
Performance of Averaging Algorithms in
Time-Varying Networks

Patrick Denantes

Master’s Thesis

Ecole Polytechnique Fédérale de Lausanne
I&C School of Computer and Communication Sciences

LCAV, Prof. Martin Vetterli LCA, Prof. Patrick Thiran

Munich University of Technology
Associate Institute for Signal Processing

Univ.-Prof. Dr.-Ing. Wolfgang Utschick

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Infoscience - École polytechnique fédérale de Lausanne

https://core.ac.uk/display/147941827?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Date of Start: November 1, 2006
Date of Examination: June 4, 2007

Supervisors: EPFL: Florence Bénézit
Prof. Patrick Thiran (LCA)
Prof. Martin Vetterli (LCAV)

TUM: David Schmidt
Prof. Wolfgang Utschick

EPFL, CH-1015 Lausanne May 30, 2007

Acknowledgments

I would first like to thank Prof. Rüdiger Urbanke from the LTHCand all the people from the
Information Processing Group (IPG) at EPFL who kindly hosted me in their Lab during my stay in
Lausanne. Further thanks go to Florence, for all the interesting and insightful discussions we had.
It was a great pleasure to work with her in a team. Many thanks go to Prof. Thiran who guided
and supervised our work, and reviewed a previous version of this document. I would also like to
thank Prof. Vetterli who followed our research efforts through numerous private meetings. Last but
not least, special thanks go to Prof. Utschick for giving me the opportunity to conduct this work at
EPFL, and also to David for the discussions we had during my visits back at TU Munich, and who
helped correcting and improving the readability of this paper.

Abstract

We study averaging algorithms in time-varying networks, and means to measure their performance.
We present sufficient conditions on these algorithms, whichensure they lead to computation at each
node, of the global average of measurements provided by eachnode in the network.

Further, we present and use results from ergodic theory to define an accurate performance
metric for averaging algorithms. This metric, thecontraction coefficient, differs from previously
used metrics such as the second largest eigenvalue of the expected weighting matrix, which gives
an approximation of the real convergence rate only in some special cases which are hard to specify.

On the other hand, the contraction coefficient as set forth herein characterizes exactly the actual
asymptotic convergence rate of the system. Additionally, it may be bounded by a very concise
formula, and simulations show that this bound is, at least inall studied cases, reasonably tight so
as to be used as an approximation to the actual contraction coefficient.

Finally, we provide a few results and observations which make use of the derived tools. These
observations may be used to find new optima for design parameters of some averaging algorithms,
and also open the door to new problems in the study of the underlying mathematical models.

Contents

Introduction 3

1. The Averaging Problem 5
1.1 Introduction .. . 5
1.2 Averaging Algorithms 6

1.2.1 Uniform Weights . 6
1.2.2 Metropolis Weights .. 6
1.2.3 Optimized Weights .7
1.2.4 Gossip Algorithm .7

1.3 Notations and Definitions 8
1.3.1 Matrix-Vector Notation 8
1.3.2 Mathematical Model .9
1.3.3 Useful Functions .10

2. Convergence 11
2.1 Sufficient Conditions for Convergence 11
2.2 Exponential Convergence 13

3. Products of Random Matrices 16
3.1 Infinite Products of Constant Matrices 16
3.2 Kingman’s Subadditive Ergodic Theorem 18

3.2.1 Application to Matrix Products 20
3.2.2 Special Case: Stochastic Matrices 21

3.3 Oseledec’s Theorem 23
3.4 A Vector Point of View .. . 24

4. Bounds on the Contraction Rate 27
4.1 First Bound on the Contraction Rate 27
4.2 Simpler, but Looser Bound 31

5. Simulation Results 33
5.1 Introductory Remarks 33

5.1.1 Different Metrics for Convergence 33
5.1.2 Scales and Representation 35
5.1.3 A Remark on Rare Events . 36

5.2 Analysis of Bounds .. . 37
5.2.1 Geometric Graphs . 38
5.2.2 The Full Graph . 40
5.2.3 γ as a Function of Graph Density . 42

5.3 Comparison of Averaging Strategies 43

1

2 Contents

6. Summary and Open Problems 48
6.1 Further Observations 48

6.1.1 Asymptotically Large Networks 48
6.1.2 Transient Behavior and Frobenius Norm 51
6.1.3 Gossip – Optimal Weighting .. . 53

6.2 Summary . 54

Bibliography 56

Introduction

The problem of distributed coordination in networks has applications in all systems in which a
number of “agents” need to compare or to align an internal “measure” with the measures of the
other agents. A common example of a set of agents is a network of autonomous sensors, which
need to compare their own measurement (e.g. temperature) tothe measurements of other sensors,
in order to detect an anomaly (e.g. a fire). Sensor networks may be used in a variety of applica-
tions, such as environment monitoring, homeland security,or traffic control, to give only a few
examples [1]. Distributed coordination problems also arise in congestion control of data networks,
load balancing in distributed computing architectures, clock synchronization, in formation control
of mobile units (also known as flock control) [2, 3], or attitude alignment of satellite clusters. In
all these distributed systems, there is a need for the individual agents to know the average of some
measure (e.g. traffic flow, CPU load, time, position, heading, attitude) over all other agents (e.g.
routers, processors, clocks, robots, autonomous vehicles, satellites), so they can adjust their be-
havior and/or coordinate their effort. Further, the averaging problem is a first step towards more
sophisticated distributed algorithms. For example when measurements are linear in the variable
of interest, and with additive Gaussian noise, averaging protocols may be used to implement a
distributed maximum likelihood estimator [4].

In many cases, the network may be changing over time, for various reasons. Nodes may join
or leave the network, or become inactive or unavailable to resume operation later. Further, also
the connections between agents may fail for various reasons, such as channel fading, upcoming
obstacles or broken transmission systems. Thus, robust averaging algorithms are needed, which can
cope with a varying network topology, and even with a varyingnumber of nodes. There are known
algorithms which satisfy these conditions, such asgossip algorithms[5, 6, 7] andsynchronous
averaging algorithms[8, 9]. However, there is a lack of tools to analyze the performance of these
algorithms, in order to properly compare their performance. Further, their mechanism is often
not fully understood, which prevents a systematic optimization of design parameters. The time-
variability and randomness involved in the averaging process due to failing links, nodes, changes
in network topology or size, make it difficult to analyze performance of these algorithms, yet even
to specify a suitable performance metric.

Therefore, the first goal of this work is to provide means to easily compare, and understand the
operation principles of these algorithms. This is achievedby the specification of ancontraction
coefficient. It is shown how this value can be computed by simple means. Further, bounds
guaranteeing a minimal contraction rate are presented. Finally, experimental results illustrate the
relevance of this metric, and show how it can be used to optimize design parameters of averaging
algorithms.

Structure of the Document
We begin by presenting different types of known robust averaging techniques, including gossip al-
gorithms and different types of synchronous averaging. These are all iterative algorithms, designed
such that an estimate of the value of interest (i.e. average)sequentially updated at each node tends
to the actual value. A common notation which allows to describe all the different algorithms con-

3

4 Contents

sidered in the same way and to study their performance, or convergence speed, is described in
Section 1.3 and used in the sequel.

Chapter 2 addresses the question whether an averaging algorithm as described in the first chap-
ter can produce an accurate solution at all. This problem is viewed from the point of view of
renewal theory. Sufficient conditions for sequences of average estimates computed at each node
to tend to the desired value are derived in Section 2.1. Also,it is shown that a measure for the
estimation error decays exponentially with algorithm iterations.

To characterize and understand this exponential contraction of the error requires some math-
ematical background. These notions are presented in Chapter 3, which is kept in a much more
general setting. It presents important theorems from ergodic theory and their application to prod-
ucts of random matrices, a special case of which describes our averaging processes. In particular,
we introduce the notion ofcontraction coefficient, which we will use to measure the performance
of averaging algorithms.

In Chapter 4, in an attempt to compute or to approximate this contraction coefficient in a simple
way, we derive two upper bounds on it. One of these turns out tobe fairly tight, while the other
requires less effort to compute, but is always looser than the first, and in most cases significantly
looser.

This is illustrated by simulations which results are set forth in Chapter 5. We studied the per-
formance of different averaging schemes in different network topologies, as well as the tightness
and usefulness of the bounds derived in the previous chapter.

Finally, Chapter 6 points out observations on the behavior and performance of averaging algo-
rithms, which became apparent while using of the newly introduced tools. These observations may
lead to a better understanding of the algorithms, and help toadapt them to specific applications, in
order to maximize their performance. A concluding section summarizes the results.

1. The Averaging Problem

1.1 Introduction

We consider a time varying network, whose goal is to make available to each node the average
value of the measurements of all nodes in the network, or at least an approximation of it. To this
end, at time instantt, the nodes can communicate with each other over all currently active graph
edges, or communication links. We consider time-slotted algorithms.

We will restrict the messages exchanged to contain only a current, partly averaged, valuexi(t)
of the sending nodei, and in some cases limited information about the degree of the sending node
and its neighbors. This also means that the same message is broadcast to all neighbors, regardless
on the message received from the receiving node at previous time instants, or even whether the
receiving node was previously a neighbor at all. Algorithmsin which different, customized, mes-
sages are sent to each neighbor, such as described in [10, 11], are known asConsensus Propagation
algorithms, and are not dealt with in this document.

Further, the processing of the messages received at each node is restricted to linear operations.
More specifically, at each time step, every nodei performs an update operation on its current
estimatexi(t) of the overall average. This operation is linear, and reliesonly on the current average
estimates from nodei and its neighbors. The update equation for nodei at timet then reads as

xi(t + 1) = wii(t)xi(t) +
∑

j∈Ni

wij(t)xj(t) i = 1 . . . n (1.1.1)

wherewij(t) denote weighting factors which values are set according to some algorithm to be
defined, andNi is the neighborhood of nodei, i.e. the set of nodes which have link to nodei. A
link between nodesi andj may be down, or broken at timet, in which casewij(t) = 0. xi(0) is
the initial measurement at nodei.

In a network ofn nodes, our goal is to compute the average

x̄ :=
1

n

n∑

i=1

xi(0). (1.1.2)

Before specifying the exact values of the weighting factors, it is useful to set up the following two
conditions on these numbers:

∑

j

wij(t) = 1 ∀t ≥ 0, ∀i = 1 . . . n (1.1.3)

∑

i

wij(t) = 1 ∀t ≥ 0, ∀j = 1 . . . n. (1.1.4)

Condition (1.1.3) ensures that the fully averaged configuration xi = y ∀i is a fixed point of the
update equation (1.1.1), and condition (1.1.4) ensures theconservation of sum. That is, at any
given timet,

∑

i xi(t + 1) =
∑

i xi(t), and if we reach a fixed point of the form described above,
we will actually havey = x̄.

These conditions are also found e.g. in [12], and can be fulfilled by many different specific
assignments for the weightswij, a couple of which are described below.

5

6 1. The Averaging Problem

1.2 Averaging Algorithms

The following list is not supposed to be exhaustive, and is rather meant to give a couple of examples
how the weighting factors may be chosen. It is to be noted thatin all the algorithms described
below lead to symmetric weighting factors, that iswij = wji ∀i, j. This is not necessary, but very
convenient for fulfilling conditions (1.1.3) and (1.1.4), as both are then equivalent.

1.2.1 Uniform Weights

Also called themaximum-degreemethod, this is the simplest way of choosing the weighting fac-
tors. Take the weights all equal to each other on the edges, and fill up with the self-loop weight so
they add up to one. That is,

wij(t) =







α if j ∈ Ni(t)

1 −∑k∈Ni(t)
wik(t) if i = j

0 otherwise.

(1.2.1)

whereα is a constant. If it is less than one over the maximum degreedmax of all nodes at all
times, the weights on the self-loopswii(t) are always positive, and the algorithm is stable, i.e. an
error measure1 on thexi(t) is non-increasing. For that reason, the most commonly used choice is
α = 1/(dmax + 1).

Whenα = 1/dmax, the weights on the self-loopswii can be zero. This can lead to a problem in
the following situation. Consider the case of a regular bipartite graph, in which all links are always
active, so the weights do not depend on time. As the graph is regular,di = dmax andwii = 0 for all
i. Because the graph is bipartite, at each time step, all nodeson one side will compute a weighted
sum of values from nodes on the other side only, and vice-versa. In this way, the values from one
side will never get averaged with the values on the other side, and the algorithm will therefore
never reach the desired fixed point.

For α > 1/dmax, some self-loopswii may be negative, and the system may become unstable,
causing somexi(t) to diverge.

The most conservative choice would be of courseα = 1/n, which might be used if the maxi-
mum degree is unknown. However, this leads to very small weights if the network is large and is
therefore not very effective. Moreover, this assumes knowledge of the total numbern of nodes in
the network.

Note that knowledge ofdmax at every node is in general not a trivial assumption either. But in
technical systems, it is easy to limit the number of links to anode to a number given a priori.

1.2.2 Metropolis Weights

The Metropolis weights method is inspired from the Metropolis–Hastings algorithm used in
Markov chain Monte Carlo methods [13]. On a time-varying graph, the weights are defined as

wij(t) =







1
1+max{di(t),dj (t)} if j ∈ Ni(t)

1 −∑k∈Ni(t)
wik(t) if i = j

0 otherwise.

(1.2.2)

1For examplemaxi |xi(t) − x̄|.

1.2 Averaging Algorithms 7

So the weight on each edge is one over the larger degree at its two incident nodes plus one, and the
self-weights are chosen so as all weights sum up to one at eachnode. Again, as in the maximum-
degree method, one could think of dropping the “plus one” term, thus allowing self-weights to be
zero and taking the risk not to converge, if the graph happensto be always bipartite.

Note that the Metropolis weights can be computed locally, asthis operation requires only
knowledge of the own degree and those of direct neighbors. Itis realistic to perform it at each
time step, unlike the optimization described in [9] and discussed in the previous paragraph. How-
ever, every node still needs to transmit its own current degree at each step, which creates a non
negligible overhead.

A comparison between maximum-degree and Metropolis weights in [4] shows that the latter
converges significantly faster than the former.

1.2.3 Optimized Weights

While being easy to use and to implement, the heuristic rulespresented above will in general give
a suboptimal weighting scheme for given specific graph. Thus, one could think of computing and
assigning optimal weights to the graph edges, such as to minimize the averaging time for the given
graph topology. The problem of finding these optimal weighting factors can be formulated as a
convex optimization problem, and has been solved in [9, 12].It is also shown, see e.g. [14], that
this problem can be solved in a distributed fashion, that is,without knowledge of the complete
graph topology at a single node.

In the setting of a time-constant topology, the fastest mixing algorithm has been compared to
different weighting schemes (e.g. uniform weights or Metropolis weights) in [9, 15]. This com-
parison showed that weight optimization can actually make asignificant difference. [9] provides
examples in which the optimized weights perform arbitrarily better than the Metropolis weighting
algorithm.

This is, however, only in the case of a time-constant network, that is without link failures, or if
the weights were optimized at each time step for the current topology. A simpler, yet suboptimal
solution would be to optimize the weights for the case where all the links are up, and in the case
of link failures, add the weight associated with the failinglink to the self loops of the adjacent
nodes. A comparison with the Metropolis–Hastings weighting scheme in [16] shows that this is
advantageous only if the link failure probability is relatively small.

1.2.4 Gossip Algorithm

In gossip algorithms, each node communicates with no more than one neighbor in each time slot
[17]. We make the difference between synchronized gossip and asynchronous gossip. In the syn-
chronized case, at each time step, every node becomes activewith a certain probability. Active
nodes then choose randomly a neighbor to pair up with, and if the other node is available, both
nodes connect and average their respective values. In the asynchronous model, we assume contin-
uous instead of discrete time. Every node becomes active at an exponentially distributed random
instant, connects with a random neighbor, and both nodes average their values. Thus, unlike in
the synchronous case, communications occur sequentially,and never simultaneously. See [6] for a
comprehensive treatment of gossip algorithms and their performance in terms of averaging speed,
and [5] for a shorter version.

Gossiping is actually not a weighting scheme, but determines whether two nodes get to com-
municate at all on a given instant. However, if we identify communication links not activated by the

8 1. The Averaging Problem

gossip algorithm in a given time slot with failing links, gossip is a special case of the time varying
graph structure presented in the introduction. In the synchronous model, the nodes are restricted to
have instantaneous degree one. The asynchronous model is even more restrictive, because there is
exactly one active connection at every time step.

The weighting scheme typically used averages the two valuesof communicating nodes, that is







wij(t) = wii(t) = 0.5 if nodesi andj are connected at timet,

wkk(t) = 1 if nodek has no connection at timet,

wij = 0 on all other edges.

(1.2.3)

This is technically the application of the Metropolis weights to the degenerate case where the
instantaneous degree is at most one. As a possible generalization, one might also consider using
a different weight on the link and changing the self-loop weights accordingly. Further, the choice
of the communication pair(i, j) is not trivial either, and may not be restricted to direct neighbors.
Allowing remote nodes to exchange their values directly, using some kind of routing through the
network, may significantly improve performance [7].

1.3 Notations and Definitions

1.3.1 Matrix-Vector Notation

In the sequel, we will use a matrix-vector notation, which will prove very convenient and will
allow us to use known results, especially in the theory of random matrices. We first define thestate
vector

x(t) :=






x1(t)
...

xn(t)




 t ≥ 0 (1.3.1)

as a function oft by collecting the current values at nodes1 throughn. The initial measurements
are thus collected in the vectorx(0). Likewise, we collect the weighting factors in a time-dependant
weighting matrix

W(t) :=








w11(t) w12(t) · · · w1n(t)
w21(t) w22(t) w2n(t)

...
. . .

...
wn1(t) wn2(t) · · · wnn(t)








t ≥ 0. (1.3.2)

The update equation (1.1.1) can then be rewritten as

x(t + 1) = W(t)x(t) t ≥ 0, (1.3.3)

and using it recursively we can write the current state vector x(t) as

x(t) =

t∏

p=1

W(t − p)x(0). (1.3.4)

1.3 Notations and Definitions 9

The desired behavior for the sequencex(t) is to converge to the vector̄x1, wherex̄ is the
average of the initial measurements, as defined in equation (1.1.2), and

1n :=






1
...
1




 (1.3.5)

is then-dimensional vector of all ones.1 without subscript is used when the length of the vector
is obvious from the context.

Our main focus will be on the error vectory(t) given by the difference

y(t) := x(t) − x̄1 (1.3.6)

and its rate of convergence to zero.

1.3.2 Mathematical Model

Assumptions
We will study the behavior of the vector-valued sequence of random variables{x(t)}t≥0, as defined
in equation (1.3.3). The underlying random process is the one governing the sequence of matrices
{W(t)}t≥0. Unless otherwise noted, we assume conditions (1.1.3) and (1.1.4) hold at all times, i.e.

W(t)1 =1 and (1.3.7)

1TW(t) =1T ∀t. (1.3.8)

Other than that, we make only minimal assumptions on the sequence{W(t)}. Throughout the
paper, we will assume it to be a stationary sequence, i.e.∀0 ≤ s ≤ t, the joint distribution of
{W(s),W(s + 1), . . . ,W(t)} is the same than that of{W(s + 1),W(s + 2), . . . ,W(t + 1)}.

Further assumptions such as ergodicity, of mutual independence of the matricesW(t) shall
be specified accordingly. In particular, ergodicity of the random sequence largely simplifies the
results presented in Chapter 3, and the results given in Chapter 4 require the matricesW(t) to be
independent identically distributed (i.i.d.).

Finally, the most restrictive case is when the weighting matrix does not vary over time,
W(t) = W for all t. This particular case is briefly described in Section 3.1.

Analogy with Markov Chains
Without loss of generality, the initial measurement vectorx(0) can be scaled and shifted so as to
be non-negative and to satisfy

∑
xi(0) = 1.

If the weighting factors are all non-negative and less than or equal to one, the time-varying
sensor network can be compared to a inhomogeneous Markov chain, the vectorsx(t) being prob-
ability distributions on the chain, and the weighting factorswij(t) transition probabilities between
states of the chain.W(t) are therefore according transition probability matrices.

Consequently, we may sometimes refer toW as right, left, or doubly stochastic matrices, de-
pending on the context. These terms denote non-negative matrices satisfying respectively condition
(1.3.7), (1.3.8), or both.

However, as we do not actually deal with probability distributions, the non-negativity require-
ment will mostly not be crucial in our discussions. But even so, this requirement is not very strin-
gent. Among the weighting schemes presented in Section 1.2,negative weights or weights greater
than one may only occur in the optimized weights scheme (Paragraph 1.2.3).

10 1. The Averaging Problem

1.3.3 Useful Functions

The following useful functions and convenient notations are used in the sequel. The suggestive
notations

M > α andM ≥ α

signify all the elements of a matrixM are greater, respectively greater or equal to, a scalarα.
For common matrix functions, the usual notation shall be used. MT denotes the transpose of a

matrixM, λi(M) its eigenvalue with thei-th largest modulus,σi(M) its i-th largest singular value,
ρ(M) = |λ1(M)| its spectral radius, andtr(M) its trace.

Furthermore,A ⊗ B denotes theKronecker productof two matricesA andB. The notation
ei will be used to denote thei-th standard basis vector, and1 to denote the vector of all ones, as
previously.

Finally, we define the functionlog+(x) as

log+(x) := max (0, log(x)) . (1.3.9)

2. Convergence

2.1 Sufficient Conditions for Convergence

Our goal is to compute the average of all initial measurements at every node, that is to make all
xi(t), i = 1 . . . n converge tōx, or equivalently thatx(t) goes tox̄1n. In this section, we will
establish sufficient conditions on the random process{W(t)}t≥0 for this to happen.

We first define thestopping time

Tε := inf
t
{t ≥ 1 :

t∏

p=1

W(t − p) ≥ ε > 0} (2.1.1)

with respect to the random process{W(t)}t≥0, whereε is an arbitrarily small positive number.
The notationA ≥ ε means that all the elements of the matrixA are greater than or equal toε.
With this definition, and the notation defined in Section 1.3,we may state the following theorem.
Theorem 2.1.1.(Sufficient conditions for convergence) The sequence

x(t) =

t∏

p=1

W(t − p)x(0) t ≥ 1

converges tōx1 with probability 1 if the the following conditions hold:
1) The sequence{W(t)}t≥0 is stationary
2) W(t)1 = 1 w.p. 1, ∀t (fixed point)
3) 1TW(t) = 1T w.p. 1, ∀t (preservation of sum)
4) ‖W(t)‖2 ≤ 1 w.p. 1, ∀t (contracting property)
5) ∀ε > 0, E[Tε] < ∞
whereE[Tε] < ∞ denotes the expectation of the stopping timeTε defined in equation (2.1.1).

Remark.The inequality stated in Condition 4, together with either Condition 2 or 3 actually implies
equality‖W(t)‖2 = 1.
Remark.Condition 5 relates to the connectivity of the network. In the model where communication
links fail independently of each other, this is equivalent to having a connected graph.
Remark.This widely generalizes the convergence theorem in [18].

Proof. Outline of the proof: we will start by showing that maximum difference between elements
of x(Tε) is strictly less than between elements ofx(0), then use arguments from renewal theory to
prove that a subsequence of{x(t)}t≥0 converges a.s. Finally, we use Condition 4 to infer conver-
gence of the whole sequence.

To simplify the notation, defineP :=
∏Tε

p=1 W(Tε − p) and denote bypij the i-th row, j-th
column element of this matrix. Using Condition 2

W(t)1 = 1 ∀t ⇒ P1 = 1 ⇔
∑

j

pij = 1 ∀i = 1 . . . n

11

12 2. Convergence

and the definition ofTε, we can bound the maximum element ofx(Tε):

max
i

xi(Tε) = max
i

∑

j

pijxj(0)

≤ (1 − ε) max
j

xj(0) + ε min
j

xj(0).

Similarly, one can bound the minimum element from below:

min
i

xi(Tε) ≥ ε max
j

xj(0) + (1 − ε) min
j

xj(0).

Taking the difference of the two yields

max
i

xi(Tε) − min
i

xi(Tε) ≤(1 − ε) max
j

xj(0) + ε min
j

xj(0)

− ε max
j

xj(0) − (1 − ε) min
j

xj(0)

=(1 − 2ε) max
j

xj(0) − (1 − 2ε) min
j

xj(0)

=(1 − 2ε)

(

max
j

xj(0) − min
j

xj(0)

)

.

(2.1.2)

Now define an increasing sequence of integers{k(l)}l≥0 as follows:

k(0) = 0, k(1) = Tε, . . . , k(l+1) = inf{t ≥ k(l)+1 :
t−k(l)
∏

p=1

W(t− p) ≥ ε}, (2.1.3)

and an associated counting process

N(t) := max l s.t.k(l) ≤ t, ∀t ≥ 0. (2.1.4)

That is, we group the matricesW(t) of the sequence in such a way to form a sequence of positive
matrices. The counterN(t) denotes the number of such groups up to timet.

As the process{W(t)}t≥0 is invariant under arbitrary time shifts, the time intervalsk(l+1)−k(l)

are i.i.d. for alll ≥ 0. The process{N(t), t ≥ 0} is therefore arenewal process[13] with inter-
renewal timeTε.

By thestrong law for renewal processes[13, 19], we know

lim
t→∞

N(t)

t
=

1

E[Tε]
w.p.1. (2.1.5)

Now get back to the sequencex(t), and iterate equation (2.1.2)l times:

max
i

xi

(
k(l)
)
− min

i
xi

(
k(l)
)
≤ (1 − 2ε)l

(

max
j

xj(0) − min
j

xj(0)

)

, (2.1.6)

and consider the modified sequence{x̂(t)}t≥0 obtained by sampling the original process at the
renewal times, i.e. defined by

x̂(t) := x
(
k(N(t))

)
. (2.1.7)

2.2 Exponential Convergence 13

This modified sequence allows us to rewrite equation (2.1.6)in terms oft

max
i

x̂i(t) − min
i

x̂i(t) ≤ (1 − 2ε)N(t)

(

max
j

x̂j(0) − min
j

x̂j(0)

)

. (2.1.8)

Because of Condition 5 and of (2.1.5), the right hand side of (2.1.8) tends to 0 for larget, hence
the left hand side of (2.1.8) tends to 0 for larget as well, and therefore

lim
t→∞

x̂(t) = c · 1 w.p.1. (2.1.9)

By the preservation of sum of the elements ofx(t) (condition 3), the constantc must be equal tōx.
It now remains to show that convergence of{x̂(t)}t≥0 implies convergence of{x(t)}t≥0. For

that, note that we can always rewrite

x(t) = y(t) + x̄1, (2.1.10)

where the second term is invariant and the first termy(t) has the sum of its elements equal to zero.
That is we may, without loss of generality, consider only sequences of the typey(t) and show such
sequences go to zero.

By equation (2.1.9), we know that a sequenceŷ(t) := x̂(t)− x̄1 vanishes. But, by condition 4,
we know

‖y(t + 1)‖2 =‖W(t)y(t)‖2

≤‖W(t)‖2‖y(t)‖2

≤‖y(t)‖2

≤
∥
∥y
(
k(N(t))

)∥
∥

2

= ‖ŷ(t)‖2 ,

(2.1.11)

i.e. the sequence{‖ŷ(t)‖2}t≥0 bounds from above the sequence{‖y(t + 1)‖2}t≥0. Therefore,

lim
t→∞

‖y(t)‖2 = 0 (2.1.12)

or equivalently, with (2.1.10)
lim
t→∞

x(t) = x̄1. (2.1.13)

2.2 Exponential Convergence

Thestrong law for renewal processes(2.1.5) actually allows a stronger result than Theorem 2.1.1.
The careful reader may already have noticed that the decay rate of the quantities on both sides of
equation (2.1.8) is exponential, and that the rate of this exponential decay may be expressed in
terms ofε. This leads us to the following result.
Theorem 2.2.1.(A first bound on the exponential rate of convergence)

lim
t→∞

1

t
log

(
maxi xi(t) − mini xi(t)

maxi xi(0) − mini xi(0)

)

≤ inf
0<ε<1/n

1

E[Tε]
log(1 − 2ε)

with Tε defined as in equation (2.1.1).

14 2. Convergence

Remark.Tε depends onε. Smallε lead to smallE[Tε] and vice-versa. Only after minimization over
ε, one is assured to have the tightest possible bound with thismethod.

Proof. To simplify the notation, define the function

d : Rn → R
+
0 : x 7→ d(x) := max

i
xi − min

i
xi. (2.2.1)

Recall equation (2.1.8),

d(x̂(t))

d(x̂(0))
≤ (1 − 2ε)N(t) ⇔ log

d(x̂(t))

d(x(0))
≤ N(t) log(1 − 2ε) (2.2.2)

and note that inequality (2.1.11) impliesd(x(t))/d(x̂(t)) is bounded (refer to Lemma 2.2.2 for
details). Then, a few simple calculations and the use of the strong law for renewal processes lead
to the desired result.

lim
t→∞

1

t
log

d(x(t))

d(x(0))
= lim

t→∞

1

t
log

d(x(t))d(x̂(t))

d(x̂(t))d(x(0))
(2.2.3)

= lim
t→∞

1

t
log

d(x(t))

d(x̂(t))
+ lim

t→∞

N(t)

t

1

N(t)
log

d(x̂(t))

d(x(0))
(2.2.4)

= 0 + lim
t→∞

N(t)

t
· lim

t→∞

1

N(t)
log

d(x̂(t))

d(x(0))
(2.2.5)

=
1

E[Tε]
· lim

t→∞

1

N(t)
log

d(x̂(t))

d(x(0))
(2.2.6)

≤ 1

E[Tε]
log (1 − 2ε) (2.2.7)

Lemma 2.2.2.
‖y(t)‖2

‖ŷ(t)‖2

≤ 1 ⇒ d(x(t))

d(x̂(t))
≤

√
n

2

Proof. The result follows readily from the following two inequalities:

‖y(t)‖2 ≥
1√
2
d(x(t)) (2.2.8)

‖ŷ(t)‖2 ≤
√

n

2
d(x̂(t)). (2.2.9)

For the derivation of these, we will useyM and ym to denote the largest and the smallest
elements ofy(t), with yM = max (yM , ym) andym = min (yM , ym). Note thatyM andym have
opposite signs, because the sum of all elements ofy(t) equals zero. For the first inequality, first
note that

y2
M + y2

m = [(yM + ym) − ym]2 + y2
m

= (yM + ym)2 − 2yMym

≥ −2yMym. (2.2.10)

2.2 Exponential Convergence 15

Then, inequality (2.2.8) may be derived by bounding‖y(t)‖2
2 as follows:

‖y(t)‖2
2 =

n∑

i=1

y2
i ≥ y2

M + y2
m

≥ 1

2

(
y2

M + y2
m

)
− yMym

=
1

2
(yM − ym)2 =

1

2
d2 (y (t)) =

1

2
d2 (x (t)) .

To derive inequality (2.2.9), first note that
∑

i yi = 0 implies that at least half of the elements
of y(t) have magnitude less than or equal to|ym|. Consequently,

‖y(t)‖2
2 =

n∑

i=1

y2
i ≤ n

2
y2

M +
n

2
y2

m

≤ n

2
(yM − ym)2 =

n

2
d2 (y (t)) =

n

2
d2 (x (t)) .

The bound derived in this section might be useful in estimating the convergence speed of an
averaging algorithm, but still has two major disadvantages. First, the quantityE[Tε] is in general
not easy to compute, even for a fixedε. And more importantly, this bound is not guaranteed to be
reasonably tight, even after optimization overε1. In Chapter 4, we will derive other bounds on the
asymptotic contraction rate, but those hold only in the caseof i.i.d. weighting matrices.

Finally, note that this bound is based on the quantityd(x(t)) which is a semi-norm whose kernel
is the subspace tangent to the1n vector. This fact may help to related(x(t)) with Dobrushin’s
ergodic coefficient, a matrix seminorm we will introduce in Section 3.2.2.

1Further investigation in this direction is not pursued herein, but might be advisable in order to clarify the practi-
cability of this bound.

3. Products of Random Matrices

In this chapter, we take a step back from the averaging problem in time-varying networks presented
in the previous chapters, to look at a broader picture. We study the behavior of infinite products of
random matrices, with only minimal assumptions on the distribution of the matrices. That is, for a
given sequence of matrices{A(t), t = 0, 1, 2, . . .}, we investigate the product sequence

Mt :=
t∏

p=1

A(t − p) t = 1, 2, 3, . . .

Our main assumption will be that the sequence{A(t)}t≥0 is stationary, which will allow us to use
results from ergodic theory. For more specific results, we will assume the matrices to beergodic, or
eveni.i.d. This setting applies to the the special case of the averagingproblem, as it becomes clear
in Section 3.2.2, but has much broader applications in general. These range from demography
analysis [20] to topics in theoretical physics, such as the study of directed polymers in random
environments [21].

While the first section of this chapter is meant as an introductory example, Sections 3.2 and
3.3 are mainly a review on subadditive ergodic theory, and most of the results presented are well
known to those familiar with the subject. Theorem 3.2.4 is the central result of subadditive ergodic
theory [22, 23, 24, 25, 26]. The following Theorem 3.2.8 is technically a Corollary of the latter,
but it was presented by Fuerstenberg and Kesten in [27] before subadditive ergodic theory was
even invented, and deserves particular attention because of its focus on the random matrix product
application. Section 3.3 presents a theorem that describesthe whole spectrum of an infinite matrix
product, rather than the largest eigenvalue only. It was first presented by Oseledec in [28], and
other proofs were later given by Ruelle [29] and Raghunathan[30]. A very good overview on all
these results is given by Walters at the end of his book on ergodic theory [26]. We conclude this
review by presenting an alternative point of view on the mainresults discussed (Section 3.4), and
by applying them to the special case of the averaging problem.

3.1 Infinite Products of Constant Matrices

First consider the simple case where the elements in the sequence{A(t)} are all equal and non-
random, that isA(t) = A for all t. In this case, the product sequence{Mt}t≥1 is given by

Mt = At t = 1, 2, 3, . . .

The matrixA can be expressed using its Jordan canonical form [31],A = VJV−1, whereV

contains the eigenvectors ofA andJ is block diagonal,

J =








J1

J2

. . .
Jk








16

3.1 Infinite Products of Constant Matrices 17

with Jordan blocks

Ji =








λi 1

λi
. . .
. . . 1

λi








.

Consequently,Mt = At = VJtV−1. It is useful to factor out the spectral radiusρ = |λ1(A)| of
A, which leads to

Mt = ρt · Vρ−tJtV−1. (3.1.1)

For larget, all Jordan blocksρ−tJt
i in ρ−tJt with |λi| < ρ will vanish, and the matrixMt presents

one of the following three behaviors, depending on the spectral radiusρ(A):







ρ(A) < 1 ⇒ Mt → 0

ρ(A) = 1 ⇒ Mt → M 6= 0

ρ(A) > 1 ⇒ Mt diverges.

The spectral radius actually determines the contraction (ρ < 1) or expansion (ρ > 1) rate of a
system governed by the sequence{A(t)}, as is shown by the following formula.
Theorem 3.1.1.For any matrix norm‖•‖ (see Definition 3.2.7),

lim
t→∞

∥
∥At

∥
∥1/t

= ρ(A). (3.1.2)

Proof. We refer to the book “Matrix Analysis” by Horn and Johnson [31, page 299] for the proof.

If ρ(A) 6= 0, we can rewrite this as

lim
t→∞

1

t
log
∥
∥At

∥
∥ = log ρ(A). (3.1.3)

So in the case where all matrices in the sequence are the same,the contraction (or expansion) rate
of the sequence{A(t)} is given by the spectral radiusρ(A) of the matrixA. The furtherρ is away
from 1, the faster the contraction (or expansion) will be.

The question now is, how does this extend to the case whereA(t) varies over time? Is there
any way to specify or to compute an asymptotic contraction rate

lim
t→∞

1

t
log

∥
∥
∥
∥
∥

t∏

p=1

A(t − p)

∥
∥
∥
∥
∥

, (3.1.4)

and when is this quantity well-defined in the first place? Thisis what we are going to investigate
in the remainder of this chapter.

18 3. Products of Random Matrices

3.2 Kingman’s Subadditive Ergodic Theorem

Consider a sequence of matrices{A(t)}t≥0 with some joint distribution function. We are interested
in the asymptotic behavior of the product sequence

Mt :=

t∏

p=1

A(t − p) t = 1, 2, 3, . . . (3.2.1)

In contrast to the constant case presented before, it is already not trivial to assert whether quantity
(3.1.4) is well defined. Moreover, this quantity is non-random only in some special cases. This
result is essentially what Kingman’s Subadditive Ergodic Theorem says (Theorem 3.2.4, [23]).

The following paragraphs retrace parts of the path followedby Cohen in [25], which shows
how the subadditive ergodic theorem simultaneously extends an elementary theorem of analysis
(Theorem 3.2.1) and Birkhoff’s ergodic theorem (Theorem 3.2.2). Important details and remarks
omitted therein were drawn directly from Kingman’s work [22, 23].
Theorem 3.2.1.(Subadditive Theorem) Let{an; n = 1, 2, 3, . . .} be a sequence of real numbers
such that

am+n ≤ am + an m, n = 1, 2, 3, (3.2.2)

Then, the sequence{an/n, n = 1, 2, 3, . . .} either converges to its lower bound, or diverges prop-
erly to−∞.

Note that if we replace the hypothesis of subadditivity (3.2.2) by that of additivity,am+n =
am + an, we have triviallyan/n = a1 for all n.

Proof. Let γ := infn≥1 an/n. If γ = −∞, there is nothing to prove. Ifγ > −∞, for any arbitrary
ε > 0, one can find anm such thatam/m < γ + ε.

Given any integerm, an integern can be written asn = qm + r, with q being integer, and
0 ≤ r ≤ m − 1. Definea0 = 0. Subadditivity implies

an = amq+r ≤ am + . . . (q times) . . . + am + ar = qam + ar. (3.2.3)

Further,

γ ≤ an

n
≤qam + ar

n
=

qam

n
+

ar

n
(3.2.4)

⇒ γ ≤ an

n
≤qm

n

am

m
+

ar

n
<

qm

n
(γ + ε) +

ar

n
(3.2.5)

If we let n → ∞, we haveqm/n → 1 and ar/n → 0. Sinceε is arbitrarily close to zero,
an/n → γ.

Theorem 3.2.2.(Birkhoff ’s Ergodic Theorem) Let{yn; n = 1, 2, 3, . . .} be a stationary sequence
of random variables with finite expectation. Then the limit

η = lim
n→∞

1

n

n∑

j=1

yj (3.2.6)

exists with probability one and in expectation, and

E [η] = E [y1] . (3.2.7)

3.2 Kingman’s Subadditive Ergodic Theorem 19

A proof of the Birkhoff - Von Neumann Theorem can be found e.g.in [23], or in any book on
ergodic theory, for example in [26].

The two previous theorems seem quite different. While Theorem 3.2.1 deals withdeterministic
subadditivesequences, Theorem 3.2.2 considersrandom additivesequences. However, the two can
be merged into the following theorem, which considers the limiting behaviorrandom subadditive
sequences. Let us first introduce a definition.
Definition 3.2.3. (Subadditive Ergodic Process, SEP) A SEP is a family of random variables
X := {xs,t, s, t ∈ T, s < t}, T being the set of non-negative integers, satisfying the following
conditions:
(S1) xs,u ≤ xs,t + xt,u ∀ s < t < u, s, t, u ∈ T (subadditivity)
(S2) The joint distributions of the process(xs+1,t+1) are the same as those of(xs,t) (stationarity)
(S3) The expectationgt = E [x0,t] exists and satisfiesgt ≥ Ct for some constant C.

Condition (S3) implies that the considered limit will be finite. However, for some applications
we may want to allow the limit to diverge to−∞, in which case we can relax condition (S3) to
(S3’) E [max (x0,1, 0)] < ∞.
With these preliminaries, we can now state Kingman’s Theorem.
Theorem 3.2.4.(Subadditive Ergodic Theorem) IfX is a SEP, then the finite limit

ξ = lim
t→∞

x0,t

t
(3.2.8)

exists with probability one and in mean, and

γ := E[ξ] = inf
t≥1

E [x0,t]

t
= lim

t→∞

E [x0,t]

t
. (3.2.9)

Moreover, ifX satisfies (S1), (S2) and (S3’) but not (S3), then the limit(3.2.8) exists with
probability one in−∞ ≤ ξ < ∞, and

E[ξ] = −∞. (3.2.10)

We do not reproduce the proof here. Proofs may be found in [22,23, 24] or in [26].
In general, the random variableξ may be non-degenerate. However, if the random process

X := {x0,t}t≥0 is ergodic, ξ = γ with probability one. To see what this means, recall the definition
of ergodicity.
Definition 3.2.5. (Ergodicity) Let(X,B, µ) be a probability space. A measure preserving transfor-
mationT of (X,B, µ) is called ergodic if the only eventsB ∈ B with T−1B = B satisfyµ(B) = 0
or µ(B) = 1.

If X := {xt} is a stochastic process, when we sayX is ergodic, what we really mean is that
the time shiftT : X → X ′ : x′

t := xt+1 is an ergodic transformation.
Going back to the SEPX , if F denotes theσ-field of events defined in terms ofX and invariant

under the time shiftT : X → X ′ : x′
s,t := xs+1,t+1, thenξ is F -measurable, with the explicit

notation

ξ = lim
t→∞

1

t
E [x0,t|F] . (3.2.11)

Consequently, ifF is a trivialσ-field consisting only of events of probability zero or one, i.e.X is
ergodic,ξ = γ almost surely.

20 3. Products of Random Matrices

In some cases,F can be shown to be trivial using a zero-one law. An example where this is the
case is when the processes are defined by equations of the form

xs,t = Ft−s (. . . , us−1, us, us+1, . . .) (3.2.12)

where the functionsF are fixed, andus are i.i.d. random variables. Theσ-field F is contained in
theσ-field F ′ of events defined in terms of theus and invariant under the time shiftus → us+1.
F ′ is known to be trivial [32]. AsF ⊆ F ′, this impliesF is also trivial and thereforeξ = γ with
probability one.

3.2.1 Application to Matrix Products

Theorem 3.2.4 is formulated in terms of a subadditive process, consisting of real random variables.
In this section, we describe how to apply it to products of random matrices. For that, first specify
appropriate functions from the space of matrices to the reals, which permit us to apply Theorem
3.2.4.

If f : Cn×n → R : A 7→ f(A) denotes such a function, the key property it must satisfy is
(P1) f(AB) ≤ f(A) + f(B).

This is satisfied for example iff(A) = log ‖A‖, where‖•‖ denotes any matrix seminorm with
the submultiplicative property, as defined in [31] and below.
Definition 3.2.6. A matrix seminorm‖•‖ is a function fromCn×n toR satisfying
(C1) ‖A‖ ≥ 0 (nonnegative)
(C2) ‖αA‖ = |α| ‖A‖ ∀α ∈ C (homogeneous)
(C3) ‖A + B‖ ≤ ‖A‖ + ‖B‖ (triangle inequality)
(C4) ‖AB‖ ≤ ‖A‖ ‖B‖ (submultiplicative)
Definition 3.2.7. A matrix normis a matrix seminorm with the additional property
(C1a) ‖A‖ = 0 ⇔ A = 0 (positive)
Remark.In some books, e.g. [33], the definitions of norm and seminormdo not include the sub-
multiplicative property (C4). However, this property is crucial to us. It is actually the only one we
really need, together with (C1) for the logarithm to be well-defined.
Theorem 3.2.8.Let S = (V, ·) be a semigroup, and‖•‖ : V → R

+ a submultiplicative function.
Let {A(t)}t≥0 be a stationary sequence of random elements ofV and suppose that

E
[
log+ ‖A(0)‖

]
< ∞. (3.2.13)

Then, ifMt is defined as in equation(3.2.1), the limit

ξ = lim
t→∞

1

t
log ‖Mt‖ exists, and (3.2.14)

γ := E[ξ] = lim
t→∞

1

t
E [log ‖Mt‖] . (3.2.15)

Moreover, if the sequence{A(t)}t≥0 is ergodic,

ξ = γ with probability one. (3.2.16)

Corollary 3.2.9. In Theorem 3.2.8, if{A(t)}t≥0 is a sequence of i.i.d. elements, then{A(t)}t≥0 is
ergodic, and therefore

ξ = γ with probability one. (3.2.17)

3.2 Kingman’s Subadditive Ergodic Theorem 21

Proof. Observe that

xs,t = log ‖Ms,t‖ = log

∥
∥
∥
∥
∥

t−s∏

p=1

A(t − p)

∥
∥
∥
∥
∥

(3.2.18)

satisfies conditions (S1), (S2) and (S3’). The first part of the theorem then follows directly from
Theorem 3.2.4.

For the second part of the theorem and for the Corollary, refer to the discussion following
Theorem 3.2.4. More specifically, setus = A(s) in equation (3.2.12) of that paragraph.

As one might already have guessed, an important special caseof Theorem 3.2.8 is when the
semigroupS is the set ofn× n matrices with standard matrix multiplication, and the function ‖•‖
is a norm on this set. In this case, we can show that the particular choice of norm does not affect
the values ofξ or γ.
Theorem 3.2.10.If the semigroupS is the spaceV of real or complexn×n matrices with standard
matrix multiplication, and‖•‖ is a norm onV , then the limits(3.2.14)and(3.2.15)do not depend
on the choice of norm inV .

Proof. As n is finite, all norms onV are equivalent. Thus, for any two norms‖•‖α and‖•‖β on
V , there exist constantsCm andCM such thatCm ‖A‖α ≤ ‖A‖β ≤ CM ‖A‖α for all A ∈ V . See
e.g. [31, Chapter 5] for more details. Consequently,

ξβ = lim
t→∞

1

t
log ‖Mt‖β ≥ lim

t→∞

1

t
log (Cm ‖Mt‖α) = lim

t→∞

1

t
log ‖Mt‖α = ξα (3.2.19)

ξβ = lim
t→∞

1

t
log ‖Mt‖β ≤ lim

t→∞

1

t
log (CM ‖Mt‖α) = lim

t→∞

1

t
log ‖Mt‖α = ξα (3.2.20)

which impliesξα = ξβ. A similar argument holds forγ.

3.2.2 Special Case: Stochastic Matrices

We discuss the application of Theorem 3.2.8 to products of stochastic matrices [24]. A commonly
used parameter for describing the “scrambling” property ofa stochastic matrixW is its ergodicity
coefficientδ̂(W).
Definition 3.2.11. Dobrushin’s ergodic coefficient

δ̂(W) :=
1

2
max

i,j

∑

k

|wik − wjk|

As usual,wij denotes thei-th rowj-th column element ofW. It is easy to see that ifW is right
stochastic,0 ≤ δ̂(W) ≤ 1, whereδ̂(W) = 1 iff W has two orthogonal rows. Note however that
the definition extends to any real (and even complex) matrix.

In some sense, the parameterδ̂ measures how far a stochastic matrixW is from a perfectly
scrambling matrix1π

T which maps any probability distribution vectorxT to the stationary distri-
butionπ

T.
Due to the inhabitual convention of using row vectors in Markov chain theory, Dobrushin’s co-

efficient is fitted toright stochastic matrices (withrow sums = 1). However, because we adopted a

22 3. Products of Random Matrices

column vector notation, we considerleft stochastic matrices, withcolumnsums equal to 1. There-
fore, we will use the “transposed” version

δ(W) := δ̂(WT) =
1

2
max

k,l

∑

i

|wik − wil| . (3.2.21)

As the functionδ(W) is a seminorm,log(δ(•)) satisfies the conditions of Theorem 3.2.8. Con-
sequently, if{W(t)}t≥0 is a stationary sequence of (not necessarily stochastic!) matrices,

ξ = lim
t→∞

1

t
log δ

(
t∏

p=1

W(t − p)

)

(3.2.22)

exists with probability one and in expectation, and

γ = E[ξ] = lim
t→∞

1

t
E

[

log δ

(
t∏

p=1

W(t− p)

)]

. (3.2.23)

Now consider the case where allW are stochastic and have a common stationary distribution
π. Assume further they are diagonalizable.1 The eigenvalue decomposition ofW then yields

W = VΛV−1 =

(

π ∗

)





1 0
∗

0
. . .










1T
n

∗



 (3.2.24)

=π1T
n + A (3.2.25)

whereA satisfiesAπ = 0 and1T
nA = 0.

Proposition 3.2.12.δ(•) is a norm on the set ofA as defined above.

Proof. δ(•) is obviously a seminorm, so the only thing we need to prove isδ(A) = 0 ⇒ A = 0.
By the triangle inequality,

δ(W) ≤ δ(π1T
n) + δ(A) = δ(A)

δ(A) ≤ δ(−π1T
n) + δ(W) = δ(W)

⇒ δ(A) = δ(W).

Thus,δ(A) = 0 ⇒ δ(W) = 0 ⇔ ∃p s.t.W = p1T
n . If W = p1T

n , p must be the only stationary
distribution ofW. Consequently,p = π andA = 0.

Therefore, to study the product of a sequence of stochastic matrices{W(t)}t≥0 with a common
stationary distributionπ, we may as well consider the product of the sequence of reduced matrices
{
A(t) := W(t) − π1T

}

t≥0
instead. This is due to the following equalities:

t∏

p=1

W(t − p) =

t∏

p=1

(
A(t − p) + π1T

)
=

t∏

p=1

A(t − p) + π1T (3.2.26)

δ

(
t∏

p=1

W(t − p)

)

=δ

(
t∏

p=1

A(t − p)

)

. (3.2.27)

1If W is not fully diagonalizable, one has to consider a Jordan decomposition instead of the eigenvalue decompo-
sition.

3.3 Oseledec’s Theorem 23

If the parametersξ andγ are defined as in equations (3.2.22) and (3.2.23) respectively, they are
metrics for the asymptotic convergence rate of a inhomogeneous Markov chain or equivalently, the
asymptotic averaging speed in a time-varying network. Withequation (3.2.27), Proposition 3.2.12
and Theorem 3.2.10, these parameters are also equal to

ξ = lim
t→∞

1

t
log

∥
∥
∥
∥
∥

t∏

p=1

A(t − p)

∥
∥
∥
∥
∥

(3.2.28)

γ = lim
t→∞

1

t
E

[

log

∥
∥
∥
∥
∥

t∏

p=1

A(t − p)

∥
∥
∥
∥
∥

]

. (3.2.29)

This representation of the averaging speed as a function of an arbitrary norm of the product ofA(t)
will turn out to be much more convenient than using Dobrushin’s seminormδ.

3.3 Oseledec’s Theorem

Up to now, we only considered scalar metrics to describe the asymptotic “contraction rate” of
products of random matrices. The following theorem confirmsthat this is in fact legitimate, and
that the parameterξ actually determines the convergence speed foralmost everystarting point.
Theorem 3.3.1.(Oseledec’s Theorem) Let‖•‖ be a norm onRn×n, and let{A(t)}t≥0 be a sta-
tionary sequence of random matrices satisfyingE

[
log+ ‖A(0)‖

]
< ∞. {A(ω, t)}t≥0 denotes a

specific realization, andMt(ω) :=
∏t

p=1 A(ω, t − p). Then, the following hold with probability
one:
1) there is a positive integers(ω) and there are real numbersλ(1)(ω) < λ(2)(ω) < . . . <

λ(s(ω))(ω), whereλ(1) could be−∞,
2) there are linear subspaces{0} = V (0)(ω) ⊂ V (1)(ω) ⊂ . . . ⊂ V (s(ω))(ω) = Rn of Rn,
3) such that for1 ≤ i ≤ s(ω),

lim
t→∞

1

t
log ‖Mt(ω)x‖ = λ(i)(ω) ∀x ∈ V (i)(ω) \ V (i−1)(ω). (3.3.1)

Remarks.
• For a more general, but less transparent statement of the theorem, see the book of Walters [26,

Theorem 10.2]. The original proof is by Oseledec [28], who considered the case of invert-
ible matrices. Another proof (not restricted to this case) is given by Raghunathan [30] and
Ruelle [29].

• If {A(t)}t≥0 is ergodic (e.g. if theA(t) are i.i.d.),s(ω) = s andλ(i)(ω) = λ(i), i = 1, 2, . . . s,
are non-random, but the subspacesV (i)(ω) are still random.

• If A(t) = A is a constant (i.e. degenerate random variable),eλ(i)
are the absolute values of the

eigenvalues ofA.
• The numbersλ(i)(ω) are calledLyapunov characteristic exponentsandV (1)(ω) ⊂ V (2)(ω) ⊂

. . . ⊂ V (s(ω))(ω) is called the associatedfiltration. The numberm(i) = dim V (i)(ω) −
dim V (i−1)(ω) is called themultiplicity of λ(i)(ω).

• In relation to Section 3.2, we haveξ = λ(s(ω)), and in the ergodic case,γ = λ(s). See Section
3.4 for details.

• In the introductory statement, “almost every” starting point x meant allx ∈ Rn \V (s(ω)−1)(ω),
i.e. allx outside a proper linearn − m(s(ω)) dimensional subspace ofRn.

24 3. Products of Random Matrices

In view of this theorem, it is really the largest Lyapunov exponent which will determine the rate
at which a system will expand or contract, as long as the starting point is not in some set of volume
zero (which may happen with non-zero probability only in degenerate cases). We are mainly in-
terested in contracting systems, i.e. with negative largest Lyapunov exponent. Consequently, from
now on we will call this quantity thecontraction rateof the system. In Chapter 4, we will com-
mit ourselves to find ways to bound this quantity. So far, no easy way has been found to compute
it exactly in general. Some results exist only in very special cases, for example for independent
matrices whose elements are independent Gaussian, or independent Wiener processes [34].

We will denote the contraction rate of an ergodic system byγ, to keep a notation consistent
with the derivations in this chapter. Finally, let us state explicitly the definition of the contraction
rate.
Definition 3.3.2. Thecontraction rateof a system governed by an ergodic sequence of matrices
{A(t)}t≥0 is given by

γ := λ(s) = lim
t→∞

1

t
log

∥
∥
∥
∥
∥

t∏

p=1

A(t − p)

∥
∥
∥
∥
∥

= lim
t→∞

1

t
log ‖Mt‖ . (3.3.2)

3.4 A Vector Point of View

General Case
So far, the results are formulated in terms of functions of matrices, or more specifically matrix
norms. A more illustrative representation is to consider what this means in terms of the action of
these matrices on a vectorx.

In the general case, with the definition of induced matrix norm

‖M‖p := sup
x 6=0

‖Mx‖p

‖x‖p

, p = 1, 2, . . . ,∞ (3.4.1)

equation (3.3.2) translates as

γ = lim
t→∞

1

t
log

(

sup
x(0)6=0

‖Mtx(0)‖
‖x(0)‖

)

. (3.4.2)

Application to Averaging Problem
Finally, returning to the averaging problem defined in Chapter 1, we can express the maximal
asymptotic relative error in terms of a Lyapunov exponent.

First define and recall some shorthand notations, and note the following equalities:

Pt :=

t∏

p=1

W(t − p) (3.4.3)

A(t) :=W(t) − 11T

n
⇒ A(t)1 = 0 and1TA(t) = 0 (3.4.4)

Mt :=
t∏

p=1

A(t − p) ⇒ Mt = Pt −
11T

n
(3.4.5)

y(t) :=x(t) − x̄1 ⇒
(

x(0) 6= x̄1 ⇔ y(0) 6= 0
)

. (3.4.6)

3.4 A Vector Point of View 25

With these definitions, the following result is now pretty straightforward. Simply note thaty(t) =
Mty(0).
Theorem 3.4.1. In the averaging problem described in Chapter 1 with the notation defined in
Section 1.3 and given above, if the sequence{W(t)}t≥0 is ergodic, the asymptotic maximal relative
error

lim
t→∞

1

t
log

(

sup
y(0)6=0

‖y(t)‖
‖y(0)‖

)

= lim
t→∞

1

t
log

(

sup
x(0)6=x̄1

‖x(t) − x̄1‖
‖x(0) − x̄1‖

)

(3.4.7)

is nonrandom and given by

γ = lim
t→∞

1

t
log

∥
∥
∥
∥
∥

t∏

p=1

W(t− p) − 11T

n

∥
∥
∥
∥
∥

. (3.4.8)

To get more insight about this special case, consider Oseledec’s Theorem (Theorem 3.3.1), with
the ergodic sequence{W(t)}t≥0 of doubly stochastic matricesW(t). Then,‖Pt‖1 = ‖W(t)‖1 =
1. The largest Lyapunov exponent is then given by

λ
(sW)
W = lim

t→∞

1

t
log ‖Ptx‖ x ∈ R

n \ V
(sW−1)
W (3.4.9)

= lim
t→∞

1

t
log

‖Ptx‖
‖x‖ x ∈ R

n \ V
(sW−1)
W (3.4.10)

= lim
t→∞

1

t
log sup

x 6=0

‖Ptx‖
‖x‖ x ∈ R

n \ {0} (3.4.11)

= lim
t→∞

1

t
log ‖Pt‖ (3.4.12)

= 0. (3.4.13)

If xT1 = 0, ‖Ptx‖ → 0 and therefore we know thatV (sW−1)
W is actually the subspace orthogonal

to 1, i.e.V (sW−1)
W =

{
y s.t.yT1 = 0

}
. In this particular case, the first subspace of the filtrationis

nonrandom. Further, by Theorem 3.3.1, the second Lyapunov exponent is

λ
(sW−1)
W = lim

t→∞

1

t
log ‖Pty‖ , y ∈ V

(sW−1)
W \ V

(sW−2)
W (ω) (3.4.14)

whereV
(sW−2)
W (ω) is possibly random. But asyT1 = 0, Pty = Mty, and the same theorem now

applied to the sequence{A(t)}t≥0 yields

λ
(sW−1)
W =λ

(sA)
A = lim

t→∞

1

t
log ‖Mty‖ , y ∈ R

n \ V
(sA−1)
A (ω). (3.4.15)

Consequently, we may relate the respective Lyapunov exponents and associated subspaces of
the sequences{W(t)}t≥0 and{A(t)}t≥0:

λ
(sW)
W =0 (3.4.16)

γ = λ
(sW−1)
W =λ

(sA)
A < 0 (3.4.17)

V
(sW−1)
W =

{
y , yT1 = 0

}
. (3.4.18)

26 3. Products of Random Matrices

As indicated by equation (3.4.16), the component ofx in the1 direction, orthogonal toV (sW−1)
W , is

left unchanged. The corresponding Lyapunov exponentλ
(sW)
W = 0 is trivial. Therefore, the measure

of interest is the following Lyapunov exponent of{W(t)}t≥0, which we call the contraction rate

and denote byγ. This is the minimal rate at which any component ofx in V
(sW−1)
W will vanish.

Because it is not very handy to deal with the second largest Lyapunov exponent of a sequence
{W(t)}t≥0 we rather consider the sequence{A(t)}t≥0 and study its largest Lyapunov exponent

λ
(sA)
A , which by definition of this sequence is equal to the conctraction rateγ.

Finally, it is worth stressing the fact that the supremum in equation (3.4.7) is achieved by almost
every starting pointx(0), more precisely by allx(0) outside of the random setV

(sA−1)
A (ω), which

has zero volume.
Corollary 3.4.2. In Theorem 3.4.1, the supremum is achieved by allx(0) outside of the proper
random subspaceV (sA−1)

A (ω) ⊂ Rn.

4. Bounds on the Contraction Rate

In this chapter, we will consider sequences{A(t)}t≥0 of independent, identically distributed ran-
dom matrices inRn×n. In the setting of the problem presented in Chapter 1, we can see the matrices
asA(t) = W(t) − 11T/n, but the results we present hold in much more general cases.

From the results of Fuerstenberg and Kesten (Theorem 3.2.8), we know that for a sequence
of i.i.d. random matrices, the leading Lyapunov exponent (or contraction rate)γ is a degenerate
random variable, almost surely equal to its expectation. The problem we address here is that of the
computation of this number, which was already mentioned by Kingman in [23, page 897].

More specifically, we want to express, or at least to boundγ in terms of some function of the
matrixA(t), its expectation, its moments, or a similar, relatively simple function of it. The follow-
ing result is a bound on the leading Lyapunov exponent of i.i.d. sequences of random matrices, the
inequality being mainly due to the use of Jensen’s Theorem atthe beginning of the proof.

4.1 First Bound on the Contraction Rate

Theorem 4.1.1.(Bound on the Leading Lyapunov Exponent) Let{A(t)}t≥0 be a sequence of i.i.d.
random matrices inRn×n satisfyingE[log+ ‖A(0)‖] < ∞. Then the leading Lyapunov exponent

γ := lim
t→∞

1

t
log

∥
∥
∥
∥
∥

t∏

p=1

A(t − p)

∥
∥
∥
∥
∥

is bounded by above by

γ ≤ 1

2
log ρ (E[A(0) ⊗A(0)]) .

Remark.The theorem can be generalized to the case whereA(t) ∈ Cn×n. We consider the real
case only, in order to focus on the main ideas of the proof and not to confuse the reader with
technicalities arising in the complex case. However, the reader skilled in the art will easily extend
the following proof to the complex case.

Proof. First recall Theorem 3.2.8:

γ = lim
t→∞

1

t
log (‖Mt‖) a.s., and (4.1.1)

γ = lim
t→∞

1

t
E [log (‖Mt‖)] (4.1.2)

whereMt is defined as previously asMt :=
∏t

p=1 A(t − p). We use Jensen’s inequality [35]

γ = lim
t→∞

1

t
E

[
1

2
log ‖Mt‖2

]

(4.1.3)

≤ lim
t→∞

1

2t
log E

[
‖Mt‖2] . (4.1.4)

27

28 4. Bounds on the Contraction Rate

As Theorems 3.2.4 and 3.2.8 hold for any choice of norm, we maychoose the one most convenient
for our purposes, which is the Frobenius norm. Denoting bymij thei-th row,j-th column element
of Mt,

γ ≤ lim
t→∞

1

2t
log E

[
‖Mt‖2

F

]
(4.1.5)

= lim
t→∞

1

2t
log E

[
n∑

i=1

n∑

j=1

m2
ij

]

. (4.1.6)

Express now‖Mt‖2
F as a functionf(•) of another matrix, namelyMt ⊗ Mt. Formally,f is

thus defined as

f : Rn2×n2 → R : B 7→
n∑

i=1

n∑

j=1

bi+n(i−1),j+n(j−1) (4.1.7)

wherebk,l is thek-th row,l-th column element ofB. In other words,f(B) sumsn2 elements of the
n2 × n2 matrixB = Mt ⊗ Mt, which are chosen as the(i, j)-th element of the(i, j)-th block of
B, B being divided inn2 blocks of sizen × n, as shown below.

B =


























b1,1 · · · ∗ b1,n+2 · · · · · · · · · b1,n2

...
. . .

...
...

∗ ∗ ∗
bn+2,1 · · · ∗ bn+2,n+2

...
...

. . .

...
. . .

...

...
. . .

...
bn2,1 · · · · · · · · · · · · bn2,n2


























.

Besides the equality

f(M⊗ M) = ‖M‖2
F , (4.1.8)

this function has the desirable property of being linear:

f (αA + βB) = αf(A) + βf(B). (4.1.9)

4.1 First Bound on the Contraction Rate 29

Going back to equation (4.1.5), replace‖M‖2
F according to (4.1.8). Then, using property

(4.1.9), invoke linearity of expectation to interchangef(•) andE[•]:

γ ≤ lim
t→∞

1

2t
log E [f(Mt ⊗ Mt)] (4.1.10)

= lim
t→∞

1

2t
log f (E [Mt ⊗Mt]) (4.1.11)

= lim
t→∞

1

2t
log f

(

E

[
t∏

p=1

A(t − p) ⊗
t∏

p=1

A(t − p)

])

(4.1.12)

= lim
t→∞

1

2t
log f

(

E

[
t∏

p=1

(

A(t − p) ⊗ A(t − p)
)
])

, (4.1.13)

where we used the distributive property of the Kronecker product,(AB)⊗ (CD) = (A⊗C)(B⊗
D) in (4.1.13). Now use the i.i.d. property of the matricesA(t) to interchange the matrix product
and expectation

γ ≤ lim
t→∞

1

2t
log f

(
t∏

p=1

E
[
A(t − p) ⊗A(t − p)

]

)

(4.1.14)

= lim
t→∞

1

2t
log f

(
Et [A(0) ⊗ A(0)]

)
. (4.1.15)

To simplify the notation in the following, we defineB := E[A(0) ⊗ A(0)]. Using linearity off
once again, we have

γ ≤ lim
t→∞

1

2t
log f

(
Bt
)

(4.1.16)

= lim
t→∞

1

2t
log f

(
∥
∥Bt

∥
∥

Bt

‖Bt‖

)

(4.1.17)

= lim
t→∞

1

2t
log
∥
∥Bt

∥
∥ f

(
Bt

‖Bt‖

)

(4.1.18)

= lim
t→∞

1

2t

(

log
∥
∥Bt

∥
∥+ log f

(
Bt

‖Bt‖

))

(4.1.19)

= lim
t→∞

(
1

2
log
∥
∥Bt

∥
∥

1
t +

1

2t
log f

(
Bt

‖Bt‖

))

. (4.1.20)

It is a well known fact (Gelfand’s formula, see e.g. [31, page299]) that for any matrix norm, and
in particular for anyp-norm,p ∈ {1, 2, . . . ,∞},

lim
t→∞

∥
∥Bt

∥
∥

1
t

p
= ρ(B) := max{|λ| : λ ∈ λ(B)}. (4.1.21)

30 4. Bounds on the Contraction Rate

To bound the last term in equation (4.1.20), we choosep = 1 (p = ∞ would do as well), which
yields

f

(
B

‖B‖1

)

=

n∑

k=1

n∑

l=1

bk+n(k−1),l+n(l−1)

max
1≤j≤n2

n2
∑

i=1

|bi,j|
(4.1.22)

≤
n2 max

1≤i,j≤n2
bi,j

max
1≤i,j≤n2

|bi,j |
≤ n2. (4.1.23)

Now using successively equations (4.1.23) and (4.1.21) in (4.1.20), we get

γ ≤ lim
t→∞

(
1

2
log
∥
∥Bt

∥
∥

1
t +

1

2t
log n2

)

(4.1.24)

=
1

2
log lim

t→∞

∥
∥Bt

∥
∥

1
t + 0 (4.1.25)

=
1

2
log ρ(B) (4.1.26)

which concludes the proof.

Remark.The main point of the proof is to represent a (squared) norm ofMt as alinear functionf
of another function, sayg1, of Mt, which allows to subsequently separate the terms of the matrix
product, i.e.

‖Mt‖2 = f(g1(Mt)) = f (g2(A(t− 1)) . . . g2(A(2))g2(A(1))g2(A(0))) , (4.1.27)

in order to equate
E
[
‖Mt‖2] = f

(
Et [g2(A(0))]

)
. (4.1.28)

According to that, instead of the choices made in the proof, one could think of choosing the 2-
norm,f(B) := tr(B) andg1(M) = g2(M) := MTM. Unfortunately, this choice of functions
f , g1 andg2 do not allow us to rearrange the terms as needed in order to interchange product and
expectation, because

tr
(
MT

t Mt

)
6= tr

(
t∏

p=1

A(t − p)TA(t − p)

)

. (4.1.29)

Theorem 4.1.1 can also be stated in terms of the action of the matrix sequence on a vectory(0).
Corollary 4.1.2. Definey(t) :=

∏t
u=1 A(t − u)y(0), where{A(t)}t≥0 is an i.i.d. sequence of

random matrices, andE
[
log+ ‖A(0)‖

]
< ∞. Then for anyp ≥ 1,

lim
t→∞

1

t
log

(

sup
y(0)6=0

‖y(t)‖p

‖y(0)‖p

)

≤ 1

2
log ρ (E[A(0) ⊗ A(0)]) .

4.2 Simpler, but Looser Bound 31

Proof. By definition of the matrixp-norm,

sup
y(0)6=0

‖y(t)‖p

‖y(0)‖p

= sup
y(0)6=0

∥
∥
∏t

u=1 A(t− u)y(0)
∥
∥

p

‖y(0)‖p

=

∥
∥
∥
∥
∥

t∏

u=1

A(t − u)

∥
∥
∥
∥
∥

p

. (4.1.30)

Consequently,

lim
t→∞

1

t
log

(

sup
y(0)6=0

‖y(t)‖p

‖y(0)‖p

)

= γ ≤ 1

2
log ρ (E[A(0) ⊗A(0)]) . (4.1.31)

4.2 Simpler, but Looser Bound

The bound derived above, while being very concise in its formulation, still takes an2 × n2 matrix
to compute and evaluate its spectral radius. This motivatesthe following theorem, which is another
bound onγ. However, simulations show that the bound given below can besignificantly looser
than the first. Refer to simulation results in Chapter 5 for details.
Theorem 4.2.1. Let {A(t)}t≥0 be a sequence of i.i.d. random matrices inRn×n satisfying
E[log+ ‖A(0)‖] < ∞, andγ its leading Lyapunov exponent (see def. 3.3.2). Thenγ is bounded
from above by

γ ≤ 1

2
log λ1

(
E[AT(0)A(0)]

)
.

Corollary 4.2.2. Define{y(t)}t≥0 as in Corollary 4.1.2. Then, for anyp ∈ {1, 2, . . . ,∞},

lim
t→∞

1

t
log

(

sup
y(0)6=0

‖y(t)‖p

‖y(0)‖p

)

≤ 1

2
log λ1

(
E[AT(0)A(0)]

)
.

Proof. (of Corollary) The Corollary follows readily from the theorem, by the same arguments as
in the proof of Corollary 4.1.2.

Proof. (of Theorem) For any nonrandom choice ofy(0) ∈ Rn \ {0}, with the first expectation on
y(t − 1) and the second onA(t − 1) in (4.2.1),

E
[
yT(t)y(t)

]
=E

[
E
[
yT(t − 1)AT(t − 1)A(t − 1)y(t− 1)|y(t− 1)

]]
(4.2.1)

=E
[
yT(t − 1) E

[
AT(t − 1)A(t − 1)

]
y(t − 1)

]
(4.2.2)

≤E
[
λ1

(
E
[
AT(t − 1)A(t− 1)

])
yT(t − 1)y(t − 1)

]
(4.2.3)

= λ1

(
E
[
AT(0)A(0)

])
E
[
yT(t − 1)y(t− 1)

]
(4.2.4)

...

≤λt
1

(
E
[
AT(0)A(0)

])
yT(0)y(0). (4.2.5)

Now rearranging some terms, taking the logarithm and dividing by2t on both sides,

1

2t
log

(

E
[
yT(t)y(t)

]

yT(0)y(0)

)

≤ 1

2
log λ1

(
E
[
AT(0)A(0)

])
. (4.2.6)

32 4. Bounds on the Contraction Rate

By Jensen’s inequality,

1

2t
E

[

log

(
yT(t)y(t)

yT(0)y(0)

)]

≤ 1

2
log λ1

(
E
[
AT(0)A(0)

])
. (4.2.7)

The above equation also holds in the limit ast → ∞:

lim
t→∞

1

t
E

[

log
‖y(t)‖2

‖y(0)‖2

]

≤ 1

2
log λ1

(
E
[
AT(0)A(0)

])
. (4.2.8)

Now sety(0) = ŷ(0) with

ŷ(0) = arg sup
y(0)6=0

‖y(t)‖2

‖y(0)‖2

(4.2.9)

⇒ log
‖ŷ(t)‖2

‖ŷ(0)‖2

= log

∥
∥
∥
∥
∥

t∏

p=1

A(t − p)

∥
∥
∥
∥
∥

2

. (4.2.10)

By Theorem 3.2.8, we have then

lim
t→∞

1

t
E

[

log
‖ŷ(t)‖2

‖ŷ(0)‖2

]

= γ, (4.2.11)

and consequently, equation (4.2.8) implies

γ ≤ 1

2
log λ1

(
E
[
AT(0)A(0)

])
.

5. Simulation Results

5.1 Introductory Remarks

5.1.1 Different Metrics for Convergence

Different metrics can be used to characterize the rate of convergence (or contraction) of a system
whose dynamics are described by a sequence of matrices. In our case, the system to be described
is a network of sensors with randomly failing links between the sensors, where the purpose of the
network is to compute in a decentralized way the average of the measurements of all nodes in
the network. In order to quantify the contraction rate of thesystem we may consider one of the
following metrics:
1) Dobrushin’s ergodicity coefficient, orδ-seminorm, defined as

δ(W) =
1

2
max

j,k

∑

i

|wi,j − wi,k| . (5.1.1)

2) The 2-norm of the residual matrixMt, that is the product
∏

W of the weighting matricesW(t)
subtracted by the invariant subspace associated with the vector1, i.e.

‖Mt‖2 =

∥
∥
∥
∥
∥

t∏

p=1

W(t − p) − 11T

n

∥
∥
∥
∥
∥

2

.

3) Any other matrix norm of the residual matrixMt, for example the Frobenius norm.
4) A norm of the relative error vectory(t)/ ‖y(0)‖ resulting from an arbitrary choice of initial

measurement vectorx(0) = y(0) + x̄1, for example the 2-norm. This metric will depict the
actual typical behavior of the system but, in particular itstransient behavior, depends on the
actual choice ofx(0), and should therefore be regarded as merely illustrative. However, the
asymptotic behavior can be generalized to almost all1 initial vector choices.
As we have seen earlier (see Chapter 3), all these metrics areequivalent and, in the long run,

will decay with the same asymptotic rateγ. This is illustrated by the following example.

An Example
As an illustrative example, Figure 5.1 shows in logarithmicscale the evolution of selected error
metrics over algorithm iterations (time instants), using the Metropolis weighting algorithm on a
random geometric graph (RGG) with 200 nodes, such as depicted in Figure 5.2, with link failure
probabilityp = 0.9.

For the definition of the weighting algorithm refer to Chapter 1. The RGG is defined by nodes
uniformly distributed on the unit square, 2 nodes being connected iff the distance between them
is less thanr. In the case considered in Figures 5.1 and 5.2,r = 0.2 and the number of nodes
n = 200. The link failure probabilityp is set to 0.9. This means a given link is active at time

1All initial vectors outside of a proper subspace ofR
n; see Theorem 3.3.1.

33

34 5. Simulation Results

0 10 20 30 40 50 60 70 80 90 100
10

−2

10
−1

10
0

10
1

Iterations

Comparison of measures

E[|| M(t) ||

2
]

E[|| M(t) ||
F
]

E[δ(M(t))]
|| y(t) ||

2

Figure 5.1: Different metrics for the residual error

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Geometric Graph, n = 200, r = 0.2

Figure 5.2: Geometric graph withn = 200 nodes andr = 0.2 maximum link length

5.1 Introductory Remarks 35

instantt with probability1 − p = 0.1, independently of other links and independently of its own
activity at previous (of future) time instants.

The plot shows the four error metrics described above, namely the Dobrushin-seminorm, the 2-
norm and the Frobenius norm of the residual matrixMt, all of them averaged over 400 realizations
of link failure/activity sequences. The evolution of the quadratic norm of an error vectory(t) is
also shown, but only one realization for one time sequence, with an initial measurement that was a
basis unit vector, i.e. alln nodes had initial value 0, except one nodei, which was initialized with
xi = 1.

Choosing to plot this curve for a specific realization instead of an averaged curve shows the
variances involved are very small, and that typical behavior is very close to the mean behavior.

As expected, the slope, i.e. the asymptotic exponential decay rate, of all 4 metrics is the same.
Moreover, we can see that the Frobenius-norm approaches the2-norm. This illustrates Theorem
3.3.1, which states thatMt tends to become one-dimensional or, in other words, there tends to be
only one dominant singular value, and consequently‖Mt‖F =

∑
σi → σ1 = ‖Mt‖2.

Finally, one should note that for an arbitrary initial vector, the error might, in the beginning,
decrease much faster than‖Mt‖2, which by definition always gives the relative error of the “worst
case” starting pointy(0).

By a similar argument, one could expect the ergodicity coefficientδ to have a steeper transient
than‖Mt‖2, because in the case ofδ, the maximization goes only over starting vectors of the form
y(0) = 1/2(ei − ej), i, j = 1 . . . n, and not over ally(0) ∈ Rn (see equation (5.1.1)). However,
there is another difference betweenδ and‖Mt‖. δ is defined based on the 1-norm,

δ(Mt) = max
i,j

1

2
‖Mt(ei − ej)‖1 ,

as opposed to‖Mt‖2 which is defined based on the 2-norm. Because the effect of changing the
norm is stronger than that of the constraint on maximization, we observeδ(Mt) > ‖Mt‖2.

The main conclusion we draw from this analysis is that, to specify the asymptotic convergence
speed of an averaging algorithm, it is sufficient to considerany of the 4 metrics described above.
For this reason, in the following we will focus on‖Mt‖2, and all the results presented for this
metric will hold equivalently for the other metrics. The differences observed in the transient are
addressed in Section 6.1.2.

5.1.2 Scales and Representation

There still are a few precisions to make before going to characterization of the stationary rate of
convergence.

The first one is about interchanging expectation and logarithm. Note that in Figure 5.1 we
implicitly took the logarithm of the mean of an error metric‖Mt‖ or δ(Mt). This is legitimate as
long as it is clearly specified that we look at the error norm itself, and not its logarithm.

In all the previously derived results however, we consider the logarithmic error metriclog ‖Mt‖
as the value of interest. The difference is very small in practice, so it would not be visible in Figure
5.1 if exp (E [log ‖Mt‖]) would have been plotted instead ofE [‖Mt‖]. But still, it is important to
make this distinction. In the following, we will always consider the logarithmic error metric, or in
other words, we take logarithms before expectations, i.e. we show quantities such asE [‖Mt‖].

The second point is how to evaluate this stationary contraction rate, i.e. the slope of the curves
in Figure 5.1.

36 5. Simulation Results

0 10 20 30 40 50 60 70 80 90 100

−0.025

−0.02

−0.015

−0.01

Iterations

Derivative vs. 1/t

d (E[log ||M

t
||]) / dt

E[log ||M
t
||] / t

Figure 5.3:E [γ(t)] and derivative ofE [log ‖Mt‖2], for the same system as before (n = 200, Metropolis
weights, empirical averaging over 400 realizations).

A first guess might be to use the derivative, e.g.d E [log ‖Mt‖] / d t. While this seems intu-
itively correct, this is not the best thing to do, even if thisexpectation exists. As shown in Figure
5.3, an empirical averaging over 400 realizations is not sufficient for the derivative (dashed line) to
provide an accurate, stable value. For this reason, we will consider the metric

γ(t) :=
1

t
log ‖Mt‖2

and its empirical average (solid line in Figure 5.3), which,by theorems in Chapters 3 and 4, is
known to be well defined and to converge to a valueγ ast → ∞, which is such that

γ = lim
t→∞

1

t
log ‖Mt‖ =

d E [log ‖Mt‖]
d t

,

i.e.γ characterizes the slope in the stationary region which can be seen in Figure 5.1.

5.1.3 A Remark on Rare Events

We consider

γ = lim
t→∞

1

t
log

∥
∥
∥
∥
∥

t∏

p=1

A(t − p)

∥
∥
∥
∥
∥

2

(5.1.2)

which by Theorem 3.2.8 is well defined and non-random if{A(t)}t≥0 is a sequence of i.i.d. matri-
ces.

However, note that if there exists a finite subsequenceMT of lengthT of matricesA(t) such
that

MT =

T∏

p=1

A(T − p) = 0 T < ∞, (5.1.3)

5.2 Analysis of Bounds 37

which can appear with nonzero probability, it follows immediately thatγ = −∞. This is because
in an infinitely long sequence, the subsequenceMT will eventually appear, with probability one.

This situation can occur for example when we consider a fullyconnected graph with indepen-
dently failing links or nodes. Assume thee = n(n− 1)/2 links fail independently with probability
p. Then, there is a probability(1− p)e > 0 that all links are up at the same time. If this happens at
time t, and we use e.g. the Metropolis weighting algorithm,W(t) = 11T/n and the exact solution
is reached at timet, i.e. in finite time.

Another example is when the number of nodes is a power of 2, andthe gossip algorithm is used.
In this case, the following communication sequence allows all nodes to reach the exact solution in
finite time. First, nodes 1 and 2 average their respective values, then nodes 3 and 4, 5 and 6, and so
on. In the second stage, we pair up nodes 1 and 3, 2 and 4, 5 and 7,etc. . . Now, nodes 1 through 4
already have all the same value, and so do nodes 5 – 8 and all subsequent groups of 4. This process
can go on, up to the last stage, at which every node from the first half exchanges its value with one
of the second half. Consequently, there is a sequence of length T = n log(n)/2 which reaches the
exact solution, and thereforeγ = −∞.

One can find many other examples, in whichγ is actually not bounded from below. Never-
theless, in many of these cases, simulations will not exhibit this behavior but rather show a finite
asymptotic contraction rate. This is because the probability of the event of falling on a sequence
like in (5.1.3), while being nonzero, is actually very small, so that with high probability it will not
appear in simulations, nor in practice.

It is an instance of the famous “infinite monkey theorem”, which states that a monkey typ-
ing a random sequence on a typewriter for an infinite amount oftime will eventually type out a
Shakespeare play (i.e. a specific subsequence of finite length). But like the monkey will probably
die before writing even a sonnet, simulations will most probably stop before the occurrence of a
sequence satisfying equation (5.1.3).

5.2 Analysis of Bounds

After this short introduction motivating our interest for the asymptotic contraction rate, we turn to
comparing an empirically obtained rateγ to the bounds derived for it in Chapter 4. We will see the
first bound is always tighter than the second one, and in many interesting cases much tighter. Also,
we will introduce another measure, which is tempting because of its simplicity, and is actually
often very close toγ, but which in general is not a bound, nor even an approximation of γ.

Recall the two upper bounds onγ derived in Chapter 4, Sections 4.1 and 4.2, respectively

B1 :=
1

2
log (ρ (E [A ⊗A])) and (5.2.1)

B2 :=
1

2
log
(
ρ
(
E
[
ATA

]))
, (5.2.2)

and consider also a third measureC3, which was a candidate for approximatingγ:

C3 := log (ρ (E [A])) . (5.2.3)

The graphs in the following sections show the evolution ofγ(t) over time instants at which
communication occurs, together with the boundsB1, B2 and the candidateC3.

38 5. Simulation Results

0 100 200 300 400 500 600 700 800 900 1000

−3

−2.5

−2

−1.5

−1

−0.5

0

0.5
x 10

−4

Iterations

B
2
 = −1.606e−04

B
1
 = −3.199e−04

C
3
 = −3.211e−04

E [log ||M
t
||

2
] / t

Figure 5.4:γ(t), boundsB1, B2 and approximationC3, for a RGG withn = 60 andr = 0.2, using the
gossip algorithm.

5.2.1 Geometric Graphs

As an example of a sensor network with randomly placed nodes,consider the case of random
geometric graphs (RGG), already presented in the introductory section. More specifically, take a
sample RGG, withn = 60 nodes uniformly i.i.d. on the unit square, with maximum linklength
d = 0.2.

We considered two different averaging schemes. First, the gossip algorithm, where at each time
slot, one link is sampled uniformly from the set of all links and the two incident nodes average their
respective values. Figure 5.4. shows the corresponding evolution of γ(t) on a time interval of 1000
algorithm iterations, i.e. 1000 communications between nodes, averaged over 500 realizations of
link sampling. Att = 1000, γ(t) has not yet reached its limitγ. Remember thatB1 ≥ γ = γ(∞).

In the second case, we consider the “failing links” model, inwhich at each time instant, links
fail (or are inactive) independently of each other and independently of past activity with probability
p = 0.9 (see example in Section 5.1). A typical configuration of the network at an arbitrary time
instant is shown in Figure 5.5, in which currently active links are represented by full lines, and
dashed lines denote currently failing (or inactive) links.Note that while the set of full lines is
drawn independently at each time instant, the location of the nodes, and therefore the set of all
links, remains fixed over time. Notice also that the currently active links typically do not form a
connected graph.

In this “failing links” model, we used the Metropolis algorithm (see Chapter 1) to determine
the weights on the values exchanged between currently incident nodes. The corresponding results
are given in Figure 5.6. Again,γ(t) averaged over 500 realizations is plotted against algorithm
iterationst up to t = 1000, andB1, B2, C3 are indicated on the right. Here, unlike in Figure 5.4,
γ(1000) is already very close to its limitγ.

Observations

5.2 Analysis of Bounds 39

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Geometric Graph, n = 60, r = 0.2

Figure 5.5: Random Geometric Graph (RGG) withn = 60 nodes, maximum link lengthr = 0.2, and a
proportion ofp = 0.9 inactive links (dashed).

0 100 200 300 400 500 600 700 800 900 1000
−6

−5

−4

−3

−2

−1

0

1
x 10

−3

Iterations

B
2
 = −3.217e−03

B
1
 = −5.143e−03

C
3
 = −5.156e−03

E [log ||M
t
||

2
] / t

Figure 5.6:γ(t), boundsB1, B2 and approximationC3, for a RGG withn = 60 and r = 0.2, using
Metropolis weights, with a proportion ofp = 0.9 inactive links.

40 5. Simulation Results

Regarding the evolution ofγ(t), we can observe a longer transient in the case of the gossip al-
gorithm, as opposed to the failing links model with Metropolis weights. This is not surprising,
considering that in the second case many nodes communicate simultaneously, while in the gossip
setup there is only one active link at each time step. If one considers the duration of the transient
with respect to the total number of communications between nodes, there is almost no noticeable
difference.γ(t) is less than 0 for the first time after approximately 140 information exchanges in
both cases.

Consider nowγ, the valueγ(t) tends to for larget, and compare it to the valuesB1, B2, and
C3. It is more convenient to look at Figure 5.6 rather than Figure 5.4, because it takes longer in the
gossip case to reach the limitγ.

First, one can see that both boundsB1 andB2 are greater thanγ, as expected, but in particular
thatB1 is significantly tighter thanB2. Furthermore, although nothing could be proved concerning
the approximationC3, it turns out to be very close toγ andB1.

The same observations hold when using the gossip algorithm,as longer simulations have
shown. Here one can make an additional observation concerning the looseness ofB2. Namely, in
the gossip case the weighting matrices are symmetric projection matrices, and thereforeATA =
A. While C3 gives pretty accurately the value ofγ, B2 is exactlyC3/2 and consequently a very
loose upper bound onγ.

All these observations were made on RGG’s of different sizes, and more generally for all kinds
of relatively sparse graphs, e.g. regular graphs withn = 10 and degree 3, orn = 60 and degree
10. Here, the term “relatively sparse” can be interpreted very widely. Even a RGG withn = 60
nodes and maximum link lengthr = 0.8 still exhibited the same behavior and may therefore be
considered as “relatively sparse”, even though the averagenode degree is about 30, or0.5n.

5.2.2 The Full Graph

Consider now a fully connected graph instead of a RGG. This means any two nodes can commu-
nicate directly with each other. Consequently, we have a total of e = n(n − 1)/2 communication
links. We consider the same two cases than before. First the gossip algorithm, i.e. there is exactly
one active communication link at each time step. Second, thefailing links model, where at each
time step, every link has a probability1 − p = 0.1 of being active.

When using the gossip algorithm in a full graph, the valuesγ(t), B1, B2 andC3 are represented
in Figure 5.7, as they were in Figure 5.4 in the RGG case. Similarly, when using the failing links
model and the Metropolis weighting algorithm, Figure 5.8 isthe equivalent to Figure 5.6 when the
RGG is replaced by the full graph. The number of nodes is the same as before,n = 60, as well as
the number of iterations.

In both cases, gossiping and “failing links”, the contraction rateγ turns out to be significantly
smaller than previously, and also the transient is shorter.This is not surprising, as thanks to “short-
cuts” across the graph, differences between distant nodes can be averaged directly, and thus faster
than by going through many hops from one neighboring node to the next, as it is necessary in a
geometric graph. In the failing links model, due to the increase in the total number of connections,
there is also an increase in the number of communications pertime step.

More importantly, observe howB1, B2 and C3 have shifted with respect toγ. Both upper
bounds are still greater than or equal toγ, the limit ofγ(t) for larget, but whileB2 was very loose,
it is now very close toB1. Conversely,C3 is now clearly less than the empirical convergence rate
γ, and can therefore not be used to approximate it.

5.2 Analysis of Bounds 41

0 100 200 300 400 500 600 700 800 900 1000
−18

−16

−14

−12

−10

−8

−6

−4

−2

0

2
x 10

−3

Iterations

B
2
 = −8.411e−03

B
1
 = −8.547e−03

C
3
 = −1.682e−02

E [log ||M
t
||

2
] / t

Figure 5.7:γ(t), boundsB1, B2 and approximationC3, for a fully connected graph withn = 60 nodes,
using the gossip algorithm.

0 100 200 300 400 500 600 700 800 900
−1.4

−1.2

−1

−0.8

−0.6

−0.4

−0.2

0

Iterations

B
2
 = −7.876e−01

B
1
 = −7.932e−01

C
3
 = −1.187e+00

E [log ||M
t
||

2
] / t

Figure 5.8:γ(t), boundsB1, B2 and approximationC3, for a fully connected graph withn = 60 nodes,
using Metropolis weights, with a proportion ofp = 0.9 inactive links.

42 5. Simulation Results

0 50 100 150 200 250 300 350 400
−0.04

−0.035

−0.03

−0.025

−0.02

−0.015

−0.01

−0.005

0

0.005
Bounds vs Connectivity, RGG n = 30, Gossip

Number of edges (e)

γ
B

1

B
2

C
3

Figure 5.9: Contraction rateγ, boundsB1, B2 and approximationC3 as a function of the total number of
connections, with communications according to the gossip algorithm, for a graph withn = 30 nodes.

A legitimate question is whetherC3 is a lower bound onγ. This is not the case. One can easily
construct a probability distribution onA with Pr(A = 0) > 0, so thatγ = −∞, but for which
C3 = log (ρ (E [A])) is still finite. Also when both are finite, it can happen thatγ < C3, as in the
case shown in Figure 6.1.

To summarize,B2 is a reasonably tight bound when the graph of possible connections is com-
plete, but rather loose otherwise. Conversely,C3 is a fairly good approximation ofγ in some cases,
where the set of possible connections is limited. In generalhowever, nothing can be said about the
relationship betweenC3 and the asymptotic convergence rateγ. AboutB1 we can say that, in all
cases studied, it is a reasonably tight bound on the empirical value ofγ. Finally, we want to point
out the fact that although in all the simulations,B2 was looser thanB1, the question whether this
is always the case remains open.

Note also that the actual, mathematically correct value ofγ is, in many particular cases, not
bounded, while the empirical contraction rate computed by simulation is nonetheless finite (see
Section 5.1.3). The value considered here is always the empirical contraction rate, not the theoret-
ical one.

5.2.3 γ as a Function of Graph Density

After having seen how the bounds behave for two extreme configurations, namely barely connected
graphs on one side, and the full graph on the other side, it is quite natural to study how these bounds,
andγ, evolve as a function of graph connectivity.

Figure 5.9 shows contraction rateγ, boundsB1, B2, and approximationC3 as a function of the
number of edges, for random geometric graphs withn = 30 nodes, when the gossip algorithm is
used.

To construct RGG’s with a specific number of edges, we proceedas follows. First pick a sample
with n = 30 nodes uniformly i.i.d. on the unit square. Then add connections between nodes, one
after the other, beginning with a connection between the twolinks which are closest to each other.
The next connection to be added is then always between the twonodes which are closest to each
other, but not yet directly connected. The bounds are then evaluated when specific numbers of

5.3 Comparison of Averaging Strategies 43

connections are reached, not necessarily after each added connection. To get Figure 5.9, this whole
process was repeated 100 times, with randomly sampled node locations.

When the number of edgese is too small, the graph is not connected, and therefore the sequence
of matrices{A(t)} is not contracting, i.e. the Lyapunov exponentγ will be equal to 0, as well as
both upper bounds. Also the expectation matrixE [A(t)] is not contracting as long as the graph is
not connected, soC3 = 0 as well.

Then, for increasing number of links and increasing connectivity of the graph, the Lyapunov
exponentγ will decrease, and so will both upper bounds. In the beginning, γ and B1 follows
the evolution ofC3, but flatten out for very well connected graphs, whereB2 andC3 drop very
rapidly. Remember that in the gossip case, as represented here, C3 = 2B2. Consequently, for
poorly connected graphsB2 is only about one-half of the actual contraction rateγ, and therefore
very loose. We observe thatB1 is always less than, and therefore tighter thanB2.

While B2, and alsoC3, would suggest a big improvement of the convergence speed when
filling in the last connections missing in an almost completely connected graph,B1 follows more
precisely, although not exactly, the actual contraction rateγ. The gossip algorithm will not perform
significantly better on a full graph than on graphs missing a few links to the complete one.

Of the 3 quantitiesB1, B2 andC3, the last one is easiest to compute and apparently the most
accurate approximation ofγ, except for highly connected graphs. However, this is merely an empir-
ical observation, and at this time there are no means to determine exactly where this approximation
holds.

Finally, note that the picture will be very similar in “failing links” scenarios using Metropolis
weights (not represented). The qualitative evolution is the same than in Figure 5.9, but the gaps
between the curves are much smaller.

5.3 Comparison of Averaging Strategies

We will now use the contraction rateγ as a metric to compare the performance of different averag-
ing strategies on a given type of network. As we have already seen previously,γ is good metric to
characterize the averaging performance of a given system, because this is the convergence speed it
will have almost surely in the long run, for almost any initial starting vector.

A Few Definitions
Let us introduce a couple of parameters related toγ, which will better illustrate the cost associated
with an averaging operation. If the cost factor is time, we may consider thecontraction timeTc

which we define as

Tc :=
−1

γ
= lim

t→∞

t

− log ‖Mt‖
. (5.3.1)

Thus, a low contraction rate will be associated with a large|γ| in magnitude, and thus a good, fast
averaging performance.

Instead of time, we might be interested in the number of transmitted messages (# of TxM). In
systems of autonomous agents connected by wireless links, such as network of remote sensors,
the # of TxM is a major cost factor, because every transmission is associated with consumption of
energy, which is a scarse resource for remote units. Thus, wedefine acontraction energyas

Ec := lim
t→∞

of TxM up to timet

− log ‖Mt‖
. (5.3.2)

44 5. Simulation Results

By ergodicity, this is also equal to

Ec =E [# of TxM in one iteration]
−1

γ
(5.3.3)

=E [# of TxM in one iteration] · Tc. (5.3.4)

Finally, as we are considering models in which messages can be lost, it might also be interesting
to look at the number of received messages (# of RxM). In wireless systems, not only transmitting
but also receiving and decoding a message can consume a lot ofpower. We will see it can make
a huge difference to consider received messages instead of transmitted messages. Therefore, we
introduce

Mc := lim
t→∞

of RxM up to timet
− log ‖Mt‖

(5.3.5)

= E [# of RxM in one iteration] · Tc. (5.3.6)

Again, the second equality follows by ergodicity.

Comparison of Strategies
We will compare the costs of the Metropolis weights algorithm with standard pairwise gossip in
sparse geometric graphs. More precisely, we consider an ensemble of random geometric graphs
(RGGs) on the unit square withn = 50 nodes and link ranger = 0.18. As previously, links
between nodes are failing independently in time and independently of each other with probability
p.

Figures 5.10 through 5.12 show the different performance criteria introduced above as a func-
tion of the link failure probabilityp. The represented curves were obtained by averaging the ac-
cording metric (Ec, Mc or Tc) over 50 sample graphs in the ensemble specified above.

Before turning to the figures, let us recall the respective averaging algorithms to see how trans-
mitted and received messages are counted. In the standard pairwise gossip algorithm, nodes wake
up asynchronously at random times and try to connect to a neighbor in order to exchange their
values. Thus, if we consider every instant at which a node wakes up as an iteration, there are suc-
cessful and unsuccessful iterations. In a successful iteration, two values are exchanged, so we have
a total of 2 transmitted and 2 received messages. In the case of an unsuccessful iteration, nothing
happens in terms of averaging, but there still is 1 message transmitted (and lost).

The Metropolis algorithm, as opposed to the gossip algorithm, is a synchronized averaging
scheme. This means, at each iteration every node in the network starts by sending its current value.
Then, every node which received at least one message repliesby communicating how many neigh-
bors it has currently, i.e. how many messages it has just received, so that each of its neighbors can
choose the appropriate weighting factor for the corresponding value it just received. After these two
rounds, every node with at least one active connection to a neighbor knows everything required to
perform the averaging, namely its own value, the values of its current neighbors, the size of its own
current neighborhood, and the sizes of its current neighbors’ neighborhoods. Nodes which did not
receive any message in the first round of the iteration may assume they are currently isolated, and
do not take any action in the second round. Thus, there are (n + # of not isolated nodes) messages
sent at each iteration.

Regarding the number of received messages, we have to take into account that every message
sent may be received and decoded zero, one, two, or more timesdepending on the neighborhood

5.3 Comparison of Averaging Strategies 45

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

1

2

3

4

5

6

7

8
x 10

4

Link failure probability p

TxM

c
 (MetroWeights)

TxM
c
 (Gossip)

Figure 5.10: Contraction energyEc, or number of transmitted messages (# of TxM) as a function oflink
failure probabilityp, for Metropolis weights and gossip algorithms on a RGG.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

1

2

3

4

5

6

7
x 10

4

Link failure probability p

RxM

c
 (MetroWeights)

RxM
c
 (Gossip)

Figure 5.11:Mc, or number of received messages (# of RxM) as a function of link failure probabilityp, for
Metropolis weights and gossip algorithms on a RGG.

of the emitting node. Thus, the total number of messages received per round in the whole network
is equal to the number of currently active pairwise node to node connections in the network. On
average, this will bep · e, wheree is the total number of node to node links in the network, andp
is the failure probability of these links. In the end, as we have two rounds per iteration, one for the
current average estimates, and one for the current neighborhood size, the number of received and
decoded messages sums up to2pe.

Now, one can easily see that counting the transmitted messages (TxM) is radically different
from counting the received messages (RxM). Depending on thelink failure probabilityp, the num-
ber of TxM might be smaller (at lowp) or greater (at highp) than the number of RxM. This can
be seen by comparing the associated cost functions respectively shown in Figures 5.10 and 5.11
which both represent the effort associated with a same result.

46 5. Simulation Results

Figure 5.10 shows the contraction energyEc as defined in equation (5.3.2) as a function of
the link failure probability, for the two averaging strategies considered, namely the synchronous
Metropolis weights algorithm on one hand, and the pairwise gossip algorithm on the other hand.
As one could already expect, the required number of messagesto transmit to achieve a same result,
i.e. a same accuracy of the computed average estimates, grows with the probabilityp, i.e. with the
probability of losing emitted messages. A probably less obvious observation is that this number
grows faster when using gossiping than with the synchronized strategy.

In Figure 5.11 we see the number of messages received and which need to be decoded corre-
sponding to the number of emitted messages shown in Figure 5.10. As we can see by comparing
these two figures, in the gossip algorithm and when no messages are lost, the number of sent and
received messages is identical. This does not hold for the Metropolis weighting algorithm, as in
this case a single message will typically be received by several nodes. Also, the link failure proba-
bility p does not affect the decoding cost of the nodes in gossiping. This comes from the fact thatp
only affects the number of unsuccessful iterations, and therefore the number of unnecessarily sent
messages, but has no effect on successful iterations which are the only which count, both in terms
of averaging and decoded messages.

For the Metropolis weighting algorithm, the picture is quite different. The higherp is, i.e. the
less connections are active at each round, the more efficientand useful every received message is,
and therefore the less messages need to be decoded to achievethe same result. The most striking
fact is that this relationship is (or at least seems to be) affine inp.

Also, note that in the limit forp close to 1, the metropolis algorithm starts resembling gossiping,
at least from the point of view of the averaging operations performed. At highp, all links are down
with high probability, and only from time to time there will be an active link which will allow two
nodes to exchange and average2 their respective values. As in this case there will be a totalof 4
messages received when two nodes communicate, namely both their values and current number
of neighbors (=1), as opposed to only 2 messages if we use gossiping, it is not surprising that the
limiting point ofMc (MetroWeights) forp → 1 will be 2Mc (Gossip).

Finally, Figure 5.12 shows contraction timeTc for the Metropolis weights algorithm, and a
Tc normalized by the number of nodesn for pairwise gossiping. This allows a better comparison
between a synchronized algorithm (Metropolis) and an ansynchronous strategy (Gossip). This nor-
malization corresponds to equating the time between two Metropolis iterations and the mean time
between wakeups of a node in gossip algorithm.

For all three cost functions considered, we can see that using the gossip algorithm rather than
Metropolis weights is advantageous when the link failure probability p is small. For largep how-
ever, both timeTc and energyEc required for averaging grow faster when using gossiping. There-
fore, it might be advisable to use the Metropolis weighting algorithm when the node to node
connections are highly unreliable, and the gossip scheme otherwise.

The cost functions presented and used here are only a few possible examples. Other cost func-
tions might be better suited for particular applications. For example, one might wish to combine
Ec andMc in order to take into account the respective costs of both thetransmission and the re-
ception/decoding of a message. The resulting cost functionwould then be a weighted sum of the
curves in Figures 5.10 and 5.11. For the Metropolis weights algorithm, this cost function would
present a minimum for somep between 0 and 1. Therefore, if one chooses to use this algorithm in

2They will actually average them, as both have exactly one neighbor (recall equation (1.2.2)).

5.3 Comparison of Averaging Strategies 47

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

500

1000

1500

Link failure probability p

T

c
 (MetroWeights)

T
c
 (Gossip) / n

Figure 5.12: Normalized contraction timeTc as a function of link failure probabilityp, for Metropolis
weights and gossip algorithms on a RGG.

a reliable network, it might be advisable to deliberately deactivate a certain number of connections
or nodes at each iteration in order to minimize the required power.

In the end, this simple example shows that contraction rateγ may be adapted to take into
account various cost functions, and can therefore be used toselect the best averaging strategy for
a given network. It can also help to optimize design parameters of a chosen averaging algorithm,
in order to minimize the cost of the averaging operation.

6. Summary and Open Problems

6.1 Further Observations

During our study on averaging algorithms in time varying networks, we made some interesting
observations, which do not fall in the scope of any of the theorems or propositions presented above.
Nevertheless, some of these seemed quite interesting to us,and are presented in this section.

Note however that these are only observations based on simulations. In some cases, intuitive
arguments which can help understanding the underlying effects are presented, but no formal proofs
or theorems could be established.

6.1.1 Asymptotically Large Networks

Bound B1

The most striking observation about the bounds on the leading Lyapunov exponentγ derived in
Chapter 4, is the apparent tightness of the first bound

B1 :=
1

2
log (ρ (E [A⊗ A])) ,

as can be seen in Figures 5.4, 5.6, 5.7, 5.8 and 5.9.
However,B1 is not always that close toγ, as Figure 6.1 shows. This figure shows the evolution

of γ(t) and the boundsB1, B2, as well asC3, just like the previously cited figures from Chapter
5, but for a much smaller network, with onlyn = 10 nodes, ande = 13 edges. One can see the
relative gap betweenγ andB1 is much greater than for the larger networks previously considered,
which leads us to the following assumption.
Conjecture. B1 is asymptotically tight for largen, or in other words, in the limit forn → ∞,
B1 = γ.

Although we have no proof for this assertion, here are some thoughts which may help in finding
ways to prove it. From Theorem 3.2.8 we know that

γ := lim
t→∞

1

t
log ‖Mt‖ (6.1.1)

= lim
t→∞

E

[
1

t
log ‖Mt‖

]

(6.1.2)

= lim
t→∞

E
[

log ‖Mt‖1/t
]

(6.1.3)

= lim
t→∞

1

2
E
[

log ‖Mt‖2/t
]

. (6.1.4)

Also, note that sinceγ is a nonrandom real number, so is

eγ =exp
(

lim
t→∞

log ‖Mt‖1/t
)

= lim
t→∞

exp
(

log ‖Mt‖1/t
)

= lim
t→∞

‖Mt‖1/t .

48

6.1 Further Observations 49

0 100 200 300 400 500 600 700 800 900 1000
−0.01

−0.009

−0.008

−0.007

−0.006

−0.005

−0.004

−0.003

−0.002

−0.001

0

iterations

B
2
 = −4.802e−03

B
1
 = −9.323e−03

C
3
 = −9.604e−03

E [log ||M
t
||

2
] / t

Figure 6.1:γ(t), boundsB1, B2 and approximationC3, for a sample graph withn = 10 nodes ande = 13
links, using the gossip algorithm.

Consequently,limn→∞ Var
(

‖Mt‖1/t
)

= 0, and in equation (6.1.4), expectation and logarithm

can be interchanged while preserving equality:

lim
t→∞

1

2
E
[

log ‖Mt‖2/t
]

= lim
t→∞

1

2
log E

[

‖Mt‖2/t
]

. (6.1.5)

All of the above holds for any sequence{Mt}t≥1 defined byMt :=
∏t

p=1 A(t − p), where
{A(t)}t≥0 is an ergodic sequence. It holds in particular whenW(t) = A(t) + 11T/n are i.i.d.
weighting matrices of a network with any number of nodes and links.

To us, the crucial point which remains to be cleared seems to be whether

lim
t→∞

1

2
log E

[

‖Mt‖2/t
]

= lim
t→∞

1

2
log E

[
‖Mt‖2]1/t

(6.1.6)

holds, or more precisely to see in which cases it does, and in which cases it does not hold.

MeasureC3

The same observation of asymptotic tightness can be made about candidate approximationC3,
when comparing Figures 5.4 and 6.1. However, the following example will show how tricky the
relationship betweenγ andC3 is.

We will consider random geometric graphs (RGGs) with increasing number of nodesn, and
accordingly decreasing link radiusr, so as to preserve connectivity when scaling the graph. A
result by Gupta and Kumar [36] tells us that forn → ∞, a RGG on a disc1 of unit area with

r2(n) =
log(n) + c(n)

πn
(6.1.7)

1Note the difference to our model, where we use the unit square.

50 6. Summary and Open Problems

0 100 200 300 400 500 600 700 800 900 1000
0

50

100

150

200

250

300

350

Number of nodes n

C
on

tr
ac

tio
n

tim
e

RGG, r = sqrt(log(n)/n)

−1/γ
−1/C

3

Figure 6.2: Contraction TimeTc and its “approximation” based onC3, as a function of network sizen, using
Metropolis weights.

0 100 200 300 400 500 600 700 800 900 1000
0

50

100

150

200

250

300

350

400

450

500

Number of nodes n

C
on

tr
ac

tio
n

tim
e

RGG, r = sqrt(2*log(n)/n)

−1/γ
−1/C

3

Figure 6.3: Contraction TimeTc and its “approximation” based onC3, as a function of network sizen, using
Metropolis weights.

6.1 Further Observations 51

is connected iffc(n) → ∞.
We will use the scaling lawr =

√

α log(n)/n and consider two different values ofα, namely
α = 1 andα = 2. Note that according to the above result, neither of these values ensures asymp-
totic connectivity, but nevertheless, at the considered network sizes, this is enough for the networks
to be connected with reasonably high probability.

For better readability, we plotted contraction timesTc = −1/γ and its equivalent−1/C3 in-
stead of the contraction rateγ itself. Figure 6.2 shows the first case, whereα = 1, and Figure 6.3
shows the same measures whenα = 2.

The two pictures are radically different, even though we didnot change the order of scaling,
but merely a multiplicative coefficient. Forα = 1 the contraction timeTc and−1/C3 remain close
together, and the according relative error even tends to vanish. On the other hand, ifα = 2, C3 is
no longer a valid approximation for the contraction rateγ whenn is large.

All this shows that even though intuition tells us there must, or should, be some relationship
betweenγ andC3, it is for sure a very complicated one. Even in very similar special cases,C3 and
γ may in one case be very close, and in the second case behave radically differently. Therefore, at
this point we cannot useC3 to approximate the contraction rate.

As a last remark, one could think of an approach to combine thetwo aspects presented in
this section. When (and if!) bothB1 andC3 are asymptotically tight, a possible way of proving
tightness of one given tightness of the other could be to showboth converge to the same value. In
order to relateB1 andC3, let us define the autocovariance of a matrixA ∈ Rn×n as then2 × n2

matrix with elements
(cov (A))(i−1)n+k,(j−1)n+l = cov (ai,j, ak,l) . (6.1.8)

Then, we can rewriteB1 as

B1 =
1

2
log ρ (E [A ⊗ A]) =

1

2
log ρ (E [A] ⊗ E [A] + cov(A)) . (6.1.9)

Now, if cov(A) were 0, we could equateB1 andC3, because

1

2
log ρ (E [A] ⊗ E [A]) =

1

2
log ρ2 (E [A]) (6.1.10)

= log ρ (E [A]) (6.1.11)

= C3. (6.1.12)

Therefore,cov(A) might be regarded as a perturbation term. Ifcov(A) is somehow “small” com-
pared toE [A] ⊗ E [A], chances areB1 and C3 approach each other. However, “small” can-
not refer to the magnitude of the elements, as these do not vanish for largen. On the other
hand, the proportion of nonzero elements incov(A) vanishes. But this is not sufficient to prove
ρ (E [A ⊗ A]) → ρ (E [A] ⊗ E [A]) asn goes to infinity. Thus, it remains to be shown when and
whetherB1 andC3 converge to the same value.

6.1.2 Transient Behavior and Frobenius Norm

Even though this document is dedicated to the study of the leading Lyapunov exponent, which
characterizes the asymptotic contraction rate of the system on large time intervals, our simulations
also revealed some interesting facts concerning the transient behavior of the system right after

52 6. Summary and Open Problems

0 5 10 15

10
0

Iterations

E[|| M(t) ||

2
]

E[|| M(t) ||
F
]

E[||y(t)||
2
]

|| y(t) ||
2

Figure 6.4: Detail of Figure 5.1: Study of the transient

initialization. These observations were already mentioned in Section 5.1.1 of Chapter 5 (Simulation
Results), in the discussion of Figure 5.1.

Figure 6.4 is a portion of Figure 5.1 showing in greater detail the beginning of the averaging
process. Additionally to the error metrics shown in Figure 5.1, Figure 6.4 includes the average
2-norm of the error vectory(t), when the initial measurement vectorx(0) is a specific basis unit
vector (dash-dotted line). The dotted lines in both figures represent a typical evolution of‖y(t)‖
for the same initial vector, and a specific sequence of active/inactive communication links. (The
plot of the Dobrushin-seminorm is omitted in Figure 6.4.) Inthis figure, one can observe that the
average quadratic norm of the error vectory(t) behaves similarly to the Frobenius norm of the
cumulative product matrixM(t).

To explain this, first recall that the Frobenius norm of a matrix equals the square root of the
sum of its squared singular values [31]. Now, if the initial vectorx(0) was a random vector withn
Gaussian, zero mean, unit variance, i.i.d. elements (∼ N n(0, 1)), one could use the singular value
decompositionMt = UtΣtV

T
t to see that‖y(t)‖2 = ‖Mt‖F in expectation:

y(t) = Mt x(0)
︸︷︷︸

∼Nn(0,1)

=

unitary
︷︸︸︷

Ut Σt
︸︷︷︸

scales elementi
with σi

unitary
︷︸︸︷

VT
t x(0)

︸ ︷︷ ︸

∼Nn(0,1)

. (6.1.13)

One can see that for largen, ‖y(t)‖2 = ‖Mt‖F holds not only in expectation, but almost surely.
From there, it is intuitively not surprising, that also in the case where the initial vector is a

standard basis vector, the error norm decays with a similar rate than the Frobenius norm of the
cumulative matrixMt. Nevertheless, this is not trivial at all. In fact, even though the qualitative
behavior is the same, one should still note there are some differences depending on which basis
vector is chosen as the starting point. If the node which is initially in disagreement with all the
other nodes is badly connected and/or at an extremity of the graph, the convergence will be slower
than if that node is well connected. This is only for the transient, of course, because the asymptotic
contraction rate will always be the same.

6.1 Further Observations 53

0.4 0.5 0.6 0.7 0.8 0.9 1
−0.01

−0.009

−0.008

−0.007

−0.006

−0.005

−0.004

−0.003

−0.002

−0.001

0

Link weight α

C
on

tr
ac

tio
n

ra
te

 γ

Contraction rate γ vs. Link weight α
 Gossip, n = 60, different topologies

Geometric Graph, r = 0.3
Regular Graph, d = 6
Full Graph

Figure 6.5:γ as a function of the message weight in gossip algorithm, for graphs withn = 60 nodes,
different topologies.

Consequently, the Frobenius norm will, in some cases, give afairly good idea of the contraction
rate, not only asymptotically but also during the transient, for a large range of initial measurement
vectors. In the case where the initial measurements are i.i.d. Gaussian, this norm actually precisely
represents the expected contraction rate.

6.1.3 Gossip – Optimal Weighting

We conclude this series of observations by a last remark concerning gossip algorithms, and more
precisely about the choice of the weight on the active link. The usual update strategy in gossip
algorithm is that, when two nodesi andj exchange their current valuesxi(t) andxj(t), they both
update their estimates of the global average to the local average of the two, i.e.

xi(t + 1) = xj(t + 1) =
xi(t) + xj(t)

2
. (6.1.14)

While this intuitively seems to be the fastest mixing strategy, this should not be taken for granted in
general. In fact, there are many cases in which the above update equation is not the optimal gossip
communication (2 by 2 communication) strategy.

Instead of using update equation (6.1.14), consider the following generalization

xi(t + 1) = (1 − α)xi(t) + α xj(t) (6.1.15)

xj(t + 1) = α xi(t) + (1 − α)xj(t), (6.1.16)

whereα is a positive constant denoted in the following as thelink weight, and is preferably in the
interval 0.5 ≤ α < 1. In this extension, we still consider the link weight to be a constant, the
same for all links and for all times, a constant to be specifiedin advance in the communication
protocol. Consequently, this generalization does not incur any additional communication costs
when compared to the classical gossip setting, which corresponds to the special caseα = 0.5.

54 6. Summary and Open Problems

From an analytical point of view, the only difference is thatthe update matricesW(t) are no
longer projection matrices. The fact the link weight does not change over time ensures stationarity
and ergodicity of the averaging process, which allows us to use the asymptotic contraction rateγ
to analyse the convergence speed.

Figure 6.5 shows the (approximate) asymptotic contractionrateγ as a function of the link
weightα, for different network topologies. The considered networks are:
1) Full graph: Simplest possible topology model, any node may contact any other node with equal

probability.
2) Geometric graph: Nodes are uniformly i.i.d. on the unit square. A node may communicate with

any node within a ranger, in the considered caser = 0.3.
3) Regular graph: Every node has exactly the same number of neighbors, but the graph has no

geometric structure.
For the plot, we considered networks of sizen = 60, and computed an approximation ofγ,

averaged over 500 different graphs according to the corresponding structure, i.e. either random
geometric graph (RGG) or regular graph. Averaging is not necessary for the full graph, as this type
of graph has only one realization.

The optimal link weight is in generalnot equal to0.5, as can be seen in Figure 6.5. Especially
when the graph has a strong geometric structure, i.e. two connected nodes share most of their
neighbors, but there are few connections in total, the fastest averaging is achieved at values very
close to one, in the considered example aroundα = 0.86. Also in the case where the number of
links is limited but there is no geometric structure, the optimal link weight is greater than0.5, even
though the effect is much weaker than in geometric graphs. Inthe example given with degree 6,
the best contraction rate is achieved aroundα = 0.66. Finally, if the pairs of nodes to communicate
are drawn uniformly upon all pairs of nodes, the intuitive choiceα = 0.5 is the best strategy for
averaging.

Inhomogeneous connectivity across the graph explains thisphenomenon. In geometric graphs,
it is badly connected nodes at the periphery of the graph which limit convergence speed. These
nodes get to communicate less often than others, and when they finally do, it might be advantageous
for them to basically “take over” the value provided by the better connected neighbor, and to “give
away” to that other node their own value, to be diffused to therest of the network. A similar
argument also holds for the regular graph. Although there are no nodes which are better connected
than others, there still may exist well connected clusters,which are poorly linked to one another.

Link weight has decidedly a great influence on contraction rate. In many cases, averaging speed
can be significantly improved at no cost, by choosing a link weight other thanα = 0.5. Link weight
should be regarded as a design parameter in systems using gossip algorithms. As further work, it
might be interesting to investigate how the optimal link weight depends on particular topology
parameters, for example average node degree, the girth of the graph, or the maximum connection
length in geometric graphs. Further improvements could be achieved at the expense of making the
protocol more complicated. Link weightα could for example be modulated as a function of the
position of the nodes in the graph. One could also think of changing α as a function of time in
order to improve finite time averaging performance.

6.2 Summary

The foregoing observations show a few examples how the previously derived tools, in particular the
contraction coefficient and its bounds, may be used to study the behavior of averaging algorithms.

6.2 Summary 55

These tools were derived in an abstract mathematical framework, which applies to the considered
algorithms, but also matches to a variety of other problems.In fact, these tools may be used to
study any linear system whose dynamics are governed by a stationary, ergodic sequence of random
matrices, regardless of the specific probability distribution of the matrix elements. The conditions
for the contraction coefficientγ itself to exist are very weak, and basically relate to the boundedness
of system parameters, which is given in all physical systems. To apply the bounds derived in
Chapter 4, more restrictive assumptions are required. The matrices to be multiplied should not
only form an ergodic sequence, but need to be independent andidentically distributed. A further,
more technical requirement is that the second moments, including cross-moments, of the matrix
elements’ distributions exist and are finite.

In the considered application, the study of averaging algorithms in time-varying networks, this
very general model is restricted to systems governed by sequences of doubly stochastic matrices.
However, this very special case actually reverts to the general one, after subtraction of the invariant
subspace spanned by the vector1, whose behavior is trivial and of no interest. While product
sequences of doubly stochastic matrices are the application we focused on, the model presented in
Chapters 3 and 4 may apply to various other random dynamical systems.

Finally, the main advantage of our approach is that it provides a sound, accurate, simple, and
theoretically founded method to analyze the performance interms of convergence speed of a given
system. We provide an in depth description of the mathematical tools used, and precise statements
of the inferred consequences of these theorems, together with their practical application. The con-
traction coefficient is a metric for the asymptotic contraction rate of the system, when it runs for a
long time. It is simple to compute, as it converges almost surely and not only in expectation, when
considering long time intervals. Consequently, a single simulation run is sufficient to determine it
for a specific system. We also derived simple, concise upper bounds on the contraction coefficient.
Empirical observations have shown one of these is a good bound, and might even be asymptoti-
cally tight. Further, the contraction coefficient is a lowerbound on the overall contraction rate. A
transient phase appearing shortly after initialization ofthe system and before the stationary regime
may lead to a faster convergence rate at the beginning, whichrapidly slows down to the asymptotic
rate. Finally, our method facilitates a separate study of transient and stationary phenomena.

Bibliography

[1] Hamid Gharavi and Srikanta P. Kumar. Special issue on sensor networks and applications.
Proceedings of the IEEE, 91:1151–1153, August 2003.

[2] Ali Jadbabaie, Jie Lin, and A. Stephen Morse. Coordination of groups of mobile autonomous
agents using nearest neighbor rules.IEEE Transactions on Automatic Control, 48(6):988–
1001, 2003.

[3] Vincent D. Blondel, Julien M. Hendrickx, Alex Olshevsky, and John N. Tsitsiklis. Conver-
gence in multiagent coordination, consensus, and flocking.In Decision and Control, 2005
and 2005 European Control Conference. CDC-ECC ’05. 44th IEEE Conference on, pages
2996–3000, December 2005.

[4] Lin Xiao, Stephen Boyd, and Sanjay Lall. A scheme for robust distributed sensor fusion based
on average consensus. InInternational Conference on Information Processing in Sensor
Networks, pages 63–70, Los Angeles, CA, April 2005.

[5] Stephen Boyd, Arpita Ghosh, Balaji Prabhakar, and Devavrat Shah. Gossip algorithms: De-
sign, analysis and applications. InProc. IEEE Infocom 2005, volume 3, pages 1653–1664,
Miami, March 2005.

[6] Stephen Boyd, Arpita Ghosh, Balaji Prabhakar, and Devavrat Shah. Randomized gossip
algorithms.IEEE Trans. Inform. Theory, 52(6):2508–2530, 2006.

[7] Alexandros G. Dimakis, Anand D. Sarwate, and Martin J. Wainwright. Geographic gossip:
efficient aggregation for sensor networks. InIPSN ’06: Proceedings of the fifth international
conference on Information processing in sensor networks, pages 69–76, New York, NY, USA,
2006. ACM Press.

[8] Mehmet Akar and Robert Shorten. Deterministic synchronization algorithms and conver-
gence rates. InNetworking, Sensing and Control, 2006. ICNSC ’06. Proceedings of the 2006
IEEE International Conference on, pages 792–796, 2006.

[9] Stephen Boyd, Persi Diaconis, and Lin Xiao. Fastest mixing Markov chain on a graph.SIAM
Rev., 46(4):667–689 (electronic), 2004.

[10] Ciamac C. Moallemi and Benjamin Van Roy. Consensus propagation.IEEE Transactions on
Information Theory, 52(11):4753–4766, November 2006.

[11] Reza Olfati-Saber and Richard M. Murray. Consensus problems in networks of agents with
switching topology and time-delays.IEEE Trans. Automat. Control, 49(9):1520–1533, 2004.

[12] Lin Xiao and Stephen Boyd. Fast linear iterations for distributed averaging.Systems Control
Lett., 53(1):65–78, 2004.

[13] Pierre Brémaud.Markov chains, volume 31 ofTexts in Applied Mathematics. Springer-
Verlag, New York, 1999. Gibbs fields, Monte Carlo simulation, and queues.

[14] Lin Xiao, Stephen Boyd, and Seung-Jean Kim. Distributed average consensus with least-
mean square deviation.Journal of Parallel and Distributed Computing, 67(1):33–46, 2007.

[15] Lin Xiao and Stephen Boyd. Designing fast distributed iterations via semidefinite program-
ming. Talk presented at Workshop on large scale nonlinear and semidefinite programming,
May 2004.

[16] Florence Bénézit. The cost of robustness in average consensus : Slow mixing time, 2006.

56

Bibliography 57

[17] Stephen Boyd, Arpita Ghosh, Balaji Prabhakar, and Devavrat Shah. Analysis and optimiza-
tion of randomized gossip algorithms. InDecision and Control, 2004. CDC. 43rd IEEE
Conference on, pages 5310–5315, December 2004.

[18] Lin Xiao, Stephen Boyd, and Sanjay Lall. Distributed average consensus with time-varying
metropolis weights. submitted to Automatica, June 2006.

[19] Demosthenis Teneketzis. Lecture notes of EECS 502: Stochastic processes.
[20] Shripad Tuljapurkar. Demography in stochastic environments. ii: growth and convergence

rates.Journal of mathematical biology (J. math. biol.), 24(5):569–581, 1986.
[21] Jean-Pierre Eckmann and C.E. Wayne. The largest Liapunov exponent for random matrices

and directed polymers in a random environment.Communications in Mathematical Physics,
121(1):147–175, March 1989.

[22] J. F. C. Kingman. The ergodic theory of subadditive stochastic processes.J. Roy. Statist. Soc.
Ser. B, 30:499–510, 1968.

[23] J. F. C. Kingman. Subadditive ergodic theory.Ann. Probability, 1:883–909, 1973. With
discussion by D. L. Burkholder, Daryl Daley, H. Kesten, P. Ney, Frank Spitzer and J. M.
Hammersley, and a reply by the author.

[24] J. F. C. Kingman. Subadditive processes. InÉcole d’Été de Probabilités de Saint-Flour,
V–1975, pages 167–223. Lecture Notes in Math., Vol. 539. Springer,Berlin, 1976.

[25] Joel E. Cohen. Subadditivity, generalized products ofrandom matrices and operations re-
search.SIAM Rev., 30(1):69–86, 1988.

[26] Peter Walters.An introduction to ergodic theory, volume 79 ofGraduate Texts in Mathemat-
ics. Springer-Verlag, New York, 1982.

[27] H. Furstenberg and H. Kesten. Products of random matrices.Ann. Math. Statist, 31:457–469,
1960.

[28] V. I. Oseledec. A multiplicative ergodic theorem. Characteristic Ljapunov, exponents of dy-
namical systems.Trudy Moskov. Mat. Obšč., 19:179–210, 1968.

[29] David Ruelle. Ergodic theory of differentiable dynamical systems.Inst. Hautes Études Sci.
Publ. Math., (50):27–58, 1979.

[30] M. S. Raghunathan. A proof of Oseledec’s multiplicative ergodic theorem.Israel J. Math.,
32(4):356–362, 1979.

[31] Roger A. Horn and Charles R. Johnson.Matrix analysis. Cambridge University Press, Cam-
bridge, 1990. Corrected reprint of the 1985 original.

[32] J. L. Doob.Stochastic processes. John Wiley & Sons Inc., New York, 1953.
[33] Gene H. Golub and Charles F. Van Loan.Matrix computations. Johns Hopkins Studies in the

Mathematical Sciences. Johns Hopkins University Press, Baltimore, MD, third edition, 1996.
[34] Charles M. Newman. The distribution of Lyapunov exponents: exact results for random

matrices.Comm. Math. Phys., 103(1):121–126, 1986.
[35] Sheldon Ross.A first course in probability. Prentice Hall, Upper Saddle River, fifth edition,

1998.
[36] Piyush Gupta and P. R. Kumar. Critical power for asymptotic connectivity in wireless net-

works. In G. Yin W. M. McEneany and Q. Zhang, editors,Stochastic Analysis, Control, Opti-
mization and Applications: A Volume in Honor of W.H. Fleming, pages 547–566. Birkhauser,
Boston, 1998.

