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Abstract

We study averaging algorithms in time-varying networksl ameans to measure their performance.
We present sufficient conditions on these algorithms, wardure they lead to computation at each
node, of the global average of measurements provided byrestsin the network.

Further, we present and use results from ergodic theory finedan accurate performance
metric for averaging algorithms. This metric, tbentraction coefficientdiffers from previously
used metrics such as the second largest eigenvalue of tketedpwneighting matrix, which gives
an approximation of the real convergence rate only in soraeiajcases which are hard to specify.

On the other hand, the contraction coefficient as set fontbiheharacterizes exactly the actual
asymptotic convergence rate of the system. Additionallynay be bounded by a very concise
formula, and simulations show that this bound is, at leasilistudied cases, reasonably tight so
as to be used as an approximation to the actual contracteffigent.

Finally, we provide a few results and observations which enage of the derived tools. These
observations may be used to find new optima for design paesmet some averaging algorithms,
and also open the door to new problems in the study of the iymdgmathematical models.
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Introduction

The problem of distributed coordination in networks hasliappons in all systems in which a
number of “agents” need to compare or to align an internaldsnee” with the measures of the
other agents. A common example of a set of agents is a netvi@itonomous sensors, which
need to compare their own measurement (e.g. temperatuileg taeasurements of other sensors,
in order to detect an anomaly (e.g. a fire). Sensor networksbwaaused in a variety of applica-
tions, such as environment monitoring, homeland secuwityraffic control, to give only a few
examples [1]. Distributed coordination problems alsoeaimscongestion control of data networks,
load balancing in distributed computing architecturescklsynchronization, in formation control
of mobile units (also known as flock control) [2, 3], or attlualignment of satellite clusters. In
all these distributed systems, there is a need for the iddaliagents to know the average of some
measure (e.g. traffic flow, CPU load, time, position, headattitude) over all other agents (e.g.
routers, processors, clocks, robots, autonomous vehgdsllites), so they can adjust their be-
havior and/or coordinate their effort. Further, the avarggroblem is a first step towards more
sophisticated distributed algorithms. For example wheasueements are linear in the variable
of interest, and with additive Gaussian noise, averagimgoppls may be used to implement a
distributed maximum likelihood estimator [4].

In many cases, the network may be changing over time, foouanieasons. Nodes may join
or leave the network, or become inactive or unavailable soimee operation later. Further, also
the connections between agents may fail for various reasmiet as channel fading, upcoming
obstacles or broken transmission systems. Thus, robustgang algorithms are needed, which can
cope with a varying network topology, and even with a varyingnber of nodes. There are known
algorithms which satisfy these conditions, suchgassip algorithmg5, 6, 7] andsynchronous
averaging algorithmg$8, 9]. However, there is a lack of tools to analyze the peniance of these
algorithms, in order to properly compare their performarfegrther, their mechanism is often
not fully understood, which prevents a systematic optitmzaof design parameters. The time-
variability and randomness involved in the averaging pseadue to failing links, nodes, changes
in network topology or size, make it difficult to analyze merhance of these algorithms, yet even
to specify a suitable performance metric.

Therefore, the first goal of this work is to provide means tlgaompare, and understand the
operation principles of these algorithms. This is achiebvgdhe specification of anontraction
coefficient It is shown how this value can be computed by simple meangh&uy bounds
guaranteeing a minimal contraction rate are presentedllfiexperimental results illustrate the
relevance of this metric, and show how it can be used to opéidesign parameters of averaging
algorithms.

Structure of the Document

We begin by presenting different types of known robust ayi@gtechniques, including gossip al-
gorithms and different types of synchronous averagingsélaee all iterative algorithms, designed
such that an estimate of the value of interest (i.e. aversgpp)entially updated at each node tends
to the actual value. A common notation which allows to déezsll the different algorithms con-
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4 Contents

sidered in the same way and to study their performance, orecgence speed, is described in
Section 1.3 and used in the sequel.

Chapter 2 addresses the question whether an averaginglatgas described in the first chap-
ter can produce an accurate solution at all. This problemewed from the point of view of
renewal theory. Sufficient conditions for sequences of ayerestimates computed at each node
to tend to the desired value are derived in Section 2.1. Atgs,shown that a measure for the
estimation error decays exponentially with algorithmatemns.

To characterize and understand this exponential contracti the error requires some math-
ematical background. These notions are presented in Ghaptehich is kept in a much more
general setting. It presents important theorems from ecgbéory and their application to prod-
ucts of random matrices, a special case of which describeavewaging processes. In particular,
we introduce the notion afontraction coefficientwhich we will use to measure the performance
of averaging algorithms.

In Chapter 4, in an attempt to compute or to approximate timgraction coefficientin a simple
way, we derive two upper bounds on it. One of these turns obettairly tight, while the other
requires less effort to compute, but is always looser tharfitht, and in most cases significantly
looser.

This is illustrated by simulations which results are setifan Chapter 5. We studied the per-
formance of different averaging schemes in different netvtopologies, as well as the tightness
and usefulness of the bounds derived in the previous chapter

Finally, Chapter 6 points out observations on the behawvidr@erformance of averaging algo-
rithms, which became apparent while using of the newly ohiieed tools. These observations may
lead to a better understanding of the algorithms, and hedpapt them to specific applications, in
order to maximize their performance. A concluding sectiomsarizes the results.



1. The Averaging Problem

1.1 Introduction

We consider a time varying network, whose goal is to makelaiai to each node the average
value of the measurements of all nodes in the network, oraat len approximation of it. To this
end, at time instant, the nodes can communicate with each other over all cuyractive graph
edges, or communication links. We consider time-slottgdrhms.

We will restrict the messages exchanged to contain only retjipartly averaged, valug(t)
of the sending nodg and in some cases limited information about the degreeecé¢inding node
and its neighbors. This also means that the same messagadchst to all neighbors, regardless
on the message received from the receiving node at previmegsinstants, or even whether the
receiving node was previously a neighbor at all. Algorithmwhich different, customized, mes-
sages are sent to each neighbor, such as described in [18rd khown a€onsensus Propagation
algorithms, and are not dealt with in this document.

Further, the processing of the messages received at eaehswastricted to linear operations.
More specifically, at each time step, every nadeerforms an update operation on its current
estimater; () of the overall average. This operation is linear, and relidg on the current average
estimates from nodeand its neighbors. The update equation for nodetimet then reads as

mi(t+1) = wa(t)z:(t) + > wy(t)z;(t)  i=1...n (1.1.1)
JEN;
wherew;;(t) denote weighting factors which values are set accordingoesalgorithm to be
defined, andV; is the neighborhood of nodei.e. the set of nodes which have link to nodé\
link between nodesand;j may be down, or broken at timein which casew;;(t) = 0. z;(0) is
the initial measurement at node
In a network ofn nodes, our goal is to compute the average

T = %le(O) (1.1.2)

Before specifying the exact values of the weighting factibis useful to set up the following two
conditions on these numbers:

Y wyt)=1 Vt>0,Vi=1...n (1.1.3)
J
Y wylt)=1  Vt>0,Vj=1...n (1.1.4)

Condition (1.1.3) ensures that the fully averaged configomar, = y Vi is a fixed point of the
update equation (1.1.1), and condition (1.1.4) ensuresdinservation of sum. That is, at any
giventimet, > . z;(t + 1) = ). x;(t), and if we reach a fixed point of the form described above,
we will actually havey = z.

These conditions are also found e.g. in [12], and can belédfiby many different specific
assignments for the weights;, a couple of which are described below.

5



6 1. The Averaging Problem

1.2 Averaging Algorithms

The following list is not supposed to be exhaustive, andtfsatameant to give a couple of examples
how the weighting factors may be chosen. It is to be notedithatl the algorithms described
below lead to symmetric weighting factors, thatig = wj; Vi, j. This is not necessary, but very
convenient for fulfilling conditions (1.1.3) and (1.1.4% laoth are then equivalent.

1.2.1 Uniform Weights

Also called themaximum-degremethod, this is the simplest way of choosing the weightirog fa
tors. Take the weights all equal to each other on the edgddillamp with the self-loop weight so
they add up to one. That is,

a if j € Ni(t)
wii(t) =81 =Y e win(t)  ifi=j (1.2.1)
0 otherwise

where« is a constant. If it is less than one over the maximum degdkge of all nodes at all
times, the weights on the self-loops;(¢) are always positive, and the algorithm is stable, i.e. an
error measureon thez;(t) is non-increasing. For that reason, the most commonly useide is
a=1/(dmax+1).

Whena = 1/dmax the weights on the self-loops; can be zero. This can lead to a problem in
the following situation. Consider the case of a regular ttifgagraph, in which all links are always
active, so the weights do not depend on time. As the graplyidaed; = dmaxandw;; = 0 for all
1. Because the graph is bipartite, at each time step, all nmadese side will compute a weighted
sum of values from nodes on the other side only, and viceavémghis way, the values from one
side will never get averaged with the values on the other, sidd the algorithm will therefore
never reach the desired fixed point.

Fora > 1/dmax SOMe self-loopsy;; may be negative, and the system may become unstable,
causing some;(¢) to diverge.

The most conservative choice would be of coutse 1/n, which might be used if the maxi-
mum degree is unknown. However, this leads to very small isid the network is large and is
therefore not very effective. Moreover, this assumes kadge of the total number of nodes in
the network.

Note that knowledge aof .« at every node is in general not a trivial assumption eithat.iB
technical systems, it is easy to limit the number of links twde to a number given a priori.

1.2.2 Metropolis Weights

The Metropolis weights method is inspired from the MetrageHastings algorithm used in
Markov chain Monte Carlo methods [13]. On a time-varyingadrahe weights are defined as

1 0 .
Trmax(d; (0,d; ()] if j € Ni(t)
0 otherwise

1For examplenax; |z;(t) — 7|.



1.2 Averaging Algorithms 7

So the weight on each edge is one over the larger degreewbitatident nodes plus one, and the
self-weights are chosen so as all weights sum up to one atreatsh Again, as in the maximum-

degree method, one could think of dropping the “plus onethteghus allowing self-weights to be

zero and taking the risk not to converge, if the graph happehs always bipartite.

Note that the Metropolis weights can be computed locallythés operation requires only
knowledge of the own degree and those of direct neighbois.rialistic to perform it at each
time step, unlike the optimization described in [9] and d&sed in the previous paragraph. How-
ever, every node still needs to transmit its own current eegtt each step, which creates a non
negligible overhead.

A comparison between maximum-degree and Metropolis weighf4] shows that the latter
converges significantly faster than the former.

1.2.3 Optimized Weights

While being easy to use and to implement, the heuristic niesented above will in general give
a suboptimal weighting scheme for given specific graph. Tane could think of computing and
assigning optimal weights to the graph edges, such as tomzeaithe averaging time for the given
graph topology. The problem of finding these optimal weigdptiactors can be formulated as a
convex optimization problem, and has been solved in [9, I1#.also shown, see e.g. [14], that
this problem can be solved in a distributed fashion, thatvifjout knowledge of the complete
graph topology at a single node.

In the setting of a time-constant topology, the fastest ngpalgorithm has been compared to
different weighting schemes (e.g. uniform weights or Mpties weights) in [9, 15]. This com-
parison showed that weight optimization can actually makegaificant difference. [9] provides
examples in which the optimized weights perform arbitydoitter than the Metropolis weighting
algorithm,

This is, however, only in the case of a time-constant netwibikt is without link failures, or if
the weights were optimized at each time step for the curpgulogy. A simpler, yet suboptimal
solution would be to optimize the weights for the case whértha links are up, and in the case
of link failures, add the weight associated with the failimk to the self loops of the adjacent
nodes. A comparison with the Metropolis—Hastings weighscheme in [16] shows that this is
advantageous only if the link failure probability is relegly small.

1.2.4 Gossip Algorithm

In gossip algorithms, each node communicates with no maune dme neighbor in each time slot
[17]. We make the difference between synchronized gossipaginchronous gossip. In the syn-
chronized case, at each time step, every node becomes wadfiiva certain probability. Active
nodes then choose randomly a neighbor to pair up with, artteibther node is available, both
nodes connect and average their respective values. Inyhetasnous model, we assume contin-
uous instead of discrete time. Every node becomes active ex@onentially distributed random
instant, connects with a random neighbor, and both nodeasgedheir values. Thus, unlike in
the synchronous case, communications occur sequenéiathmever simultaneously. See [6] for a
comprehensive treatment of gossip algorithms and thefopeance in terms of averaging speed,
and [5] for a shorter version.

Gossiping is actually not a weighting scheme, but deterawnieether two nodes get to com-
municate at all on a given instant. However, if we identifyjrsounication links not activated by the



8 1. The Averaging Problem

gossip algorithm in a given time slot with failing links, gag is a special case of the time varying
graph structure presented in the introduction. In the ssoradus model, the nodes are restricted to
have instantaneous degree one. The asynchronous modehisn@re restrictive, because there is
exactly one active connection at every time step.

The weighting scheme typically used averages the two vaiilesmmunicating nodes, that is

w;;(t) = w;(t) = 0.5 if nodesi and;j are connected at time
wik(t) =1 if node k has no connection at time (1.2.3)
w;; =0 on all other edges.

This is technically the application of the Metropolis weligtio the degenerate case where the
instantaneous degree is at most one. As a possible gemadiaiizone might also consider using
a different weight on the link and changing the self-loopgins accordingly. Further, the choice
of the communication paifi, 7) is not trivial either, and may not be restricted to direcghdiors.
Allowing remote nodes to exchange their values directlingisome kind of routing through the
network, may significantly improve performance [7].

1.3 Notations and Definitions

1.3.1 Matrix-Vector Notation

In the sequel, we will use a matrix-vector notation, whichl wrove very convenient and will
allow us to use known results, especially in the theory oflcan matrices. We first define tis¢éate
vector

T (t)
x(t) = : t>0 (1.3.1)
(1)
as a function of by collecting the current values at nodethroughn. The initial measurements

are thus collected in the vecta(0). Likewise, we collect the weighting factors in a time-degbemt
weighting matrix

wi(t) wia(t) - win(t)
W(t) := wm,(t) wan(t) . wg??(t) t>0. (1.3.2)
warlt) wialt) - w()
The update equation (1.1.1) can then be rewritten as

x(t+1) = W(t)x(t) t>0, (1.3.3)

and using it recursively we can write the current state vectt) as

t

x(t) = [[W(t - p)x(0). (1.3.4)

p=1
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The desired behavior for the sequendg) is to converge to the vectarl, wherez is the
average of the initial measurements, as defined in equdti@rR), and

1
1, :=1]: (1.3.5)
1

is then-dimensional vector of all oned.without subscript is used when the length of the vector
is obvious from the context.
Our main focus will be on the error vectg(t) given by the difference

y(t) :=x(t) — 71 (1.3.6)

and its rate of convergence to zero.

1.3.2 Mathematical Model

Assumptions

We will study the behavior of the vector-valued sequencendiom variable$x(t) },. ,, as defined

in equation (1.3.3). The underlying random process is tleegmverning the sequence of matrices
{W(t)},5,- Unless otherwise noted, we assume conditions (1.1.3)lafmdj hold at all times, i.e.

W(t)1l =1 and (1.3.7)
1"W(it) =17 vt (1.3.8)

Other than that, we make only minimal assumptions on theesezp{ W (¢) }. Throughout the
paper, we will assume it to be a stationary sequenceyl.e< s < t, the joint distribution of
{W(s),W(s+1),...,W(t)} isthe same than that §W (s + 1), W(s +2),..., W(t + 1)}.

Further assumptions such as ergodicity, of mutual indegpecel of the matrice$V (¢) shall
be specified accordingly. In particular, ergodicity of tlk@dom sequence largely simplifies the
results presented in Chapter 3, and the results given int€hdpequire the matricé®/ (¢) to be
independent identically distributed (i.i.d.).

Finally, the most restrictive case is when the weighting rimadoes not vary over time,
W (t) = W for all t. This particular case is briefly described in Section 3.1.

Analogy with Markov Chains
Without loss of generality, the initial measurement vest@r) can be scaled and shifted so as to
be non-negative and to satisyy z;(0) = 1.

If the weighting factors are all non-negative and less thaaqual to one, the time-varying
sensor network can be compared to a inhomogeneous Markay, tihe vectors(¢) being prob-
ability distributions on the chain, and the weighting fasto,;(¢) transition probabilities between
states of the chairWV (¢) are therefore according transition probability matrices.

Consequently, we may sometimes refeMbas right, left, or doubly stochastic matrices, de-
pending on the context. These terms denote non-negativeessasatisfying respectively condition
(2.3.7), (1.3.8), or both.

However, as we do not actually deal with probability digitibns, the non-negativity require-
ment will mostly not be crucial in our discussions. But eventhis requirement is not very strin-
gent. Among the weighting schemes presented in Sectiomégative weights or weights greater
than one may only occur in the optimized weights scheme @¢Paph 1.2.3).
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1.3.3 Useful Functions

The following useful functions and convenient notations ased in the sequel. The suggestive
notations
M > o andM > «

signify all the elements of a matriXI are greater, respectively greater or equal to, a sealar

For common matrix functions, the usual notation shall belus&" denotes the transpose of a
matrix M, \;(M) its eigenvalue with thé-th largest moduluss; (M) its i-th largest singular value,
p(M) = |\ (M)] its spectral radius, and (M) its trace.

Furthermore A ® B denotes th&ronecker producof two matricesA andB. The notation
e; Will be used to denote theth standard basis vector, aihdo denote the vector of all ones, as
previously.

Finally, we define the functiotvg™ (z) as

log™ (x) := max (0, log(z)) . (1.3.9)



2. Convergence

2.1 Sufficient Conditions for Convergence

Our goal is to compute the average of all initial measuremahevery node, that is to make all
z;(t), ¢ = 1...n converge taz, or equivalently thak(¢) goes toz1,. In this section, we will
establish sufficient conditions on the random prod@8%t) };, for this to happen.

We first define thetopping time

T.:=inf{t > 1 [[W(t-p) =c>0} (2.1.1)

p=1

with respect to the random proce§W (¢)}:~o, Wheree is an arbitrarily small positive number.
The notationA > ¢ means that all the elements of the matAixare greater than or equal to
With this definition, and the notation defined in Section W8,may state the following theorem.
Theorem 2.1.1.(Sufficient conditions for convergence) The sequence

t

x(t) = [[W(t—px(0) t>1

p=1

converges ta1 with probability 1 if the the following conditions hold:

1) The sequencEW (t)};> is stationary

2) W)L =1 w.p.1, Vi (fixed point)

3) 1"™W(t) =17 w.p.1, Vt (preservation of sum)

4) [W(t)|]; <1 w.p.1, Vt (contracting property)

5) Ve > 0, E[T.] < o

whereE|[T.] < oo denotes the expectation of the stopping tifheefined in equation (2.1.1).

Remark.The inequality stated in Condition 4, together with eithen@ition 2 or 3 actually implies
equality|| W (¢)||, = 1.

Remark.Condition 5 relates to the connectivity of the network. le thodel where communication
links fail independently of each other, this is equivalenh&ving a connected graph.
Remark.This widely generalizes the convergence theorem in [18].

Proof. Outline of the proof: we will start by showing that maximunfference between elements
of x(77) is strictly less than between elements0f), then use arguments from renewal theory to
prove that a subsequence{of(t) }:>o converges a.s. Finally, we use Condition 4 to infer conver-
gence of the whole sequence.

To simplify the notation, defin® := H]f;lW(TE — p) and denote by;; the i-th row, j-th
column element of this matrix. Using Condition 2

W(Hl=1Vt=Pl=1&) p;=1Vi=1...n
J

11



12 2. Convergence

and the definition of ., we can bound the maximum elementdf’. ):
max a;(7%) = max » _ pi;;(0)
j
< (1 —¢)maxz;(0) + e minx;(0).
J J

Similarly, one can bound the minimum element from below:

miin i (T.) > 8mjaX$j(0) +(1—-¢) mjln ;(0).

Taking the difference of the two yields
max z;(T;) — minz;(7.) <(1 — ¢) maxz;(0) 4+ ¢ min z;(0)
) ) J J

— smjaxxj(O) —(1—¢) mjinxj(O)

—=(1 — 2¢) max z;(0) — (1 — 2¢) minz;(0) (2.1.2)

J J

~(1.- 2 (s 0) - minay0) ).

J

Now define an increasing sequence of intedéf8 } -, as follows:

t—k®
O =0, kO =1, K" =inf{t > k%1 [T W(t—p) > <}, (2.1.3)
p=1
and an associated counting process
N(t) :==max | s.t.kV <t vt > 0. (2.1.4)

That is, we group the matricé¥/(¢) of the sequence in such a way to form a sequence of positive
matrices. The countée¥ (¢) denotes the number of such groups up to time

As the proces§W ()}, is invariant under arbitrary time shifts, the time intes/af* — k()
are i.i.d. for alll > 0. The proces§N(¢),t > 0} is therefore aenewal proces§l3] with inter-
renewal timer’..

By the strong law for renewal processgk3, 19], we know

= p.l. 2.1.5
A (2.1.5)

Now get back to the sequengé), and iterate equation (2.1.2)imes:
max ; (k:(l)) — min; (k(l)) < (1—2¢) (maxxj(O) — min xj(O)) , (2.1.6)
7 7 J J

and consider the modified sequencg)};>, obtained by sampling the original process at the
renewal times, i.e. defined by
X(t) = x (KN (2.1.7)
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This modified sequence allows us to rewrite equation (2ith.@rms oft

max &;(t) — min ;(t) < (1 — 2¢)N® (maxfcj(O) — min @(0)) . (2.1.8)

J J

Because of Condition 5 and of (2.1.5), the right hand sid@ df.8) tends to O for large hence
the left hand side of (2.1.8) tends to O for largas well, and therefore

lim %(¢) =c-1 w.p.l. (2.1.9)

t—o00

By the preservation of sum of the elements@f) (condition 3), the constamtmust be equal ta.
It now remains to show that convergence{éft)}:~o implies convergence ofx(t)}:>o. For
that, note that we can always rewrite

x(t) =y(t) + 71, (2.1.10)

where the second term is invariant and the first tgfim has the sum of its elements equal to zero.
That is we may, without loss of generality, consider onlyusagees of the type(¢) and show such
sequences go to zero.

By equation (2.1.9), we know that a sequegi¢e) := %(¢) — z1 vanishes. But, by condition 4,
we know

[y(t+ D2 =Wy ()]
<IW®O)ll2lly @)l
<lly(®)ll2 (2.1.11)
< |ly (5¥@)
=7,

i.e. the sequencf|y(?)|,},., bounds from above the sequergey (¢ + 1)||,},. . Therefore,

I

Tim [y (#)]], = 0 (2.1.12)
or equivalently, with (2.1.10)

tlim x(t) = z1. (2.1.13)

O

2.2 Exponential Convergence

Thestrong law for renewal processé2.1.5) actually allows a stronger result than Theoreml2.1.
The careful reader may already have noticed that the detapf#he quantities on both sides of
equation (2.1.8) is exponential, and that the rate of thoaential decay may be expressed in
terms ofe. This leads us to the following result.

Theorem 2.2.1.(A first bound on the exponential rate of convergence)

(maXi x;(t) — min; x;(¢) ) <

inf
max; z;(0) — min; z;(0) ) — 0<1521/n E[T.]

1
lim n log log(1 — 2¢)

t—o0

with 7. defined as in equation (2.1.1).
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Remark.7. depends oa. Smalle lead to smalE[T.] and vice-versa. Only after minimization over
g, one is assured to have the tightest possible bound witmtéikod.

Proof. To simplify the notation, define the function
d:R"— Ry : x+— d(x) := maxx; — min ;. (2.2.1)

Recall equation (2.1.8),

d(x(1)) Nt d(x(t))
a0y = (12" e log g gs < N(B)log(1 — 2) (2.2.2)

and note that inequality (2.1.11) implig$x(t))/d(x(t)) is bounded (refer to Lemma 2.2.2 for
details). Then, a few simple calculations and the use oftiiomg law for renewal processes lead
to the desired result.

1 dx(@t) .1, dx(t)d(x(1)

I 8 ) L ) &2
= 0+ lim @ - lim Nl(t) log Z((i((é)))) (2.2.5)
BT N ) (#20)
< E[lTE] log (1 — 2¢) (2.2.7)
(|
Lemma 2.2.2.
ik 1~ 320 <
Proof. The result follows readily from the following two inequais:
Iy()]: = —d(x(1) (229
I5(0)ll2 <4/ Sd(). (2.2.9)

For the derivation of these, we will usg, andy,, to denote the largest and the smallest
elements ofy(t), with y,, = max (yar, ) @ndy,, = min (yar, ym). Note thaty,, andy,, have
opposite signs, because the sum of all elemengs(of equals zero. For the first inequality, first
note that

= [(Yar + Ym) — Ym)” + Va1
- (yM + ym)2 - QyMym
—2YM Y- (2.2.10)

Y+ v

v
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Then, inequality (2.2.8) may be derived by boundjiydt)|> as follows:

ly(@®)l5 = Zyz>yM+ym
=1

>

(i + yim) — YntYm

(v = ) = 50 (3 (1)) = 3 (x (1))

N — Do —

To derive inequality (2.2.9), first note that. y; = 0 implies that at least half of the elements
of y(t) have magnitude less than or equalgn|. Consequently,

ly (Bl = Zyzﬁ

Y+ =y

n
2

M|3 |3

< 5 —ym)* = 58 (v (1) = ¢ (x (1)), =

The bound derived in this section might be useful in estingathe convergence speed of an
averaging algorithm, but still has two major disadvantag&st, the quantityE[7.] is in general
not easy to compute, even for a fixedAnd more importantly, this bound is not guaranteed to be
reasonably tight, even after optimization ovérin Chapter 4, we will derive other bounds on the
asymptotic contraction rate, but those hold only in the cdse.d. weighting matrices.

Finally, note that this bound is based on the quanfiy(t)) which is a semi-norm whose kernel
is the subspace tangent to tihg vector. This fact may help to relatéx(¢)) with Dobrushin’s
ergodic coefficient, a matrix seminorm we will introduce iec8on 3.2.2.

Further investigation in this direction is not pursued irgrbut might be advisable in order to clarify the practi-
cability of this bound.



3. Products of Random Matrices

In this chapter, we take a step back from the averaging pmoli¢ime-varying networks presented
in the previous chapters, to look at a broader picture. Waydtiue behavior of infinite products of
random matrices, with only minimal assumptions on the iistion of the matrices. That is, for a
given sequence of matricéa\ (¢),¢ = 0, 1,2, ...}, we investigate the product sequence

t

M, :=[[A(t-p) =123

p=1

Our main assumption will be that the sequefi@gt) } ., is stationary which will allow us to use
results from ergodic theory. For more specific results, weassume the matrices to leegodic or
eveni.i.d. This setting applies to the the special case of the averamyigem, as it becomes clear
in Section 3.2.2, but has much broader applications in gén€hese range from demography
analysis [20] to topics in theoretical physics, such as thedysof directed polymers in random
environments [21].

While the first section of this chapter is meant as an intramlycexample, Sections 3.2 and
3.3 are mainly a review on subadditive ergodic theory, andtrabthe results presented are well
known to those familiar with the subject. Theorem 3.2.4 esdbntral result of subadditive ergodic
theory [22, 23, 24, 25, 26]. The following Theorem 3.2.8 ishteically a Corollary of the latter,
but it was presented by Fuerstenberg and Kesten in [27] &efobadditive ergodic theory was
even invented, and deserves particular attention becdutsda@cus on the random matrix product
application. Section 3.3 presents a theorem that desdhlkesghole spectrum of an infinite matrix
product, rather than the largest eigenvalue only. It was firssented by Oseledec in [28], and
other proofs were later given by Ruelle [29] and RaghunafB&h A very good overview on all
these results is given by Walters at the end of his book ondezgheory [26]. We conclude this
review by presenting an alternative point of view on the miasults discussed (Section 3.4), and
by applying them to the special case of the averaging prablem

3.1 Infinite Products of Constant Matrices

First consider the simple case where the elements in theeseq{IA (¢)} are all equal and non-
random, thatisA (¢) = A for all ¢. In this case, the product sequer{d, },. , is given by

M,=A" t=1,2,3,...

The matrix A can be expressed using its Jordan canonical form [81} VJV !, whereV
contains the eigenvectors &f andJ is block diagonal,

16
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with Jordan blocks

ConsequentlyM; = A* = VJ'V 1 Itis useful to factor out the spectral radips= |\;(A)| of
A, which leads to

M, =p' - VpiJtv1, (3.1.1)

For larget, all Jordan blockg*J% in p~*J* with | \;| < p will vanish, and the matri®I, presents
one of the following three behaviors, depending on the sak@diusp(A):

p(Ay<1l = M;—0
p(A)>1 = M, diverges.

The spectral radius actually determines the contracfion () or expansionf > 1) rate of a
system governed by the sequeRee(t) }, as is shown by the following formula.
Theorem 3.1.1.For any matrix norm||e|| (see Definition 3.2.7),

lim [|AY|Y" = p(A). (3.1.2)

t—o0

Proof. We refer to the book “Matrix Analysis” by Horn and Johnson,[Bage 299] for the proof.

(|
If p(A) # 0, we can rewrite this as
.1 ¢
thm i log HA H =log p(A). (3.1.3)

So in the case where all matrices in the sequence are the ganmntraction (or expansion) rate
of the sequencéA (t)} is given by the spectral radiyg A ) of the matrixA. The furtherp is away
from 1, the faster the contraction (or expansion) will be.

The question now is, how does this extend to the case whétevaries over time? Is there
any way to specify or to compute an asymptotic contractios ra

t

[TAG-»p)

p=1

1
lim —1
im - log

t—o00

, (3.1.4)

and when is this quantity well-defined in the first place? Thiwhat we are going to investigate
in the remainder of this chapter.
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3.2 Kingman'’s Subadditive Ergodic Theorem

Consider a sequence of matrides(¢) }+>o with some joint distribution function. We are interested
in the asymptotic behavior of the product sequence

t
M, :=[[A(t-p) t=123... (3.2.1)

p=1

In contrast to the constant case presented before, it isdneot trivial to assert whether quantity
(3.1.4) is well defined. Moreover, this quantity is non-ramdonly in some special cases. This
result is essentially what Kingman’s Subadditive Ergodiedrem says (Theorem 3.2.4, [23]).
The following paragraphs retrace parts of the path follolwgdCohen in [25], which shows

how the subadditive ergodic theorem simultaneously exe@melementary theorem of analysis
(Theorem 3.2.1) and Birkhoff’s ergodic theorem (Theoreh. Important details and remarks
omitted therein were drawn directly from Kingman’s work [23].
Theorem 3.2.1.(Subadditive Theorem) Lét,,; n = 1,2,3,...} be a sequence of real numbers
such that

Uan < Ay, + Gy, m,n=1,2,3,.... (3.2.2)

Then, the sequende,,/n, n = 1,2, 3, ...} either converges to its lower bound, or diverges prop-
erly to —co.

Note that if we replace the hypothesis of subadditivity (B) Dy that of additivity,a,,,,, =
am + an,, We have triviallya,, /n = a; for all n.

Proof. Lety := inf, >, a,/n. If ¥ = —o0, there is nothing to prove. i > —oo, for any arbitrary
e > 0, one can find am: such that,,,/m < v+ «.

Given any integern, an integem can be written as = ¢gm + r, with ¢ being integer, and
0 <r < m — 1. Defineay = 0. Subadditivity implies

U = Qgir < G + ... (@tIMEY ... + Ay, + G = qap, + Q. (3.2.3)
Further,
Ap _qQy, + Qy qQy, Ay
7S — < = + — (3.2.4)
n n n n
an m am Qr m Ay
NP UL/ LML 3.25)
n n m n n n

If we letn — oo, we havegm/n — 1 anda,/n — 0. Sincec is arbitrarily close to zero,
ap/n — 7. O

Theorem 3.2.2.(Birkhoff’s Ergodic Theorem) Lefty,,; n = 1,2, 3, ...} be a stationary sequence
of random variables with finite expectation. Then the limit

1
n=lim =y, (3.2.6)

exists with probability one and in expectation, and

En] =Ep]. (3.2.7)
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A proof of the Birkhoff - Von Neumann Theorem can be found éd23], or in any book on
ergodic theory, for example in [26].

The two previous theorems seem quite different. While Téeo8.2.1 deals witbdeterministic
subadditivesequences, Theorem 3.2.2 considarglom additivesequences. However, the two can
be merged into the following theorem, which considers theting behaviorandom subadditive
sequences. Let us first introduce a definition.

Definition 3.2.3. (Subadditive Ergodic Process, SEP) A SEP is a family of remdariables
X = {zsy, s, t €T, s <t}, T being the set of non-negative integers, satisfying theo¥alig
conditions:

Sl) x5y <zsp+ x40 Vs<t<u, s tueT (subadditivity)
(S2) The joint distributions of the proce$s;. :+1) are the same as those(af, ;) (stationarity)
(S3) The expectation; = E [z, ] exists and satisfieg > Ct for some constant C.

Condition (S3) implies that the considered limit will be femiHowever, for some applications
we may want to allow the limit to diverge teoc, in which case we can relax condition (S3) to
(S3’) E [max (201, 0)] < oc.

With these preliminaries, we can now state Kingman’s Th&ore
Theorem 3.2.4.(Subadditive Ergodic Theorem)Af is a SEP, then the finite limit

¢ = lim 2% (3.2.8)

t—oo

exists with probability one and in mean, and

v := E[¢] = inf E [7o4) o] = lim Elzo4) [l’o,t].

t>1 t t—o0 t

(3.2.9)

Moreover, if X' satisfies (S1), (S2) and (S3’) but not (S3), then the I{B12.8) exists with
probability one in—oco < € < o0, and

E[¢] = —oo. (3.2.10)

We do not reproduce the proof here. Proofs may be found inZ2224] or in [26].

In general, the random variabfemay be non-degenerate. However, if the random process
X := {zo+},5, Isergodic £ = ~ with probability one. To see what this means, recall the d&fim
of ergodicity.
Definition 3.2.5. (Ergodicity) Let(.X, B, 1) be a probability space. A measure preserving transfor-
mationT of (X, BB, u1) is called ergodic if the only evenfs € Bwith T-!' B = B satisfyu(B) = 0
oru(B) = 1.

If X := {z,} is a stochastic process, when we s@ys ergodic, what we really mean is that
the time shiftl’ : X — X' : x} := x4 is an ergodic transformation.

Going back to the SEFR, if 7 denotes the-field of events defined in terms éf and invariant
under the time shiff” : X — X’ : 2, 1= 2,.1,41, then is F-measurable, with the explicit
notation

1
¢ = lim i E [20.]F]. (3.2.11)

Consequently, ifF is a trivial o-field consisting only of events of probability zero or one, X is
ergodic,{ = ~ almost surely.
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In some casest can be shown to be trivial using a zero-one law. An examplaeties is the
case is when the processes are defined by equations of the form

Tsr = Fyrs (000 Us1, Us, Usg1, - - ) (3.2.12)

where the functiong’ are fixed, and., are i.i.d. random variables. Thefield F is contained in
the o-field F’ of events defined in terms of the and invariant under the time shift, — 1.
F'is known to be trivial [32]. AsF C F’, this impliesF is also trivial and thereforge = ~ with
probability one.

3.2.1 Application to Matrix Products

Theorem 3.2.4 is formulated in terms of a subadditive pregamnsisting of real random variables.
In this section, we describe how to apply it to products otlan matrices. For that, first specify
appropriate functions from the space of matrices to thesyaahich permit us to apply Theorem
3.2.4.

If f:C"" — R : A~ f(A)denotes such a function, the key property it must satisfy is
(P1) f(AB) < f(A) + f(B).

This is satisfied for example jf(A) = log || A||, where]||e|| denotes any matrix seminorm with
the submultiplicative property, as defined in [31] and below
Definition 3.2.6. A matrix seminorm|e|| is a function fromC™*" to R satisfying

(C1) [[A[[ >0 (nonnegative)
(C2) [leA][ = [af [[A[] VaeC (homogeneous)
(C3) [A+BJ < |A]l + B (triangle inequality)
(C4) |AB| < ||A][[B]] (submultiplicative)
Definition 3.2.7. A matrix normis a matrix seminorm with the additional property

(Cla) |A|=0< A =0 (positive)

Remark.In some books, e.g. [33], the definitions of norm and semindonmot include the sub-

multiplicative property (C4). However, this property isicial to us. It is actually the only one we
really need, together with (C1) for the logarithm to be wadkined.

Theorem 3.2.8.LetS = (V) be a semigroup, anfle|| : V' — R a submultiplicative function.

Let{A(t)},., be a stationary sequence of random elemenis ahd suppose that

E [log™ [|A(0)]]] < oc. (3.2.13)

Then, ifM, is defined as in equatiaf3.2.1) the limit

1 ,
§:t1im n log || M| exists, and (3.2.14)
1
v = El¢] = lim — E [log |[M[]]. (3.2.15)

Moreover, if the sequendeA ()}, is ergodic,
E=1v with probability one. (3.2.16)

Corollary 3.2.9. In Theorem 3.2.8, ifA(t)},-, is a sequence of i.i.d. elements, tHeX(t) },., is
ergodic, and therefore - -
E=7 with probability one. (3.2.17)
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Proof. Observe that

t—s
[TAa¢-p
p=1
satisfies conditions (S1), (S2) and (S3’). The first part efttieorem then follows directly from
Theorem 3.2.4.

For the second part of the theorem and for the Corollaryy refehe discussion following
Theorem 3.2.4. More specifically, sef = A(s) in equation (3.2.12) of that paragraph. O

51 = log ||[M;,|| = log (3.2.18)

As one might already have guessed, an important specialofa&georem 3.2.8 is when the
semigroupS is the set of, x n matrices with standard matrix multiplication, and the fimic||e||
is a norm on this set. In this case, we can show that the pkatichoice of norm does not affect
the values of or ~.
Theorem 3.2.10.If the semigrous is the spacé’ of real or complex x n matrices with standard
matrix multiplication, and|e|| is a norm onl/, then the limitg3.2.14)and(3.2.15)do not depend
on the choice of norm i,

Proof. As n is finite, all norms orl” are equivalent. Thus, for any two norrje|| , and||e|; on
V, there exist constants,, andC), such thaC,,, [|Af|, < [[Af[; < Cu[[A], forall A € V. See
e.g. [31, Chapter 5] for more details. Consequently,

o1 1 o1
& = lim —log [ M|, > lim ~log (Cyn [My],) = Jim —log [ My, =& (3.:2.19)

.1 1 1
&= lim ~log M5 < lim ~log (o [My]],) = Jim +log [My]l, =0 (3.2.20)
which implies¢,, = £. A similar argument holds foy. O

3.2.2 Special Case: Stochastic Matrices

We discuss the application of Theorem 3.2.8 to productsoahststic matrices [24]. A commonly
used parameter for describing the “scrambling” propertg sfochastic matri¥V is its ergodicity
coefficients (W).

Definition 3.2.11. Dobrushin’s ergodic coefficient

A 1
o(W) = 5“@1%2 Wiy — wii|
Tk

As usualuw;; denotes theé-th row j-th column element oW. It is easy to see that W is right
stochastic) < §(W) < 1, whered(W) = 1 iff W has two orthogonal rows. Note however that
the definition extends to any real (and even complex) matrix.

In some sense, the paramefemeasures how far a stochastic maf¥\ is from a perfectly
scrambling matrixtw™ which maps any probability distribution vectef to the stationary distri-
butionz.

Due to the inhabitual convention of using row vectors in Markhain theory, Dobrushin’s co-
efficient is fitted taright stochastic matrices (wittow sums = 1). However, because we adopted a
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column vector notation, we consideift stochastic matrices, wittolumnsums equal to 1. There-
fore, we will use the “transposed” version

S(W) :=6(WT) == maXZ |wix — wy - (3.2.21)

As the function)(W) is a seminormlog(d(e)) satisfies the conditions of Theorem 3.2.8. Con-
sequently, if{W(t)}tZO is a stationary sequence of (not necessarily stochastatices,

€= Jim + logs <H wit —p>> (3.2.22)

exists with probability one and in expectation, and

7 = B[] = Jim — 'p llog(s (H Wt — p))] . (3.2.23)

Now consider the case where &\ are stochastic and have a common stationary distribution
7. Assume further they are diagonalizabl€he eigenvalue decomposition W then yields

: 1 O 1T
W =VAV ! = <7r; * ) N I ¥ (3.2.24)
H O .

=1l + A (3.2.25)

whereA satisfiesAw = 0 and1' A = 0.
Proposition 3.2.12.5(e) is a norm on the set oA as defined above.

Proof. 6(e) is obviously a seminorm, so the only thing we need to provéss) = 0 = A = 0.
By the triangle inequality,

S(W) <o(m1h) +6(A) =6(A)
S(A) < §(—m1h) +6(W) = 5(W)
= J(A) = §(W).
Thus,0(A) =0= §(W) =0« Ips.t.W =pll. If W = pl1], p must be the only stationary
distribution of W. Consequentlyp = w andA = 0. 0J

Therefore, to study the product of a sequence of stochastiaas{ W (¢) },., with a common
stationary distributionr, we may as well consider the product of the sequence of relduegrices
{A(t) := W(t) — w1T} __instead. This is due to the following equalities:

t>0

[Iw )=]] (At —p)+m1") =][A(t—p) + =17 (3.2.26)
g <Hw(t _p)> =0 <ﬁA(t —p)> ' (3.2.27)

LIf W is not fully diagonalizable, one has to consider a Jordanugosition instead of the eigenvalue decompo-
sition.
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If the parameter§ and~ are defined as in equations (3.2.22) and (3.2.23) resphgtivey are
metrics for the asymptotic convergence rate of a inhomomen®Markov chain or equivalently, the
asymptotic averaging speed in a time-varying network. \&ghation (3.2.27), Proposition 3.2.12
and Theorem 3.2.10, these parameters are also equal to

1 -
§ = Jim —log [TAt-p (3.2.28)
p=1
1 t
7= lim — B [log 1_[1A(t —p) ] . (3.2.29)
p:

This representation of the averaging speed as a functiomafatrary norm of the product of ()
will turn out to be much more convenient than using Dobrushiaminormy.

3.3 Oseledec’s Theorem

Up to now, we only considered scalar metrics to describe flyenptotic “contraction rate” of

products of random matrices. The following theorem confitha this is in fact legitimate, and

that the parameteractually determines the convergence speealfimiost evergtarting point.

Theorem 3.3.1.(Oseledec’s Theorem) Lé#|| be a norm onlR™*", and let{A(t)},., be a sta-

tionary sequence of random matrices satisfyihfjog™ [|A(0)||]] < oo. {A(w,)},., denotes a

specific realization, andl;(w) := HZ=1 A(w,t — p). Then, the following hold with probability

one:

1) there is a positive integes(w) and there are real numbers)(w) < M@ (w) < ... <
A6@) (W), whereA® could be—oo,

2) there are linear subspacg8} = VO (w) c VW (w) C ... C V@) (w) = R" of R",

3) such that forl <i < s(w),

1 . ‘ ‘
tlim p log || M, (w)x|| = AD(w) vx € VO(w)\ VI (w). (3.3.1)

Remarks.

e For a more general, but less transparent statement of theethesee the book of Walters [26,
Theorem 10.2]. The original proof is by Oseledec [28], whogidered the case of invert-
ible matrices. Another proof (not restricted to this caseyiven by Raghunathan [30] and
Ruelle [29].

o If {A(t)},, is ergodic (e.g. if theA (¢) are i.i.d.),s(w) = s and\D(w) = AP, i =1,2,...5,
are non-random, but the subspat®8(w) are still random.

e If A(t) = Aisaconstant (i.e. degenerate random variabi’@j,are the absolute values of the
eigenvalues oA.

e The numbers\!)(w) are calledLyapunov characteristic exponerdadV ™ (w) ¢ V@ (w) C

. C V6WI(w) is called the associatefiltration. The numberm® = dimV® (w) —
dim V=Y (w) is called themultiplicity of A®) (w).

e In relation to Section 3.2, we hage= \¢“), and in the ergodic case,= \*). See Section
3.4 for detalils.

e Inthe introductory statement, “almost every” startingmiei meant altk € R™\ V@)= (),
i.e. allx outside a proper linear — m*“) dimensional subspace Bf".
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In view of this theorem, it is really the largest Lyapunov erpnt which will determine the rate
at which a system will expand or contract, as long as thesggobint is not in some set of volume
zero (which may happen with non-zero probability only in elegrate cases). We are mainly in-
terested in contracting systems, i.e. with negative larggspunov exponent. Consequently, from
now on we will call this quantity theontraction rateof the system. In Chapter 4, we will com-
mit ourselves to find ways to bound this quantity. So far, r&yemay has been found to compute
it exactly in general. Some results exist only in very specases, for example for independent
matrices whose elements are independent Gaussian, oemmdieqt \Wiener processes [34].

We will denote the contraction rate of an ergodic systemybto keep a notation consistent
with the derivations in this chapter. Finally, let us statpleitly the definition of the contraction
rate.

Definition 3.3.2. The contraction rateof a system governed by an ergodic sequence of matrices

{A(t)},5, is given by

t

[TAGC-p

p=1

1 1
v = A® = lim n log = tlim 7 log [[ML]| . (3.3.2)

t—o0

3.4 A Vector Point of View

General Case
So far, the results are formulated in terms of functions ofrites, or more specifically matrix
norms. A more illustrative representation is to consideatthis means in terms of the action of
these matrices on a vecter

In the general case, with the definition of induced matrixmor

IMx]|,
[M][, := sup , =1,2,...,00 (3.4.1)
20 |IX[],
equation (3.3.2) translates as
1 M,;x(0
v = lim —log | sup M . (3.4.2)
t—oo t x%0  |Ix(0)]l

Application to Averaging Problem
Finally, returning to the averaging problem defined in Ckafdt, we can express the maximal
asymptotic relative error in terms of a Lyapunov exponent.

First define and recall some shorthand notations, and net®llowing equalities:

P, =][W(-p) (3.4.3)
A(t) :=W(t) — % = A(t)1=0and1™A(t) =0 (3.4.4)
M, =] A(t-p) = M,=P, - % (3.4.5)

y(t) i=x(t) — 71 = (X(O) £ 71 & y(0) £ o). (3.4.6)
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With these definitions, the following result is now prettyegghtforward. Simply note that(t) =
M,y (0).

Theorem 3.4.1.In the averaging problem described in Chapter 1 with the hiotadefined in
Section 1.3 and given above, if the sequefd&(t) },. , is ergodic, the asymptotic maximal relative

error
Tl
lim — log < sup ly (t)”> = lim - log< sup M) (3.4.7)

t=oo t o Iy (O ) t=ee b7 \ oz [[%(0) — 21

is nonrandom and given by

HW(t—p)—%

p=1

1
v = lim i log (3.4.8)

To get more insight about this special case, consider Osekdiheorem (Theorem 3.3.1), with
the ergodic sequendéW (t)},.., of doubly stochastic matricé& (¢). Then,||P.||, = [[W(t)||, =
1. The largest Lyapunov exponent is then given by

S . 1 S -
Aew) = Jim — log||Pex] x € R"\ VW (3.4.9)
P _
= lim - Liog | : t’H‘” x € R"\ Vv (3.4.10)
P
~ Jim L logsup 12X x € R™\ {0} (3.4.11)
oo b oo X
1
= tlim i log || P:|| (3.4.12)
=0. (3.4.13)
If x™1 =0, HPtXH — 0 and therefore we know thész ) is actually the subspace orthogonal
tol,i.e. Vvéw = {y s.t.y’l = 0}. In this particular case, the first subspace of the filtratson

nonrandom. Further, by Theorem 3.3.1, the second Lyapuxmanent is
Asw=) = lim log 1Py, y € VW= plew=2) ) (3.4.14)

wherevv(éw’” (w) is possibly random. But ag"1 = 0, P,y = M.y, and the same theorem now
applied to the sequende\ (¢)},., yields

. ) 1 sa-
MY =2 = Jim 7 log Myl y € R\ VA (w). (3.4.15)

Consequently, we may relate the respective Lyapunov expgsm@ad associated subspaces of
the sequence§W ()}, and{A(t)}:

Abw) —g (3.4.16)
=AY =8 <0 (3.4.17)

Vv Y ={y, y"1=0}. (3.4.18)
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As indicated by equation (3.4.16), the component of the1 direction, orthogonal Wé‘iw’l), is
left unchanged. The corresponding Lyapunov expon&ﬁ) = Oistrivial. Therefore, the measure
of interest is the following Lyapunov exponent fW (¢)},.,, which we call the contraction rate
and denote by. This is the minimal rate at which any componenkdf Vg™ " will vanish.

Because it is not very handy to deal with the second largesplugov exponent of a sequence
{W(t)},5, we rather consider the sequenic&(t)},., and study its largest Lyapunov exponent
As4) which by definition of this sequence is equal to the contizagate-.

Finally, it is worth stressing the fact that the supremunguation (3.4.7) is achieved by almost
every starting poink(0), more precisely by alk(0) outside of the random séﬂ\“‘_l)(w), which
has zero volume.

Corollary 3.4.2. In Theorem 3.4.1, the supremum is achieved b)) outside of the proper
random subspace{** " (w) c R".



4. Bounds on the Contraction Rate

In this chapter, we will consider sequendes(t) }+~o of independent, identically distributed ran-
dom matrices iR™*". In the setting of the problem presented in Chapter 1, we eath® matrices
asA(t) = W(t) — 117 /n, but the results we present hold in much more general cases.

From the results of Fuerstenberg and Kesten (Theorem 3w@eBknow that for a sequence
of i.i.d. random matrices, the leading Lyapunov exponenicmtraction rate)y is a degenerate
random variable, almost surely equal to its expectatioe.doblem we address here is that of the
computation of this number, which was already mentioned ingian in [23, page 897].

More specifically, we want to express, or at least to boymal terms of some function of the
matrix A (¢), its expectation, its moments, or a similar, relativelysiefunction of it. The follow-
ing result is a bound on the leading Lyapunov exponent df. isequences of random matrices, the
inequality being mainly due to the use of Jensen’s Theoreaimedbeginning of the proof.

4.1 First Bound on the Contraction Rate

Theorem 4.1.1.(Bound on the Leading Lyapunov Exponent) {&{¢)}.>, be a sequence of i.i.d.
random matrices iflR™*" satisfyingE[log™ ||A(0)||] < co. Then the leading Lyapunov exponent

t

[[Aat-p

p=1

1
7= Jim g

is bounded by above by
1
7 < 5 logp (E[A(0) @ A(0)]) .
Remark.The theorem can be generalized to the case wAdte € C"*". We consider the real
case only, in order to focus on the main ideas of the proof atdaconfuse the reader with

technicalities arising in the complex case. However, tlaglee skilled in the art will easily extend
the following proof to the complex case.

Proof. First recall Theorem 3.2.8:

1

v = tlim i log (||M|]) a.s., and (4.1.1)
1

v = lim - Bflog (| M) (4.1.2)

whereM,, is defined as previously ad; := H;Zl A(t — p). We use Jensen’s inequality [35]

1 1
v =lim - E {— log ]|Mt||1 (4.1.3)
t—oo t 2
1
< lim —logE [V %] - (4.1.4)

27
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As Theorems 3.2.4 and 3.2.8 hold for any choice of norm, wechagse the one most convenient
for our purposes, which is the Frobenius norm. Denotingbythe-th row, j-th column element
of M,

. 1
v < lim —log B [[[ M (4.1.5)
' 1 n n )
= lim o~ log B [;;m]] . (4.1.6)

Express now|M, || as a functionf(e) of another matrix, namel, ® M,. Formally, f is
thus defined as

f : Rn2><n2 —R:B— Z Z bi+n(i—1),j+n(j—1) (417)

i=1 j=1

whereby ; is thek-th row,(-th column element oB. In other words,f (B) sumsn? elements of the
n? x n? matrixB = M, ® M,, which are chosen as tti& j)-th element of the:, j)-th block of
B, B being divided inn? blocks of sizen x n, as shown below.

[ b1 1 * b1,n+2 b1 n2 |
_____ R e
bny2,1 bt
B i S S S SO
an,l an,nQ
Besides the equality
fMeM) = M|, (4.1.8)

this function has the desirable property of being linear:

f(aA + 5B) = af(A) + Gf(B). (4.1.9)
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Going back to equation (4.1.5), replaﬁMH% according to (4.1.8). Then, using property
(4.1.9), invoke linearity of expectation to interchangf®) andE[e|:

1
7 < lim - log E [f(M; ® M,)] (4.1.10)
1
1 H Ht

t—o0 2

= lim ilogf < _ﬁ<A(t—p) ® Alt —p))

) , (4.1.13)

where we used the distributive property of the Kroneckedpod,(AB) ® (CD) = (A®C)(B®
D) in (4.1.13). Now use the i.i.d. property of the matrice&) to interchange the matrix product
and expectation

v gtlig%logf <1_[1E[A(t—p) ®A(t—p)]> (4.1.14)
_ ErEoQilog £ (E'TA(0) @ A(0)]). (4.1.15)

To simplify the notation in the following, we defid := E[A(0) ® A(0)]. Using linearity of f
once again, we have

1
< lim — ¢ .
0 _tlirglo 57 logf(B) (4.1.16)

~ lim & logf(H al

4.1.17
Jim o ( )

Bl

1)
= lim i1ogHBtHf < |Bt||) (4.1.18)
{

= Jim (logHBtH +log f |Bt||)) (4.1.19)
. ¢ 7 B
= lim (5 log ||B||" + logf (||Bt||)) . (4.1.20)

It is a well known fact (Gelfand’s formula, see e.g. [31, p2§8]) that for any matrix norm, and
in particular for anyp-norm,p € {1,2,..., 00},

lim HBtH p(B) := max{|\| : A € A(B)}. (4.1.21)

t—o00
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To bound the last term in equation (4.1.20), we chgose 1 (p = oo would do as well), which
yields

Z Zkarn(k 1),l4+n(l-1)

1
<_]<TL2 z :| Zj|

n® max bz‘,j

_ lshise? T2 (4.1.23)
~ max |b,;| T o
1<i,5<n?

Now using successively equations (4.1.23) and (4.1.21.thZ0), we get

v <t1E£10 (1 log |[B]| + ! 57 logn ) (4.1.24)

=3 1ogt1‘gono HBt}F +0 (4.1.25)

_ %bgp(B) (4.1.26)

which concludes the proof. O

Remark.The main point of the proof is to represent a (squared) norM pés alinear function f
of another function, say,, of M,, which allows to subsequently separate the terms of thebmatr
product, i.e.

IVL|* = f(g1(M) = [ (92(A(t = 1)) g2(A(2))g2(A(1))g2(A(0))) (4.1.27)

in order to equate
B [IIMA] = f (B [g2(A(0))]) - (4.1.28)

According to that, instead of the choices made in the prooé could think of choosing the 2-
norm, f(B) := tr(B) andg;(M) = ¢,(M) := M™M. Unfortunately, this choice of functions
f, g1 andg, do not allow us to rearrange the terms as needed in orderercirgnge product and
expectation, because

tr (M M) # tr (ﬁ At —p)TA(t — p)) : (4.1.29)

Theorem 4.1.1 can also be stated in terms of the action of #texisequence on a vectp(0).
Corollary 4.1.2. Definey(t) := [['_, A(t — u)y(0), where{A(t)}:> is an i.i.d. sequence of
random matrices, an#l [log* [|A(0)[|]] < co. Then forany > 1,

1 Iy (),
fim ~log (ﬁ&m FO ) < 5 logp (E[A(0) @ A(0)]).
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Proof. By definition of the matrixp-norm,

ly(0)] [Ty A=)y O], |
P = ITTA®- 1.
B Iy O, s IO, [Lac = (4450
Consequently,
.1 1y (D], 1
tlirilo —log <y?(1)150 v, ) =~ < 5 log p (E[A(0) ® A(0)]). (4.1.31)
O

4.2 Simpler, but Looser Bound

The bound derived above, while being very concise in its fdation, still takes a? x n? matrix
to compute and evaluate its spectral radius. This motitaesfollowing theorem, which is another
bound onvy. However, simulations show that the bound given below casidpaificantly looser
than the first. Refer to simulation results in Chapter 5 fdaie

Theorem 4.2.1.Let {A(t)},., be a sequence of i.i.d. random matrices R¥*" satisfying
E[log® ||A(0)]]] < oo, and~y its leading Lyapunov exponent (see def. 3.3.2). Fhenbounded
from above by

7 < 5log A (EIAT(0)A0)]).

Corollary 4.2.2. Define{y(t)},., as in Corollary 4.1.2. Then, foranye {1,2,...,00},

1 ly (&)1, T
lim - lo <y?$§0 iyl ) ~log A1 (E[AT(0)A(0)]).

t—oo T

Proof. (of Corollary) The Corollary follows readily from the thesmn, by the same arguments as
in the proof of Corollary 4.1.2. O

Proof. (of Theorem) For any nonrandom choiceydf)) € R™ \ {0}, with the first expectation on
y(t — 1) and the second oA (¢t — 1) in (4.2.1),

E [yT(t)y(t)] =E[E[y"(t - 1At - DA - Dy(t - 1)[y(t - 1)]] (4.2.1)
Ely'(t—1)E[AT(t-1A({t—-1)]y(t-1)] (4.2.2)
EN(E[ATt-DAC-1)])y" (t—1)y(t —1)] (4.2.3)

=\ (E[AT(0)A(0)])E [y"(t — 1)y(t— 1)] (4.2.4)
<AL (E[AT(0)A(0)]) y"(0)y(0). (4.2.5)

Now rearranging some terms, taking the logarithm and digdiy 2¢ on both sides,

1 Ey"()y(®)] 1 T
— log <W) < 5 logAs (E[AT(0)A(0)]). (4.2.6)
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By Jensen’s inequality,

L o (VO] < Lo, 5 [T 0000

y*(0)y(0)

The above equation also holds in the limittas> oo:

T yOl] 1, .
Jim 78 [og 52| < G106 (B [AT0)A0)]).

Now sety (0) = ¥(0) with

. ly ()l
¥(0) = arg sup
(00 [[¥(0)]]

13 )1l

= log — . = |
137 (0)[,

t

og |[[ At —p)

p=1

2

By Theorem 3.2.8, we have then

1
lim — E [log

t—oo T

ly®lL]
||y<o>HJ -

and consequently, equation (4.2.8) implies

v < %log A (E[AT(0)A(0)]).

(4.2.7)

(4.2.8)

(4.2.9)

(4.2.10)

(4.2.11)



5. Simulation Results

5.1 Introductory Remarks

5.1.1 Different Metrics for Convergence

Different metrics can be used to characterize the rate ofargence (or contraction) of a system
whose dynamics are described by a sequence of matricesr trase, the system to be described
is a network of sensors with randomly failing links betwelea sensors, where the purpose of the
network is to compute in a decentralized way the average ehtbasurements of all nodes in
the network. In order to quantify the contraction rate of siggtem we may consider one of the
following metrics:

1) Dobrushin’s ergodicity coefficient, @rseminorm, defined as

1
(W) == maxz |w; ; — wikl - (5.1.2)

2) The 2-norm of the residual matiM;,, that is the produdi] W of the weighting matrice$V (¢)
subtracted by the invariant subspace associated with ttens i.e.

t

117
1We=p ==

=1

[IMfly =

2

3) Any other matrix norm of the residual matiM;, for example the Frobenius norm.

4) A norm of the relative error vector(t)/ ||y (0)|| resulting from an arbitrary choice of initial
measurement vectot(0) = y(0) + z1, for example the 2-norm. This metric will depict the
actual typical behavior of the system but, in particulartigsisient behavior, depends on the
actual choice ok(0), and should therefore be regarded as merely illustrativeveyer, the
asymptotic behavior can be generalized to almosiilial vector choices.

As we have seen earlier (see Chapter 3), all these metriearealent and, in the long run,
will decay with the same asymptotic rateThis is illustrated by the following example.

An Example

As an illustrative example, Figure 5.1 shows in logarithisgale the evolution of selected error
metrics over algorithm iterations (time instants), usihg Metropolis weighting algorithm on a
random geometric graph (RGG) with 200 nodes, such as dégittéigure 5.2, with link failure
probabilityp = 0.9.

For the definition of the weighting algorithm refer to Chag@teThe RGG is defined by nodes
uniformly distributed on the unit square, 2 nodes being eoted iff the distance between them
Is less thamr. In the case considered in Figures 5.1 and 5.2 0.2 and the number of nodes
n = 200. The link failure probabilityp is set to 0.9. This means a given link is active at time

LAllinitial vectors outside of a proper subspaceRif; see Theorem 3.3.1.

33
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Comparison of measures
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Figure 5.1: Different metrics for the residual error

Geometric Graph, n =200, r=0.2
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Figure 5.2: Geometric graph with = 200 nodes and = 0.2 maximum link length
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instantt with probability1 — p = 0.1, independently of other links and independently of its own
activity at previous (of future) time instants.

The plot shows the four error metrics described above, nathelDobrushin-seminorm, the 2-
norm and the Frobenius norm of the residual mattix all of them averaged over 400 realizations
of link failure/activity sequences. The evolution of theaguatic norm of an error vector(t) is
also shown, but only one realization for one time sequenith,am initial measurement that was a
basis unit vector, i.e. alk nodes had initial value 0, except one nadehich was initialized with

Choosing to plot this curve for a specific realization indtedan averaged curve shows the
variances involved are very small, and that typical behrasgigery close to the mean behavior.

As expected, the slope, i.e. the asymptotic exponentiaydeate, of all 4 metrics is the same.
Moreover, we can see that the Frobenius-norm approachesrbem. This illustrates Theorem
3.3.1, which states thadl, tends to become one-dimensional or, in other words, thadst® be
only one dominant singular value, and consequeliil; ||, = > o; — o1 = || M|},

Finally, one should note that for an arbitrary initial vettine error might, in the beginning,
decrease much faster th@lI, ||, which by definition always gives the relative error of theohst
case” starting poing (0).

By a similar argument, one could expect the ergodicity coeffity to have a steeper transient
than||M,||,, because in the case &fthe maximization goes only over starting vectors of thenfor
y(0) =1/2(e; —e;),4,j = 1...n, and not over ally(0) € R" (see equation (5.1.1)). However,
there is another difference betwegand| M,||. J is defined based on the 1-norm,

1
0(M,) = max o [|[My(e; —e;)l],

as opposed tgM, ||, which is defined based on the 2-norm. Because the effect ofgatg the
norm is stronger than that of the constraint on maximizatiegmobserve (IM;) > || M,||,.

The main conclusion we draw from this analysis is that, tcgpé¢he asymptotic convergence
speed of an averaging algorithm, it is sufficient to consater of the 4 metrics described above.
For this reason, in the following we will focus djM.,||,, and all the results presented for this
metric will hold equivalently for the other metrics. Thefdifences observed in the transient are
addressed in Section 6.1.2.

5.1.2 Scales and Representation

There still are a few precisions to make before going to adtareation of the stationary rate of
convergence.

The first one is about interchanging expectation and IdgaritNote that in Figure 5.1 we
implicitly took the logarithm of the mean of an error metfii¥L, || or §(M,). This is legitimate as
long as it is clearly specified that we look at the error noselit and not its logarithm.

In all the previously derived results however, we consileddgarithmic error metritog || M|
as the value of interest. The difference is very small infica¢so it would not be visible in Figure
5.1if exp (E [log || M,||]) would have been plotted insteadlof||M,||]. But still, it is important to
make this distinction. In the following, we will always cader the logarithmic error metric, or in
other words, we take logarithms before expectations, ieeslow quantities such &[||M,||].

The second point is how to evaluate this stationary contnacéate, i.e. the slope of the curves
in Figure 5.1.
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Derivative vs. 1/t
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Figure 5.3:E [y(¢)] and derivative of [log | M||,], for the same system as before £ 200, Metropolis
weights, empirical averaging over 400 realizations).

A first guess might be to use the derivative, eld: [log [|[M,||] / dt. While this seems intu-
itively correct, this is not the best thing to do, even if thigectation exists. As shown in Figure

5.3, an empirical averaging over 400 realizations is ndtaeht for the derivative (dashed line) to
provide an accurate, stable value. For this reason, we onisicler the metric

1
(1) 1= 7 log ML,

and its empirical average (solid line in Figure 5.3), whibl,theorems in Chapters 3 and 4, is
known to be well defined and to converge to a vajuest — oo, which is such that

d E [log [[M|]
dt ’

i.e.~y characterizes the slope in the stationary region which easelen in Figure 5.1.

!
7= lim ~log||M,[| =

5.1.3 A Remark on Rare Events

We consider
t

[TAGC-p

p=1

1
7 = fim g

(5.1.2)

2

which by Theorem 3.2.8 is well defined and non-randofif?) },., is a sequence of i.i.d. matri-
ces.

However, note that if there exists a finite subsequévigeof length7" of matricesA (¢) such
that

T

Mr=[JA(T-p)=0 T <o, (5.1.3)

p=1
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which can appear with nonzero probability, it follows immegdly thaty = —oo. This is because
in an infinitely long sequence, the subsequelEewill eventually appear, with probability one.

This situation can occur for example when we consider a ftdiynected graph with indepen-
dently failing links or nodes. Assume the= n(n — 1)/2 links fail independently with probability
p. Then, there is a probabilityy — p)¢ > 0 that all links are up at the same time. If this happens at
timet, and we use e.g. the Metropolis weighting algoritiWi(t) = 117 /n and the exact solution
Is reached at timeg i.e. in finite time.

Another example is when the number of nodes is a power of 2henglossip algorithm is used.
In this case, the following communication sequence alldWsagles to reach the exact solution in
finite time. First, nodes 1 and 2 average their respectivgegalthen nodes 3 and 4, 5 and 6, and so
on. In the second stage, we pair up nodes 1 and 3, 2 and 4, 5 atwd .7,Now, nodes 1 through 4
already have all the same value, and so do nodes 5 — 8 and sdicaudnt groups of 4. This process
can go on, up to the last stage, at which every node from thén&itsexchanges its value with one
of the second half. Consequently, there is a sequence ahléhg n log(n)/2 which reaches the
exact solution, and therefore= —oo.

One can find many other examples, in whichs actually not bounded from below. Never-
theless, in many of these cases, simulations will not ekthils behavior but rather show a finite
asymptotic contraction rate. This is because the prollofithe event of falling on a sequence
like in (5.1.3), while being nonzero, is actually very smab that with high probability it will not
appear in simulations, nor in practice.

It is an instance of the famous “infinite monkey theorem”, ethstates that a monkey typ-
ing a random sequence on a typewriter for an infinite amoutine will eventually type out a
Shakespeare play (i.e. a specific subsequence of finitehlergjit like the monkey will probably
die before writing even a sonnet, simulations will most atolly stop before the occurrence of a
sequence satisfying equation (5.1.3).

5.2 Analysis of Bounds

After this short introduction motivating our interest ftwetasymptotic contraction rate, we turn to
comparing an empirically obtained ratd¢o the bounds derived for it in Chapter 4. We will see the
first bound is always tighter than the second one, and in nraayasting cases much tighter. Also,
we will introduce another measure, which is tempting beeanfsits simplicity, and is actually
often very close toy, but which in general is not a bound, nor even an approximatio,.

Recall the two upper bounds erderived in Chapter 4, Sections 4.1 and 4.2, respectively

By = % log (p(E[A ® A])) and (5.2.1)
By = %log (p (E[ATA])), (5.2.2)

and consider also a third measurg which was a candidate for approximating
Cs :=log(p(E[A])). (5.2.3)

The graphs in the following sections show the evolutiony0f) over time instants at which
communication occurs, together with the bouitjs B, and the candidaté€’.



38 5. Simulation Results

0.5 T T T T T T T
— Ellog [M]I,]/t

B, =-1.606e-04 -

-3r B, = -3.199e-04 ]

C3 =-3.211e-04

L L L L L L L L L
0 100 200 300 400 500 600 700 800 900 1000
Iterations

Figure 5.4:y(t), boundsB;, By and approximatiorCs, for a RGG withn = 60 andr = 0.2, using the
gossip algorithm.

5.2.1 Geometric Graphs

As an example of a sensor network with randomly placed noo@ssider the case of random
geometric graphs (RGG), already presented in the introdystection. More specifically, take a
sample RGG, witm = 60 nodes uniformly i.i.d. on the unit square, with maximum liekgth
d=0.2.

We considered two different averaging schemes. First,dlssig algorithm, where at each time
slot, one link is sampled uniformly from the set of all linksethe two incident nodes average their
respective values. Figure 5.4. shows the correspondirigtémoof v(¢) on a time interval of 1000
algorithm iterations, i.e. 2000 communications betweetieso averaged over 500 realizations of
link sampling. Att = 1000, v(¢) has not yet reached its limjt Remember thaB, > v = ~(c0).

In the second case, we consider the “failing links” modelyhich at each time instant, links
fail (or are inactive) independently of each other and imatelently of past activity with probability
p = 0.9 (see example in Section 5.1). A typical configuration of teework at an arbitrary time
instant is shown in Figure 5.5, in which currently activekBrare represented by full lines, and
dashed lines denote currently failing (or inactive) linkkate that while the set of full lines is
drawn independently at each time instant, the location efrihdes, and therefore the set of all
links, remains fixed over time. Notice also that the curgeatitive links typically do not form a
connected graph.

In this “failing links” model, we used the Metropolis algtiin (see Chapter 1) to determine
the weights on the values exchanged between currentlyantitbdes. The corresponding results
are given in Figure 5.6. Againy(t) averaged over 500 realizations is plotted against algarith
iterationst up tot = 1000, and By, B,, C;3 are indicated on the right. Here, unlike in Figure 5.4,
~(1000) is already very close to its limif.

Observations
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Geometric Graph, n =60, r=0.2
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Figure 5.5: Random Geometric Graph (RGG) with= 60 nodes, maximum link length = 0.2, and a
proportion ofp = 0.9 inactive links (dashed).
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Figure 5.6:(¢), boundsB;, By and approximatiorCs;, for a RGG withn = 60 andr = 0.2, using
Metropolis weights, with a proportion @f= 0.9 inactive links.
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Regarding the evolution of(¢), we can observe a longer transient in the case of the gossip al
gorithm, as opposed to the failing links model with Metrapaleights. This is not surprising,
considering that in the second case many nodes communicatéaneously, while in the gossip
setup there is only one active link at each time step. If omsiciers the duration of the transient
with respect to the total number of communications betwestes, there is almost no noticeable
differencey(t) is less than O for the first time after approximately 140 infation exchanges in
both cases.

Consider nowy, the valuey(t) tends to for large, and compare it to the valuds,, B, and
(5. Itis more convenient to look at Figure 5.6 rather than Fedurl, because it takes longer in the
gossip case to reach the limit

First, one can see that both boungéisand B, are greater than, as expected, but in particular
that B; is significantly tighter thamB,. Furthermore, although nothing could be proved concerning
the approximatiors, it turns out to be very close tpand B;.

The same observations hold when using the gossip algoriélsnipnger simulations have
shown. Here one can make an additional observation comgethée looseness d#,. Namely, in
the gossip case the weighting matrices are symmetric giofematrices, and thereford™A =
A. While C5 gives pretty accurately the value of B, is exactlyC'; /2 and consequently a very
loose upper bound on

All these observations were made on RGG's of different siaed more generally for all kinds
of relatively sparse graphs, e.g. regular graphs with 10 and degree 3, ot = 60 and degree
10. Here, the term “relatively sparse” can be interpretag wadely. Even a RGG wit = 60
nodes and maximum link length= 0.8 still exhibited the same behavior and may therefore be
considered as “relatively sparse”, even though the avarade degree is about 30, @Hn.

5.2.2 The Full Graph

Consider now a fully connected graph instead of a RGG. Than®any two nodes can commu-
nicate directly with each other. Consequently, we havea tdte = n(n — 1)/2 communication
links. We consider the same two cases than before. Firstabsigalgorithm, i.e. there is exactly
one active communication link at each time step. Secondfailieg links model, where at each
time step, every link has a probability— p = 0.1 of being active.

When using the gossip algorithm in a full graph, the valugs, B, B, andC'; are represented
in Figure 5.7, as they were in Figure 5.4 in the RGG case. Sriyjlwhen using the failing links
model and the Metropolis weighting algorithm, Figure 5.8s equivalent to Figure 5.6 when the
RGG is replaced by the full graph. The number of nodes is theesss beforep = 60, as well as
the number of iterations.

In both cases, gossiping and “failing links”, the contrastratey turns out to be significantly
smaller than previously, and also the transient is shdrtes is not surprising, as thanks to “short-
cuts” across the graph, differences between distant nadebeaveraged directly, and thus faster
than by going through many hops from one neighboring nodeegmext, as it is necessary in a
geometric graph. In the failing links model, due to the ias@in the total number of connections,
there is also an increase in the number of communicationsmerstep.

More importantly, observe hou8,, B, and C3 have shifted with respect to. Both upper
bounds are still greater than or equahtdhe limit of y(¢) for larget, but while B, was very loose,
it is now very close taB;. Conversely(; is now clearly less than the empirical convergence rate
~, and can therefore not be used to approximate it.
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Figure 5.7:y(t), boundsB;, By and approximatiorCs, for a fully connected graph with = 60 nodes,
using the gossip algorithm.
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Figure 5.8:y(t), boundsB;, B, and approximatiorCs, for a fully connected graph with = 60 nodes,
using Metropolis weights, with a proportion pf= 0.9 inactive links.
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Bounds vs Connectivity, RGG n = 30, Gossip
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Figure 5.9: Contraction rate, boundsB;, B, and approximatiorC's as a function of the total number of
connections, with communications according to the godgigrithm, for a graph witlhm, = 30 nodes.

A legitimate question is whethérs is a lower bound ory. This is not the case. One can easily
construct a probability distribution oA with Pr(A = 0) > 0, so thaty = —oo, but for which
Cs = log (p (E[A])) is still finite. Also when both are finite, it can happen that. Cs, as in the
case shown in Figure 6.1.

To summarizep, is a reasonably tight bound when the graph of possible caiomsds com-
plete, but rather loose otherwise. Conversglyis a fairly good approximation of in some cases,
where the set of possible connections is limited. In gereralever, nothing can be said about the
relationship between’; and the asymptotic convergence ratéAbout B; we can say that, in all
cases studied, it is a reasonably tight bound on the empuadae of~. Finally, we want to point
out the fact that although in all the simulatiort$, was looser tha3,, the question whether this
is always the case remains open.

Note also that the actual, mathematically correct value o, in many particular cases, not
bounded, while the empirical contraction rate computedibytion is nonetheless finite (see
Section 5.1.3). The value considered here is always thergralptontraction rate, not the theoret-
ical one.

5.2.3 v as a Function of Graph Density

After having seen how the bounds behave for two extreme amatigpns, namely barely connected
graphs on one side, and the full graph on the other side, uliis gatural to study how these bounds,
and~, evolve as a function of graph connectivity.

Figure 5.9 shows contraction raieboundsB;, B,, and approximatio’; as a function of the
number of edges, for random geometric graphs with 30 nodes, when the gossip algorithm is
used.

To construct RGG’s with a specific number of edges, we proasddllows. First pick a sample
with n = 30 nodes uniformly i.i.d. on the unit square. Then add conoestbetween nodes, one
after the other, beginning with a connection between thelitvks which are closest to each other.
The next connection to be added is then always between thaddes which are closest to each
other, but not yet directly connected. The bounds are thefuated when specific numbers of
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connections are reached, not necessarily after each addaeddation. To get Figure 5.9, this whole
process was repeated 100 times, with randomly sampled nodgdns.

When the number of edgess too small, the graph is not connected, and therefore tiessee
of matrices{ A (¢)} is not contracting, i.e. the Lyapunov exponenwill be equal to 0, as well as
both upper bounds. Also the expectation makipA (¢)] is not contracting as long as the graph is
not connected, s6'5 = 0 as well.

Then, for increasing number of links and increasing conviégiof the graph, the Lyapunov
exponenty will decrease, and so will both upper bounds. In the begmninand B; follows
the evolution ofCs, but flatten out for very well connected graphs, wh&eand C; drop very
rapidly. Remember that in the gossip case, as represented(ie = 2B,. Consequently, for
poorly connected graphB, is only about one-half of the actual contraction ratend therefore
very loose. We observe tha}, is always less than, and therefore tighter tihzn

While B,, and alsoCs3, would suggest a big improvement of the convergence speesh wh
filling in the last connections missing in an almost complet®nnected graph3; follows more
precisely, although not exactly, the actual contractie@yaThe gossip algorithm will not perform
significantly better on a full graph than on graphs missingvalinks to the complete one.

Of the 3 quantitied3;, B, andC}, the last one is easiest to compute and apparently the most
accurate approximation af except for highly connected graphs. However, this is ngexelempir-
ical observation, and at this time there are no means tordeterexactly where this approximation
holds.

Finally, note that the picture will be very similar in “faig links” scenarios using Metropolis
weights (not represented). The qualitative evolution estame than in Figure 5.9, but the gaps
between the curves are much smaller.

5.3 Comparison of Averaging Strategies

We will now use the contraction rateas a metric to compare the performance of different averag-
ing strategies on a given type of network. As we have alreadn greviouslyy is good metric to
characterize the averaging performance of a given systecause this is the convergence speed it
will have almost surely in the long run, for almost any irliggarting vector.

A Few Definitions

Let us introduce a couple of parameters relateq, tohich will better illustrate the cost associated
with an averaging operation. If the cost factor is time, weyroansider thecontraction time7.
which we define as . .

R ey v
Thus, a low contraction rate will be associated with a largén magnitude, and thus a good, fast
averaging performance.

Instead of time, we might be interested in the number of tratted messages (# of TxM). In
systems of autonomous agents connected by wireless linkk,as network of remote sensors,
the # of TxM is a major cost factor, because every transmmssiassociated with consumption of
energy, which is a scarse resource for remote units. Thudgfuge acontraction energys

(5.3.1)

. #of TXM up to timet
E.:= lim
t—oo —log [[My]]

(5.3.2)
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By ergodicity, this is also equal to

. . ., —1

E. =E [# of TXM in one iteratioh— (5.3.3)
v

=E [# of TXM in one iteratioh- 7... (5.3.4)

Finally, as we are considering models in which messagesebush it might also be interesting
to look at the number of received messages (# of RxM). In esgbystems, not only transmitting
but also receiving and decoding a message can consume apotvef. \We will see it can make
a huge difference to consider received messages insteaansfiitted messages. Therefore, we
introduce

# of RxM up to timet

M, = lim 5.3.5
B g v (5:39)
= E [# of RXM in one iteratioh- 7... (5.3.6)

Again, the second equality follows by ergodicity.

Comparison of Strategies

We will compare the costs of the Metropolis weights alganitvith standard pairwise gossip in
sparse geometric graphs. More precisely, we consider aandse of random geometric graphs
(RGGs) on the unit square with = 50 nodes and link range = 0.18. As previously, links
between nodes are failing independently in time and indegethy of each other with probability
p.

Figures 5.10 through 5.12 show the different performaniter@ introduced above as a func-
tion of the link failure probabilityp. The represented curves were obtained by averaging the ac-
cording metric €., M. or 7.) over 50 sample graphs in the ensemble specified above.

Before turning to the figures, let us recall the respectiwraying algorithms to see how trans-
mitted and received messages are counted. In the standesispagossip algorithm, nodes wake
up asynchronously at random times and try to connect to éhhergin order to exchange their
values. Thus, if we consider every instant at which a nodeewalp as an iteration, there are suc-
cessful and unsuccessful iterations. In a successfutinarawo values are exchanged, so we have
a total of 2 transmitted and 2 received messages. In the ¢aseumsuccessful iteration, nothing
happens in terms of averaging, but there still is 1 messagsrmitted (and lost).

The Metropolis algorithm, as opposed to the gossip algworitls a synchronized averaging
scheme. This means, at each iteration every node in the riestarts by sending its current value.
Then, every node which received at least one message rbplessmmunicating how many neigh-
bors it has currently, i.e. how many messages it has jusiverteso that each of its neighbors can
choose the appropriate weighting factor for the correspmhlue it just received. After these two
rounds, every node with at least one active connection toaginbher knows everything required to
perform the averaging, namely its own value, the valuesafutrent neighbors, the size of its own
current neighborhood, and the sizes of its current neighin@ighborhoods. Nodes which did not
receive any message in the first round of the iteration maynasshey are currently isolated, and
do not take any action in the second round. Thus, therenate®(of not isolated nodes) messages
sent at each iteration.

Regarding the number of received messages, we have to takaccount that every message
sent may be received and decoded zero, one, two, or more diepesnding on the neighborhood
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Figure 5.10: Contraction energy., or number of transmitted messages (# of TxM) as a functiolmkf
failure probabilityp, for Metropolis weights and gossip algorithms on a RGG.
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Figure 5.11:M.., or number of received messages (# of RxM) as a function kfféiitlure probabilityp, for
Metropolis weights and gossip algorithms on a RGG.

of the emitting node. Thus, the total number of messagesvextper round in the whole network

is equal to the number of currently active pairwise node tdenconnections in the network. On
average, this will be - e, wheree is the total number of node to node links in the network, and

is the failure probability of these links. In the end, as weehtavo rounds per iteration, one for the
current average estimates, and one for the current neigbbdrsize, the number of received and
decoded messages sums upje.

Now, one can easily see that counting the transmitted mesgdxM) is radically different
from counting the received messages (RxM). Depending olirtki&ilure probabilityp, the num-
ber of TxM might be smaller (at low) or greater (at highp) than the number of RxM. This can
be seen by comparing the associated cost functions regglgcthown in Figures 5.10 and 5.11
which both represent the effort associated with a sametresul
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Figure 5.10 shows the contraction eneigyas defined in equation (5.3.2) as a function of
the link failure probability, for the two averaging straiieg) considered, namely the synchronous
Metropolis weights algorithm on one hand, and the pairwsesgp algorithm on the other hand.
As one could already expect, the required number of messag@ssmit to achieve a same result,
i.e. a same accuracy of the computed average estimatess gitiwthe probabilityp, i.e. with the
probability of losing emitted messages. A probably lessialey observation is that this number
grows faster when using gossiping than with the synchrahsteategy.

In Figure 5.11 we see the number of messages received ant wed to be decoded corre-
sponding to the number of emitted messages shown in Figlife As we can see by comparing
these two figures, in the gossip algorithm and when no messagdost, the number of sent and
received messages is identical. This does not hold for theeddelis weighting algorithm, as in
this case a single message will typically be received byrséwedes. Also, the link failure proba-
bility p does not affect the decoding cost of the nodes in gossipimg.cbmes from the fact that
only affects the number of unsuccessful iterations, ancethee the number of unnecessarily sent
messages, but has no effect on successful iterations wiedh@only which count, both in terms
of averaging and decoded messages.

For the Metropolis weighting algorithm, the picture is guilifferent. The highep is, i.e. the
less connections are active at each round, the more effamehtiseful every received message is,
and therefore the less messages need to be decoded to ablei®ane result. The most striking
fact is that this relationship is (or at least seems to benaffp.

Also, note that in the limit fop close to 1, the metropolis algorithm starts resemblingigoss,
at least from the point of view of the averaging operationégumed. At highp, all links are down
with high probability, and only from time to time there wilekan active link which will allow two
nodes to exchange and averageeir respective values. As in this case there will be a tofta
messages received when two nodes communicate, namelyHetlvalues and current number
of neighbors (=1), as opposed to only 2 messages if we us@@ugst is not surprising that the
limiting point of M, (MetroWeights) forp — 1 will be 2M .. (Gossip).

Finally, Figure 5.12 shows contraction tin¥g for the Metropolis weights algorithm, and a
7. normalized by the number of nodedor pairwise gossiping. This allows a better comparison
between a synchronized algorithm (Metropolis) and an actsymous strategy (Gossip). This nor-
malization corresponds to equating the time between twadgetis iterations and the mean time
between wakeups of a node in gossip algorithm.

For all three cost functions considered, we can see thatjtisengossip algorithm rather than
Metropolis weights is advantageous when the link failur@ability p is small. For large» how-
ever, both timeZ, and energ\. required for averaging grow faster when using gossipingréh
fore, it might be advisable to use the Metropolis weightimgoathm when the node to node
connections are highly unreliable, and the gossip scheherwise.

The cost functions presented and used here are only a fewb@ssamples. Other cost func-
tions might be better suited for particular applicationst Example, one might wish to combine
E. and M. in order to take into account the respective costs of bothrresmission and the re-
ception/decoding of a message. The resulting cost fungtmuiid then be a weighted sum of the
curves in Figures 5.10 and 5.11. For the Metropolis weiglgsrahm, this cost function would
present a minimum for somebetween 0 and 1. Therefore, if one chooses to use this digont

2They will actually average them, as both have exactly onghimr (recall equation (1.2.2)).
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Figure 5.12: Normalized contraction tini& as a function of link failure probability, for Metropolis
weights and gossip algorithms on a RGG.

a reliable network, it might be advisable to deliberatelgat®/ate a certain number of connections
or nodes at each iteration in order to minimize the requi@slgy.

In the end, this simple example shows that contraction tateay be adapted to take into
account various cost functions, and can therefore be usgeld¢ot the best averaging strategy for
a given network. It can also help to optimize design parameeiba chosen averaging algorithm,
in order to minimize the cost of the averaging operation.



6. Summary and Open Problems

6.1 Further Observations

During our study on averaging algorithms in time varyingwaks, we made some interesting
observations, which do not fall in the scope of any of the tet or propositions presented above.
Nevertheless, some of these seemed quite interesting amdsre presented in this section.

Note however that these are only observations based onaiong. In some cases, intuitive
arguments which can help understanding the underlyingtsféee presented, but no formal proofs
or theorems could be established.

6.1.1 Asymptotically Large Networks

Bound B;
The most striking observation about the bounds on the lgadypapunov exponent derived in
Chapter 4, is the apparent tightness of the first bound

By = % log (p (E[A ® Al)),

as can be seen in Figures 5.4, 5.6, 5.7, 5.8 and 5.9.

However,B; is not always that close tg, as Figure 6.1 shows. This figure shows the evolution
of v(¢) and the bound®,, B, as well ag;, just like the previously cited figures from Chapter
5, but for a much smaller network, with onty = 10 nodes, and¢ = 13 edges. One can see the
relative gap between and B, is much greater than for the larger networks previously ictaned,
which leads us to the following assumption.

Conjecture. B; is asymptotically tight for large:, or in other words, in the limit form — oo,
By =1.

Although we have no proof for this assertion, here are somaghts which may help in finding

ways to prove it. From Theorem 3.2.8 we know that

7= Jim log [ M| (6.1.1)
:HEOE E log HMt’@ (6.1.2)
= lim E [log ||Mt||1/t] (6.1.3)
= lim % E [log HMtﬂz/t} . (6.1.4)

Also, note that since is a nonrandom real number, so is
e’ =exp (tlim log ||Mt||1/t>

:tlim exp (log ||Mt||1/t> = tlim ||Mt||1/t.

48
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Figure 6.1:y(t), boundsB;, B2 and approximatior’s, for a sample graph with = 10 nodes an@ = 13
links, using the gossip algorithm.

Consequentlylim,, ., Var HMtH”t = 0, and in equation (6.1.4), expectation and logarithm

can be interchanged while preserving equality:
1 1
lim B [log HMtHQ/t] = lim < logE [Hth . (6.1.5)

All of the above holds for any sequen¢dl,},., defined byM, := [],_, A(t — p), where
{A(t)},~, is an ergodic sequence. It holds in particular wiwfit) = A(t) + 11" /n are i.i.d.
weighting matrices of a network with any number of nodes amidl

To us, the crucial point which remains to be cleared seems tehether

1 1
lim - log E [||Mt||2/t] — lim = log B [ M 2] (6.1.6)
t—o0 2 t—o0 2
holds, or more precisely to see in which cases it does, andhichwcases it does not hold.

Measure Cs
The same observation of asymptotic tightness can be made abodidate approximatioi’s,
when comparing Figures 5.4 and 6.1. However, the followixengple will show how tricky the
relationship between andC} is.

We will consider random geometric graphs (RGGs) with insiegnumber of nodes, and
accordingly decreasing link radius so as to preserve connectivity when scaling the graph. A
result by Gupta and Kumar [36] tells us that for— co, a RGG on a discof unit area with

_ log(n) + ¢(n)

r¥(n)

'Note the difference to our model, where we use the unit square

(6.1.7)




50 6. Summary and Open Problems

RGG, r = sqrt(log(n)/n)

350 T T T T
—o—-1ly

300

200

150+

Contraction time

50

0 L L L L L
0 100 200 300 400 500 600 700 800 900 1000
Number of nodes n

Figure 6.2: Contraction Tim&. and its “approximation” based drk, as a function of network size, using
Metropolis weights.
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Figure 6.3: Contraction Tim&. and its “approximation” based drk, as a function of network size, using
Metropolis weights.
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is connected ift:(n) — oo.

We will use the scaling law = /«log(n)/n and consider two different values af namely
«a = 1 anda = 2. Note that according to the above result, neither of thekeegaensures asymp-
totic connectivity, but nevertheless, at the considerdédowk sizes, this is enough for the networks
to be connected with reasonably high probability.

For better readability, we plotted contraction tiniBs= —1/~ and its equivalent-1/C’ in-
stead of the contraction rateitself. Figure 6.2 shows the first case, where- 1, and Figure 6.3
shows the same measures whes 2.

The two pictures are radically different, even though werhtl change the order of scaling,
but merely a multiplicative coefficient. Far= 1 the contraction tim&@. and—1/C; remain close
together, and the according relative error even tends tska®n the other hand, if = 2, C5 is
no longer a valid approximation for the contraction rat@henn is large.

All this shows that even though intuition tells us there mostshould, be some relationship
betweeny andCl}, it is for sure a very complicated one. Even in very similaga@pl cases;’;s and
~ may in one case be very close, and in the second case behaadlyadifferently. Therefore, at
this point we cannot us€; to approximate the contraction rate.

As a last remark, one could think of an approach to combinewioeaspects presented in
this section. When (and if!) botl; andC5 are asymptotically tight, a possible way of proving
tightness of one given tightness of the other could be to dim¥v converge to the same value. In
order to relate3; andCs, let us define the autocovariance of a matkixe R"*" as then? x n?
matrix with elements

(cov (A)) i-1yntk, (-1t = OV (@i ak) - (6.1.8)
Then, we can rewrité; as

B = % log p (E[A @ A]) = % log p (E [A] @ E[A] + cov(A)). (6.1.9)

Now, if cov(A) were 0, we could equat8, andC';, because

3080 (BA] & E[A)) = 5 log * (E[A)) (61.10)
=logp (E[A]) (6.1.11)
— . (6.1.12)

Thereforecov(A) might be regarded as a perturbation terneokf( A ) is somehow “small” com-
pared toE [A] ® E[A], chances aré3; and C5; approach each other. However, “small” can-
not refer to the magnitude of the elements, as these do nashvéor largen. On the other
hand, the proportion of nonzero elements:ir(A) vanishes. But this is not sufficient to prove
p(E[A®A]) — p(E[A] ® E[A]) asn goes to infinity. Thus, it remains to be shown when and
whetherB; andC5 converge to the same value.

6.1.2 Transient Behavior and Frobenius Norm

Even though this document is dedicated to the study of théingaLyapunov exponent, which
characterizes the asymptotic contraction rate of the systelarge time intervals, our simulations
also revealed some interesting facts concerning the ganbehavior of the system right after
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Figure 6.4: Detail of Figure 5.1: Study of the transient

initialization. These observations were already mentioné&ection 5.1.1 of Chapter 5 (Simulation
Results), in the discussion of Figure 5.1.

Figure 6.4 is a portion of Figure 5.1 showing in greater dele beginning of the averaging
process. Additionally to the error metrics shown in Figurg, -igure 6.4 includes the average
2-norm of the error vectoy(¢), when the initial measurement vecto(0) is a specific basis unit
vector (dash-dotted line). The dotted lines in both figussesent a typical evolution dfy (¢)||
for the same initial vector, and a specific sequence of dotaetive communication links. (The
plot of the Dobrushin-seminorm is omitted in Figure 6.4.}hrs figure, one can observe that the
average quadratic norm of the error vecydr) behaves similarly to the Frobenius norm of the
cumulative product matrivi(t).

To explain this, first recall that the Frobenius norm of a imaguals the square root of the
sum of its squared singular values [31]. Now, if the initiattorx(0) was a random vector with
Gaussian, zero mean, unit variance, i.i.d. elementa/*(0, 1)), one could use the singular value
decompositioM; = U, X, V}/ to see thafly ()|, = || M|/ in expectation:

unitary unitary

~= =
y(t)=M, x(0) ="U, %  V/x(0). (6.1.13)
~—~ ~~ ,
~N™(0,1) scalsvsi,tﬁlgment ~NT(0,1)

One can see that for large ||y (¢)||, = ||M,|| holds not only in expectation, but almost surely.

From there, it is intuitively not surprising, that also iretbase where the initial vector is a
standard basis vector, the error norm decays with a sinalarthan the Frobenius norm of the
cumulative matrixM,. Nevertheless, this is not trivial at all. In fact, even tghuhe qualitative
behavior is the same, one should still note there are sorfexatites depending on which basis
vector is chosen as the starting point. If the node whichitglly in disagreement with all the
other nodes is badly connected and/or at an extremity ofrigehg the convergence will be slower
than if that node is well connected. This is only for the trant of course, because the asymptotic
contraction rate will always be the same.
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Contraction rate y vs. Link weight a
Gossip, n = 60, different topologies
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Figure 6.5:v as a function of the message weight in gossip algorithm, faplgs withn = 60 nodes,
different topologies.

Consequently, the Frobenius norm will, in some cases, gailg good idea of the contraction
rate, not only asymptotically but also during the transiérta large range of initial measurement
vectors. In the case where the initial measurements ateGaussian, this norm actually precisely
represents the expected contraction rate.

6.1.3 Gossip — Optimal Weighting

We conclude this series of observations by a last remarkeraimgy gossip algorithms, and more
precisely about the choice of the weight on the active linke Tisual update strategy in gossip
algorithm is that, when two nodésind;j exchange their current valueg(t) andz;(t), they both
update their estimates of the global average to the locahgeeof the two, i.e.

7i(t) + ;()

rit+1)=2;(t+1) = 5

(6.1.14)
While this intuitively seems to be the fastest mixing stggiehis should not be taken for granted in
general. In fact, there are many cases in which the aboveeipdaation is not the optimal gossip
communication (2 by 2 communication) strategy.

Instead of using update equation (6.1.14), consider th@folg generalization

it +1)=(1—a)z(t) + a z;(t) (6.1.15)
zi(t+1) = a z;(t) + (1 — a)z (1), (6.1.16)

wherea is a positive constant denoted in the following aslthk weight and is preferably in the
interval 0.5 < a < 1. In this extension, we still consider the link weight to beamstant, the
same for all links and for all times, a constant to be specifieadvance in the communication
protocol. Consequently, this generalization does notrirmay additional communication costs
when compared to the classical gossip setting, which qooreds to the special case = 0.5.
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From an analytical point of view, the only difference is tlla¢ update matriceSV (¢) are no
longer projection matrices. The fact the link weight doesaiange over time ensures stationarity
and ergodicity of the averaging process, which allows usstothe asymptotic contraction rage
to analyse the convergence speed.

Figure 6.5 shows the (approximate) asymptotic contraatat@~ as a function of the link
weighta, for different network topologies. The considered netvsaake:

1) Full graph: Simplest possible topology model, any nodg awatact any other node with equal
probability.
2) Geometric graph: Nodes are uniformly i.i.d. on the unitag. A node may communicate with

any node within a range, in the considered case= 0.3.

3) Regular graph: Every node has exactly the same numberigtib@'s, but the graph has no
geometric structure.

For the plot, we considered networks of size= 60, and computed an approximation of
averaged over 500 different graphs according to the casreipg structure, i.e. either random
geometric graph (RGG) or regular graph. Averaging is noessary for the full graph, as this type
of graph has only one realization.

The optimal link weight is in generalot equal t00.5, as can be seen in Figure 6.5. Especially
when the graph has a strong geometric structure, i.e. twaemad nodes share most of their
neighbors, but there are few connections in total, the $asteeraging is achieved at values very
close to one, in the considered example around 0.86. Also in the case where the number of
links is limited but there is no geometric structure, thampt link weight is greater that.5, even
though the effect is much weaker than in geometric graphthdrexample given with degree 6,
the best contraction rate is achieved around 0.66. Finally, if the pairs of nodes to communicate
are drawn uniformly upon all pairs of nodes, the intuitiveice o« = 0.5 is the best strategy for
averaging.

Inhomogeneous connectivity across the graph explainpbi@aomenon. In geometric graphs,
it is badly connected nodes at the periphery of the graphiwimait convergence speed. These
nodes get to communicate less often than others, and whefirtay do, it might be advantageous
for them to basically “take over” the value provided by thét&econnected neighbor, and to “give
away” to that other node their own value, to be diffused to k&t of the network. A similar
argument also holds for the regular graph. Although thezenamodes which are better connected
than others, there still may exist well connected clustghsch are poorly linked to one another.

Link weight has decidedly a great influence on contractioe. la many cases, averaging speed
can be significantly improved at no cost, by choosing a linigiveother thany = 0.5. Link weight
should be regarded as a design parameter in systems usisig glgorithms. As further work, it
might be interesting to investigate how the optimal link giei depends on particular topology
parameters, for example average node degree, the girtle gréiph, or the maximum connection
length in geometric graphs. Further improvements couldchéesged at the expense of making the
protocol more complicated. Link weight could for example be modulated as a function of the
position of the nodes in the graph. One could also think ohgh®g o as a function of time in
order to improve finite time averaging performance.

6.2 Summary

The foregoing observations show a few examples how thequislyi derived tools, in particular the
contraction coefficient and its bounds, may be used to stuglp&havior of averaging algorithms.
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These tools were derived in an abstract mathematical framigwhich applies to the considered
algorithms, but also matches to a variety of other probldméact, these tools may be used to
study any linear system whose dynamics are governed byi@rstat, ergodic sequence of random
matrices, regardless of the specific probability distidoubf the matrix elements. The conditions
for the contraction coefficientitself to exist are very weak, and basically relate to thera®aness
of system parameters, which is given in all physical systéfsapply the bounds derived in
Chapter 4, more restrictive assumptions are required. Tagicas to be multiplied should not
only form an ergodic sequence, but need to be independenitiantically distributed. A further,
more technical requirement is that the second momentsjdimg} cross-moments, of the matrix
elements’ distributions exist and are finite.

In the considered application, the study of averaging &lgois in time-varying networks, this
very general model is restricted to systems governed byesegs of doubly stochastic matrices.
However, this very special case actually reverts to theig¢oee, after subtraction of the invariant
subspace spanned by the vectorwhose behavior is trivial and of no interest. While product
sequences of doubly stochastic matrices are the applcatdocused on, the model presented in
Chapters 3 and 4 may apply to various other random dynamjstss.

Finally, the main advantage of our approach is that it presid sound, accurate, simple, and
theoretically founded method to analyze the performanterms of convergence speed of a given
system. We provide an in depth description of the mathemiatols used, and precise statements
of the inferred consequences of these theorems, togetttetheir practical application. The con-
traction coefficient is a metric for the asymptotic contiactrate of the system, when it runs for a
long time. It is simple to compute, as it converges almostlgland not only in expectation, when
considering long time intervals. Consequently, a singteusation run is sufficient to determine it
for a specific system. We also derived simple, concise upm@ndbs on the contraction coefficient.
Empirical observations have shown one of these is a gooddyanmd might even be asymptoti-
cally tight. Further, the contraction coefficient is a lovbeund on the overall contraction rate. A
transient phase appearing shortly after initializatiothefsystem and before the stationary regime
may lead to a faster convergence rate at the beginning, wéymitily slows down to the asymptotic
rate. Finally, our method facilitates a separate studyasfdient and stationary phenomena.
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