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Abstracti 
Advances in graphics hardware in 

recent years have led not only to a huge 
growth in the speed at which 3D data can 
be rendered, but also to a marked change 
in the way different data types can be 
displayed. In particular, point based 
rendering techniques have benefited from 
the advent of vertex and fragment shaders 
on the GPU which allow simple point 
primitives to be displayed not just as dots, 
but rather as complex entities in their own 
right. 

We present a simple way of displaying 
arbitrary 2D slices through 3D SPH data by 
evaluating the SPH kernel on the GPU and 
accumulating the contributions from 
individual particles intersecting a slice 
plane into a texture. The resulting textured 
plane can then be displayed alongside the 
particle based data. Combining 2D slices 
and 3D views in an interactive way 
improves perception of the underlying 
physics and speeds up the development 
cycle of simulation code. 

In addition to rendering particles 
themselves, we can improve visualization 
by generating particle trails to show motion 
history, glyphs to show vector fields, 
transparency to enhance or diminish areas 
of high/low interest and multiple views of 
the same or different data for comparative 
visualization. We combine these 
techniques with interactive control or 
arbitrary scalar parameters and animation 
through time to produce a feature rich 
environment for exploration of SPH data. 

1. Introduction 
The rapid development of the power of 

GPUs in desktop computers in the last few 
years has produced an explosion in the 
number of triangles that can be rendered 
per second. In addition, advances in the 
architecture of graphics processors have 
led also to programmable shaders which 
allow a far more flexible approach to the 
generation of images. Instead of 
representing particles as collections of 
triangles, it is possible to render them 
directly to screen by supplying only a 
position, radius and colour (or other 
combination of scalar parameters of 
interest). The shader which resides as a 
small program on the GPU can evaluate a 
sphere function and perform an 
intersection between an eye ray through 
the screen with the sphere (for each pixel) 
to produce an exact image of the particle 
data. Observation of this capability leads 
naturally to the idea of evaluating more 
sophisticated functions such as the SPH 
kernel itself on the GPU and producing an 
even more useful image. In fact evaluating 
the kernel on the GPU has been done 
many times [3,4,5], but in these cases, the 
SPH field equations are evaluated for the 
purpose of animating the particles 
themselves rather than displaying the 
results of the simulation. In [6], the kernel 
is evaluated and the particles are re-used 
directly from the GPU to generate the 
surface using point splatting.  

The work of Sigg et al [2] provides the 
starting point for our implementation of a 
particle renderer and for an SPH slicing 
algorithm on the GPU. Their key 
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development is to represent a quadric 
(sphere, cylinder, cone, ellipsoid or even 
parabolic surface) as a 4x4 matrix that can 
be combined with the usual transform and 
lighting pipeline of graphics hardware.  
Using their approach we have developed a 
particle rendering tool which produces high 
quality spheres at interactive frame rates. 
Since the particles are already passed to 
the GPU for display, we wish to extend the 
capabilities by performing a second pass of 
the renderer which can produce slices 
through the data and display the field as a 
continuum rather than as discrete points. 

The SPH kernel is spherically 
symmetric – having one parameter of 
interest (from the point of view of 
visualization) – which is the cut-off radius, 
we may therefore represent our particles 
as spheres and render them with two clip 
planes positioned equidistant from the slice 
plane – one in front, the other behind with 
the distance from the slice to clip plane 
chosen to be exactly one radius of the 
kernel used. Any particle further than this 
distance on either side is automatically 
removed and no evaluation of the kernel is 
required. Figure 1 shows a simple 
schematic of the regions of interest of the 
particles between clip planes. 

 
Figure 1 : Particles rendered between two 

clip planes. 
 

Since we are only interested in the field 
strength on the plane itself, only portions 
which overlap the slice plane need be 
evaluated.  

In the following section we describe the 
operation of the vertex and fragment 
shaders which compute these regions and 
colour them appropriately. 

2. Vertex and Fragment Shaders 

2.1. Vertex Shader 
The computation of the kernel must be 

avoided whenever possible and we 
therefore wish to limit all calculations to 
regions where the particle projects onto the 
slice plane as shown in Figure 1. This 
calculation is performed in the vertex 
shader - the calculation of the bounding 
box projection for an arbitrary quadric is 
given in [2], but we can make the following 
assumptions 
• The projection onto the slice is 

orthographic and therefore we need not 
consider any perspective correction 

• The particles are spherical and the 
bounding box is simply the scaled 
transformation of the particle radius from 
world coordinates to the pixel 
coordinates of the slice. 

• The slice has isotropic rectilinear pixels 
and we can ignore ellipsoidal terms. 

This considerably simplifies the 
expression for the necessary pointsize R 
and reduces it to 
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Where rk is the kernel radius, lw is the 
distance in world space along the primary 
axis of the slice, ls is the length in pixels of 
the slice, and ww is the homogenous clip 
coordinate of the transformed point. The 
transformation used for the points is given 
by placing the eye e, and viewpoint v, at 
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Where c represents the slice centre 
and snr  is the slice plane normal. All that 

remains is to specify the front and rear clip 
planes at {0, 2rk} and the ‘up’ vector is 
along the second slice axis. The vertex 

Clip 
planes 

Slice plane 

Clipped 
points 

Intersection 
region 

Overlap 
region 

Projection 



 

 

shader computes the transformed 
coordinate and any points lying outside the 
clip region are removed before being 
passed to the fragment shader.  

To save time in the fragment shader 
we compute the (non-varying) distance 

wzp wwd /=  from the point to the plane 

using the coordinate wz in clipping space. 

2.2. Fragment Shader 
The fragment shader operates on a 

square region of pixels given by the 
pointsize computed in the vertex shader. 
For each pixel we must compute the 
distance from the point centre and plug this 
into the kernel if it lies inside a unit circle 
inscribed within the box – since the box 
has been generated using the kernel 
smoothing radius, we know that the incircle 
exactly fits the smoothing radius. Off axis 
particles have a smaller intersection with 
the slice plane and we must only consider 
pixels with distance di within a smaller ring 
within rp 

xxd ii −= , 22 1 pp dr −=  

For di>rp the fragment is outside the 
intersection ring and is discarded. For 
di<=rp we must use the true distance dk to 
the kernel centre given by 222

pik ddd +=  

To correctly display the results of the 
kernel evaluation, we must sum the values 
from overlapping kernels. This is done by 
rendering the scene as described into an 
OpenGL FrameBuffer object using a 
floating point texture and enabling blend 
mode to sum the incoming pixels. We have 
currently implemented cubic spline and 
cusp kernels, others can easily be added. 

The result of the fragment shader is a 
correctly smoothed representation of the 
particles along the slice. Compare the 
images of Figure 2 which show the same 
data rendered using a triangulation of the 
points and the output of the SPH slice 
render. The flaws in the triangulated 

version are obvious and the smoothed one 
is clearly superior. 

 

 
Figure 2 : (a) Continuous field plot using 

Delaunay triangulation of the raw points. (b) 
Particles overlayed on a field plot produced by 

SPH smoothing. 

3. GUI Implementation 
The output of the shaders is a correctly 

smoothed representation of the particles 
along the slice. We have embedded the 
tool within the ParaView [1] and sparticles 
GUIs using a PlaneWidget to interactively 
allow the user to freely move the slice 
plane through the data at any orientation. 
The output of the shader is stored in a 
texture which is mapped onto the plane 
and displayed interactively with the data. 
This gives the user the ability to view any 
slice through the data. Figure 3(b) shows 
an example of a large injection dataset (1 
million points) rendered using transparency 
to give a volumetric effect. For volumetric 
plots, the opacity, colour and even radius 
of particles may be controlled on a per 
particle basis using any sets of scalar 
variables. The plot has been enhanced 
with a slice plane (the interactive handles 
are also shown) which in this case reveals 
features away from the primary jet. 

We have also implemented particle 
trails which display the pathlines of 
individual particles. The trail length is 
configurable and a subset of particles may 
be used for clarity of presentation. Figure 
3(a) shows particle pathlines for the 
intermediate stages of a lid-driven cavity 
flow simulation (Re=1000). The pathlines 
are not quite closed, indicating that the 
solution has not yet reached a steady-
state. The lack of pathlines in the bottom 



 

 

corners is an indication of the very weak 
recirculation in these areas. 

 

 
Figure 3 : (a) Particles with pathlines (b) 

Transparent rendering of particles. 
 
ParaView has many useful features in 

visualising SPH results. For example, 
comparisons of results using different 
numbers of particles can be displayed 
simultaneously. This is useful in 
determining whether the higher resolution 
is necessary. Figure 4(a) displays three 
aspects of the same computation at the 
instant when a wave impacts against a 
vertical wall. It shows that high values of 
pressure, turbulence viscosity and density 
are found at the moment of impact. Figure 
4(b) shows particle mixing as a result of 
paddle motion and wave breaking, 
displaying results at three different times. 
Such figures and associated animations 
can be generated easily in ParaView. 
Many other features such as vector plots, 
glyphs, streamlines, and contouring can be 
found within the extensive library of filters 
available in ParaView.  

 

 
Figure 4: (a) Simultaneous view of (top to 

bottom) pressure, viscosity and density at wave 
impact. [Red=high, blue=low]. (b) Particle mixing 
during breaking of 2s waves (t=0, t=c5s, t=c10s) 

4. Conclusions 
We have implemented a particle 

renderer which produces high quality 
output and enhanced it with capabilities for 

producing SPH specific plots. We have 
built this functionality into a custom 
rendering tool, sparticles, and also into a 
customized version of the ParaView 
visualization package making it not only 
accessible to many users, but also 
providing a range of other visualization 
algorithms and animation tools that allow 
the SPH results to be combined with other 
conventional data and visualizations. 
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