
SPHERIC

Interactive Visualization and Exploration of SPH Data
John Biddiscombe1, David Graham2, Pierre Maruzewski3

1 Swiss National Supercomputing Centre (CSCS), Manno, Switzerland
2 School of Mathematics and Statistics, University of Plymouth, UK

3 Laboratory for Hydraulic Machines, Ecole Polytechnique Fédérale Lausanne, Switzerland

Abstracti
Advances in graphics hardware in

recent years have led not only to a huge
growth in the speed at which 3D data can
be rendered, but also to a marked change
in the way different data types can be
displayed. In particular, point based
rendering techniques have benefited from
the advent of vertex and fragment shaders
on the GPU which allow simple point
primitives to be displayed not just as dots,
but rather as complex entities in their own
right.

We present a simple way of displaying
arbitrary 2D slices through 3D SPH data by
evaluating the SPH kernel on the GPU and
accumulating the contributions from
individual particles intersecting a slice
plane into a texture. The resulting textured
plane can then be displayed alongside the
particle based data. Combining 2D slices
and 3D views in an interactive way
improves perception of the underlying
physics and speeds up the development
cycle of simulation code.

In addition to rendering particles
themselves, we can improve visualization
by generating particle trails to show motion
history, glyphs to show vector fields,
transparency to enhance or diminish areas
of high/low interest and multiple views of
the same or different data for comparative
visualization. We combine these
techniques with interactive control or
arbitrary scalar parameters and animation
through time to produce a feature rich
environment for exploration of SPH data.

1. Introduction
The rapid development of the power of

GPUs in desktop computers in the last few
years has produced an explosion in the
number of triangles that can be rendered
per second. In addition, advances in the
architecture of graphics processors have
led also to programmable shaders which
allow a far more flexible approach to the
generation of images. Instead of
representing particles as collections of
triangles, it is possible to render them
directly to screen by supplying only a
position, radius and colour (or other
combination of scalar parameters of
interest). The shader which resides as a
small program on the GPU can evaluate a
sphere function and perform an
intersection between an eye ray through
the screen with the sphere (for each pixel)
to produce an exact image of the particle
data. Observation of this capability leads
naturally to the idea of evaluating more
sophisticated functions such as the SPH
kernel itself on the GPU and producing an
even more useful image. In fact evaluating
the kernel on the GPU has been done
many times [3,4,5], but in these cases, the
SPH field equations are evaluated for the
purpose of animating the particles
themselves rather than displaying the
results of the simulation. In [6], the kernel
is evaluated and the particles are re-used
directly from the GPU to generate the
surface using point splatting.

The work of Sigg et al [2] provides the
starting point for our implementation of a
particle renderer and for an SPH slicing
algorithm on the GPU. Their key

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Infoscience - École polytechnique fédérale de Lausanne

https://core.ac.uk/display/147942096?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

development is to represent a quadric
(sphere, cylinder, cone, ellipsoid or even
parabolic surface) as a 4x4 matrix that can
be combined with the usual transform and
lighting pipeline of graphics hardware.
Using their approach we have developed a
particle rendering tool which produces high
quality spheres at interactive frame rates.
Since the particles are already passed to
the GPU for display, we wish to extend the
capabilities by performing a second pass of
the renderer which can produce slices
through the data and display the field as a
continuum rather than as discrete points.

The SPH kernel is spherically
symmetric – having one parameter of
interest (from the point of view of
visualization) – which is the cut-off radius,
we may therefore represent our particles
as spheres and render them with two clip
planes positioned equidistant from the slice
plane – one in front, the other behind with
the distance from the slice to clip plane
chosen to be exactly one radius of the
kernel used. Any particle further than this
distance on either side is automatically
removed and no evaluation of the kernel is
required. Figure 1 shows a simple
schematic of the regions of interest of the
particles between clip planes.

Figure 1 : Particles rendered between two

clip planes.

Since we are only interested in the field
strength on the plane itself, only portions
which overlap the slice plane need be
evaluated.

In the following section we describe the
operation of the vertex and fragment
shaders which compute these regions and
colour them appropriately.

2. Vertex and Fragment Shaders

2.1. Vertex Shader
The computation of the kernel must be

avoided whenever possible and we
therefore wish to limit all calculations to
regions where the particle projects onto the
slice plane as shown in Figure 1. This
calculation is performed in the vertex
shader - the calculation of the bounding
box projection for an arbitrary quadric is
given in [2], but we can make the following
assumptions
• The projection onto the slice is

orthographic and therefore we need not
consider any perspective correction

• The particles are spherical and the
bounding box is simply the scaled
transformation of the particle radius from
world coordinates to the pixel
coordinates of the slice.

• The slice has isotropic rectilinear pixels
and we can ignore ellipsoidal terms.

This considerably simplifies the
expression for the necessary pointsize R
and reduces it to

ws

wk

wl
lrR 2

=

Where rk is the kernel radius, lw is the
distance in world space along the primary
axis of the slice, ls is the length in pixels of
the slice, and ww is the homogenous clip
coordinate of the transformed point. The
transformation used for the points is given
by placing the eye e, and viewpoint v, at

},,{ zyx cccv =
r ,

ksrnve r
−=

Where c represents the slice centre
and snr is the slice plane normal. All that

remains is to specify the front and rear clip
planes at {0, 2rk} and the ‘up’ vector is
along the second slice axis. The vertex

Clip
planes

Slice plane

Clipped
points

Intersection
region

Overlap
region

Projection

shader computes the transformed
coordinate and any points lying outside the
clip region are removed before being
passed to the fragment shader.

To save time in the fragment shader
we compute the (non-varying) distance

wzp wwd /= from the point to the plane

using the coordinate wz in clipping space.

2.2. Fragment Shader
The fragment shader operates on a

square region of pixels given by the
pointsize computed in the vertex shader.
For each pixel we must compute the
distance from the point centre and plug this
into the kernel if it lies inside a unit circle
inscribed within the box – since the box
has been generated using the kernel
smoothing radius, we know that the incircle
exactly fits the smoothing radius. Off axis
particles have a smaller intersection with
the slice plane and we must only consider
pixels with distance di within a smaller ring
within rp

xxd ii −= , 22 1 pp dr −=

For di>rp the fragment is outside the
intersection ring and is discarded. For
di<=rp we must use the true distance dk to
the kernel centre given by 222

pik ddd +=

To correctly display the results of the
kernel evaluation, we must sum the values
from overlapping kernels. This is done by
rendering the scene as described into an
OpenGL FrameBuffer object using a
floating point texture and enabling blend
mode to sum the incoming pixels. We have
currently implemented cubic spline and
cusp kernels, others can easily be added.

The result of the fragment shader is a
correctly smoothed representation of the
particles along the slice. Compare the
images of Figure 2 which show the same
data rendered using a triangulation of the
points and the output of the SPH slice
render. The flaws in the triangulated

version are obvious and the smoothed one
is clearly superior.

Figure 2 : (a) Continuous field plot using

Delaunay triangulation of the raw points. (b)
Particles overlayed on a field plot produced by

SPH smoothing.

3. GUI Implementation
The output of the shaders is a correctly

smoothed representation of the particles
along the slice. We have embedded the
tool within the ParaView [1] and sparticles
GUIs using a PlaneWidget to interactively
allow the user to freely move the slice
plane through the data at any orientation.
The output of the shader is stored in a
texture which is mapped onto the plane
and displayed interactively with the data.
This gives the user the ability to view any
slice through the data. Figure 3(b) shows
an example of a large injection dataset (1
million points) rendered using transparency
to give a volumetric effect. For volumetric
plots, the opacity, colour and even radius
of particles may be controlled on a per
particle basis using any sets of scalar
variables. The plot has been enhanced
with a slice plane (the interactive handles
are also shown) which in this case reveals
features away from the primary jet.

We have also implemented particle
trails which display the pathlines of
individual particles. The trail length is
configurable and a subset of particles may
be used for clarity of presentation. Figure
3(a) shows particle pathlines for the
intermediate stages of a lid-driven cavity
flow simulation (Re=1000). The pathlines
are not quite closed, indicating that the
solution has not yet reached a steady-
state. The lack of pathlines in the bottom

corners is an indication of the very weak
recirculation in these areas.

Figure 3 : (a) Particles with pathlines (b)

Transparent rendering of particles.

ParaView has many useful features in

visualising SPH results. For example,
comparisons of results using different
numbers of particles can be displayed
simultaneously. This is useful in
determining whether the higher resolution
is necessary. Figure 4(a) displays three
aspects of the same computation at the
instant when a wave impacts against a
vertical wall. It shows that high values of
pressure, turbulence viscosity and density
are found at the moment of impact. Figure
4(b) shows particle mixing as a result of
paddle motion and wave breaking,
displaying results at three different times.
Such figures and associated animations
can be generated easily in ParaView.
Many other features such as vector plots,
glyphs, streamlines, and contouring can be
found within the extensive library of filters
available in ParaView.

Figure 4: (a) Simultaneous view of (top to

bottom) pressure, viscosity and density at wave
impact. [Red=high, blue=low]. (b) Particle mixing
during breaking of 2s waves (t=0, t=c5s, t=c10s)

4. Conclusions
We have implemented a particle

renderer which produces high quality
output and enhanced it with capabilities for

producing SPH specific plots. We have
built this functionality into a custom
rendering tool, sparticles, and also into a
customized version of the ParaView
visualization package making it not only
accessible to many users, but also
providing a range of other visualization
algorithms and animation tools that allow
the SPH results to be combined with other
conventional data and visualizations.

Acknowledgements

The second author acknowledges Dr
Jason Hughes at the University of
Plymouth for some of the computations
and Dr Songdong Shao at the University of
Bradford for the original I-SPH code.

5. References
[1] A.H. Squillacote, The ParaView Guide: A

Parallel Visualization Application, Kitware
Inc. 2006; www.paraview.org

 [2] Ch. Sigg, T. Weyrich, M. Botsch, M.
Gross, GPU-based ray-casting of
quadratic surfaces, Eurographics
Symposium on Point-Based Graphics
2006

[3] T. Amada, M. Imura, Y. Yasumuro, Y.
Manabe and K. Chihara, Particle-Based
Fluid Simulation on GPU, ACM Workshop
on General-Purpose Computing on
Graphics Processors and SIGGRAPH
2004, LA. California, 2004.

[4] Andreas Kolb, Nicolas Cuntz . Dynamic
Particle Coupling for GPU-Based Fluid
Simulation. Proc. 18th Symposium on
Simulation Technique, 2005

[5] M. Muller, B. Solenthaler, R. Keiser, M.
Gross. Particle-Based Fluid-Fluid
Interaction SIGGRAPH/Eurographics
Symposium on Computer Animation 2005

[6] Müller M., Charypar D., Gross M.:
Particle-based Fluid simulation for
interactive applications. In SIGGRAPH/
Eurographics Symposium on Computer
Animation 2003, pp. 154-159.

