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ABSTRACT 
This paper introduces a mathematical model to evaluate fast and cost-effective 3D image sensors 
based on single photon detectors. The model will help engineers evaluate design parameters based 
on operating conditions and system performance. Ranging is based on the time-of-flight principle 
using TCSPC techniques. Two scenarios are discussed: (i) short-distance range indoors and (ii) 
medium-distance range outdoors. The model predicts an accuracy of 0.25cm at 5m with 0.5W of 
illumination and 1klux of background light. In the medium-range scenario, a precision of 0.5cm is 
predicted at 50m with 20W of illumination and 20klux of background light. 

1. INTRODUCTION 
Interest in cost-effective and miniaturized three-dimensional (3D) cameras has grown significantly 
since the publication of the first solid-state ranging imagers based on CCD/CMOS technologies [1]-
[8]. As widely acknowledged in the literature, single-photon detectors (SPD) and, more specifically, 
single-photon avalanche diodes (SPADs) bring high timing precision to 3D imaging. This paper 
focuses on the modeling and simulation of solid-state 3D image sensors based on SPADs in 
standard CMOS technology for two evaluation scenarios: (i) short range up to 7.5m and (ii) medium 
range up to 50m. The model assumes time-of-flight (TOF) rangefinding using time-correlated 
single photon counting (TCSPC), as in [5]. The model is based on simple and inexpensive signal 
processing steps so as to reduce area utilization and power consumption on an integrated solution. 

References [9] and [10] present two mathematical models for performance evaluation that can be 
applied to rangefinders based on SPADs. In both models, it was assumed that SPADs operate in 
“gated” mode. By definition, in gated mode a sensor is active within a time window. For instance, if 
the distance of the target is known, gating may reduce the influence of background light by 
blocking it outside a given interval around the corresponding TOF. This technique is particularly 
useful for single-shot measurements to reduce the probability that the SPAD is in dead time during 
the time window of interest due to a background photon. Single-shot measurements are especially 
attractive when the range of detection is very large, thus reducing the time available for averaging.  

In [9], a probabilistic model was developed to assess the probability of correct detection and the 
probability of false alarms. The model is suitable when the number of averaged illumination pulses 
is limited to 1-10. However, TCSPC relies on a relatively large number of measurements for 
histogram processing, allowing excellent noise reduction. The model described in [9] is therefore 
not used in this work. Reference [10] is also based on gated operation of SPDs. The special case 
considered by the authors is characterized by means of an artificial photon detection probability 
exponentially decreasing with respect to TOF. This undesirable behavior only occurs when gating is 
assumed.  

In our model, due to the short distance ranges we deal with, a continuous free-running mode is more 
appropriate. In free-running mode, the SPD can be triggered at any time. Upon photon absorption, 
the usual dead time applies. Assuming a dead time lower than the illumination repetition period, the 
TCSPC principle will not exhibit the artificial behavior of [10]. As a result, the model proposed in 
[10] is not used in this work for general performance evaluation, except for the estimation of 
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distortion. In addition, in free-running mode, the total count rate of the SPD can be much higher 
than the illumination repetition rate. 

The model was built so as to make the decision on design parameters easier. Examples of design 
parameters are illumination power, illumination pulse width, optical SNR, and time-to-digital 
resolution. In addition, robustness of the distance measurement is also taken as a design parameter. 

2. IMAGING PRINCIPLE AND OPERATING CONDITIONS 

2.1 Range Imaging Principle 
TCSPC is a technique for the measurement of time properties of low light level signals. This 
technique has been used for many decades in research, especially in particle physics and biology. 
Fig. 1 shows the principle of a 3D imaging setup based on TCSPC. The method uses a pulsed light 
source with high repetition rate to illuminate the target. SPDs are used to detect back-reflected 
photons and to trigger a time-to-digital-converter (TDC), thereby measuring the round-trip TOF of 
the light beam. TCSPC requires that a relatively large number of detection cycles be collected to 
build a histogram. The main assumption is that background light (BG) and any intrinsic detector 
noise (DN) are not correlated to the illuminating pulses. As a result, the contribution of DN and BG 
is uniformly distributed in the histogram. The signal, by contrast, is correlated to the illumination 
light and thus generates an accurate replica of the illumination pulse waveform in the histogram. 
Under certain conditions of signal-to-noise ratio (SNR), BG and DN can be nearly fully separated 
from the signal. The position of the illumination pulse in the histogram provides TOF. The distance 
from target to image plane d of each imaged point is computed according to the formula shown in 
the picture, ideally in a parallel fashion. 

 
Fig. 1. 3D imaging setup based on TCSPC. The histogram shown here represents a measurement example. 

2.2 Background Light 
Background light is a major issue for any 3D image sensor operating outdoors. In order to correctly 
predict the influence of this omnipresent source of noise, we used a simple model based on Planck’s 
Blackbody radiation at a temperature of 6000°C. In this paper, we neglect the presence of 
attenuation in the atmosphere at certain wavelengths. This simplification remains very reasonable in 
the very near infrared spectral range, which is the range assumed in this work. The main input 
parameter for this model is the total illuminance in klux. The illuminance is converted to irradiance, 
(in W/cm2), to be used with measurements of photon detection probability. The illuminance 
considered outdoors is 100klux. Nonetheless, since it corresponds to a normal incidence, a more 
appropriate value of 20klux is used. 



2.3 Optical Component Parameters 
In order to reduce the effects of background light on the image plane, a narrow-band interference 
optical filter (NBOF) is used. NBOFs are commercially available and can be readily customized for 
a given application. The main parameters of NBOF are (a) the central passband wavelength (λ0), (b) 
the passband full width at half maximum (FWHM) in nanometers, (c) the maximum transmission at 
the passband peak, and (d) the stopband transmission. Though NBOFs with passband FWHM as 
low as 1nm are commercially available, we prefer to relax this constraint. This choice allows for λ0 
to vary as a function of the incidence angle. It also accounts for active illumination (λL) variability 
due to temperature variations and aging. An additional optical component included in the model is 
the imaging lens. The imaging lens is simply modeled in terms of its f-number (f/#). Tab. 1 lists the 
operating conditions used in this work.  
Tab. 1. List of parameters assumed in this work. 

Parameter Description (i) Short range (ii) Med. range Unity 
BG Total background light illuminance 1 20 klux 
αFV Diagonal field-of-view angle considering a aspect ratio of 1:1 40 25 ° 
RD Maximum target distance (range) 7.5 50 m 
f0 Illumination repetition rate (or cyclic frequency) 20 3 MHz 
T0 Illumination period (1/f0) 50 333.33 ns 
IAP Illumination average power 0.5 20 W 
στ Illumination half pulse width (Gaussian shape, στ  ≅ 0.425FWHM) 0.25 1 ns 
Δt Resolution of time-to-digital converter 50 200 ps 
λL, λ0 Illumination and NBOF central wavelength 785 nm 
FW NBOF FWHM in the passband 30 nm 
PBT NBOF peak transmission in the passband 50 % 
SBT NBOF transmission in the stopband 0.01 % 
f/# Imaging lens f-number f/2.0 m-1 
RO Target object reflectivity 50 % 
FR Image frame rate 20 fps 
T Integration time (defined as the inverse of FR) 1/20 ms 
DSPAD SPAD diameter 10 μm 
FFSPAD SPAD fillfactor 10 % 
η, PDPSPAD SPAD photon detection probability at λL 10 % 
SATSPAD SPAD count rate at saturation  30 MHz 
σSPAD SPAD timing jitter (RMS) 35 ps 

3. TCSPC DETECTION MODELING 
Another very important assumption in TCSPC is that, on average, less than a photon from active 
signal is detected per cycle. When this condition is not met, the signal experiences distortion. This 
is commonly known as “pile-up” effect in TCSPC. Many authors reported ways to correct pile-up 
distortions when it is moderate [11]. In order to keep pile-up distortion below reasonable levels, it is 
possible to intentionally reduce the detector count rate via attenuator or filter as assumed in [9] and 
[10]. Pile-up distortion may be analytically evaluated by assuming for instance a Gaussian shape for 
the illumination optical pulse [10], i.e.,   
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where Q is the optical energy per illumination pulse, στ characterizes the pulse width, and P(t) is the 
optical power. Assuming Poisson statistics, the distorted optical power ( )tP~  becomes 
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where η is the photon detection probability (PDP) of the SPD and erf(⋅) is the error function of a 
normal distribution. If M is the number of photons from active signal detected on average per 
illumination cycle, then we may find a practical limit to be applied in a 3D image sensor. As an 



example, equation (2) may be evaluated for M=1. In this case, the distortion causes a timing error of 
approximately 20% of the optical pulse width (στ). In practice, depending on desired accuracy, this 
condition can be assumed as the upper limit for acceptable distortion. When extremely high 
precision is required, one should consider lower counting rate. Numerical simulations show that 
when M is 0.1 or below, distortion effects become negligible.  

A TCSPC system can be optimized by increasing the illumination repetition rate to the maximum 
allowed. Let T0 be the period of the illumination cycle, then for a given measurement distance range 
RD, the illumination repetition frequency f0 can be defined as 
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where c is the speed of light. Since M is a function of target distance and reflectivity, it is difficult to 
choose a fixed attenuation factor that covers the full range of a 3D image sensor. Practical 
realizations of this method will make designers opt for a variable and electrically tunable attenuator. 
If the SPD is implemented as a SPAD, one may vary its PDP as a function of the counting rate in a 
closed-loop circuit. This circuit may be additionally used to regulate SPAD biasing in large 
temperature range and could be adjusted to implement this additional function. The actual 
implementation of the assumed closed-loop attenuation circuit is beyond the scope of this paper. 

Assuming a Gaussian illumination pulse as in (1), an average photon detection rate from BG and 
DN as <N>, an average photon detection rate from active signal as <S>, then we can define the 
optical SNR as 
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Hence, the total average photon detection rate of a SPD is assumed to be <S> + <N>. When the 
proposed setup is used to build a histogram during integration time T, the histogram h*(τ) can be 
described by 

 ( ) ( ) ( ),*** τττ snh +=  (5) 

where n*(τ) and s*(τ) are random variables. In order to simplify the notations hereafter, h*(τ), n*(τ) 
and s*(τ) will be described by their mean values h(τ), n(τ), and s(τ), respectively. Assuming that the 
resolution of TDC (Δt) is smaller than στ, it follows that n(τ), the contribution from BG and DN in 
the TCSPC measurement, is given by 
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s(τ) describes the signal density in h(τ) and it has almost the same shape of P(t),  
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where TOF is the time-of-flight to be measured. Fig. 2 shows the mean value of histogram h(τ) and 
a snapshot of h*(τ) for a given set of parameters. h*(τ) is shown to illustrate the effect of its 
randomness due to n*(τ) and s*(τ). One should notice that h*(τ) is a discrete function with constant 
time intervals given by Δt.  



   

 

 

 

Fig. 2. Histogram mean value h(τ) (left-hand side) and h*(τ) (right-hand side). Assuming SNR = -26dB, T0 = 
333.33ns, στ  = 1ns, Δt = 200ps, <N> = 106 Hz, TOF = 166.67ns, T = 50ms. 

As seen in Fig. 2, TCSPC enables clear discrimination between signal and noise even at low SNR. 
Among different algorithms, in this model, we focus on an algorithm that uses the timing position 
of the signal’s peak as a reference to perform noise suppression. This approach has a number of 
advantages. For instance, the values taken by h(τ) will vary over a very large range due to 
measurement conditions such as SNR and target’s reflectivity, whereas the timing position of the 
signal’s peak for a fixed target does not. Let the timing position of the signal’s peak be TOF’ and its 
pulse width be PW, then one could accurately determine TOF very simply as following 
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then we use the time interval  
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to determine a mean value of τ. The mean value of τ may be estimated as the abscissa of the 
centroid of h(τ), 
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Note that PW is known a priori and it does not depend, to a first approximation, on measurement 
conditions. Indeed, PW is the pulse width of the resulting convolution between the overall detection 
circuit response function and the illumination pulse P(t). PW is therefore chosen to accommodate 
the worst-case spreading of the signal pulse. In addition, TOF’ can be effortlessly computed during 
histogram generation using a simple hardware register when fully digital implementation is 
adopted, thus reducing the post-processing window only to interval given by (9).  

Using the proposed algorithm, we can determine the conditions under which one could, with a 
desired certainty, accurately find TOF’. The computation of TOF’ is a crucial step to retrieve the 
actual TOF value. As can be expected, the probability of an incorrect estimation of TOF’ increases 
when SNR is exceedingly low. Let us assume that one requires a reliable measurement of TOF with 
a given confidence level stated by a probability P. For instance, let us assume the user desires to 



rely on 99.7% of the TOF measurements, i.e. P=0.997. Then, we can predict that the signal will be 
successfully discriminated from noise, by successfully obtaining TOF’, when 

 ( ) ,' nnss nTOFh σασα +>−  (11) 

where σs and σn are the standard deviations of the quantities h*(TOF’) and n*(τ) respectively. αs
 

and αn are parameters used to set the confidence level of the measurement given by 
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where erf -1(⋅) is the inverse error function. Assuming that h*(TOF’) and n*(τ) are Poisson-
distributed, we can determine their standard deviations σs and σn as 

 ( )'TOFhs =σ  and .nn =σ  (14) 

Based on equations (6)-(7), (11), one can determine the minimum signal count <S> necessary to 
perform a correct detection with confidence level given by P via 
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<S>MIN may be used to determine the minimum illumination power necessary to ensure a reliable 
measurement using (8) and (10). If this constraint is not met, even though a TOF value can be 
computed, there is no guarantee that it is a reliable measure. It is possible that different algorithms1 
would allow TOF to be confidently determined when the condition on <S>MIN is not satisfied. 
Nonetheless, in this model, we chose an algorithm that is fast, accurate and inexpensive. 

Under the condition of equation (15), we can determine the standard deviation of TOF, i.e. σTOF. In 
particular, we will use the benefits of averaging to improve precision. TOF is defined as the 
centroid position of the light pulse within the interval given by (9). When performing each TOF 
measurement using (10), the fluctuations of n*(τ) and s*(τ) lead to an uncertainty on TOF. Let us 
assume that there exist two contributions to such uncertainty. Let us also assume that these 
contributions are two statistically independent random variables with zero mean. Then, the variance 
of TOF can be modeled as a linear combination of σTOF,N

2 and σTOF,S
2, i.e. the variances due to the 

fluctuations of n*(τ) and s*(τ), respectively. Considering that every point of n*(τ) within interval 
(9) is a statistically independent random variable whose mean value is n  and whose standard 
deviation is σn, then, by applying the formula of error propagation on equation (10) σTOF,N is 
determined as follows 
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1 For instance, algorithms based on curve fitting, on scale space filtering, or on bump hunting procedure. 



The term σTOF,S is determined by inspection, assuming a reduction of the single-shot error στ by 
square root of the number of signal measurements stored in s(τ), i.e. 
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Finally, σTOF is determined by combining  (16) and (17) into σTOF as 

 .

22

22
1

121

0

2
2

0

2

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
+

⋅

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
+⎟

⎟
⎠

⎞
⎜
⎜
⎝

⎛
−⎟

⎠
⎞

⎜
⎝
⎛
Δ⋅⋅

Δ⋅

⋅><
=

τ

τ
τ

σ

σ
σ

σ
PWerf

TSNR
PW

PWerf
t

PW
TSNR

tPW

TSTOF
 (18) 

In order to evaluate σTOF as a function of the distance, we introduce an attenuation factor in the 
model so as to reduce the pile-up effect, i.e.. ><+>< NS 0f≤ . The attenuation is applied 
simultaneously on the signal and on BG. As a result, the pile-up effect will be limited as follows 
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4. SIMULATION RESULTS 
Based on the parameters of Tab. 1 and assuming PW = 2στ, we evaluated the performance of 
TCSPC measurements in the two proposed scenarios. Note that σTOF is converted to distance 
uncertainty. 

4.1 Short Range Scenario 
Fig. 3 shows <S>, <N>, and <SMIN> as a function of target distance. As <S> reduces quadratically 
with the target distance due to the divergence of the illumination beam (field-of-view angle), the 
attenuation circuit is active only when the target is extremely close to the camera. The parameters of 
Tab. 1 for short range are a good compromise between illumination power and distance accuracy. 
Indeed, <S> is higher than <SMIN> throughout the distance range. The worst-case distance 
uncertainty is 0.25cm (σTOF of 16.6ps) whereas the distance resolution is 0.75cm (ΔT of 50ps). 
 

Fig. 3. <S>, <N>, and <SMIN> as a function of target distance for the short range scenario (left). Distance 
uncertainty σTOF as a function of target distance (right). 



4.2 Medium Range Scenario 
Similarly to the previous scenario, Fig. 4 shows <S>, <N>, and <SMIN> as a function of target 
distance for the medium range evaluation scenario. The worst-case distance uncertainty is 0.5cm 
(σTOF of 33.3ps) whereas the distance resolution is 3cm (ΔT of 200ps). 
 

Fig. 4. <S>, <N>, and <SMIN> as a function of target distance for the medium range scenario (left). Distance 
uncertainty σTOF as a function of target distance (right). 
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