
Technical Report LCA-REPORT-2008-017, July 2008

Securing Online Advertising

Nevena Vratonjic, Julien Freudiger,
Jean-Pierre Hubaux

School of Computer and Communication Sciences
EPFL, Switzerland

firstname.lastname@epfl.ch

Mark Felegyhazi
University of California, Berkeley, USA

felegyha@eecs.berkeley.edu

ABSTRACT
Online advertisement is a major source of revenues in the In-
ternet. In this paper, we identify a number of vulnerabilities
of current ad serving systems. We describe how an adver-
sary can exploit these vulnerabilities to divert part of the ad
revenue stream for its own benefit. We propose a scalable,
secure ad serving scheme to fix this problem. We also ex-
plain why the deployment of this solution would benefit the
Web browsing security in general.

1. INTRODUCTION
Over the last few years, online/Internet advertising has

generated record revenues, reaching nearly $21 Billion in
2007 in the USA [9], and $41 Billion worldwide [1]. The
Internet is recognized as an important distribution channel
for advertisements that emerged as the main source of rev-
enues for most online activities. Several companies are thus
trying to get bigger share of the revenues: Google acquired
DoubleClick [8], Microsoft is still attempting to acquire Ya-
hoo [7], companies propose new ad platforms for ISPs to
start embedding ads [1], and wireless networks sponsoring
their deployment from online advertising revenues [2].

Surprisingly, online advertising and Web browsing still
rely on the HTTP protocol, which does not provide any guar-
antees on the integrity nor the authenticity of online content.
Given the money at stake and the lack of security protocols,
an adversary might perform sophisticated Web traffic modi-
fications, aiming at exploiting the online ad serving system
to increase its own revenues. Thus, the on-the-fly modi-
fication of Web traffic containing advertisement is turning
into one of the main concerns over the future of the Inter-
net. Previous work suggests the use of Javascript, together
with digests of Web pages (called “known-good representa-
tions”) [19] transmitted in parallel, to check whether a Web
page has been modified by the network. Nevertheless, such
a solution can potentially be bypassed, as it is not protected
by a computationally hard problem. Other work focused on
the robustness against click fraud attacks [16, 14, 11]: at-
tacks targeting the advertisement mechanism itself by cre-
ating fake interest for a product to artificially increase the
revenue of a website.

Considering the amount of money at stake, the security of
online advertisement is becoming a pressing concern for ad-
vertisers. As we will show, the deployment of secure online

advertisement systems could actually reinforce Web brows-
ing security. Indeed, not only would advertisers benefit from
a secured online advertisement system; so would websites
as they share part of the revenue, ad servers as they man-
age the ad infrastructure, and users as their browsing activi-
ties would be secured. Online advertisement might thus fuel
Web browsing security.

To the best of our knowledge, this paper is the first to in-
vestigate the strategic modification of Web pages aimed at
the exploitation of online advertising, and to suggest a se-
cure ad delivery system. Note that the devised solution does
not force browsers to display ads, but simply secures the de-
livery of the legitimate advertisement. Our contributions can
be summarized as follows: (i) We present the problem of se-
curing online advertising and propose a model of online ad
serving systems. (ii) We present several attacks on ad serv-
ing systems. (iii) We propose a scalable secure online ad
serving scheme that fits in today’s Internet. As a byproduct,
we show that online advertisement enables the successful es-
tablishment of Web browsing security.

2. ADVERTISING ON THE INTERNET
Internet advertisement is generally constituted of a short

text, an image, or an animation embedded into a Web page
and linking to an advertised website. The purpose of an ad
is to generate traffic to the advertised website and, conse-
quently, to increase the revenue for the advertised products
or services.

2.1 Advertisement Serving Architecture
For most of the websites users visit, a number of adver-

tisements appear together with the content of a Web page.
Ads are embedded into Web pages either through an ad serv-
ing system, or by websites themselves. We suggest a simple
model of the Internet advertisement serving architecture, de-
picted in Figure 1.

The Internet attracts Advertisers (AV) to sell and adver-
tise their products and services online. Ads are stored at Ad
Servers (AS), which belong to an ad network. Throughout
the rest of the paper we use the terms ad network and ad
server (for the ad server that belong to the ad network) inter-
changeably. The ad network offers the service of embedding
ads into Web pages. Ad networks have contracts with AVs to
choose the proper Websites (WS) to host AVs’ ads and dis-

1

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Infoscience - École polytechnique fédérale de Lausanne

https://core.ac.uk/display/147942039?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Ad Server
(AS)

Website
(WS)

User
(U)

1.
2.

3, 5.
4, 6.

Advertiser 1
(AV)

Advertiser 2
(AV)

Advertiser 3
(AV)

Ad Network

Figure 1: The advertisement serving architecture. WS
and AS have a contractual agreement (dashed arrow)
that lets AS add advertisement to WS’s Web pages. The
protocol illustrated with arrow numbers is given below.

play them to Users (U). According to the terms of a contract,
an AV pays money to an AS whenever an ad has generated
traffic on the AV’s website. The AS gives a percentage of
that money to the WS hosting the ad. The money flow ex-
plains the incentive to participate in the ad serving system:
the AV earns the revenue created by ads, the AS earns money
for storing the ads and finding a proper WS on whose Web
pages ads will be displayed, and the WS earns money for
hosting ads and directing the U towards advertised WS.

The most popular ad serving technique is to direct a user’s
browser to fetch advertisements directly from ad servers.
For the rest of the paper, we will use terms user and user’s
browser interchangeably. WSs define ad frames (f) in their
Web pages (p) to be filled with ads, and direct browsers from
where to download them. After downloading a Web page, a
browser automatically fetches ads from ad servers and em-
beds them into appropriate ad frames. The protocol can be
modeled as follows:

1. U →WS: GET URLWS HTTP
2. WS → U : p
3. U → AS: GET URLAS , WSID HTTP
4. AS → U : display.js
5. U → AS: GET URLAS , WSID , CAS HTTP
6. AS → U : ads

With the first two messages (Figure 1), U fetches a Web
page p from a WS, identified with URLWS . Web page p
contains an ad frame f with a Javascript directing U towards
the ad server AS. The Javascript includes the URL of the
ad server (URLAS) and a unique identifier WSID of the
WS, required by the AS to properly transfer potential adver-
tisement revenue to the WS. With the next two messages, U
fetches a javascript display.js from the AS. This script exe-
cutes locally on the user’s machine, and looks for AS’s cook-
ies CAS that might have been deposited during a previous in-
teraction with U . If they exist, the cookies uniquely identify
the user and enable the profiling of his Web browsing pref-
erences. With the last two messages the script fetches ads
from the AS. The browser merges the advertisement with
other, previously downloaded elements of p.

This approach has several advantages: (i) the HTML code
that directs users to fetch advertisements is simple and easy
to maintain, as only one line of code (a reference to the
Javascript) should be added in the ad frames, (ii) it is scal-
able, as the workload is distributed to the users, (iii) it al-
lows ad servers and advertisers to keep the control as ads

are stored and maintained at their servers. There are sev-
eral drawbacks as well: Because users must fetch ads from
different servers, the ad serving technology slows down the
display of Web pages, consumes extra bandwidth and chal-
lenges the privacy of users [17].

There are other online advertisement serving techniques.
For example, a PHP script running on a Website can locally
embed advertisements and serve them to users together with
the content of a Web page. This technique is not very popu-
lar because it puts more workload on the Web servers com-
pared to the previous approach, thus it does not scale well.

2.2 Ad Servers
A notable difference between online ad serving and tra-

ditional ad serving (e.g., television, radio...) is that online
ads can be targeted to individual user’s interests. Ads that
will appear on a user’s screen are selected by ad servers in
real time such that they match user’s interests at the mo-
ment. Typically, ads are targeted to the content of the Web
page hosting the ad, user’s interests extracted from previous
browsing history, user’s geographical location, etc. The goal
of targeted advertising is to increase the probability of users
actually being interested in the advertised products. At the
ad server, user’s interests can be expressed with one or more
keywords. The ad server stores a number of ads associated
with each keyword and it runs auction algorithms to select
the most profitable ads and the order in which they should
appear on the Web page. The selection is done such that the
profit is maximized for both advertisers and websites hosting
the ads.

There are two main pricing models according to which a
WS receives money for hosting ads. In the Pay-Per-Click
model, a WS receives money when a user clicks on one
of the ads it hosts. In the alternative, Pay-Per-Impression
model, a website receives money for each ad that is dis-
played on a user’s screen together with the WS’s content.

3. THREATS
In this section, we define the adversary model considered

through the rest of the paper and we identify a number of
possible attacks on ad serving.

3.1 Adversary model
We consider both a selfish adversary intending to take ad-

vantage of the ad serving system and a malicious adversary
intending to harm it. The ad serving system can be exploited
by one of the participating entities (Figure 1), or by an ac-
cess network that connects all the entities and passively for-
wards packets between them. As previously explained, all
the entities benefit from the ad serving system, except the
access network. Thus, the access network may be tempted to
tamper with the transiting data and create benefits for itself.
Therefore, we consider an adversary located in the access
network.

We assume a Dolev-Yao adversaryA [13]: A controls the
access network, has access to the messages passing through
the network, and is a legitimate member of the network. It
has the ability to eavesdrop, alter, inject and delete mes-
sages, hence it can perpetrate Man-in-the-Middle attacks.

2

We refer toA as a Network-in-the-Middle (NitM) adversary.
Such an adversary can take various forms in practice.

An example for a NitM adversary can be an attacker con-
trolling a wireless access point (AP). To gain control over an
AP, an attacker can subvert home wireless access points. As
shown in [22, 20, 21], a significant portion of home wireless
access points are vulnerable to hijacking attacks.

A stronger adversary could even deploy its own network
of misbehaving access points. For example, wireless social
communities (WSC) [6] could deliver localized advertise-
ment and use the ad serving revenue to fuel their develop-
ment.

Today, ISPs need to invest into the infrastructure to sup-
port the increased demand for bandwidth and to accommo-
date government requirements (e.g. blocking part of the P2P
traffic) [3]. Thus, ISPs may be tempted to abuse the control
over the Internet traffic they transport to get a return on their
investments. ISPs have the means to monitor and modify
the packets in real time. Deep packet inspection (DPI) [12]
is a packet filtering technology that allows for the automatic
examination and tampering of both the header and data pay-
load of packets.

3.2 Attacks on Ad Serving
Given the total revenue generated by online advertising,

an adversary has significant economic incentive to exploit
the online ad serving to divert part of the revenues to its own
benefit. In this section, we describe various NitM attacks
against ad serving that can be perpetrated by an adversaryA
located in the access network.

3.2.1 Adding Advertisement
A can add advertisements to Web pages traversing the ac-

cess network. It scans the payload of packets, determining
where to inject the appropriate html code containing its own
advertisements.

Injection of advertisements to any Web page, not neces-
sarily targeted to the Web page’s content or users’ interests,
is called a pollution attack. Rogers, a Canadian ISP, was re-
ported to add content, notably advertisement for their own
services, into any Web page that traversed their access net-
work [23]. This was done by injecting into a Web page a
single line of code that will cause the user to fetch and exe-
cute a Javascript as if it was part of the content of the Web
page 1.

<script src="www.rogers.com/index.js"
type="text/javascript"></script>

Injecting advertisements not only generates revenue for
the adversary but might also harm the reputation of a website
or spoil the appearance of a Web page. As a consequence,
the traffic on the website could decrease and cause a loss
of online advertising revenues for both advertisers and the
website.

A more sophisticated version of the pollution attack con-
sists in injecting ads in search results returned by search
engines. Search engines facilitate targeted advertising as
search queries indicate users’ interest at the moment. Several
1The entire Javascript can be found in [23].

surveys have obtained statistical information about users’
behavior regarding Search Engine Result Pages (SERP) [15].
SERP contains a listing of Web pages returned by a search
engine in response to a keyword query. If we consider SERPs
without sponsored links (i.e., websites do not pay for their
domain names to appear as search results), more than half
of the users click on one of the first two results: 42.3% on
the first and 11.9% on the second search result. The order
in which results are displayed is determined by the search
engine using a dedicated optimization algorithm. Knowing
this, A can inject its ad in SERPs such that it appears at the
top of the list, resulting in a substantial increase of users’
traffic on a website of the adversary’s choice. In online ad-
vertising terms, this is an amazingly successful advertise-
ment and A can commercialize such services to advertisers.
By injecting ads, A thus bypasses the traditional ad serving
model.

Several ISPs actually started partnering with advertisers
to legally add advertisement to Web pages. Phorm [1] for
example is an ad serving platform partnering with British
Telecom, TalkTalk and Virginia Media, (which together rep-
resent approximately 70% of the UK broadband ISP market)
to implement this ad serving model.

3.2.2 Replacing Advertisements
An adversary can substitute ads embedded into a Web

page by its own ads or those from competitors. To do so,
an access network must first identify packets containing ads,
which can be done using DPI technology, or checking the
IP destination addresses or URLs of the requested objects in
the HTTP traffic. Then, A can either replace the ads them-
selves, or change the URLs which identify ad servers from
where ads are fetched (redirection attack). Now A can con-
trol from which ad servers and which ads are embedded into
Web pages. Consequently, A controls the money flow, as it
can divert the revenue from original ad servers towards ad
servers of A’s choice.

The redirection attack consists in redirecting users’ re-
quests towards arbitrary ad servers, chosen by the adversary.
It can be implemented by modifying URLs of objects ref-
erenced in ad frames. When a user fetches a Web page, A
modifies the payload of packets carrying the URLs of the
ad servers, such that the ads are fetched from different ad
servers. An alternative way for A to implement the redi-
rection attack is to intercept the user’s HTTP requests to-
wards ad servers, fetch ads from ad servers of its own choice,
and transparently send them to the user as a response to his
HTTP requests.

The amount of money earned by an adversary perpetrating
the redirection attack depends on whether it has an agree-
ment with advertisers whose ads it will place on Web pages.
In such a case, ad networks and websites will lose revenue
to A and its affiliated advertisers. But, to implement such
an attack, A has to build its own advertising infrastructure
to select the most appropriate ads. A could instead coop-
erate with one of the competing ad networks to forward all
the traffic to their ad servers, thus relying on an existing ad
serving infrastructure.

Instead of stealing the advertisement revenue, an adver-
sary can replace advertisements with inappropriate and in-

3

trusive ads to divert users’ traffic away from certain web-
sites. In a way, such an adversary then has indirect control
over users’ browsing habits.

3.2.3 Deleting Advertisements
Finally, an adversary can remove ads from webpages. For

example, an ISP can automatically filter out all the advertise-
ments and offer this as a service to its customers. Blocking
advertisements is already possible at the end users [4, 5],
but doing it network-wide would satisfy ISPs as it would re-
duce the amount of traffic to carry and work transparently for
users. In addition, A could have an agreement with certain
advertisers or ad networks to filter out ads from competitors.

4. SECURE AD SERVING
In the previous section, we identified several possible at-

tacks on the current ad serving system, that exploit vulner-
abilities in the communications: (i) between a user and a
website and (ii) between a user and an ad server.

To protect against these attacks, the authenticity and in-
tegrity of both the content and the advertisement have to be
provided. Confidentiality is not a design goal, as it is not
required to defend against a NitM adversary. To provide
authenticity and integrity, communicating parties establish
security associations (SA).

There are well-known protocols to establish an SA. Usu-
ally, security at the application layer relies on security pro-
tocols of lower layers, such as Internet Protocol Security
(IPSec) or Transport Layer Security (TLS). In this section,
we first explain the limitations of traditional approaches and
provide a new solution in Section 4.2.

4.1 Limitations of Traditional Approaches
IPSec allows users to connect securely to a remote net-

work by securing the communication between users and an
IPSEC server at the network layer. However, it does not
provide end-to-end security between a user and a website,
because an adversary could be located between the IPSec
network and a website.

The Transport Layer Security (TLS) secures end-to-end
communication at the transport layer. The secure version of
HTTP protocol, HTTPS, relies on TLS. HTTPS is used on
the Internet to secure sensitive browsing data and would be
a straightforward solution to secure the ad serving system.
However, there are two strong arguments against deploying
HTTPS at large scale: first, authentication issues when de-
ploying HTTPS in practice, and second, significant overhead
HTTPS introduces.

Authentication Problem
There are certain scenarios where HTTPS cannot achieve

authentication in practice. One scenario is when servers
downgrade security parameters during the connection estab-
lishment and the second is when digital certificates are not
properly used for authentication. In cases when authentica-
tion fails, data integrity and confidentiality cannot be guar-
anteed and HTTPS fails to achieve its design goals.

We consider properly configured browsers such that a ma-
licious server cannot downgrade the TLS parameters. A ma-
jor problem remains: How does a client authenticate the

server with which it communicates? The current authen-
tication procedure relies on the fact that legitimate servers
own a public/private key pair and a corresponding valid dig-
ital certificate to prove their identity. As there is no initial
trust between a client and a server, they rely on an indepen-
dent trusted third party (TTP) to properly verify the identity
of the server and the ownership of a given public key be-
fore issuing a valid certificate. We refer to a TTP that issues
certificates as a Certification Authority, (CA). With the help
of root certificates built into browsers2, trust chains can be
used to verify transparently the validity of certificates. The
X.509 standard is used on the web for the implementation
of certificates.

Certificates signed by CAs are not widely used by web-
sites because they are expensive. Instead, websites use self-
signed certificates, signed with their own private key, thus
users must trust the websites. A number of surveys of users’
browsing habits show that even if an invalid certificate is de-
tected and the user is properly warned via a pop-up message,
the vast majority of users do not pay attention or do not un-
derstand the content of the message and accept the certifi-
cate. If users accept invalid or self-signed certificates, they
might establish an SA with a malicious WS, instead of the
legitimate WS with which the user wanted to communicate.

Overhead
Another drawback of using HTTPS for web browsing is

the overhead it introduces, in terms of additional communi-
cations and computations. The major part of the overhead
is due to the initial key exchange [10]. In the case of web
browsing, sessions would be short and frequent, thus the
overhead would be too high. As investigated in [19, 10] the
throughput of an HTTPS server can be significantly lower
than the throughput of an HTTP server. As confidentiality
is not a requirement for fighting against NitM attacks, one
might consider HTTPS with only data integrity and authen-
tication features. Still, as the key exchange is not avoided,
the overhead remains significant. This is the reason the In-
ternet community has made a step towards solutions that will
provide data integrity without HTTPS [19].

4.2 Securing Online Advertising
In TLS based approaches, the WS lacks economic incen-

tives for securing its content, specifically, to acquire a cer-
tificate from a CA and to invest in the infrastructure required
to support HTTPS. We propose a solution based on the eco-
nomic incentives of ad networks, that have an interest in se-
curing the content of WSs hosting their ads. In our solution,
a new entity called the Certificate Provider, (CP), is asso-
ciated with one or more ad networks and provides certifica-
tion services to WSs and ASs. These certification services
consist of: (i) collecting and validating the WSs’ and ASs’
certificates (self-signed or signed by a CA), (ii) securely pro-
viding the certificates on demand to the users. We argue
that the emergence and deployment of CPs should be spon-
sored by ad servers and advertisers as they are the ones who
will benefit the most. By protecting their own interests, ad
networks indirectly secure users’ web browsing experience,
2Users must trust software vendors for the authenticity of the root
certificates.

4

giving incentives to users to adopt this mechanism as well.
To solve the second problem, the overhead of HTTPS,

we propose a light-weight, scalable mechanism, based on
long term security associations called security cookies. The
main idea is that instead of generating per session SA as in
HTTPS, we use a long term SA that is unique for each user-
server pair and can be reused for multiple sessions. This
avoids the expensive step of key exchange in HTTPS.

4.2.1 Certificate Distribution and Authentication
A CP can be thought of as an online instance of a CA,

that has more flexibility and control in managing the certifi-
cates. The role of a CP is to help users validate certificates
presented by WSs and ASs. The notion of such an entity
can be found for example in Google’s safe browsing ser-
vice [18]. The Mozilla Firefox browser integrates the pos-
sibility for each URL a user visits to check whether it is a
phishing website. It does so by contacting Google’s servers
that store a repository of blacklisted URLs that correspond
to phishing websites. In this example, Google has the role of
an entity whom users trust to check the validity of URLs on
their behalf.

The first task of a CP is to collect and validate the certifi-
cates of WSs and ASs. The CP guarantees that a certificate
for a domain actually corresponds to the domain. Before ac-
cepting a certificate of a new website, the CP verifies that the
owner of the certificate is the owner of the website domain.
This might require a manual verification for WSs/ASs with
self-signed certificates, but it can be done automatically for
certificates of websites signed by a CA. The cost for the CP
to validate certificates would be borne by ASs as it is in their
best interests to secure the content of the WSs.

The second service provided by the CP is to serve user re-
quests for certificates in a secure manner. To authenticate a
given WS/AS, a user retrieves the corresponding certificate
from the CP and compares it with the certificate provided
by the WS/AS. The user establishes a connection with the
WS/AS only if the two certificates match. Thus, the CP pre-
vents the impersonation of the WS/AS by malicious parties.

There are two modes in which the user can obtain certifi-
cates from the CP:

• online verification: For any URL a user visits, the cer-
tificate of the website is obtained from the CP. After
obtaining a valid certificate from the online CP author-
ity, the user caches it for future verification of the WS.
For any later communication with the given WS, the
user can verify the certificate locally and does not have
to communicate with the online CP again, until the cer-
tificate expires or the caching period at the user’s ma-
chine expires.

• offline verification: A CP pushes updates of the cer-
tificate pool to users, which are then stored at users’
machine. Updates are done transparently (e.g. each
30 minutes a browser initiates a connection to the CP
and checks for the updates). A number of optimiza-
tions can be done depending on the limitation factors:
If the storage space is the bottleneck, a user can down-
load certificates of the most popular WSs and use the
complementary online verification approach to check

certificates that are not stored locally.

In order to protect users’ privacy and prevent the CP from
tracking and profiling users’ browsing habits, and also to re-
duce the latency of rendering a Web page after a user issues
a URL request, offline verification appears to be a better so-
lution.

By acting as an online instance of a CA, the CP avoids
the need to sign the certificates of the WS/AS. This provides
greater flexibility in the management and control of certifi-
cates. Because certificates are either validated on each re-
quest (online verification), or the CP can push updates of the
certificates to users (offline verification), the CP has greater
control over the lifetime of certificates. This allows more
flexibility to the ad network to include (remove) a certificate
to (from) the CP’s repository.

To protect against a third party trying to impersonate a
CP, public keys of CPs should be pre-installed in browsers
or CPs should have valid certificates signed by a CA. Users
should be given an option to choose the preferred CP, i.e.
whom they trust.

4.2.2 Security Cookie
Securing users’ communication with CPs, WSs and ASs

relies on long-term security associations stored in the form
of cookies. We call these security cookies. A security cookie
is a long-term shared secret key between a user and a server
(WS, AS or CP) that can be reused over multiple sessions.
It consists of a (user-key,pseudo-key) pair. The server gen-
erates a key for the user, called user-key, and a cryptographic
representation of the user-key, called pseudo-key. The pseudo-
key is obtained by encrypting the user-key with the server’s
public key, such that the user-key can be obtained from the
pseudo-key only with the knowledge of the server’s private
key (i.e. only by the server). The server sends the (user-
key, pseudo-key) pair to the user. The user’s browser accepts
and stores this security cookie. A shared secret (user-key) is
now established between the user and the server, and it will
be used to secure their future communication. Establishing
a security cookie between a user and a server requires TLS
support, with all the security features it provides: confiden-
tiality, integrity and authenticity.

The server does not have to keep per user state, because a
user associates his pseudo-key with his future requests, and
the server obtains the user-key from the pseudo-key. For
performance optimization, the user-key can be cached at the
server for a short amount of time. The user may decide to
renew his user-key, in which case the previously described
procedure for obtaining the security cookie is repeated.

4.2.3 Data Integrity
Once a user obtains the security cookie, he uses the user-

key to compute Message Authentication Code (MAC) to pro-
tect the data integrity. Indirectly, as only the user and the le-
gitimate server can know the shared secret, i.e. the user-key,
MACs also provide authentication.

Our scheme consists of the following (Figure 2):

• The browser establishes a security cookie over TLS
with a trusted CP; This happens only once per user.

• The browser periodically communicates with the CP

5

Website
(WS)

User
(U)

Ad Server
(AS)

Certificate
Provider

(CP)

security cookie
certificate validation

security
 cookie

content

se
cu

rit
y

co
ok

ie

ad
s

Figure 2: Secure content and ad delivery: dashed lines
represent communication over TLS to establish security
cookies, solid lines represent communications whose in-
tegrity is protected with the user-key.

to validate certificates in one of the two possible ways:
online or offline verification. This communication is
secured with the user-key and does not require TLS.

• When visiting a website for which the browser does
not have a security cookie, the browser first establishes
a security cookie over TLS with the website. This hap-
pens only once per user, unless the user decides to re-
new the security cookie, in which case this step should
be repeated.

• When visiting a website for which the browser has
a security cookie or after establishing a cookie, the
browser associates the appropriate pseudo-key to user’s
requests. The server extracts the user-key to be used
for MACs to protect data integrity and authenticity.

• The same security cookie mechanism is used to secure
the communication between a user and an ad server,
like described for the communication with websites.
Security cookies are established per ad network.

• The outcome of the integrity check by the browser is
binary: If the check is successful the browser renders
the content, otherwise the browser does not display the
content.

The drawback of maintaining a security cookie per ad net-
work is that ad networks now have a unique identifier for a
user and that they can profile the user’s interests based on
the type of the websites from where the user is redirected
to retrieve ads. Considering that some of the ad networks
already store a unique cookie on users’ machines, and that
others may track and profile users simply based on their IP
address, we believe that the users’ privacy is not violated
more than it is today.

To implement the proposed mechanisms, some modifica-
tions in the browsers are required. These can be done us-
ing plug-ins without requiring modifications to the existing
browsers.

4.2.4 Overhead
By extending the lifetime of security associations, instead

of creating an HTTPS connection for each session, compu-
tation and communication costs are significantly reduced. In

the worst case, a user will have to create an HTTPS con-
nection with the WS, the CP and the AS to establish secu-
rity cookies with each of these entities. In total, the user
must establish three TLS connections, each requiring two
exponentiations from users, and three from servers. In the
best case, when the user has the security cookies established
with the CP, WS and AS, it does not have to do any com-
putations, and the servers only needs to derive the user-key
from the pseudo-key with a single exponentiation. As MACs
are computed using symmetric cryptography the overhead is
negligible. Security cookies thus bring a significant perfor-
mance gain, especially when users frequently browse same
websites.

5. CONCLUSION
With the attacks presented in this paper, we have shown

the tremendous power of the access network and the impact
it can have on the ad serving system. This impact can trans-
late into revenue loss for the advertisers, ad networks and
websites and into lower security for the end users. These
threats create incentives for all the entities to deploy the pro-
posed scheme to secure the ad serving system, and protect
the revenues and Web browsing. We have shown that pro-
viding authentication and data integrity is necessary, for the
security of both, the content of Web pages and the ads them-
selves. In this way, ad serving would not only finance the
Internet but would also fuel the deployment of online secu-
rity.

6. REFERENCES
[1] http://www.phorm.com.
[2] http://www.freefinet.com.
[3] http://www.perftech.com.
[4] http://adblockplus.org.
[5] http://add-art.org.
[6] Fon. http://www.fon.com.
[7] Microsoft proposes acquisition of yahoo!

http://www.microsoft.com/presspass/press/2008/feb08/02-
01CorpNewsPR.mspx.

[8] Google to acquire doubleclick.
http://www.google.com/intl/en/press/pressrel/doubleclick.html, 2007.

[9] Internet Advertising Bureau. Iab internet advertising revenue report,
2007.

[10] C. Coarfa, P. Druschel, and D.S. Wallach. Performance analysis of tls
web server. In TOCS, 2006.

[11] N. Daswani and M. Stoppelman. The anatomy of clickbot.a. In
Hotbots, 2007.

[12] S. Dharmapurikar, P. Krishnamurthy, T.S. Sproull, and J. W.
Lockwood. Deep packet inspection using parallel bloom filters. In
IEEE Micro, 2004.

[13] D. Dolev and A. Yao. On the security of public key protocols. Annual
Symposium on Foundations of Computer Science, 1981.

[14] M. Gandhi, M. Jakobsson, and J. Ratkiewicz. Badvertisements:
Stealthy click-fraud with unwitting accessories. Digital Forensic
Practice, 1(2), 2006.

[15] Richard Hearne. Click through rate of google search results.
http://www.redcardinal.ie/search-engine-optimisation/12-08-
2006/clickthrough-analysis-of-aol-datatgz/.

[16] M. Jakobsson, P. D. MacKenzie, and J. P. Stern. Secure and
lightweight advertising on the Web. Computer Networks, 1999.

[17] B. Krishnamurthy, D. Malandrino, and C. E. Wills. Measuring
privacy loss and the impact of privacy protection in web browsing. In
SOUPS, 2007.

[18] N. Provos. Phishing protection server specification. In MozillaWiki.
[19] C. Reis, S. D. Gribble, T. Kohno, and N. C. Weaver. Detecting

in-flight page changes with web tripwires. In NSDI, 2008.
[20] S. Stamm, Z. Ramzan, and M. Jakobsson. Drive-by pharming. In

Technical Report, 2007.

6

[21] A. Tsow. Phishing with consumer electronics - malicious home
routers. In WWW, 2006.

[22] A. Tsow, M. Jakobsson, L. Yang, and S. Wetzel. Warkitting: the
drive-by subversion of wireless home routers. Journal of Digital
Forensic Practice, 1(3), 2006.

[23] Lauren Weinstein. Google hijacked – major ISP to intercept and
modify web pages. http://lauren.vortex.com.

7

