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ABSTRACT

This work tackles the challenge of detecting and matching
objects in scenes observed simultaneously by fixed and mo-
bile cameras. No calibration between the cameras is needed,
and no training data is used. A fully automated system is
presented to detect if an object, observed by a fixed camera,
is seen by a mobile camera and where it is localized in its
image plane. Only the observations from the fixed camera
are used.

An object descriptor based on grids of region descriptors
is used in a cascade manner. Fixed and mobile cameras
collaborate to confirm detection. Detected regions in the
mobile camera are validated by analyzing the dual problem:
analyzing their corresponding most similar regions in the
fixed camera to check if they coincide with the object of
interest.

Experiments show that objects are successfully detected
even if the cameras have significant change in image quality,
illumination, and viewpoint. Qualitative and quantitative
results are presented in indoor and outdoor urban scenes.

Categories and Subject Descriptors

1.4.8 [Image Processing And Computer Vision]: Scene
Analysis

General Terms

Algorithms, Performance
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1. INTRODUCTION

Detection of objects of interest in digital videos has been
in the focus of the research community over the past decade.
Low-cost digital cameras and progress in processing large
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Left column
shows the objects of interest highlighted in the fixed
camera. Right column presents the matched objects
detected by our algorithm in the mobile camera

Figure 1: Two challenging scenes.

data sets such as video streams have promoted the instal-
lation of cameras on fixed and moving platforms. Cameras
are now integrated into many devices such as phones or ve-
hicles. The use of data provided concurrently from several
cameras, leads to a better understanding of the objects of
interest. Mobile cameras (e.g. a camera held by a pedes-
trian or placed in a car) benefit from their proximity to the
objects to capture high resolution features. Pan-tilt-zoom
cameras can also be used to optically zoom on an object of
interest to capture relevant features.

Most of the systems assume a well structured environ-
ment. Cameras need to be fixed and calibrated [5, 11, 7],
or only a given object can be detected, e.g. a pedestrian [6,
18, 20].

This work presents a system where any object can be de-
tected (e.g. animals, cars, urban signs, pedestrians, etc.) in
the image plane of any camera (fixed or mobile) given only
its single observation from another viewpoint. To evaluate
the performance of the approach, a system similar to [2] is
studied: any object observed by a fixed camera is searched
within the image plane of a mobile camera to find a match.
Only observations from the fixed camera are used.

The main drawback of the system presented by Alahi et
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al. in [2] is its failure to classify if an object is really present
in the image plane of a mobile camera: they suppose that
any object observed by a fixed camera has a correspondence
in the mobile camera. Therefore, the best match is chosen as
the object of interest. Moreover, the mobile camera does not
communicate with the fixed camera to validate the detection
process.

In this paper, all the objects observed by a fixed cam-
era are searched within the mobile camera and only those
present in the mobile camera are detected. A full collabo-
ration between the fixed and mobile cameras is proposed to
validate the detections and help rejecting false positives.

Experiments show that objects are successfully detected
even if the cameras have significant change in image qual-
ity, illumination, and viewpoint as illustrated in Figure 1.
Partial occlusions are also handled.

The paper is structured as follows: the related work is
briefly presented in the next section. Then, a formulation
of the problem is given. Section 4 presents the matching al-
gorithm. Section 5 describes the validation scheme. Finally,
the performance of the approach is evaluated on challenging
data sets. Quantitative and qualitative results are given.
The paper ends with concluding remarks.

2. RELATED WORK

2.1 Object Detection with mobile cameras

Most of the systems to detect an object with a mobile
camera generate a model given a training data. In a clas-
sification framework, a region is classified given a set of ex-
tracted features.

Papageorgiou et al. in [14] and [15] use haar wavelet co-
efficients of a set of normalized pedestrian images. They
classify the images with a support vector machine (SVM)
and a "bootstrapping” method. Recent works have shown
that histogram of oriented gradient (HOG) is an efficient
and robust shape-based cue [17, 6, 18]. Tuzel et al. in [20]
use covariance matrices as object descriptors. They have
less false positives for the same detection rate as opposed
to previous approaches. Gavrila uses a template matching
technique based on hierarchical representation of the tem-
plates [10, 9]. Shape matching is based on distance trans-
forms (chamfer distance). A reasonable shape extraction is
needed.

Broggi et al. in [4] and [3] detect pedestrians without any
training. Their detection is based on morphological charac-
teristics of pedestrians (size and aspect ratio), vertical linear
filter, and the strong vertical symmetry of the human shape.
Moreover, an assumption about the region where a pedes-
trian can be found is done. Thus, their system only operates
on flat roads with smoothly varying slope. In addition, mul-
tiple detection of the same pedestrian occurs, and pedestrian
with monochrome clothing are hardly detected.

Recently, Leibe et al. in [12] present a system that is able
to detect objects and estimate their 3D localization with
stereo cameras mounted on a car.

However, these systems suffer from high false positive
rates and from the restriction to only detect objects present
in their training data.

2.2 Matching Objects across Cameras

Detecting an object with a camera is challenging, but find-
ing its correspondence in other cameras is an additional defy.

Techniques to detect an object with a camera can not be
used to match the objects across cameras. By definition,
they remove the discriminative parts between two objects
of the same category. To find correspondence between two
views, most of the systems suppose static and calibrated
cameras. A homography matrix is estimated at calibration
step to project a point (usually the ground plane points) in
the image plane of the cameras to a common reference.

Mueller et al. in [13] mark with same label the nearest
object with the same size and center of gravity. Caspi et al.
in [5] match objects by fusing the estimated trajectories ob-
tained by each camera. Those systems fail to match objects
if the cameras are moving. The homography matrix is not
available anymore.

In this work, objects are matched across fixed and mobile
cameras. No calibration is used. The single observation of
the objects in another view is sufficient. In the next sections,
a system is presented to detect objects of interest with a
mobile camera and match them across other cameras based
on their appearance in the cameras views.

3. PROBLEM FORMULATION

Given an observation x of an object O in a fixed camera,
we wish to detect its presence in the view of a mobile camera,
and if present, locate it in its image plane. No additional
training data should be used.

Let y; be a potential region in the mobile camera. x and y;
are subsets of an image bounded by a rectangular bounding
box.

We define the "Region Matching” operator, ®, which maps
a region x to the N, most similar regions in a given image
L

Q(xalmaN’y) :{yl’y27"-7yNy}:YfE (1)

with I,, the image plane of the mobile camera.

The precise notion of similarity will be described in section
4.

The same operator ¢ can be used to map any y; to a set
of &, referred in this paper as the dual problem:

®(yi, I, Ny) = {@1, ..., 2n,} = Xi 2)

Xi are the regions in the fixed camera similar to y;.

If a region Z; matches x, then the corresponding y; should
be the region bounding object O in the mobile camera (see
Figure 2). If none of the &; coincides with z, object O should
not be present in the view of the mobile camera.

We hence define an operator ¥ to validate if a region y;

matches x:
ﬁ(yl‘val) :ﬁ(yi|$7:&17-'-a:ﬁj) € [07 1} (3)

As a result, the problem can be formulated as follows:
for a given z, find the region y, in the mobile camera that
maximizes ¥(y;|x, X;) for all y; € Vi:

ye = arg max 9 (yi|z, X;) (4)
Yi €Y;

If such a y, does not exist, it means that the object is not
present in the image plane of the mobile camera.
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Figure 2: Illustration of the ® operator. (a) An
object z, highlighted in the fixed camera, is mapped
to the best 3 regions in the mobile camera. (b) Then,
each region y; is mapped back to 3 regions in the
fixed camera. If those regions coincide with x, there
is a match.

4. REGION MATCHING

4.1 The Approach

An object descriptor (OD) is created from the region bound-
ing the object of interest in the fixed camera. Then, all pos-
sible regions in the image plane of the mobile camera are
compared with the OD. A window of size proportional to
the object bounding box scans the image plane of the mo-
bile camera at different scales. For each region, its similar-
ity with the OD is computed to find the region with highest
similarity. Therefore, a discriminative region descriptor is
needed.

4.2 Covariance matrix

Covariance matrices are a very attractive descriptor first
used by Tuzel et al. [19], [16], [20]. For each pixel, a set of
features are extracted. Alahi et al. in [2] used the grayscale
intensity, I, and the norm of the first order derivatives with
respect to x and y, I, and I:

fn:(x73/7[»]xaly) (5)

Other features such as the R,G,B values or the second or-
der derivatives, the gradient magnitude, mg, and its angle,
0, can also be used. The pixel coordinates, x and y, are
integrated in the feature vector to consider the spatial infor-
mation of the features. Finally, the covariance of a region is
computed as:

1 N
T
N1 2 (n = m)(fa —m) (6)

n=1

Ci =

where N is the number of points in the region, and m the
mean vector of all the feature vectors.

With covariance matrices, several features can be fused in
a lower dimensionality without any weighting or normaliza-
tion. They describe how features vary together.

Similarity between two regions By and B is given by the
following distance proposed by [8]:

o1(B1, B2) = /Zln Xi(C1, Ca) (7)

where \;(C1,C2) are the generalized eigenvalues of the
covariance matrices C;

4.3 A Collection of Grids of Descriptors

An object descriptor (OD) is used taking into account
local and global information. It is a collection of grids of
region descriptors (see figure 3). Each grid segments the
object into different number of blobs of equal sizes. Grids
of finer blob size describe local information whereas grids of
coarse blob size describe a more global behavior.
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Figure 3: A collection of grids of descriptors

Similarity between two objects, ¢(z,y;), is computed by
summing distance between corresponding blobs segmenting
the grids. Since, many objects do not have a rectangular
shape and some can be partially occluded, only the most
similar blobs are kept. In this way, blobs belonging to the
background can also be discarded (see figure 4).
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Figure 4: Top row is an object detected by the fixed
camera. Bottom row is a region within the mobile
camera. At least half of the blobs are kept to com-
pute the global distance

4.4 Matching Process

4.4.1 Preprocessing step: Edge Filtering

Some regions in the mobile camera do not need to be
compared with the ODs. They can be discarded with a
simple preprocessing. The difference between the proportion
of edges in two regions can give a quick indication about
their similarity. If the proportion of edges is not similar, the
region is discarded. As a result, fewer regions remain to be
analyzed and it increases the likelihood to detect the right
object by reducing the search space.

4.4.2 Cascade of Coarse to Fine Descriptors

Some regions can be easily discarded without knowing the
local information. Therefore, an approach similar to a cas-
cade of classifier is proposed as in [2]. "Easy regions” are
discarded with coarse grids (i.e. grids with small number
of blobs). More challenging regions require the use of finer
grids (i.e. more number of blobs).

The detection process is divided into several stages. At
each stage, a finer grid is used. After each stage, only the



Figure 5: A three stages cascade of coarse to fine
descriptors

best candidates, i.e. regions with highest similarity (top p%
of the evaluated regions), remain.

p is chosen such that after each stage the same percentage
is kept:

N, x pNe =1 (8)

where N, is the total number of regions in the mobile camera
to compare with the object descriptor, and N is the total
number of stages to use.

p=N, /N €)

S. REGION VALIDATION

The validation operator, ¥, evaluates the likelihood that
object x matches region y; in the mobile camera. It con-
siders the dual problem by analyzing the set obtained by
D(yi, Ir,Ng) = {Z1,%2,...,2n, }. In the next section, the
choice of N, will be studied.

A similarity measure o between the original x and each
Z; is estimated based on the spatial arrangement of their
bounding boxes:

—(122)4 —(129)4

~ _(&)4
o(x,Z;)=e 1  wo+e 1’ w.t+e 2’ wg (10)

where

e ( is a percentage which represents how much of the
original bounding box of z is covered by the bound-
ing box of #;. Likewise, O is the percentage which
represents how much Z; is covered by x. (see figure 6)

e D, is the euclidian distance between the center of two
bounding boxes.

c1 and ¢ are constants adjusted so that o = 0 if C, O
and D, are less than their thresholds.

o(x,2;) > 0 if and only if C and O > 30% and D. <
0.75 * maz(widths, heighty).

A weight w. is given to each factor to emphasize priority.
In this work, focus is first on a high cover of x, then a similar

Figure 6: An example of the bounding box of z (in
red) and %; where C = 0.75, O = 0.4
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Figure 7: x-axis represents C or Oj; y-axis represents
its contribution to o and ;. It can be seen that for
values of C or O close to 1, the contribution remains
1 (full) for the non-linear operator.

center of mass, finally #; should not be too big with respect
to x (decent O).

The non-linear operator, ef(')4, is used to reduce sensi-
tivity to two regions overlapping with a slight difference. A
linear o; such as:

1-0 1-C

~ DC
Ul(l‘713i):1_(1_clwo+1_02"-Uc+ C3wd) (11)

was too sensitive to differences. Figure 7 plots the two oper-
ators, and figure 8 presents an example of the value obtained
with o and oj.

Figure 8: The linear o; gave 0.63% and the proposed
o gives 0.86%

Finally, ¥(y:|x, ®(y:)) is computed as follows:
I(yilz, ®(y:)) = max o(z,2:) x w(y:) (12)
2,€2(y;)

where w(y;) weights region y; with respect to other y; based
on the similarity measurement computed by ®(z) (in section
4.3):

o(z, i)

W(yZ) - maij€<1>(:c) d)(m?yj) (13)




6. PERFORMANCE EVALUATION
6.1 Data Sets

Indoor and outdoor data sets have been used. Each data
set is composed of the video sequences captured by a fixed
and a mobile camera in the same scene. Fixed cameras are
located at a height equivalent to the first floor of a building.
Mobile cameras are held by pedestrians walking in the scene.
The videos sequences with their ground truth data (in xml
format) can be found in [?]. The images are recorded at
25fps with a resolution of 320 x 240. Figure 1 presents an
example of images captured by the cameras.

The data sets used have meaningful changes in viewpoint,
illumination, and color distribution between fixed and mo-
bile cameras. Sensing devices are also different. Indeed,
mobile cameras have a cheap capturing device and hence
provide noisy images.

6.2 Experiments

Thousands of frames and objects are selected within the
fixed cameras to find correspondence in mobile cameras. In
the first data set, only pedestrians are of interest (see figure
12). In the second one, random rigid objects in the scene
are selected to prove generalization of the approach to any
objects of interest (see figure 13).

6.3 Performance of the Validation Scheme

In this section, focus is on evaluating the validation ap-
proach. The relevance of the object descriptor and the
matching process (®) is extensively studied in [1]. The cas-
cade of grids of covariances matrices outperforms other de-
scriptors based on histograms of oriented gradients, colors,
or interest points. The features used in this work are the
following;:

fn:(x7y7]7[-’1371y7mg79) (14)

They outperform the one used in [2].

In the validation process, two parameters are of interest:
the number of regions N, and N, to keep within Y, and Xl
Figure 9 presents the detection rate and the corresponding
number of false positives generated for various N.. They are
compared with the previous approach considering the best
match of the region matching operator as the matched object
(labeled as ”best match”) without any validation process.
With the proposed approach, setting N, = N, = 2, the
false positive (F'P) rate is decreased by 70 % while the True
Positive (T'P) rate decreases by only ~ 2%. For N, = N, =
3, the number of F'P is reduced by half while the percentage
of TP is reduced by less than 1%. Having high values for
N, and N, will not necessarily lead to high performance.
Considering Ny = 2 and N, = 1 is the best tradeoff for our
application in terms of performance.

In addition, a possible approach to reduce even more the
false positives rate will be to threshold the similarity mea-
surements ¢. However, if the validation scheme is not used,
it is not interesting to threshold ¢(z,y;), obtained between
the object descriptor and the regions in the mobile camera.
Figure 10 illustrates the histogram of the values obtained
when the regions are correctly matched (TP) and the ones
for the false positives (F'P). There is not a clear decision
boundary. Typically, setting the threshold to 4.4 will reduce
the FP rate by 9% and reduce the TP rate by 11%.

However, it is possible to threshold the similarity measure-
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Figure 9: Graph of the percentage of TP with re-
spect to the #F P for various N, and N,.
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Figure 10: Histogram of the similarity measure-
ments ¢(z,y;) for a set of TP and FP

ment ¢(y;, £;), or the sum ¢(z, y;) + ¢(yi, £;) obtained in the
validation process. Figure 11 shows the histograms for the
two cases. Now, an interesting decision boundary exists: if
we keep y; such that ¢(ys, ;) < 4.1 or ¢(z,y:) + ¢(ys, i) <
8.2, the remaining F' P will be reduced by 50% while reducing
the TP rate by 5% only. Therefore, the proposed approach
can globally reduces the #FP by 75 — 85% for a decrease
of 5-7% of the T'P rate. This is feasible only because of the
validation approach considering the dual problem. Without
the validation scheme proposed in this work, to reduce the
false positive rate by 80%, the T'P rate will be reduced by
50%.

Qualitative results are given on both data sets in figures 12
and 13. It can be seen that objects are successfully detected
even if the cameras have significant change in image quality,
illumination, and viewpoint. In addition, highlighted ob-
jects in the fixed camera which are not present in the view of
the mobile camera are not generating false positives. Figure
14 presents some missed detection and few false positives.
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Figure 11: Histogram of the similarity measure-
ments in the validation process

7. CONCLUSIONS

A system is presented to detect and match in the image
plane of a mobile camera objects observed by a fixed camera.
No calibration between the camera is needed. No training
data is used. The proposed system is able to classify the
presence of an object in the mobile camera by analyzing the
dual problem. The presented validation process reduces the
false positives rate considerably without significantly affect-
ing the detection rate (%TP).

Further work will evaluate the impact of fusing several
object descriptors such as a histogram of oriented gradients
with the covariance matrices. In addition, considering the
dynamic of the system will increase the overall performance
of the system.

Figure 12: Correct detections and no FP. First col-
umn: objects detected by fixed camera. Second col-
umn: corresponding objects detected and matched
with the mobile camera



Figure 13: Correct detections and no FP. First col- Figure 14: Some FP and missed TP. First column:
umn: objects detected by fixed camera. Second col- objects detected by fixed camera. Second column:
umn: corresponding objects detected and matched corresponding objects detected and matched with
with the mobile camera the mobile camera
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