of the moving vehicle.)

Using (7) with (8) and (9), we obtain

d

dt
|r| =

(
r
|r|
· x2

)
= ±y1 · x2 = ∓x1 · y2. (12)

We can derive an expression forν1 by differentiating (8)
with respect to time, to obtain

d

dt
(r · x1) = ṙ · x1 + r · ẋ1

= (x2 − ν1x1) · x1 +
(

r
|r|
· y1

)
|r|ν1κ1

= x1 · x2 − ν1 ± |r|ν1κ1

= 0, (13)

where we have used equations (8) and (9). We then have

(1∓ |r|κ1) ν1 = x1 · x2, (14)

and for simplicity we replace∓κ1 with ±|κ1|, leading,
finally, to

ν1 =
x1 · x2

1± |κ1||r|
> 0, (15)

where we assume1 ± |κ1||r| > 0. If
(

r
|r| · y1

)
κ1 < 0,

we say that the boundary “curves away from” the moving
vehicle, and if

(
r
|r| · y1

)
κ1 > 0, we say that the boundary

“curves toward” the moving vehicle. (The intermediate case
corresponds toκ1 = 0.) In (15), the plus sign is used when
the boundary curves away from the moving vehicle, and the
minus sign is used when the boundary curves inward toward
the moving vehicle. In the latter case, we note that there is
a singularity in the expression forν1 when|r| = 1/|κ1| and
the boundary curves inward toward the moving vehicle.

C. Shape variables

We would like to treat the moving vehicle and the
closest point on the boundary as two interacting “vehicles”
- one moving at unit speed, and the other not necessarily
moving at unit speed - and then demonstrate analytically



that the motion of the two “vehicles” converges to a steady-
state “formation.” This approach is easiest to describe if
appropriate “shape variables,” which depend only on the
relative positions and orientations of the “vehicles,” can
be identified. The formation is then an equilibrium for the
shape dynamics, and is therefore a relative equilibrium for
the (possibly nonautonomous) dynamics (4).

Here we identify the shape variables|r| and x1 · y2.
Note that we can define the angleφ between the heading
direction of the moving vehicle and the tangent vector to
the boundary curve at the closest point according to

x1 · y2 = sinφ, (16)

let ρ = |r|, and instead use(ρ, φ) as shape variables. Note
that because

x1 · x2 = cosφ, (17)

and (11) holds, in fact

−π
2
< φ <

π

2
. (18)

We can express the shape dynamics as follows. From (12)
we have

ρ̇ = ∓ sinφ. (19)

Differentiatingx1 · y2 with respect to time gives

d

dt
(x1 · y2) = ẋ1 · y2 + x1 · ẏ2

= ν1κ1(y1 · y2)− u2(x1 · x2)

=
[(

x1 · x2

1± |κ1||r|

)
κ1 − u2

]
(x1 · x2)

=
[(

κ1

1± |κ1|ρ

)
cosφ− u2

]
cosφ, (20)

where we have used (15). Since we also have

d

dt
(x1 · y2) =

d

dt
(sinφ) = (cosφ)φ̇, (21)

we obtain

φ̇ =
(

κ1

1± |κ1|ρ

)
cosφ− u2. (22)

Thus, providedu2 = u2(ρ, φ), we see that the shape
dynamics consisting of (19) together with (22) are self-
contained. Ifκ1 = constant, then the shape dynamics are
also autonomous. However, even ifκ1 is nonconstant, below
we show that, under certain hypotheses, the controlu2 may
be chosen so as to cancel the nonautonomous part of (22),
making the shape dynamics autonomous.

III. C ONVERGENCE ANALYSIS

A. Lyapunov function

Consider the Lyapunov function candidate

Vobst = − ln(x1 · x2) + h(|r|), (23)

whereh(·) is continuously differentiable and satisfies cer-
tain hypotheses, to be specified below. In (23), the term
− ln(x1·x2) penalizes misalignment of the tangent vector of

the moving vehicle with the tangent vector to the boundary
curve at the closest point (and this term also blows up as
x1 ·x2 → 0, i.e., when (11) is violated). The termh(|r|) in
(23) deals with the separation between the moving vehicle
and the obstacle. We assume that

lim
ρ→0

h(ρ) =∞, (24)

so thatVobst blows up as the moving vehicle approaches
collision with the boundary curve.

The time derivative ofVobst along trajectories of (4) is

V̇obst = − (x1 · ẋ2 + ẋ1 · x2)
x1 · x2

+ f(|r|) d
dt
|r|

= − [(x1 · y2)u2 + ν1κ1(x2 · y1)]
x1 · x2

∓ f(|r|)(x1 · y2)

= −x1 · y2

x1 · x2
[u2 − ν1κ1 ± f(|r|)(x1 · x2)] , (25)

wheref(ρ) = dh/dρ, and we have used

x2 · y1 = −x1 · y2. (26)

One possible choice forf(·) is

f(|r|) = α

[
1−

(
ro
|r|

)2
]
, (27)

whereα and ro are positive constants, andro represents
the desired separation between the moving vehicle and the
boundary curve for boundary-following.

B. Choice of control law

One choice ofu2 which leads toV̇obst ≤ 0 is

u2 = µ(x1 · y2)∓ f(|r|)(x1 · x2) + ν1κ1

= µ(x1 · y2)− f(|r|)
(

r
|r|
· y2

)
+ ν1κ1

= µ(x1 · y2)− f(|r|)
(

r
|r|
· y2

)
+
(

x1 · x2

1± |κ1||r|

)
κ1.

(28)

whereµ > 0 is a constant (or a function of|r|), and where
our convention for the positive direction of the boundary
curve has also been incorporated intoκ1.

Expression (28) is simple to interpret. The termµ(x1 ·y2)
serves to align the moving vehicle with the tangent vector to
the closest point on the boundary curve. The term involving
f(·) serves to steer the moving vehicle towards or away
from the boundary curve to achieve the desired separation.
Finally, the term involvingκ1 enables the moving vehicle
to respond to the nonzero curvature of the boundary curve.

This way of thinking about obstacle avoidance and
boundary following leads to the idea that the role of the
sensors on the moving vehicle is to identify the closest
point on the boundary curve, and to estimate the curvature
of the boundary at that point. Once we have identified (e.g.,
initially) the closest point, we can then, in principle, track
the closest point as it and the moving vehicle trajectory
evolve. However, we also need to periodically scan in other



directions, in case the local minimum we are tracking ceases
to be a global minimum at some point in time.

C. Shape-variable convergence

Observe that (28) is well-defined even for non-constant
κ1 (unless|r| = 1/|κ1| and the boundary curves inward
toward the moving vehicle). But to simplify the convergence
analysis, we now takeκ1 = constant. The Lyapunov
function expressed in the shape variables(ρ, φ) is

Vobst = − ln (cosφ) + h(ρ), (29)

and the steering controlu2 for the moving vehicle is

u2 = µ sinφ∓ f(ρ) cosφ+ ν1κ1

= µ sinφ∓ f(ρ) cosφ+
(

κ1

1± |κ1|ρ

)
cosφ. (30)

The time derivative ofVobst along trajectories of (19) and
(22), with u2 given by (30) is then

V̇obst = − sinφ
cosφ

[u2 − ν1κ1 ± f(ρ) cosφ]

= −µ sin2 φ

cosφ
≤ 0, (31)

due to (18). Thus,V̇obst ≤ 0 and V̇obst = 0 if and only if
sinφ = 0. But by (18), we see thaṫVobst = 0 if and only
if φ = 0. This calculation leads to the following result.

Proposition 1: Consider the dynamics (4) with control law
(28) for a moving vehicle and the closest point to it on the
boundary curve. Assume that the boundary curve is a circle
(i.e., κ1 = constant6= 0), the moving vehicle initially lies
outside this circle, and initially (11) is satisfied. Assume
also that

(A1) dh/dρ = f(ρ), where f(ρ) is a Lipschitz continu-
ous function on(0,∞), so thath(ρ) is continuously
differentiable on(0,∞);

(A2) f(ρ) = 0 at a finite number of isolated points;
(A3) limρ→0 h(ρ) = ∞, limρ→∞ h(ρ) = ∞, and
∃ρ̃ such thath(ρ̃) = 0.

(A4) µ(ρ) > 0 is a Lipschitz continuous function on(0,∞).
Then the system (4) with (28) converges to a limit cycle
solution in which the moving vehicle follows a circular orbit
with the same center as the circular boundary curve, and at
a distance from the boundary curve given by one of the
zeros of the functionf(·).

Proof: Note that as long as the moving vehicle is outside
of the circular boundary curve, the closest point is well-
defined and is unique. (In fact, the closest point lies on the
line connecting the center of the circular obstacle with the
moving vehicle.) Furthermore,u2 is well-defined, and in
particular,

ν1 =
x1 · x2

1 + |κ1||r|
=

cosφ
1 + |κ1|ρ

, (32)

so that the denominator is bounded away from zero. Here
φ is defined by (16) andρ = |r|. Since (11) holds initially,
so does (18).

Observe thatVobst given by equation (29) is continuously
differentiable provided (18) holds. By assumption (A3)
and the form ofVobst, we conclude thatVobst is radially
unbounded (i.e.,Vobst → ∞ as |φ| → π/2, as ρ → 0,
or asρ → ∞). Therefore, for each trajectory that initially
satisfies (18) andρ > 0, there exists a compact sublevel
setΩ of Vobst such that the trajectory remains inΩ for all
future time. Then by LaSalle’s Invariance Principle [7], the
trajectory converges to the largest invariant setM of the
setE of all points in Ω where V̇obst = 0. The setE in
this case is the set of all points inΩ such thatsinφ = 0;
i.e., such thatφ = 0. At points inE, the dynamics may be
expressed as

ρ̇ = 0,
φ̇ = ±f(ρ). (33)

If f(ρ) 6= 0, then the trajectory leavesE. Therefore, the
largest invariant set contained inE may be expressed as

M =
{

(ρ, φ)
∣∣∣∣φ = 0, f(ρ) = 0

}
. (34)

By assumption (A2),M consists of isolated equilibria,
and therefore, we can conclude that(ρ, φ) converges to
an equilibrium. This equilibrium in the(ρ, φ) variables
amounts to the moving vehicle following a circular orbit
with the same center as the boundary curve, and at a
distance from the boundary curve given by one of the zeros
of the functionf(·). �

Proposition 2: Consider the dynamics (4) with control law
(28) for a moving vehicle and the closest point to it on
the boundary curve. Assume that the boundary curve is a
straight line (i.e.,κ1 ≡ 0), initially the moving vehicle does
not lie on the boundary curve, and initially (11) is satisfied.
Also, assume (A1), (A2), (A3), and (A4) ofProposition 1
above are satisfied. Then the system converges to a relative
equilibrium (i.e., an equilibrium of the shape dynamics) in
which the moving vehicle follows a linear path parallel to
the boundary curve, and at a distance from the boundary
curve given by one of the zeros of the functionf(·).

Proof: Identical to the proof ofProposition 1. We conclude
that (ρ, φ) converges to an equilibrium. This equilibrium
in the (ρ, φ) variables amounts to the moving vehicle
following a straight-line path parallel to the boundary curve,
and at a distance from the boundary curve given by one of
the zeros of the functionf(·). �

IV. B OUNDARY FOLLOWING IN THREE DIMENSIONS

One of the major strengths of our planar boundary-
following law is that it can be generalized to the three-
dimensional setting. Suppose there is a vehicle moving in
three-dimensional space, and there is a fixed, smooth, two-
dimensional obstacle surface (e.g., a sphere). As the moving



vehicle moves at unit speed, the closest point (which we
assume is unique) also moves along a three-dimensional
trajectory, but is constrained to lie on the obstacle surface.
We can then, as in the planar problem, consider the coupled
dynamics of the moving vehicle and the closest point.

Instead of (4), we have

ṙ1 = ν1x1, ṙ2 = x2,

ẋ1 = y1u1 + z1v1, ẋ2 = y2u2 + z2v2,

ẏ1 = −x1u1, ẏ2 = −x2u2,

ż1 = −x1v1, ż2 = −x2v2, (35)

where:

• r1 is the position (inR3) of the closest point;
• x1 is the unit tangent vector to the trajectory of the

closest point
• y1 and z1 are unit normal vectors which complete

(with x1) a right-handed orthonormal frame;
• (u1/ν1, v1/ν1) are the natural curvatures associated to

the normal development of the trajectory followed by
the closest point [8];

• r2 is the position (inR3) of the moving vehicle;
• x2 is the unit tangent vector to the trajectory of the

moving vehicle;
• y2 and z2 are unit normal vectors which complete

(with x2) a right-handed orthonormal frame; and
• u2 andv2 are the controls which determine the trajec-

tory followed by the moving vehicle.

Here we are interested in determining the controlsu2 andv2

for the moving vehicle as feedback functions of the other
variables, for the purpose of achieving non-collision and
boundary-following.

Figure 2 illustrates the frames for the trajectories of
the moving vehicle and the closest point on the boundary
surface.

In (35), we have used the natural Frenet frame (or
Fermi-Walker frame or relatively-parallel adapted frame)
representation for describing a (twice continuously differ-
entiable) curve [8], [9]. This description is unique up to an
arbitrary initial choice of the unit-normal-vector orientation
in the normal plane. The Frenet-Serret frame, which is
more widely mentioned than the natural Frenet frame, exists
for a three-times continuously differentiable curve with
non-vanishing curvature, and is unique. In the boundary-
following analysis (as well as for interaction laws of unit-
speed vehicles [6]), it seems to be advantageous to use the
natural Frenet frame, rather than the Frenet-Serret frame.

As in the planar problem, we definer = r2 − r1 to
be the relative position of the moving vehicle with respect
to the closest point, and we assume that initially|r| > 0.
Equations (7) and (8) hold, as in the planar case, however
(9) need not. As in the planar case, we assume that initially
the moving vehicle is not heading directly toward or directly
away from the closest point, sox1 may be chosen such that
(11) holds.

Fig. 2. Positions and frames for the trajectory of the moving vehicle (r2,
x2, y2, z2) and for the closest point on the boundary surface (r1, x1,
y1, z1).

Although the two-dimensional obstacle surface is as-
sumed to be specified (or sensed locally at the closest
point, e.g., using a laser rangefinder), further calculation
(or sensing) is required to determine the trajectory of
the closest point, and in particular, the natural curvatures
(u1/ν1, v1/ν1). The natural curvatures (which are functions
of arc-length parameter) [8], determine how the trajectory
of the closest point evolves, and in this problem, the natural
curvatures for the closest-point trajectory are in turn deter-
mined by the shape of the obstacle surface and the motion of
the moving vehicle. The natural curvatures for the closest-
point trajectory can be estimated from measurements of
several points on the trajectory (although the details are
beyond the scope of this paper).

A convergence result (which will appear in a future pa-
per) can then be proved, using the same Lyapunov function
candidate (23) as before, for a three-dimensional boundary-
following law and a spherical obstacle.

V. SIMULATION RESULTS

Figures 3 and 4 show a moving vehicle tracking an
elliptical boundary curve in the planar setting. In figure 3,
the robot starts at coordinates (-11,0) with initial orientation
+10 degrees measured counterclockwise from the x-axis.
The closest point then lies to the right of the robot. Under
our control law, the robot follows the boundary curve to its
right, circling the obtacle clockwise. In figure 4, the robot
starts at the same initial position, but with the initial ori-
entation -10 degrees. Then the robot follows the boundary
curve to its left, circling the obstacle counterclockwise. In
both cases, the desired separation between the robot and the
closest points are set to 1 distance unit.



Fig. 3. Simulation results showing clockwise circling of an elliptical
obstacle boundary using (28).

Fig. 4. Simulation results showing counterclockwise circling of an
elliptical obstacle boundary using (28).

VI. D IRECTIONS FOR FUTURE RESEARCH

The gyroscopic feedback laws for boundary following
presented in this paper have several highly attractive fea-
tures. First, only the heading of the vehicle is controlled,
with the speed held constant, so that the laws are appropriate
for vehicles which must maintain high speeds (including,
e.g., unmanned aerial vehicles). Second, although at first
glance the control laws may appear complicated, in fact,
they mainly involve dot products of various unit vectors
(i.e., sines and cosines of various angles), functions of
distance between the vehicle and the closest point, and
functions of the boundary curvature. Indeed, we have sought
the simplest gyroscopic feedback laws that produce the
desired boundary-following behavior. Third, the way in
which sensor data is used is straightforward and simple
to characterize. The sensors track the closest point on the
boundary, and measure the curvature there. (Of course, as
mentioned earlier, some wide-angle scanning would also be
required for the practically important situation of nonunique

closest points.)
There are various directions for future research, includ-

ing: incorporating obstacle avoidance and boundary follow-
ing with navigation toward a waypoint, incorporating influ-
ences from multiple obstacles into the control for a single
moving vehicle, and incorporating both multiple obstacles
and waypoint navigation into formation control laws for
two or more moving vehicles. Understanding the most basic
problems well, such as the interaction of a single vehicle
with a single obstacle, represents a first step toward dealing
with these more complicated situations. Accordingly, we
plan to further develop the three-dimensional boundary-
following analysis, as well as to consider more general
obstacle geometries in the planar setting. Here concepts
such as Bertrand curves, (or relatively parallel curves) [8],
[10] may play a role in characterizing the steady-state
trajectories of the moving vehicle and closest point for
general obstacle shapes.
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