
POUR L'OBTENTION DU GRADE DE DOCTEUR ÈS SCIENCES

PAR

M.Sc in maritime engineering science, University of Southampton, Royaume-Uni
et de nationalité italienne

acceptée sur proposition du jury:

Prof. J. R. Thome, président du jury
Dr P. Leyland, directrice de thèse

Prof. L. Formaggia, rapporteur 
Dr S. Merazzi, rapporteur 

Prof. A. Quarteroni, rapporteur

Parallel Mesh Adaptive Techniques for Complex 
Flow Simulation

Angelo Casagrande

THÈSE NO 4163 (2008)

ÉCOLE POLYTECHNIQUE FÉDÉRALE DE LAUSANNE

PRÉSENTÉE le 19 septembre 2008

À LA FACULTE SCIENCES ET TECHNIQUES DE L'INGÉNIEUR

LABORATOIRE D'INGÉNIERIE NUMÉRIQUE

PROGRAMME DOCTORAL EN MÉCANIQUE 

Suisse
2008





Abstract

Dynamic mesh adaptation on unstructured grids, by localised refinement and derefine-

ment, is a very efficient tool for enhancing solution accuracy and optimise computational

time. One of the major drawbacks however resides in the projection of the new nodes

created, during the refinement process, onto the boundary surfaces. This can be addressed

by the introduction of a library capable of handling geometric properties given by a CAD

(Computer Aided Design) description. This is of particular interest also to enhance the

adaptation module when the mesh is being smoothed, and hence moved, to then re-project

it onto the surface of the exact geometry.

However, the above procedure is not always possibly due to either faulty or too com-

plex designs, which require a higher level of complexity in the CAD library. It is therefore

paramount to have a built-in algorithm able to place the new nodes, belonging to the

boundary, closer to the geometric definition of it. Such a procedure is proposed in this

work, based on the idea of interpolating subdivision.

In order to efficiently and effectively adapt a mesh to a solution field, the criteria used

for the adaptation process needs to be as accurate as possible. Due to the nature of the

solution, which is obtained by discretisation of a continuum model, numerical error is in-

trinsic in the calculation. A posteriori error estimation allows us to somewhat assess the

accuracy by using the computed solution itself. In particular, an a posteriori error estima-

tor based on the Zienkievicz Zhu model is introduced. This can be used in the adaptation

procedure to refine the mesh in those areas where the local error exceeds a set tolerance,

hence further increasing the accuracy of the solution in those regions during the next com-

putational step. Variants of this error estimator have also been studied and implemented.

One of the important aspects of this project is the fact that the algorithmic concepts

are developed thinking parallel, i.e. the algorithms take into account the possibility of

multiprocessor implementation. Indeed these concepts require complex programming if

one tries to parallelise them, once they have been devised serially. Another important and

innovative aspect of this work is the consistency of the algorithms with parallel processor

execution.

Keywords: mesh adaptation; computational geometry; computer aided design; interpo-

lating subdivision; a posteriori error estimation; parallel computing.
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Résumé

L’adaptation dynamique des maillages sur grilles non structurées, par moyen de raffine-

ment et déraffinement localisé, est un moyen très efficace pour améliorer une solution

numérique et pour optimiser le temps de calcul. Une des difficultés majeures de cette

méthode est la projection des nouveaux nœuds, crés dans le processus de raffinement, sur

les surfaces-frontière. Ceci peut être résolu avec l’introduction d’une librairie capable de

gérer les propriétés géométriques données dans une description CAO (Conception Assistée

par Ordinateur). Ceci est aussi intéressant pour améliorer le module d’adaptation quand

le maillage est lissé, donc déplacé, pour pouvoir le reprojeter sur la surface de la géométrie

exacte.

Cependant, la procédure ci-dessus n’est pas toujours possible à cause soit d’une géométrie

avec des erreurs, soit d’un design trop complexe, ce qui demande un plus grand niveau

de complexité de la librairie CAO. C’est donc primordial d’avoir un algorithme ”built-in”

capable de placer les nouveaux nœuds qui appartiennent à la frontière près de la définition

géométrique de celle-ci. Une procédure de ce type, basée sur l’idée des subdivisions inter-

polantes, est proposée dans ce travail.

Pour pouvoir adapter efficacement un maillage au champ solution correspondant, les critères

utilisés dans le processus d’adaptation doivent être les plus précis possibles. A cause de

la nature de la solution, qui est obtenue par discrétisation d’un modèle continu, l’erreur

numérique est intrinsèque au calcul. Une estimation a posteriori de l’erreur nous permet

d’évaluer la précision en utilisant la solution elle-même. Plus en détail, un estimateur

d’erreur a posteriori de type Zienkiewicz Zhu est introduit. Ce dernier peut être utilisé

dans le processus d’adaptation pour raffiner le maillage dans les régions pour lesquelles

l’erreur locale dépasse une certaine valeur, pour pouvoir augmenter la précision de la solu-

tion dans ces régions lors du pas de calcul suivant. Des variantes de cet estimateur d’erreur

ont aussi été étudiées et mises en œuvre.

L’une des caractéristiques importantes de ce projet est le fait que l’algorithmique a été

développée en prévoyant une utilisation en multiprocesseur du programme. En effet, ces

concepts demandent un effort important de programmation pour pouvoir paralléliser un

logiciel qui a été développé et conçu pour une exécution sérielle. Un autre aspect important

de ce travail est la cohérence de l’algorithme avec l’exécution parallèle multiprocesseur.

Mots clés: maillage adaptatif; géométrie algorithmique; conception assistée par ordina-

teur; subdivision interpolée; estimation d’erreur a posteriori; calcul parallèle.
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1
Introduction

The thesis aims at developing novel techniques for the solution of transient problems in

physics and engineering by moving adaptive meshes. The methodologies developed here

will be of a fundamental nature and extendible to different ranges of applications. Al-

though the primary target will be transient aerodynamics or biological flow dynamics, the

methodologies could be applied also to other classes of problems, such as fluid-structure

interactions.

1.1 Why parallel adaptation?

Many concurrent compressible flow solvers for industrial problems are based on block

structured grid methods, for their numerical robustness and simplifications of implemen-

tation for numerical schemes which require upwinding for instance. The grid generation is

more tedious than unstructured methods, being less flexible. These constraints are being

reduced more and more by more powerful, user-friendly tools, however, they remain at

present complicated and time-consuming. For these reasons research teams and industry

turn towards unstructured grid solvers which allow simpler automation of the initial grid

generation process, and have the potential to achieve fast turnaround. Unfortunately, state

of the art finite volume methods, which are typical for advection dominated situations, on

unstructured grids can have disappointing accuracy and efficiency compared to the analo-

gous methods on structured grids. Indeed, the accuracy of the standard methods may be

hindered by irregularities in the mesh, which are often found in unstructured grids. Mesh

adaption here plays an important role in ensuring that the mesh is correct, in a highly

automated way.

Furthermore, present day research on solution techniques for transient phenomena is a

very important subject, as the applications are widespread throughout the vast field of

computational physics. In particular the present thesis concentrates on transport situa-
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tions which are present everywhere within physics, engineering and biomedical applications.

Firstly, in many engineering sectors such as the aeronautical, aerospace, aircraft compo-

nents, motors, complex welding, as well as micromechanics and civil engineering which

use simulation methods as part of the conception cycle. The integration of such computa-

tional methods allows also to consider accurate multidisciplinary design processes whereby

coupling of heterogeneous phenomena can be taken into account, such as the coupling of

the effect of flow on structural deformation, the effect of film cooling on near wall flow

characteristics and the modified performance, unsteady effects in afterbody flow over air-

craft and their effect on drag prediction for instance. Secondly, in biomedical flows, the

comprehension of the flow phenomena and the effects of the moving boundaries are primor-

dial to model and learn about the complex behaviour of the cardiovascular system. More

and more multidisciplinary coupling procedures enter into the design cycle of economical,

biomedical and engineering situations.

The present project will concentrate on methodologies for such applications in order to

propose algorithms that are accurate and efficient.

1.2 State of the art

The development of mesh adaptation has seen many advancements since its first appear-

ances in the early 1980s. Since then reviews have appeared on the subject to gather the

most successful developments [1, 2, 3, 4]. These covered exhaustively the fundamental

aspects of mesh adaptation, as well as other related aspects such as error estimation and

parallelisation.

Here we give an overview of the different methods presented in literature in the last decade

or so to place the contribution of the present work in context. In order to do so, the

various aspects comprised in parallel mesh adaptation are treated separately, to follow the

structure of the thesis which will be outlined at the end of this chapter.

1.2.1 Mesh adaptation

This aspect comprises many features, such as the techniques and criteria for adaptation,

and the strategies employed for its achievement. The techniques for adapting the mesh are

described in detail by Löhner [1] in one of the first reviews on the subject, and Mavriplis [2]

in a report on mesh generation and adaptation during the same time period. These were

picked up again in a later review by Baker [4]. These techniques, which fall into three main

categories (grid movement, enrichment, solution enhancement), have been the basis for the

adaptation process and remain practically unchanged since the first implementations. For
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grid enrichment in particular, since it is the most widely used approach, various techniques

have been proposed through the years [5, 6, 7, 8, 9, 10]. Most of these efforts concentrate

on remeshing, either partial or complete, and interesting strategies for local remeshing.

This last technique has many similarities with the subdivision enrichment technique when

using optimisation techniques which locally remesh the grid, although this is usually done

for internal elements and not boundary ones. However due to the possibility of remeshing

the surface, the former type of remeshing needs the geometric definition of the surfaces, or

alternatively the previous surface mesh.

The criteria to decide whether to adapt the mesh on the other hand have seen various

methodologies being used. Once again the work by Löhner [1] illustrates the most popular

indicators used at the time, which have not changed much in basic type but have evolved

considerably along these lines since then. In particular a lot of work has been carried out

on the subject of error estimation. Developments on error estimation are based on the work

carried out by Babuvška and Rheinboldt [11], which introduced a residual based estimate

of the error. Since then the procedures developed for error estimation may be divided into

two mainstreams; the residual based just mentioned, which saw further development with

important work from Ainsworth and Oden [12, 13] and others, and the recovery based

approach. For further details on the background of the two methods we refer the reader

to a recent paper by Zienkiewicz [14].

The work presented here is founded on recovery based a posteriori error estimation, which

became increasingly popular in the mesh adaptation field after the introduction of a simple

technique developed by Zienkiewicz and Zhu [15] for finite element approximations. This

was further developed a few years later by the same authors [16, 17], which lead to one of

the popular error estimators used up to date. Reviews by Verfürth [18] and Ainsworth &

Oden [19] give a complete overview on the subject and are still the standard reference for

any a posteriori error estimation publication. Further improvements were carried out by

Zienkiewicz, Boroomand and Zhu [20, 21], and more recently by Möller and Kuzmin [22]

and by Maisano et al. [23]. This last work introduces in particular the use of the recovered

gradient to detect shock waves without over-refining the mesh as well as better localising

elements.

Refinement and coarsening methods strongly depend on the adaptation technique that

is employed. Whilst remeshing is associated to the problems encountered in grid genera-

tion, particular care is needed when refining and coarsening the existing mesh. Here the

work by Kallinderis and Vajayan [24] introduced the concept of hierarchical mesh adap-

tation techniques, in which refinement leads to a nested procedure, whilst coarsening is

only applied to previously refined meshes. Along the same timeline the initial work by
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Richter [5] first, and that in collaboration with Leyland [25], introduces non-hierarchical

mesh adaptation. This is the method used in this work, and although more complex in

its algorithmic than background mesh techniques, it allows more freedom for mesh opti-

misation. Refinement techniques used here are common in literature and are based on the

subdivision strategy developed in [26]. What is less common is the introduction of algo-

rithms capable of preserving the boundary of the domain when adding nodes. A possibility

to tackle this challenging problem was proposed by Weatherill [6] with the use of Hermite

interpolation. Although this work was set originally for remeshing, and in a similar way

the work by Löhner [27], it set the ground for the work that followed by Baker [28, 29],

where the same technique is used for approximating the boundary and projecting the new

mesh point to it. Coarsening on the other hand makes use principally of segment collaps-

ing algorithms which have been widely developed through the years. The vast majority

however uses a patch or a shell of elements around the edge to be collapsed, such as those

proposed by Carey [30]. Some of these include local element reconstruction based on the

Delaunay criteria [5] in the shell where the segment is collapsed, and an average positioning

for the node resulting from the edge collapse based on a surrounding shell [31]. A similar

procedure to this last one has been evaluated in a recent publication by Walter et al. [32],

whilst Savoy [33] proposed the use of the shell curvature angle to decide what segment

to collapse. This last concept is used here and will be described in greater detail in the

chapter dedicated to mesh adaptation.

Mesh optimisation is generally linked with edge or face swapping, and smoothing. This

topic has been thoroughly studied by Freitag and others [34, 35, 36] in recent years. Let

us first begin by noting that the previously mentioned segment collapsing is also an opti-

misation technique. This can be carried out not only to coarsen the mesh, but related to

an optimal number of neighbours for each node as suggested by Richter [5], and later by

Carey [30].

Smoothing techniques rely on either Laplacian smoothing [34], or so called spring analogy,

which was first introduced by Batina [37] and further developed in [38]. The approach

followed here is the second, with amelioration to the original method carried out by Farhat

et al. [39, 40] with the inclusion of torsional springs, and Savoy [33] with the inclusion of

the influence of the number of node neighbours for each node as detailed in the chapter

that follows. For details on the considerations of spring analogy we refer the reader to an

investigation done by Blom [41].

Although the meshes used in this work are primarily isotropic, it is important to spend a

few words on the topic of anisotropy in mesh refinement as it has been widely used and

developed in the last decade. Here the idea is to capture strongly directional flows such
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as boundary layers, and other directional features such as shocks by means of stretched

elements. This allows to sensibly reduce the size of the mesh and consequently the number

of degrees of freedom involved to obtain a solution. Some of the techniques to achieve this

are resumed in the works of Formaggia and Selmin [42], Castro-Dı́az et al. [43], Peraire and

Morgan [44], and a series of papers by Habashi et al. [45, 46, 47, 48], where a more heuristic

approach to the problem was used. Other techniques have been presented by Siebert[49],

Apel [50], Formaggia and Perotto [51], where a more rigorous approach is used, based on

error estimation. Along the same lines of this last technique are more recent publications by

Formaggia et al. [52], Micheletti et al. [53, 54], Frey and Alauzet [55], and Picasso [56, 57],

all of which have been very active in this field of research in the past years.

1.2.2 Geometry considerations

Since one of the aims of this work is to maintain the boundary description during the

adaptation process both when there is a geometry description available and when there

is only a computational mesh, we consider here some of the most relevant work that has

been done in recent years on similar subjects.

Let us consider first the case where only a triangulated surface is available. Here once

again the work of Löhner [27], Baker [28] and Weatherill [6] render interesting features,

and in particular the approach described in Baker [29] seems very promising. Another

promising work has been recently published by Persson et al. [58], whereby the use of Loop

subdivision surfaces are used as a surrogate for the geometry description. This last idea

shares the same principles to what is proposed in this work with the use of interpolating

subdivision. This last has been profusely used in computer animation and much work has

been presented on it by Zorin and Schröder [59, 60].

Yet another possibility that has been recently further developed by Krysl and Ortiz [61],

and by Owen and White [62], is that of reconstructing a geometry from finite element

meshes or surface triangulation.

When geometry description is available, the aim is to be able to use it during the re-

finement process to project the new nodes and therefore maintain the exact boundary.

Due to the commercial value of such research topics it is problematic to find exhaustive

publications on the matter (if any), and/or the tools used to implement it. A complete

system for generating unstructured tetrahedral meshes, solving the equations of steady

compressible inviscid flow on such meshes, including adaptation, and the necessary visu-

alisation tools was developed by Peiró, Peraire and Morgan in the early 90s [63]. Whilst

in the system just mentioned the adaptation is carried out by remeshing, the work carried
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out in this thesis finds more similarities with the publications by Habashi et al. [48, 64] and

by Merazzi et al. [65]. In order to achieve this, a Spline Library (SISL) [66], developed at

the scandinavian research group SINTEF, was used. Some of the functionalities present in

this library, that are used in the present work, are documented in the work by Dokken [67].

A different approach to maintaining an exact geometry is that proposed by Hughes [68, 69]

in recent years. This method has many features in common with the finite element method

and some features in common with meshless methods such as those presented by Löhner

et al. [70, 71]. However, it is more geometrically based and takes inspiration from CAD. A

primary goal is to be geometrically exact no matter how coarse the discretisation. Another

goal is to simplify mesh refinement by eliminating the need for communication with the

CAD geometry once the initial mesh is constructed. Yet another goal is to more tightly

weave the mesh generation process within CAD.

1.2.3 Parallel aspects

Here the work by Karypis and Kumar [72, 73], Walshaw and Cross [74], and Bank and

Smith [75] on mesh partitioning has been particularly important in the world of parallel

computers. Much research has been carried out on parallel computing, and relative to the

topic of mesh adaptation in particular. Some of the more noticeable developments on the

subject have been done by Shephard et al. [3, 76], Leyland and Richter [77] which is the

basis of this work, and Oliker et al. [78]. More recently the work on parallel adaptation

has been extended also to unsteady flows, here it is worth noting the work by Waltz [79]

and that by Park and Kwon [80].

1.2.4 Related research

Although not directly related to the work carried out here, some important research topics,

that could offer interesting perspectives for either future implementations and/or technique

advancements that could be applied here, are discussed. First we consider Hybrid tech-

niques, where the aim is to use different type elements in the same mesh, to combine the

advantages of both structured and unstructured grids approaches. For an introduction

to the subject we refer the reader to Shaw [81], whilst for hybrid grids and adaptation

Kallinderis et al. [82, 83, 84, 85, 86, 87, 88, 89, 90] and Mavriplis [91] have been particu-

larly proficient in recent years.

Another interesting related subject is that of adjoint methods for partial differential equa-

tions (PDE). For a full review of the topic in detail the reader is referred to the work by

Giles and Süli [92], as here only a very brief explanation is given. This subject is in fact

strongly related to optimal control. The concept behind it is to consider the nonlinear
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discrete equations written in residual form for the residual Rh(Uh, g), where h denotes the

discretisation, Uh the approximate solution, and g a design variable. Then by differenti-

ating this with respect to the design variable g, this determines a change in the discrete

solution Uh when the design variable is changed. Hence given a nonlinear objective function

of these Jh(Uh, g), and deriving with respect to the design variable, then(
∂Rh

∂Uh

)T
Vh +

(
∂Jh
∂Uh

)T
= 0 ,

where Vh is the solution of the adjoint equation.

This sets the basis for error analysis as developed by Becker and Rannacher [93, 94].

Following work by Giles [95, 96], in collaboration with Pierce [97, 98, 99], and others [100],

set the steps for mesh adaptation using adjoint error analysis. Darmofal and Venditti [101,

102, 103, 104, 105] have been very prolific in recent years, and other developments have

been made by Müller and Giles [106] and Park [107].

The importance of these methods relies on the fact that this approach corresponds to

the functional analysis of the PDE system using duality, and hence tends to provide a

mathematically “exact” estimation of the solution residual.

1.3 Thesis Outline

The present work is structured in the following chapters, including the present introduction:

Chapter 2 is dedicated to the introduction of the theory behind mesh adaptation. In

particular the type of adaptation technique chosen is described, together with features

implemented for refinement, coarsening. Geometrical and structural optimisation

techniques are also outlined. Finally a few examples are shown to introduce the

reader to the practical side of the problem.

Chapter 3 addresses the core aspect of this thesis, which is the conservation of the un-

derlying geometry during the mesh adaptation procedure. A short theoretical back-

ground of the surface definitions used by the library introduced is given. This is

followed by a detailed description of how the system is implemented and what this

implies. Applications of the newly introduced feature are then shown by means of

three test cases.

Chapter 4 deals with the approximation of the underlying geometry by means of inter-

polating subdivision. A short introduction on the basics of this technique begins the

chapter, and the modified schemes for use with the adaptation process are presented.

A guideline of the implementation of the schemes is then given, followed by practical

examples with two test cases.
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Chapter 5 contains the error estimators implemented in adaptation process. A detailed

description of the approach is given for the two dimensional case, using triangles,

and for the three dimensional one, with tetrahedra. The implementation of the error

indicators is shown, with results for three practical examples shown.

Chapter 6 addresses the parallel aspects of the dynamic mesh adaptation in a message

passing environment.

Chapter 7 provides a summary of the results obtained in this work. The general direction

of the future work that could possibly follow on from what implemented here is also

discussed, and conclusions are derived.
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2
Principles of Adaptation

The accuracy of a numerical simulation is strongly dependant on the distribution of grid

points in the computational domain. For this reason grid generation remains a topical task

in CFD applications. Prior knowledge of the flow solution is usually required for a grid to

be efficient, i.e. matching the features in the flow field with appropriate grid resolution.

This however may not be available, requiring human intervention in analysing the results

of an initial solution, going back to the pre-processing stage, and take an educated guess

at how the mesh should be modified (fig. 2.1). Alternatively, a generally fine grid over

most part of the domain is generated to obtain a relatively good solution. Both the above

cases however require excessive time, effort and computational resources.

Figure 2.1: Manual adaptation process.
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2.1 Adaptation techniques

Let us consider the case with manual intervention by the user. This step can be automated

by adaptation, whereby the flow solution is analysed automatically, following some prede-

fined criteria, and the grid resolution adjusted to the problem. The use of such techniques

allows for computationally precise distribution of grid points (rather than eye-precision),

and for extremely reduced user-intervention, thus addressing the time and effort issues. It

also resolves problems related to computational time and costs, as the adapted grid can

have fewer overall points, with similar resolution in areas of interest, than an unadapted

fine mesh.

Adaptive methods can be grouped in three major types:

1. Grid movement, also known as r-refinement. In this case the mesh points and distri-

bution are moved to follow the physics of the solution.

2. Grid enrichment (h-refinement). Here the density of grid points is increased in regions

in order to minimise the space discretisation error.

3. Local solution enhancement (p-refinement). The precision of the solution is improved.

The first two techniques modify the grid by increasing the number of grid points in de-

termined areas, and are the most widely used in CFD applications. The latter instead,

increases the order of numerical approximation at locations of interest[7]. This powerful

technique is related to solution adaptation and requires the underlying numerical scheme

has a complete mathematical convergence theory. This is still an open question for many

numerical schemes on finite element type meshes for non-linear parabolic and hyperbolic

systems such as the compressible Euler and Navier-Stokes system of equations.

It is also possible and quite common to have combinations of the above techniques, which

lead for example to hp-refinement and hr-refinement techniques.

2.1.1 Grid movement (r-refinement)

This technique consists in moving the grid points towards areas where a higher accuracy is

required. As the name suggests, this is done without changing the topology of the mesh.

Solution accuracy is also maintained, since no interpolation is needed, and can be of ad-

vantage when dealing with transient problems.

The main drawback with this approach is the fixed number of nodes in the mesh. Their

10
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movement can hence cause severe distortions in the grid. This can be particularly prob-

lematic in the areas of the mesh close to the geometry, where this can be lost due to node

movement, and geometry description can be no longer guaranteed.

There are however procedures to reduce these kind of drawbacks, which involve geometric

criteria, and allow for better mesh regularity. This in turn guarantees no loss in geometry

description, but usually strongly reduces node displacements, thus reducing the effective-

ness of the method.

This technique has been mainly applied in structured meshes and 2D triangular meshes,

in particular for moving and/or deforming bodies, and transient problems. In 2D cases,

the conservation of geometry by explicit splines can be imposed.

2.1.2 Grid enrichment (h-refinement)

In this method the mesh topology is drastically changed, as nodes are added and removed

in order to capture flow features and at the same time reduce the computational load in

areas where the solution is sufficiently smooth. Therefore it is particularly suitable for

unstructured grids, where the structure can undergo significant changes.

The criteria for refinement and de-refinement can be based on solution based criteria and/or

error estimation criteria. Grid enrichment may be further divided into two main streams,

grid remeshing and grid subdivision.

Grid remeshing

This consists in remeshing completely or partially the domain, based on the solution ob-

tained. Grid generation time, and cost of solution interpolations, usually make this method

expensive when the adaptation process requires several steps. This is particularly true with

global remeshing, considering it is usually uncoupled from the flow solver, hence requiring

user intervention. It has however the advantage of generating good quality grids, and gen-

erally being part of a CAD system, which allows for no loss of information on the bounding

surfaces.

Grid subdivision

As the title suggests, here the grid is divided into smaller elements where necessary. New

nodes are added to edges that are identified for refinement, and in turn the cells are divided.

Therefore, it is easy to see how the use of unstructured grids can be particularly beneficial.
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The advantage of this method with respect to the previous ones, is it’s speed and efficiency.

Drawbacks of this technique are the complex data structure, and most often, the lack of

information of the underlying geometry on the bounding surfaces.

This technique can be approached in two different ways; with a hierarchical framework

which saves parent-child relationship between cells at every step, and a non-hierarchical

approach which discards the history of the original mesh during the filiation of successive

grids. The method adopted here is completely non-hierarchical[5], since higher quality

meshes can be achieved. This is due to the greater flexibility gained from the omission of

the original macro mesh, which in turn allows the use of high performance structural op-

timisation algorithms. With the use of efficient (de-)refinement techniques, this approach

is well suited for transient problems, or for producing coarse grids to be used in multigrid

algorithms. In fact, the resulting grids are almost equivalent to those obtained by remesh-

ing, with much less computational time required.

It is clear from the previous paragraphs how no single technique can satisfy all compu-

tational problems. A choice must be made depending on the type of problem and grid.

Therefore the latter technique has been chosen in this work, as it suits well the type of

problems studied herein. The drawbacks are taken into account and minimised by imple-

mentations that will be discussed later.

2.2 Adaptation criteria

Once the technique is chosen, another fundamental aspect is the criteria with which the

mesh is adapted. The two main types of criteria considered here are mathematical and

physical. The first can be further divided into two mainstreams, a priori and a posteriori

error estimation. In all cases the criteria can be used for all kind of adaptation techniques

and grids, with the appropriate modifications. There are also many ways of refining and

coarsening meshes as stated in the introduction chapter.

2.2.1 Error estimation criteria

Although a more detailed description will be given later in the thesis about the method

used, let us take a brief look at the main difference between the two criteria in order to

understand the choice that has been done.

In the case of a priori error estimation the mathematics are applied directly to the system

of equations. A first problem with this will clearly be that of the flow solver’s source code
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availability, as no commercial flow solver will be an option. The second drawback is that

to be accurate this method is based on the discretised method, and supposes that both the

continuous problem and the discretised one are well-posed. The third problem is that this

estimation will be non-linear and difficult to constraint.

With a posteriori error estimation instead, no intervention at the level of the flow equa-

tions is needed, since it makes use of the solution field. This aspect together with the

ease of implementation, and low computational cost, make it an ideal candidate for mesh

adaptation. Since it makes use of only the solution, another important factor is that the

method is rather independent of the problem and the governing equations[23], hence giving

it much more flexibility than a priori error estimation.

Let us take as example the increase in accuracy of the solution process by locally en-

forcing the h-adaptivity using smaller discretisation elements. To fix the notation: u is the

exact solution of the continuous problem,

∂u

∂t
+ Au = Lu = f , (2.1)

where A and L are suitable differential operators and f the data of the problem. This is

then approximated and solved iteratively on a computational mesh Th =
⋃
k Tk:

Dn
t {unh, un−1

h , . . . }+Ah(u
n
h) = Lnt {unh} = fnh , (2.2)

where Dt and Ah represent the numerical approximation operators in time and space defin-

ing the scheme. Time dependence will be dropped in the following notation as we describe

h-adaptivity. This process tends to distribute uniformly the local error ηh = uh−u through-

out the mesh, Th, where uh is the computed solution.

In a priori finite element error estimation, we take a suitable norm of the discretisation

error ηh and express it as a function of the mesh spacing and of the norm of the derivatives

of the exact solution u [108]. The resulting error estimate would be of the form:

‖ηh‖W ≤ Cih
m‖Dnu‖Y . (2.3)

Here Ci is an interpolation constant depending on the type of discretisation adopted but

not on h, whilst ‖ · ‖W and ‖ · ‖Y are appropriate norms. Dn is a derivative of order

n of function u, whilst m is an integer that is changed according to the chosen norms,

the problem at hand and the type of discretisation used. When solving for the Poisson

equation,
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{
−∆u = f in Ω,

u = 0 on ∂Ω,
(2.4)

we would have the following a priori error estimate:

‖u− uh‖H1(Ω) ≤ Cih|u|H2(Ω) ≤ C ′
i

[∑
Tk

hk|u|2H2(Tk)

]1/2

, (2.5)

where the element height hk can then be adjusted as a function of |u|2H2(Tk), reducing it

as the latter value increases. It is clear to see however how this type of error estimate is

expressed in terms of u alone, and not uh. Hence, although it can be used to predict the

behaviour of the error norm as h gets smaller, it does not provide a useful error bound,

since u is unknown, and is only (theoretically) the limit h→ 0 in some norm of uh.

When making use of a posteriori error estimation, since u is clearly not available, the

first step in a mesh adaptation algorithm of this type is to define the error estimates.

These will be based on computable quantities, which well correspond to ηh. Therefore a

typical a posteriori error estimate will is given by:

‖ηh‖W ≤ Cih
l‖Rh(uh)‖Y , (2.6)

where Rh(uh) represents the discrete residual Auh − fh, and l > 0 depends on th chosen

norm, the problem at hand and the type of discretisation used. Hence for the Poisson

equation we would get an estimate of the type:

‖u− uh‖0 ≤ α‖h2fh‖0 + β|D2
h(uh)|0 ∼ |h2Rh|L2 , (2.7)

where D2
h denotes the discrete second derivative.

Here the estimate provides an upper bound for the error ηh in terms of the discrete solution

uh, without any knowledge of the exact solution u needed. In contrast to the a priori esti-

mate, here the error norm may be computed, however no prediction for the behaviour of the

error is now possible, unless the behaviour of the discrete residual is known for h decreasing.

One of the possible ways of using a posteriori information on the calculated solution,

to construct an adaptation criteria, is to mark out the zones to be modified in order to

minimise global error and the number of mesh elements. Adaptation requires a local error

estimate per mesh cell, η(Tk), pondered by some tolerance levels:

max
Tk

η(Tk)

η̃(Tk)
= δ . (2.8)
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Here, η̃(Tk) can be the average on the neighbours of Tk. If the ratio
η(Tk)

η̃(Tk)
> δ, then the

element Tk is to be refined[109].

2.2.2 Physical criteria

The physical adaptation criteria are based on flow quantities such as density, Mach number,

pressure and entropy, as are also error estimators, but differ in the simplicity of their

construction. In fact these use directly the physical quantities mentioned. A first method

is to take the difference between the values at the nodes of a segment, and use its absolute

value as an indicator for the adaptation process. Although this may seem as a very crude

way of identifying flow features it is very effective applied to the grid enrichment method

mentioned earlier. Another method employed is the undivided gradient along an edge [2]:

ε =
∂u

∂x
h , (2.9)

which discretely can be written as:

ε = ∆u . (2.10)

From this it can be clearly seen that the value of ε, which should approximate the error,

decreases as the mesh size h becomes smaller.

Various modifications to this method have been developed, such as inclusion of local mesh

length scale:

ε = ∆u ·∆x . (2.11)

This leads to a more effective refinement criterion[110], as the simple form of the equation

(2.10) remains approximately constant in the vicinity of shock waves, due to the steepened

shock wave profile as the mesh is refined, and the jumps remaining relatively constant.

The drawback is a heavier weight of larger cells than smaller ones because of the addi-

tional length scale, even in regions of smooth flow, leading to global refinement. Although

these criteria have been successfully employed, they are not optimal. This is due to the

tendency of excessively refining the mesh.

In fact the so called “physical” adaptation criteria correspond to exact mathematical error

estimators. In [111], it is shown that for the linear advection diffusion problems, the evalu-

ation of the jump of a characteristic variable across an edge is equivalent to the evaluation

of the discrete H1 norm of the solution. The relation between physical and mathematical

criteria is therefore very close.
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Two adaptation criteria used herein are based on physical criteria. Let us consider a

solution field U that has been evaluated over the entire mesh for the selected criterion

function[112]. A low- or high-pass filter is then applied on the solution field, which we will

then denote as Û . For each segment the function f = f(Û) is computed, where f(Û) is

one of the following:

� The difference of Û between the vertices of the segment

|Ûa − Ûb|

� The gradient of Û between the vertices of the segment

|Ûa − Ûb|
lab

where a and b are the end nodes of the segment and lab is the segments length. For the 2D

case only, the choice also includes:

� The upwind flux of Û through the segment

� The downwind flux of Û through the segment

Further control on the field is obtained through the use of a filter F that removes part

of the segments from the field. This can be applied in two ways, as an offset value, or

as a cut-off value (fig. 2.2). In the first case each node of the mesh is examined and the

following is applied:

Û = max(0, Û − F ) .

In the second case the above changes to:

Û = min(F, Û) .

The refinement criterion is then built with f̄ , the mean value of f , over the grid. The

segment i is then marked, for splitting in the case of refinement or for keeping in the case

of the derefinement step, if:

fi ≥ F f̄ ,

where F is a factor used to set the criterion as a function of the mean value f̄ (fig. 2.3).

In other words F is a coefficient that multiplies the mean value of the segment field, and

all segments with higher values are marked.
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Figure 2.2: Graphical representation of the filter F and it’s effect.

Figure 2.3: Graphical representation of factor F and f̄ values used to limit segment mark-

ing.
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2.3 Mesh refinement

Once the adaptation criteria is chosen and applied, and since the adaptation technique

used here is grid enrichment with subdivision of mesh elements, the refinement step is

performed. The finer grid obtained from this step will have elements nested in the parent

(original grid) elements, and maintain the original vertices as a subset of its nodes. This

allows for accurate and efficient transfer of variables from one grid to the next. This

refinement procedure is not free from problems however, such as the generation of ill-

conditioned elements. Therefore a certain logic and geometry rules must be followed in

order to avoid rendering the mesh of little or no use.

2.3.1 Subdivision rules

Starting from the proposition that only triangular and tetrahedral grids will be used in

this work, and that starting meshes will be as regular as possible, let us consider the sym-

metrical subdivision of a triangle first. This can be carried out either by adding a node

in the middle of each side, or in the centre of the triangle. There are several reasons for

picking the former over the latter, in particular the resulting triangles will tend to be as

equilateral as possible. This avoids irregularities such as triangles with high aspect ratios.

It also keeps a uniform distribution of the number of neighbours per node, which in turn

helps increase the flow solver efficiency.

This leads us to the well known Red/Green subdivision approach, which addresses a first

set of rules for the triangle subdivision. This kind of subdivision creates up to 3 new nodes

n, and divides the original element in a maximum of n + 1 parts, as shown in figure 2.4.

However, it is clear how the Green 2 type refinement could introduce irregular elements.

Hence, in the case of an element with 2 edges marked for refinement, the third would also be

marked to obtain a Red type element division. Since also the Green 1 subdivision type may

create irregularities, some admissibility criteria must be applied. These are based on the

number of nodes that may be added within the neighbouring elements, and a geometrical

criterion based on the ratio of the smallest edge length to the others within an element.

This procedure is extended to tetrahedra in 3D, resulting in a maximum of 6 new nodes

being created and the original element split in 8 parts at most (figure 2.5).

For further details regarding triangle subdivision, admissibility criteria and the refinement

algorithm, see [5, 112].
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Red Green 1 Green 2

Figure 2.4: Red Green subdivision rule in two dimensions.

Green 1 Green 2 Red

Figure 2.5: Three dimensional form of the element refinement.

2.4 Mesh coarsening

Although the technique is known as h-refinement or grid enrichment, it also involves the

removal of vertices. This can be important for reducing the computational loads as men-

tioned in the introduction to the technique, and is essential in cases of transient flows. Here

the use of non-hierarchical data structure mentioned earlier is particularly important as

it allows deletion of nodes belonging to the initial mesh, and most importantly structural

optimisation techniques that would be incompatible with conventional data structures.

Since the choice of points to be deleted is not straightforward, the inverse problem is

solved by selecting the segments not to be removed, and fixing their nodes. This marking

operation is carried out in the same way as for the refinement step but, being a distinct

operation, doesn’t necessarily need to have the same adaptation criteria, f(Û), F , or F .

There are sets of vertices however that must be fixed during this process, such as: symme-

try points, nodes on edges marked for refinement, corners of the domain, nodes belonging

to edges longer than a given reference. Once these nodes are blocked, an algorithm is ap-

plied to finalise the number of vertices that cannot be removed, in order to fix a maximal

coarsening[5, 112]. In the 2D case this will result in at most four elements merging into one.
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At this point of the coarsening procedure node deletion can be started. For the two-

dimensional case a pre-processing step developed by Richter[5, 113] can be applied. This

step is done principally because it reduces overall computing time. It consists in building

a shell for each triangle with three marked vertices for deletion, consisting of the three

neighbouring cells. Because of the maximal coarsening feature the three other nodes of

this shell have to be kept (figure 2.6). All marked nodes belonging to one unique shell will

remain during this pre-processing step. The shell is then considered as a new element, of

type Green 1, 2 or Red, with respect to the number of marked nodes which have to be

kept temporarily. The latter will be deleted during the next phase, which is done using a

segment collapsing procedure which will now be described.

Figure 2.6: Two dimensional coarsening pre-processing step.

2.4.1 Segment collapsing

This method, developed by Savoy[112], consists in building a shell around the node marked

for removal with it’s surrounding elements. Let us consider the shell created around node

1 in figure 2.7(a). Vertex 2 will not be considered as it is also marked, whilst at all other

vertices the inner curvature angle will be calculated. The next step consists in collapsing

one of the inner segments in order to delete the centre node. The choice will fall onto the

segment that connects the centre node to the neighbouring node with the greater angle

associated to it, in this case α. Note that with this technique the risk of cell inversion

(fig. 2.7(b)) and element distortion (fig. 2.7(c)) is minimised, resulting in improved mesh

quality. However, shell volume conservation is also checked, in order to prevent accidental

element inversion from happening.

The procedure works in both two and three dimensions, and is very efficient in the first

case. Efficiency is somewhat reduced in the 3D case due to a large number of constraints
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imposed during the marking, especially when avoiding element inversion, which in turn

does not allow to remove a large amount of nodes.

δ

β β

γ
1

2

α

(a) (b)

(c) (d)

Figure 2.7: Segment collapsing with shell control: (a) initial shell, (b) shell inversion

collapse, (c) collapse with element distortion, (d) best collapse available.

2.5 Optimisation techniques

Mesh quality and precision of the underlying discretisation is highly dependant on the shape

of elements and shells just described. Therefore an equilibrium state would be desirable in

the cells. This is achieved by equilateral triangles in 2D and equilateral type tetrahedra in

3D. However the mesh obtained after the refinement and coarsening steps will be far from

this desired equilibrium state. This is due to the different local node density, and strong

variations between element sizes and nodes angles. The number of node neighbours may

also differ dramatically between vertices. In order to overcome these problems arising from

the previous steps, the mesh must be optimised. This is done in several ways that may be

grouped into two major strategies:
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� Structural Optimisation

– Diagonal swapping

– Edge collapsing

� Geometrical Optimisation

– Spring analogy

– Boundary smoothing

– Inverted elements

2.5.1 Structural optimisation

In this step the mesh is analysed and modified in function of the number of node neighbours

Ni. Following the Delaunay criterion [30], where the optimal element should be equilateral,

Nopt is then related to the number of equilateral elements needed to fill the area around

the node. In the two dimensional case Nopt = 6 and can be easily calculated by considering

π/3, in the Euclidean metric, as the optimal node angle. For the three dimensional case

the spherical angle of the tetrahedron at each vertex is considered and the number of

neighbouring elements calculated. The Euler-Descartes relation is then used to find the

number of neighbouring nodes, leads to 13 < Nopt < 14 (for further details see [112, 114]).

Diagonal Swapping

This consists in swapping the internal edge of two neighbouring triangles, as shown in

figure 2.8, for the two dimensional case.

4

2

3

2

4
3

1 1

Figure 2.8: Two dimensional edge swapping.
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The procedure is carried out to reduce the number of node neighbours Ni when this is

greater than Nopt. This is done by checking Ni on all vertices implicated in the operation.

In particular the swapping is performed if the following conditions are satisfied:

N3 + N4 + 2 < N1 + N2 , (2.12)

or {
N3 + N4 + 2 = N1 + N2

max (N3, N4) + 1 < max (N1, N2) .
(2.13)

The three dimensional case requires more effort and attention, as the swap implies a face

swapping, leading to complete remeshing of the shell built with the elements surrounding

the deleted segment. The volume conservation must also be checked in order to avoid cell

inversions during the shell remeshing. An example of a face swap is shown in figure 2.9.

Figure 2.9: Three dimensional face swapping.

Edge Collapsing

This intervention is done when Ni < Nopt, and although the method is similar to the one

shown in sec. 2.4.1, the scope is completely different. As for the swapping, the collapsing

criteria are applied to the segments. Let N1 and N2 be the node neighbour numbers for

the two vertices of the given segment, with N1 ≤ N2. The collapsing is done by deleting

the node which corresponds to N1. The collapsing is performed if:

N ′
2 ≤ N2 or N ′

2 ≤ Nopt , (2.14)

where N ′
2 is the node neighbours number resulting from the collapsing. It can be deduced

from N1, N2, and M the number of cells surrounding the segment:

N ′
2 = N1 + N2 − M − 2 . (2.15)
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These criteria are valid in both two and three dimensions. An example of edge collapsing

in 2D is shown in figure 2.10.

1

2

Figure 2.10: Edge collapsing in 2D.

2.5.2 Geometrical optimisation

The goal of this step is to modify the mesh without changes to the global data struc-

ture. This is achieved primarily by means of node displacement, based on spring analogy.

However, other techniques must be applied to ensure a better handling of the node dis-

placement. Node neighbours number for example will be employed again for adjusting the

spring stiffness. Particular care will be given to nodes lying on the bounding geometry,

and avoiding element inversion.

Spring Analogy

Here each segment in the mesh is replaced by an elastic spring (fig. 2.11). The objective

is then to minimise the deforming energy of the overall elastic system. This will result in

the force F at node i obtained using Hooke’s law:

Fi =
∑
j∈k(i)

αij(xj − xi) = 0 . (2.16)

Where k(i) represents the set of node neighbours of vertex i, with size Ni, and αij denotes

the spring stiffness of the segment joining node i with neighbour j. Hence the equilibrium

position at coordinates xi can be expressed as:

xi =

∑
j∈k(i)

αij xj∑
j∈k(i)

αij
, (2.17)

which can be resolved using a Jacobi iterative scheme.
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i

Figure 2.11: Spring analogy: springs replacing segments.

Spring Stiffness

Node neighbours number is once again very useful for mesh optimisation. In fact, if spring

stiffness αij were to be set to one in order to produce equilateral elements, the following

would occur:

� if Ni < Nopt, k(i) move towards i (fig.2.12)

� if Ni > Nopt, k(i) move away from i (fig.2.13)

i i

Figure 2.12: Springs movement based on node neighbours: springs contracting.

To partially avoid this problem the following weight function can be used to determine the

spring stiffness:

αij = αj = max [1,Nopt +A (Ni −Nopt)] . (2.18)

This relates the spring stiffness to Nj, the number of neighbours for the node j ∈ ki. It

also introduces the smoothing lineal factor A, which is set manually.
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i i

Figure 2.13: Springs movement based on node neighbours: springs expanding.

Boundary Nodes

Nodes lying on the geometric boundaries have to be moved with caution (if moved at all).

Whatever the method used for positioning the node on the underlying geometry, a sufficient

node density must be guaranteed within critical regions where the boundary curvature is

large. This can be achieved by maintaining boundary nodes with a new spring joining the

reference point x̃ and the new position xn+1. The stiffness βi of this new spring is then

chosen as a function of the local maximum boundary curvature. The resulting force is then

calculated as:

Fi =
∑

j∈kΓ(i)

αj(xj − xi) + βi(x̃i − xi) = 0 , (2.19)

where kΓ(i) represents the subset of k(i) which contains all the node neighbours located

on the boundary. The following formulation may then be obtained substituting x̃ by xn:

xn+1
i =

∑
j∈kΓ(i)

αj xnj + βi x
n
i∑

j∈kΓ(i)

αj + βi
. (2.20)

The stiffness of the new spring is then defined as a function of the curvature angle φ.

This angle is first filtered such that the node displacement is restricted, especially when it

exceeds a given value Φ (fig. 2.14).

βi = B(
1

cos2 φ̂
− 1) with B ≥ 0 , (2.21)

where B is a user defined boundary stiffness factor.
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Φ φ

φ

π/2

π/2

φ

^

Figure 2.14: Curvature angle and filter.

Inverted Elements or torsional springs

This is a major issue which needs to be controlled thoroughly, as it causes loss in overall

volume mesh conservation. It may occur when a vertex crosses over the opposite face of the

element, which inverts the cell volume. This phenomenon, called snap-through, is shown in

figure 2.15 and is prone to happening on the boundary when this moves. The configuration

shown has a low energy as the springs a and b rotate. To remedy this the segment spring

analogy is used together with initially rigid mesh boundaries, then semi-torsional springs

are placed in the corner between adjacent edges, i.e. the stiffness of segment c is divided

by the angle between segments a and b. As the sum of the angles is equal to π the stiffness

is approximately unchanged if the triangle is equilateral. For deformed elements instead,

the vertex angles that are closer to 0 or π become rigid.

c

γ

β

a’ b’

a b

α

Figure 2.15: Inverted elements snap-through.
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Cell inversion may also occur inside the heart of the mesh. A method to avoid this can

be devised by setting critical cells rigid, with segment springs working in only one direc-

tion, rendering a relaxation of the elements. The vertex movement is then made free if it

increases the element quality, which means that the introduced segment springs work like

stops (fig. 2.16).

Figure 2.16: Cell inversion stops.

To determine the stiffness of the segment spring when it acts as a stop, the angular de-

formation energy of the cells is computed. A torsion spring is set at the opposite angle of

each cell surrounding the segment (fig.2.17):

C = C(
1

sin2 θ
− 1) if sin2 θ < sin2 Θ . (2.22)

θ

Figure 2.17: Torsional spring.

Where Θ is a filter value and C a user defined torsion stiffness factor. It allows to take

into account only the most critical angles. The maximum of the torsion spring for a given

segment is then converted to a segment spring using the following relation:
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γ =
1

δ
C =

C
δ
(

1

sin2 θ
− 1) , (2.23)

where δ is the distance between the segment and the opposite vertex in 2D and the opposite

edge in 3D.

The non-isotropic behaviour of the stops causes the problem to be non-linear. A time

advancing strategy must be implemented, with the stops relaxing during the evolution of

the procedure. The force applied on the node i is then given by:

Fi =
∑
j∈k(i)

αj(xj − xi) +
∑
j∈k(i)

γij(x̃i − xi) = 0 , (2.24)

which leads to the following formulation:

xn+1
i =

∑
j∈k(i)

αj xnj +
∑
j∈k(i)

γij xni∑
j∈k(i)

αj +
∑
j∈k(i)

γij
. (2.25)

Finally the effect of the torsion spring is shown in figure 2.18.

(a) (b) (c)

Figure 2.18: Torsion spring effect: (a) initial grid, (b) cell inversion, (c) torsion spring.
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2.6 Applications

In order to assess the various functionalities of the techniques in place, a few test cases have

been carried out in both two and three dimensions. For the two dimensional case a NACA

0012 airfoil is used. Instead for the three dimensional cases we consider a concept aircraft

and a wedge. For all test cases a parallel, unstructured grid, Euler solver THOR[115] was

used.

2.6.1 NACA 0012

This standard yet effective example, can give great insight on the capabilities of mesh

adaptation. The grids and relative solutions presented here are obtained from an initial

mesh of 2 355 nodes, 4 537 triangular elements, and 173 boundary faces. The solutions are

refined with respect to the difference in Mach number along the edge, and by means of a

more mathematical a posteriori error estimator that will be discussed later in the thesis.

To compare the methods, the parameters were calibrated in such a way as to keep the

number of elements and nodes close between the two, at each step of the process.

The cases were run at Mach number 0.85 and an angle of attack of 1◦, so that shock

waves would form. The solution is shown in figure 2.19 with: (a) and (b) a refined only

mesh, with no smoothing, (c) and (d) refinement and derefinement and (e) and (f) final

grids. For the final grid, refined with the difference scheme, we have 19 492 elements, 9 746

nodes, and 240 boundary faces, whilst for the error estimator 19 391 elements, 9 992 nodes,

and 593 boundary faces. Further details of the computation are shown in figure 2.20.
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(a) (b)

(c) (d)

(e) (f)

Figure 2.19: NACA mesh for Mach number 0.85 and angle of attack 1◦. Three adaptation

cycles with respect to Mach: difference (left) and error estimation (right).
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(a) (b)

(c) (d)

(e) (f)

Figure 2.20: Wider view of the final grids (a) and (b). Final solution fields (c) and (d).

Closeup of the shocks at the boundary (e)and (f).
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2.6.2 3D Wedge

The initial grid used for this test case is shown in figure 2.21, and is composed of 1 408

elements(NE), 325 nodes(NN), 448 boundary faces(BF). The solution is carried out for

free-stream Mach number of 2.0, and adapted with respect to the density difference on the

segment. The steps followed to obtain the final mesh and solution are shown in figures

2.22 to 2.26:

Figure 2.22 (a)Refined only mesh 7 136 NE, 1 387 NN, 1 328 BF and (b) and (c) relative

solution, no smoothing;

Figure 2.23 (a)Refined only mesh 42 932 NE, 7 540 NN, 4 318 BF and (b) and (c) the

solution obtained, smoothing turned on;

Figure 2.24 (a) Mesh after 1 step refinement, followed by 1 step derefinement 148 774

NE, 24 330 NN, 7 604 BF and (b) and (c) the solution obtained;

Figure 2.25 (a) Mesh after 1 step refinement, followed by 1 step derefinement 395 937

NE, 62 734 NN, 11 134 BF and (b) and (c) the solution obtained;

Figure 2.26 (a) Mesh after 1 step refinement, followed by 1 step derefinement 1 009 917

NE, 156 704 NN, 16 606 BF and (b) and (c) the solution obtained.

As expected, the solution is enhanced correctly by the grid refinements in the regions of

the shocks.

Figure 2.21: 3D Wedge initial mesh.
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(a)

(b) (c)

Figure 2.22: 3D wedge mesh and relative solution. 1 step adaptation (no smoothing).
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(a)

(b) (c)

Figure 2.23: 3D wedge mesh and solution. 1 step adaptation (following from figure 2.22).
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(a)

(b) (c)

Figure 2.24: 3D wedge mesh and solution. 2 step adaptation (following from figure 2.23).
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(a)

(b) (c)

Figure 2.25: 3D wedge mesh and solution. 2 step adaptation (following from figure 2.24).
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(a)

(b) (c)

Figure 2.26: 3D wedge mesh and solution. 2 step adaptation (following from figure 2.25).
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2.6.3 Concept aircraft

The second, three dimensional test case is represented by a concept aircraft, SmartFish1

shown in figure 2.27. The interest of this geometry in this work is the extremely changing

and complex form of the airplane, which poses a challenge for the grid generation and

adaptation.

.

XY

Z

Figure 2.27: Concept airplane SmartFish.

Here we present the results of some adaptations with different initial grid sizes, and adapted

with different physical criteria. The tests are carried out at transonic Mach numbers and

with non zero angles of attack. In particular we first test a very coarse grid for this type

of problem (fig. 2.28). The first adaptation is done with respect to the change in gradient

of the Mach number, with two adaptation cycles. The mesh is heavily refined (fig. 2.29)

but only along the leading edge and not much over the wing.

In the second case (fig. 2.30) the difference in Mach number along a segment is con-

1http://www.smartfish.ch/
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sidered. With only one adaptation cycle, and derefinement with respect to Mach gradient,

the grid is refined mostly over a large portion of the wing. This case however was run with

a higher Mach number and angle of attack, and is known to have a shock on both upper

and lower side of the wing. Relative solutions are shown in figure 2.31.

Moving onto a denser initial grid (fig. 2.32), the previous conditions are considered for

the difference adaptation case. Here the adaptation gives a better result (fig. 2.33), mainly

because of the better solution to which it was adapted, due to the finer starting mesh. The

solution also confirms this as shown in figure (fig. 2.34).

Finally a relatively fine grid was used to start the process (fig. 2.35). The initial con-

ditions are of Mach number 0.9 and angle of attack of 4o. The grid is refined well in the

area of the shock, above and below, as shown in figure 2.36.
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Figure 2.28: Far and closer views of coarser grid with 274 899 elements and 48 481 nodes.
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Figure 2.29: Adapted coarse grid with respect to Mach gradient. 2 adaptation cycles

only with refinement at Mach number 0.8 and angle of attack 2o, 6 569 277 elements and

1 098 081 nodes.

Figure 2.30: Adapted coarse grid with respect to Mach difference. 1 adaptation cycle with

refinement and derefinement (with respect to Mach gradient) at Mach number 0.9 and

angle of attack 4o, 624 637 elements and 105 645 nodes.
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Figure 2.31: Mach number on upper and lower sides of Smartfish, from results obtained

with the grid shown in figure 2.30.
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Figure 2.32: Far and closer views of medium grid with 742 294 elements and 129 865 nodes.
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Figure 2.33: Adapted coarse grid with respect to Mach difference. 1 adaptation cycle with

refinement and derefinement at Mach number 0.9 and angle of attack 4o, 1 795 794 elements

and 302 723 nodes.

Figure 2.34: Mach number on upper and lower sides of Smartfish, from results obtained

with the grid shown in figure 2.33.

45



CHAPTER 2. PRINCIPLES OF ADAPTATION

Figure 2.35: Close view of unadapted finer grid with 1 772 861 elements and 314 913 nodes.
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Figure 2.36: Adapted finer grid with respect to Mach difference. 4 adaptation cycles at

Mach number 0.9 and angle of attack 4o, 3 303 715 elements and 555 347 nodes. Upper side

of the wing and lower side.
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3
Geometry Conservation

One of the major drawbacks in most adaptation techniques (sec. 2.1) resides in the pro-

jection of the new nodes created, during the refinement process, onto the boundary curves

and surfaces defining the original geometry. Without this step the adaptation process will

be limited in its potential use. It will still be able to capture flow features such as shocks,

and adapt to geometries with little or no gradient (sec. 2.6.2), but will need a ’final’ mesh

resolution where geometric features are most important. This last point clearly defeats

an important aspect of mesh adaptation, as it requires prior knowledge of the importance

of such features, and of what mesh size should be considered as ‘final’. Ideally the best

solution would be to integrate the Computer Aided Design (CAD) system used to generate

the original geometry, which is unfeasible since this may change from one project to the

next. This can be overcome by the introduction of a library capable of handling geometric

properties given by a CAD description.

3.1 CAD integration

The insertion of a library capable of making use of the geometric data from a commercial

CAD package is essential for the accuracy of calculations. However, this requires particular

care and attention from the initial design stages. It will be seen later in the description of

the methodology for implementation, how every step from the conceptual design down to

the mesh generation is important for the success of the adaptive projection procedure.

In order to be as general as possible in the capability of gathering the data from CAD/CAM

packages, it is important to have a library that is able to make full use of CAD definitions.

Hence the use of B-splines and NURBS (Non-Uniform Rational B-splines) must be an in-

tegrating part of such a library.
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The possibility of linking directly with a commercial design software has been discarded

from the initial stages of the research as it would create a dependency to it. This would be

disadvantageous both financially and in case the distribution would cease. It may also be

more complex to implement than one would think, as source codes are generally unavail-

able, which implies an external call to carry out the point projection.

On the other hand, the development of such a library is not a trivial task. It was therefore

chosen to address the problem with the use of a library of C functions to perform the

necessary operations on NURBS geometries. This consists in the SINTEF Spline Library

(SISL), developed at the scandinavian research group SINTEF, and available under the

GNU General Public License. It is particularly suitable since it allows also the handling

of interaction between implicit geometric representations such as planes, tori, etc., and

NURBS, which is very popular in modern CAD/CAM systems. A general view of where

the geometric toolkit interacts with the adaptation module is shown in figure 3.1.

Solver

Error estimation
Calculation

Regridding
Reconstruction

Matrix 

∆ t

Adaptation 
Library

Geometry 
description

Spline
Library

Figure 3.1: Brief schematic of the geometric library placement.

Although NURBS have increased precision, they also have disadvantages when compared

to B-splines, it is therefore desirable to use the latter when the option is available. This

will be clearer in the following paragraphs, where a brief description of the structures of

the curves and surfaces is given.

Due to the vast of the subject, for an in-depth explanation and background of curves

and surfaces in CAGD we refer the reader to [116, 117, 118]. However, in order to under-

stand the problem at hand and how it is resolved, we must first illustrate the basics of the

tools used herein.
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3.2 B-splines

In order to describe NURBS we must first illustrate B-splines, since they are an extension

of this form of splines, where the rational part comes in when projecting into affine space.

First let us define the knot vector t = {t1, t2, . . . , tn+k}, which is a one dimensional set of

coordinates in the parametric space, where ti ∈ R is the ith knot and k is the order of the

B-spline. The order is equivalent to the polynomial degree p + 1, and n is the number

of basis functions that make up the B-spline, as well as the number of vertices of the

curve. Knots play a fundamental part in the definition of B-splines. These can be uniform

if evenly distributed in the parametric space, or non-uniform if unequally spaced [119].

Furthermore knots may be repeated, i.e. placed at the same location in the parametric

space, and if a knot is repeated m times it is said to have multiplicity m [117].

3.2.1 B-splines Curves

The mathematical definition of a B-spline curve is given by

c(t) =
n∑
i=1

giBi,p(t) (3.1)

where gi are the control points and Bi,k,t a sequence of B-splines. This sequence is called a

B-basis, or set of B-spline basis functions, which linearly combined in Rd, gives the curve

c . The dimension of curve c will depend on the dimension of its control points, therefore

in R2 it will be planar and in R3 spatial. The type of curve generated may be determined

by the order k. This will be constant, liner, quadratic, cubic, etc., with p = 0, 1, 2, 3, ..

respectively. Hence if the order is four, the degree will be three, and the result will be a

cubic B-spline [66]. The representation of a B-spline curve c with parametric range in the

interval [tk, tn+1], can be summarised as follows, with conditions:

� d : the dimension of the Euclidean space in which the control points lie.

� k : the order of the B-spline curve (p+ 1).

� p : the degree of the B-basis constructing the B-spline.

� n : the number of basis functions (also the number of vertices); which should be

greater or equal to the order of the curve n ≥ k.

� t : the knot vector of the B-splines; which must be non-decreasing ti ≤ ti+1, and

must have k multiplicity at the beginning and at the end of the knot vector.

� g : the control points of the B-spline curve in the Euclidean space.
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The multiplicity condition at the ends of the knot vector makes this open, which is standard

in CAD literature [119].

3.2.2 B-basis

We mentioned that B-spline curves are constructed from the linear combination of B-basis

or basis functions. These are defined recursively, starting from piecewise constants of degree

p = 0 for B-splines of order k = 1, as:

Bi,p(t) =

{
1 if ti ≤ t < ti+1,

0 otherwise
(3.2)

and for higher orders

Bi,p(t) =
t− ti
ti+p − ti

Bi,p−1(t) +
ti+p+1 − t

ti+p+1 − ti+1

Bi+1,p−1(t) . (3.3)

Therefore a B-spline of order k will be the result of the sum of the products, of two B-

splines of order k − 1, with weights in the interval [0, 1]. In figure 3.2 the application of

(3.2) and (3.3) to a uniform knot vector is shown for orders 1 and 2. In figure 3.3 we

can see how a quadratic B-spline is constructed by the sum of the product between linear

B-spline 1 and line a, and linear B-spline 2 and line b.

Some important properties satisfied by B-spline basis functions are:

� Each B-spline is non-negative Bi,p(t) ≥ 0∀t and,

n∑
i=1

Bi,p(t) = 1 . (3.4)

� Support of each Bi,p is compact and contained in the interval [t1, tn+k], which infers

local control, i.e. moving one control point only alters the curve locally.

� Endpoint property which is due to the fact that the knot vector is open, and translates

into c(tk) = g1 and c(tn+1) = gn, i.e. the first and last control points are also the

beginning and end of the curve.

� Convex hull property, which means the curve lies in the convex hull of its control

points.
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1

1 2
0

B 1,0 B 2,0

1

1 2
0

1

1 2
0

B 1,1

t t

t

Figure 3.2: Basis functions of order 1 and 2 for uniform knot vector t = {0, 1, 2, 3, 4, . . .}.

1

0

1 2
ba

Figure 3.3: Quadratic B-spline constructed from two linear B-splines 1 and 2, weighted by

lines a and b.
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Control Polygon

We have seen the control points that define the vertices, we now look at the control polygon.

This is the piecewise linear interpolation of the control points. In fact, the control polygon

can be considered as a piecewise linear B-spline, whereby increasing the order increases

the distance between the higher order B-spline and the control polygon, i.e. it smoothes

the control polygon. An example of a control polygon is given in figure 3.4, where it can

be clearly seen how the curve remains in the convex parts of the control polygon.

1

2

3 4

5

6 7

Figure 3.4: A quadratic B-spline (order 3) and it’s control polygon.

Knot vector

As previously mentioned, knots play a major role in the characteristic features of B-splines.

In particular, as well as describing the parametrisation of the curve, they define the conti-

nuity of the curve at the level of the control polygon. This particular feature is determined

by the number of equal knots. In fact the curve will be:

� Interpolatory and discontinuous where k equal consecutive internal knots exist.

� Continuous but not in general differentiable where k − 1 consecutive internal knots

are equal.

� Continuously differentiable, with discontinuity in the second derivative where k − 2

internal equal knots occur.

An example of this can be seen in figure 3.4, where two knots have been placed at the

location of point 5. If we take the non-uniform open knot vector of a quadratic spline t

= {0, 0, 0, 1, 2, 3, 3, 4, 5, 5, 5}, we can notice how the multiplicity of knot t = 3 is equal to
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the polynomial order. Hence it will be Cp−2 = C0 continuous at t = 3 and Cp−1 = C1

continuous elsewhere. More in general, for B-basis of order p, continuous derivatives of

order p− 1 exist where no repeated knots or control points occur.

3.2.3 B-splines Surfaces

A B-spline surface is a tensor-product surface. This is due to the fact that the B-basis of a

B-spline surface is the product of two basis functions of B-spline curves. If we consider knot

vectors u = {u1, u2, . . . , un+p+1} and v = {v1, v2, . . . , vl+q+1}, with p and q the polynomial

degrees of the B-splines in the first and second parameters respectively, and control points

gi,j forming the control net, the surface can be described as:

s(u, v) =
n∑
i=1

l∑
j=1

gi,jBi,p(u)Hj,q(v) , (3.5)

where B and H are the basis functions of B-spline curves, n and l the number of vertices

with respect to the first and second parameter, k1 = p+ 1 and k2 = q + 1 the order of the

B-splines in the first and second parameter. As for B-spline curves the knot vectors must

be non decreasing, and the number of vertices in both parameters be n ≥ k1 and l ≥ k2.

Also, k1 equal knots should be present at the beginning and end of knot vector u, and k2

equal knots at the beginning and end of knot vector v. The properties of B-spline surfaces

are similar to those of B-spline curves. As for the B-spline curve basis, the support for

the B-spline surface basis function is compact and contained in an interval. This is the

rectangle [ui, ui+k1 ] × [vj, vj+k2 ]. The shape of the function will be pyramidal for degree

one in both directions, bell shaped for higher degrees.

3.3 NURBS (Rational B-spline)

Rational B-splines are a generalisation of a B-spline curve, as the name suggests, with the

addition of a weight vector w = {w1, w2, . . . , wn}. One of the advantages of NURBS is

the capability of representing conic sections exactly. This is obtained from the projective

transformation of B-spline curves which lie in Rd+1, in Rd. For example a circle in a plane

could be described from a piecewise quadratic curve in space. If we consider a set of control

points gwi of a B-spline curve in Rd+1, with knot vector t, these are the projective control

points of the rational B-spline curve in Rd. The rational basis functions are described by:

Rp
i (t) =

Bi,p(t)wi∑n
j=1Bj,p(t)wj

, (3.6)

and the rational B-spline as:
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c(t) =
n∑
i=1

Rp
i (t)gi . (3.7)

The trade-off in increased precision however, comes in the form of complexity and loss

of efficiency when evaluating properties such as derivatives. This is due to the curve

depending nonlinearly on the weights. Weights are strictly positive wi > 0 for the convex

hull property to hold.

3.3.1 NURBS Surfaces

Just like the NURBS curves, the surfaces are a generalisation of B-Spline surfaces, whereby:

Rp,q
i,j (u, v) =

Bi,p(u)Hj,q(v)wi,j∑n
î=1

∑l
ĵ=1Bî,p(u)Hĵ,q(v)wî,ĵ

, (3.8)

and the resulting NURBS surface:

s(u, v) =
n∑
i=1

l∑
j=1

Rp,q
i,j (u, v)gi,j . (3.9)

with the addition of the weights matrix wi,j. Like with NURBS curves, the surfaces can

be used to represent exactly surfaces such as spheres, cones, etc., but just like the curves,

there is a loss of efficiency when evaluating them. Also, just like for the curves wi,j > 0.

3.4 Implementation

The addition of such a library is not a simple task, not only in terms of programming and

data structures, but primarily in terms of different cases that can and will occur, such as

the intersection between surfaces. A more detailed schematic view of where the projection

algorithm is placed the source code is shown in figure 3.5. Here, we can see how and when

the projection algorithm comes into play, and also some of the data it needs in order to

work. In the next paragraphs we shall describe in more detail the algorithm developed for

the projection decision-making, and all the necessary conditions for this to work.

First of all we consider the patch structure that is inherent in the adaptation module. The

boundary description is defined at the lowest level with the help of faces (or segments in

2D), which are grouped in patches. Therefore each patch contains a specified number of

faces, and corresponds in fact to a surface in the CAD definition of the geometry. This is

a fundamental aspect of the projection algorithm, since if more than a surface belonged

to a patch, it would be much more complex to tell which surface to project the new node
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Figure 3.5: Brief schematic of the reprojection algorithm placement.
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onto. An algorithm to evaluate the projection to each surface belonging to the patch, and

verifying the closest surface to the point could resolve this issue, but with much higher

costs in computational time. Patches work in both three dimensions and two dimensions.

In the former they describe the finite discretisation of a surface, in the latter segments

describe the boundary.

The CAD geometry descriptions are divided in a curves and a surfaces data files, which

are linked to two other files with the number of entities in each. These last two files also

contain the individual names of each geometric entity. The surface file contains also infor-

mation regarding the curves that define each surface, in particular the number of curves

and the identifying number of each. It should be noted that the sizes of these data files

are extremely compact and have no significant impact in disk usage, unlike grid files.

At this point curves, in 2D, and surfaces, in 3D, are matched to patches with the use

of boundaries file information. Segments that belong to the surface and that are marked

for refinement are then identified. Note that this step is straightforward in 2D, where a

segment may only belong to one boundary and is defined as a face itself. Hence it will be

associated to a distinct single curve.

In 3D things become a little more complex since a segment is the interface of two sur-

face faces. This limitation is assumed to be always true, since only a structure of zero

thickness, at the point of intersection with other two surfaces, may produce an ambiguous

segment belonging to more than two faces. Moreover it would be undesirable to model an

unrealistic feature of this type. The complexity resides in the parenting of the segment,

since the faces it belongs to could lie on two different surfaces, in which case a decision

must be made onto which surface the new node should be projected.

The problem can be clearly seen in figure 3.6. Here the new nodes have been projected to

the surface defining the exit, which is flat, hence they lie in the plane at the exact midpoint

of the segment they refined. This would be correct, if it wasn’t for the fact that the new

node splits a segment that lies on the frontier of two patches, and the parent face to which

it should have been referred for projection, should have been the one describing the wall

of the channel. In fact, if this had been done to begin with, the problem would go unnoticed.

This is overcome with the information gathered earlier on the curves defining the surfaces.

The curve that describes the intersection of the two patches is taken as the geometry def-

inition to project onto. The result of this shown in figure 3.7. It can be noticed how the

exit is also less refined. In the previous case the refinement was due to the flow altered by
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(a) (b) (c)

Figure 3.6: Projection to the wrong surface for segments on the intersection between

patches. (a) Detail of the channel exit with a false step created. (b) Front view of the

channel exit. (c) Relative solution with erroneous results due to wrong placement of new

nodes.

the coarse mesh, which created an artificial step. If the refinement nodes had been placed

correctly, the result would have been a smoother flow due to the exact geometry representa-

tion, which presents no such artificial features created by an incorrect (or too coarse) mesh.

Particular care has to be taken when preparing the curves and surfaces however. This

method requires each surface to have only one curve in common with another surface. In

this way the frontier curve between patches can be clearly found. If more than one curve

was to define the intersection between two surfaces an algorithm should be added similar

to the one considered for multiple surfaces describing a patch. The projection would have

to be evaluated on all common curves and the closest one would be taken as good.

Let us take as example a blade in a cylindrical channel as shown in figure 3.8. In the

case of inviscid flow this would be twice as much the needed geometry, in fact we could cut

along the xz plane and add a symmetry plane. It is a good example though, of the type

of problems that can be encountered above, and gives a good idea of the type of thought

and pre-processing that must go into the design approach.

From a design point of view it would be natural to draw the blade as two surfaces with

the leading edge and trailing edge in common. This however would create the condition

described above, and hence is not viable. Therefore the blade is split in four surfaces as
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(a) (b) (c)

Figure 3.7: Projection to the defining curve of the patches frontier. (a) Detail of the

channel exit. (b) Front view of the channel exit. (c) Relative solution with correct results.

y
xz

Figure 3.8: Blade in cylindrical channel.
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shown in figure 3.9. In this way the problem is solved. There remains a problem with the

cylinder walls. If we start from the idea that the walls are defined as two surfaces cut by

the xz plane, then each surface would intersect twice with the two vertical blade surfaces

on their side of the plane. A solution could be that of splitting again the blade in the xy

plane. This would not be the good solution though, as the two wall surfaces would still

touch at the top and at the bottom in two distinct places with two intersection curves that

have no continuous solution as they are disconnected and parallel.

x

z
y

Figure 3.9: Detail of the blade from above with half wall channel blanked.

Hence the walls are split in four surfaces, at the xz and xy planes through the centre the

circle defining the cylinder. An attentive eye will immediately notice that the two top wall

surfaces will still have two intersections in common which are separated by the blade. This

is a different case from the previous one. Here a single curve can be used to define the

two intersections. If we examine figure 3.10, we can see that the curve that describes the

two intersections is continuous. In this particular case it is allowed since the points are

projected onto the same curve, and since the point to project is at the midpoint of the

segment there is no risk of projecting it in onto the wrong intersection.
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Figure 3.10: Curve connecting the top wall surfaces divided by the blade. The black dots

are existing segment nodes, and the empty dots are the new nodes to be placed.

A further feature that is an important part of the algorithm, is that of being able to specify

the surfaces to project onto. This has been implemented only for 3D applications since

it has less (if any) appeal in two dimensions. The choice is made through the surfaces

information file, where only the selected surfaces and their defining curves are taken into

consideration. In the latter stages only on these entities the projection is carried out. It

can be of particular interest in cases such as that shown in figure 3.11. Here it is obvious

that the only surface that will need point projection, to insure the geometry is followed,

is the bump, since all other surfaces are planar. The defining curves of the surface will

also be needed, hence the information of all other surfaces must be retained, but not the

surfaces definitions or those of curves that are not frontiers of the selected surfaces.

3.4.1 Re-projection

Finally, the projection algorithm is generalised for all elements that lie on the boundary.

This is used in the case where the smoothing routine described earlier (sec. 2.5.2) is se-

lected. In fact, the smoothing may still cause some problems when used, particularly when

the starting mesh is very coarse and a few adaptation steps are necessary. In these cases

the multiple iterations of the smoothing procedure may cause the boundary nodes to slowly

drift away from the geometrical definition, despite all the checks in place to avoid this.

Hence the generalised projection routine is called at the end of each smoothing itera-

tion to check that all nodes are correctly placed on the geometry, and reposition them

when this is not the case. The effect of this can be clearly seen from figure 3.12, where the

smoothing iterations pushed the nodes away from the surface (a), and how the integration

of the projection places them back onto the surface after each iteration (b).
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y x

z

Figure 3.11: Bump in a channel: surface initial mesh and patches shown in different colours

with one side blanked, viewed from the down side.
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x
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z

(a)

x

y

z

(b)

Figure 3.12: Projection curves and surfaces during the smoothing iterations: (a) without

projection of all nodes, (b) with projection after each smoothing iteration.
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3.4.2 Point projection

This can be summarised as the search of the minimal distance from the point p in space

to the geometric entity onto which it should lie. The possibility of the point being at

the same minimal distance between more than one entity is cancelled. This is done by

identifying the node as belonging to a specific geometric entity, with the use of its par-

ent nodes, as explained earlier. There remains therefore only the problem of finding the

point on the geometric entity for which the distance to the point in space is minimised.

This problem can be approached in various ways and is most commonly referred to in

literature as the foot point problem [120]. A detailed description of a few commonly used

methods, including the ones implemented in the NURBS library, can be found in [121, 122].

Three possible choices for carrying out such a task are given in the library. The first consists

in a Newton iteration on the distance function between the point and the curve/surface,

though if a bad initial guess is made then the iteration may give a local rather than a

global closest point. However, since in our case the point is already close to the surface,

the local minimum problem is not a concern. The second option is based on the first since

it makes use of the same algorithm, but rather than having a user input initial guess, it

takes the closest control point and estimates the corresponding curve parameter value or

pair for the surface case. The value or values obtained are then used as the starting point

for the iteration. The last option in the library is that of entering the equation of the

curve/surface into the equation of a circle/sphere having p as its centre and radius zero.

This results in a one-dimensional curve/surface for which the minima is found [67].

3.5 Applications

In order to verify the effectiveness of the procedures introduced in this section, three test

cases were considered. The first is the earlier mentioned blade in a cylindrical channel (fig.

3.8). A second test case is represented by a 10% bump in a channel as shown in figure 3.11.

In both these cases the geometry is created from scratch. The third and final configuration

examined is that of the ONERA M6 wing, where the geometry is reconstructed from an

available mesh. The details of each calculation are presented hereafter, together with

the solutions which were obtained using THOR. The geometries are described with non-

dimensional units in all cases.

3.5.1 Pipe blade

This geometry has been taken as example for describing the design approach, and proves a

good test case for it’s simplicity in the design process and yet complexity in the geometry
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conservation during the adaptation process. The initial flow conditions are set to Mach

number 2.0 at zero angle of attack in order to obtain some interesting flow features. Here

we look principally at the adaptation projection process rather than the solution, hence

only a first order scheme is used.

The blade is described by two arcs of 4 units chord length and has a maximum width

of 0.6, whilst the distance from the tips of the blade to the ends of the pipe is 28 units.

Finally the diameter of the pipe is of 4 units. The initial coarse grid is uniform and contains

2 486 nodes, 10 683 tetrahedra and 2 384 triangular surface elements (fig. 3.8).

Four distinct adaptation steps were then performed in series, each restarting with the

previous steps adapted mesh. The adaptation is performed with respect to the difference

in density on the segment. An identical procedure was also done without the projection

algorithm, and used as comparison. This last computation serves also as illustration of

initial mesh dependency when no projection is applied.

Adaptation With Projection Without Projection

step N nodes N elements N surf el N nodes N elements N surf el

first 6 024 29 110 4 458 6 011 29 077 4 440

second 20 755 110 287 9 790 21 711 115 361 10 326

third 86 876 493 771 22 264 95 565 538 420 27 318

fourth 314 652 1 854 594 42 718 381 353 2 219 641 69 152

Table 3.1: Grid sizes for adapted pipe blade calculations: with and without projection

algorithm.

Considering the steps of the adaptation cycles reported in table 3.1, the surface grids show

remarkable differences. As expected, the meshes obtained from the algorithm that makes

use of the geometry definition are much smoother. In particular, grid induced flow fea-

tures that may come from an excessively coarse initial mesh, are lost after one or two

steps. Whereas in the case of no projection these features are further refined to no avail.

Details of this are shown in figures 3.13 and 3.14. The effect is clearly shown with the

smoother solution, and only some further refinement, in figures 3.13(a) and 3.14(a) where

the projection algorithm is selected. In figures 3.13(b) and 3.14(b) it is noticeable how,

despite the refinement, the original grid is still driving the solution, and because of this

it is refined also in those areas where an artificial step is created by the mesh coarse-

ness. This effect explains the values in table 3.1, which become increasingly higher for the
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case without projection respect to that projecting, as more refinement steps are carried out.

The percentage change was taken as %change = (N wp − N p)/N wp, where wp and

p stand for without and with projection respectively, and N is the number of the charac-

teristic size of the mesh being compared i.e. nodes, elements, and surface elements. This

is expressed graphically in figure 3.15, where it is clear to see the effect of the projection

algorithm, particularly on the number of surface elements, which is where the procedure

has the greatest influence.

Furthermore, by overlapping the original grid to the adapted grid after only two steps,

there is a remarkable difference between the two. This is clearly shown in figure 3.16, with

only two halves of one blade wall selected. From the internal side viewpoint of the blade

only the initial grid is visible, with a few segments from the adapted grid, and vice versa.

The reason for the visibility of some segments is due to the fact that some of the original

segments may lie on the exact geometry. A detail of the gap between original and adapted

grid at the top, is also shown in figure 3.16 (c).

Although the soultion itself might not be of particular interest, it is important to notice

how and if this is improved by the projection process in order to verify it’s effectiveness.

A close-up of the zone at the location of the blade in the pipe is shown in figures 3.17 and

3.19, with a further detail of the area behind the blade in figure 3.18. In particular from

figure 3.18 it is clear to see the projection on the channel wall and its effects. The solution

examined is the fourth and final step of the case considered here, and shows the variation

in density of the fluid flow. As expected, a much smoother and precise solution is obtained

with the projection algorithm, confirming the method to effectively ameliorate the result.
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(a)

(b)

Figure 3.13: Grids and density solution downstream of the blade: (a) and (b), first step

with and without projection respectively.
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(a)

(b)

Figure 3.14: Grids and density solution downstream of the blade: (a) and (b), second step

with and without projection respectively.
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Figure 3.15: Percentage difference between mesh characteristic sizes of adaptations with

and without projection.
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(a) (b)

(c)

Figure 3.16: Detail of the difference between adapted projected mesh and the original grid

of one side of the blade, view from:(a) outside, (b) inside and (c) top with gap detail.
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(a) (b)

Figure 3.17: Detail of the solution in proximity of the blade and downstream, viewed from

underneath: on the left with projection, on the right without.

(a) (b) (c)

Figure 3.18: Detail of the area behind the blade of fig. 3.17, showing initial grid (a)

dependency with artificial step created (b), and no dependency with projection (c).

72



3.5. APPLICATIONS

(a)

(b)

Figure 3.19: Detail of the solution in proximity of the blade and downstream, viewed from

the side: on the top with projection, on the bottom without.
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3.5.2 Bump in a channel

This is a classical test case which offers the possibility to test all aspects of the adaptation

process including the solution. The initial grid is that shown previously in figure 3.11, and

it also allows us to test whether the feature of projecting only onto selected surfaces works

correctly.

The geometry consists in a 10% circular bump in a channel, of unit chord length and

0.1 maximum thickness. Height, length and width of the channel are respectively 1, 3 and

0.2 units. The free-stream velocity is set to Mach number 0.675 at zero angle of attack,

which causes the flow to be transonic. The initial grid consists of 184 nodes, 426 tetrahedra

and 364 triangular surface elements.

Adaptation/ Projection No Projection

flow - step N nodes N elements N surf el N nodes N elements N surf el

first-flow 1 600 2 058 908 600 2 058 908

second-flow 2 1 731 7 390 1 804 1 717 7 318 1 800

third-flow 3 5 104 25 204 3 506 4 952 24 373 3 430

fourth-flow 5 13 362 71 143 6 388 15 625 84 313 6 716

fifth-flow 6 31 933 179 573 10 236 48 158 273 635 12 830

Table 3.2: Grid sizes for adapted channel bump calculations and relative flow solver step:

with and without projection algorithm.

At a first glance it is clear to see the differences with the prior test case from table 3.2.

Here the main variance is between the number of nodes and elements, but only slightly

and at the last stage of adaptation for the surface elements. This is normal since only a

slight part of the surface mesh is projected onto the geometry. Also, unlike the pipe blade

where only a first order scheme was used, here the approach was changed.

For compressible CFD, when performing a steady state or transient solution computa-

tion, the following steps are usually carried out:

1. On the initial grid, perform a first order spatial accurate solution technique to obtain

a provisional approximate solution. This solution will have an initial position of

shock waves and discontinuities, but will be very dissipative and not capture finer

details.
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2. This first solution can then be used for a first step of adaptation and/or serve as the

initial condition for a further number of iterative cycles using a second order scheme,

which will resolve more precisely the solution. At this point the mesh can be further

adapted.

This procedure is standard and removes some stiffness from the problem resolution. It is

also known as “Blending” first and second order solutions.

Initially a first order scheme is used to advance the solution and adapt the mesh, up

until the third adaptation step (adaptation and flow steps 1-3). After this refinement the

solution and grid obtained are used to start the second order solution, without adaptation

(flow step 4). Once a solution is obtained, it is then used to start the following adaptation

steps with the second order solutions (adaptation steps 4,5, and flow steps 5,6). In all steps

the adaptation is performed with respect to the difference in density on the segment.

(a) (b)

Figure 3.20: Detail of the differences between original and adapted projected grid for the

channel bump: (a) view from the side, (b) tilted view from underneath the bump.

A detail of the difference in the projected part of the grid is shown in figure 3.20. In

particular the gap between the original coarse mesh and the adapted projected grid can

be clearly seen. As for the previous case, in the proximity of segments of the original grid

that lie on the defining geometry, adapted segments are also visible.

The grids and solutions produced from the various steps are shown in figures 3.21-3.22,

with solution field for the Mach number and Cp isolines of the final step shown in detail

in figure 3.23. Here similarities in the grids can be seen until the second order solution
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adaptation steps in (fig. 3.22(b)), however the solution shows discrepancies between the

adapted projected and that without, already from the second step (fig. 3.21(b)). In par-

ticular, since without projection the original grid drives the solution, two regions of shock

seem to appear in the second step, of which the first lies at the interface of the original

coarse elements, which define a sharp feature rather than a smooth curvature of the bump.

Although this is greatly reduced when switching to the second order solution (fig. 3.22(a)),

large differences in both the adapted grids and the solution are clear in the final steps of the

computation, with a correct shock placement for the one using the projection algorithm,

and a corrupted one for the standard midpoint scheme.
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(a)

(b)

(c)

Figure 3.21: Adaptation/flow steps with (left) and without (right) projection: (a) first, (b)

second, (c) third. Solution field is Cp.
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(a)

(b)

(c)

Figure 3.22: Adaptation/flow steps with (left) and without (right) projection: (a) only

flow calculation step 4, (b) adapt fourth - flow 5, (c) adapt fifth - flow 6. Solution field is

Cp.
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(a)

(b)

Figure 3.23: Final solutions with (left) and without (right) projection. (a) Mach number

solution field and Cp isolines and (b) detail from the side.
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3.5.3 ONERA M6 wing

Unlike the previous test cases, an exploitable mesh is used to recover a usable set of curves

to reconstruct the geometry. Although the geometrical information of the ONERA M6

wing can be easily found online, this test case is also used as basis to check the feasibility

of recovering a usable geometry from an available mesh. The mesh used to recover the

initial set of curves is shown in figure 3.24, in which the different patches of the mesh are

also shown.

Figure 3.24: Original ONERA M6 wing grid and patches.

The procedure consisted first in recovering the nodes, at the sections described by the

patches borders, which are then used as points to construct the curves. The curves are

then split accordingly to the guidelines given earlier in section 3.4, in such a way that no

two surfaces have more than one curve in common. The recovered geometry consists of 8

surfaces and 15 curves, the root chord length is 10 units long with the centre of the domain

placed at the tip of the of the wing section on the symmetry plane.

Figure 3.25 shows the new patch structure on the wing, which coincides with that of

the surfaces, with details of the tip and tail patches with mesh. Finally the far field is

described by a half sphere of radius 12.5 times the root chord. This leads to the initial

mesh shown in figure 3.26. The free-stream velocity is set to Mach 0.84 and the angle of

attack at 3.06◦, causing the flow to be transonic. The initial grid consists of 91 379 nodes,
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477 262 tetrahedra and 38 926 triangular surface elements.

(a)

(b)

Figure 3.25: Patches of the reconstructed ONERA M6 wing mesh: (a) side view, (b) detail

of the tail (left) and tip (right).

For all the following examples, an initial first order solution is carried out to start off the

computation, and used in the second stage as a restart for a second order solution. This

solution then becomes the base for all subsequent meshes in the first adaptation step. The

first and second order solutions are shown in figure 3.27.

A first adaptation step is then performed, with respect to the difference in Mach number.

The smoothing factor is kept to a minimum number of iterations and a relatively high

boundary constraint in order to avoid as much as possible the unprojected solution to be

influenced by excessive smoothing. The results of a computation without the projection

algorithm and one with are shown in figure 3.28, where an initial difference in the solution

due to the smoother surface, is already visible in the areas of greater surface gradient i.e.

at the leading edge and at the tip. For completeness the grids are also shown, although the

differences are minimal at this stage, and can only be noticed at the leading edge (fig. 3.29).

Adapting a second time gives us a clearer view of the differences on the solution, due

to the effect of projecting the nodes onto the surface. The overall solution gives a rela-
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Figure 3.26: Initial ONERA M6 wing mesh.

(a) (b)

Figure 3.27: First and second order solutions(M∞) of the ONERA M6 wing mesh: (a)

initial solution first order, (b) restarted solution second orders.
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tively good result as we can see from figure 3.30, but even so, the noise produced by the

original grid size is clear to see at the tip and at the leading edge in particular. Finally

figure 3.31 illustrates the iso-Mach lines and a detail of the solution at the leading edge.

In both cases, we can see a net improvement in the computation where the projection is

included.

(a) (b)

(c) (d)

Figure 3.28: Solution(M∞) and grids on the ONERA M6 wing with(left) and without(right)

projection.
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(a)

(b)

Figure 3.29: Grid on the ONERA M6 wing with(top) and without(bottom) projection.
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(a) (b)

(c) (d)

Figure 3.30: Solution(M∞) and grids after a second adaptation step on the ONERA M6

wing with(left) and without(right) projection.
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(a) (b)

(c) (d)

Figure 3.31: Iso-Mach lines and solution (M∞), with detail of the leading edge, after a

second adaptation step on the ONERA M6 wing with(left) and without(right) projection.
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4
Geometry Approximation

Geometry conservation as it has just been described, is not always possible due to either

faulty, or intricate designs, which require a higher level of complexity in the CAD library.

Alternatives to this have been used and proposed in the past, such as describing the ge-

ometry with a grid finer than the highest expected mesh resolution[2]. Although relatively

crude, this method can be a valid alternative with increasing computer power. If we con-

sider the ratio between surface and volume elements S/Vr, for the case of a tetrahedral 3D

transonic wing mesh, this is approximately 0.1 which gives a reasonable number of nodes

for the background mesh to be used as geometry. However even this method may not be

usable in cases where only a mesh for carrying out the calculations is available, and no

geometry is available for creating the background mesh.

It is therefore paramount to have a built-in algorithm able to place the new nodes, be-

longing to the boundary, closer to the geometric definition of it. Various methods may be

used to achieve this, the work by Löhner [27] mentioned in the introductory chapter of

this thesis, proposes to reconstruct a geometry from the available triangulation in order

to obtain the necessary data for remeshing. Along a similar principle, the work by Baker

[31, 28] and more recently in [29] makes use of Hermite interpolation to approximate the

boundary surface. These methods however may still pose some problems in the generalised

case and use considerable computational resources. Hence an alternative that can also be

readily parallelised is searched. Such a procedure is proposed here, based on the idea of

interpolating subdivision [123, 124, 60].

4.1 Interpolating subdivision

The underlying idea of this technique is to define a smooth curve or surface as the limit

of a sequence of successive refinements. As we can see in figure 4.1, the older subdivision

strategy that was in use, needs to have a very good piecewise linear definition of the ge-
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ometry where the gradient of the curves and surfaces defining it are high, to begin with.

As one can see, the older method consisted in dividing the edges marked for refinement at

their midpoint.

What is being introduced here is a weighted average of the nearby old points, which

remain undisturbed, as preferable considering they already lie on the surface.

When considering where the new points should be placed, a few properties we would like

to have are:

� Simplicity: a restrained set of rules for the subdivision process;

� Efficiency: the computation of the space coordinates should be carried out with as

little floating point operations as possible;

� Continuity: properties of the resulting curves and surfaces, such as differentiability;

� Local & Compact: rules based on points lying in the direct neighbourhood which

should be small and finite;

� Affine invariance: if the original set of points is subject to a transformation, such as

a translation, the resulting shape should also undergo the same transformation.

If we ignore the boundary points for the time being, the example shown in figure 4.1(bottom)

uses interpolating subdivision taking into account two points to the right and two to the

left, from the centre of the edge where the new point is being introduced. A simple weight

formula of 1/16(−1, 9, 9,−1) is used, which is very efficient as it involves only 4 multiplies

and 3 adds per coordinate (see equation (4.1)[123]).

x5 = 1
16

[(−1) · x1 + 9 · x2 + 9 · x3 + (−1) · x4] ,

y5 = 1
16

[(−1) · y1 + 9 · y2 + 9 · y3 + (−1) · y4] .

(4.1)

It is also very compact since only 2 neighbouring nodes on either side of the new point

location are involved. It has a local definition due to the fact that the weights do not

depend on the arrangement of the points and is an affinely invariant rule since the weights

sum to one. Simplicity is also obtained since only one rule is used for the interior points,

and only one other is needed for the boundaries. Finally continuity is also respected as the

limit curves obtained by repetition of the process are C1 continuous.

One should not forget the point of this addition to the adaptation library, is that of imple-

menting an efficient, compact, fast, and simple algorithm to approximate the placement of

the new nodes, coming from the refinement of the mesh, as close as possible to the exact
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1

2 3

4

5

Figure 4.1: Example of interpolating subdivision for a curve in a plane. On the top:

midpoint subdivision. On the bottom: Refinement with a piecewise linear curve connecting

the points using a weighted average of nearby old points, as in eq (4.1).

geometry in case this is not accessible. This is particularly important for problems where

the surface geometry moves and/or when the external field is unsteady. As we can see

from the example above all these criteria can be satisfied with interpolating subdivision.

If we compare this to other traditional approaches for modelling smooth surfaces we find

that it performs better in all the following points:

1. Efficiency. Subdivision is easy to implement and computationally efficient as only

a small number of neighbour nodes is necessary. Similar to this is knot insertion

methods used in spline modelling, which is why many subdivision methods are a

generalisation of this. However these are generally not interpolating and old points

are moved in the subdivision steps. Implicit surfaces on the other hand are much more

costly, and even more so variational surfaces, with a global optimisation problem to

be solved at each surface adaptation.

2. Arbitrary topology. This consists of two properties, the arbitrary topological

genus of the mesh and associated surface, and the arbitrary structure of the graph

formed by the edges and vertices of the mesh (specifically the arbitrary degree of

each vertex). Spline patches used in arbitrary control meshes, may encounter prob-

lems when enforcing higher order continuity at extraordinary vertices (extraordinary

means where a number of patches other than four are connected to it in the case of
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quadrilateral patches), considerably increasing the complexity of the representation.

Implicit surfaces can be of arbitrary topology, but precise location and connectiv-

ity of the surface are typically difficult to control. Variational surfaces have high

computational costs despite the ability to handle arbitrary topology extremely well.

Subdivision can handle arbitrary topology quite well without loss in efficiency.

3. Surface features. It is desirable to control features such as creases and sharp edges.

Implicit surfaces are very difficult to control since all modelling is performed indirectly

and interactions between different parts of the surface can occur. Spline surfaces al-

low for precise control but introduction of features is computationally expensive and

hard to do, particularly when the location of these features can be arbitrary. Vari-

ational surfaces provide good flexibility and exact control when creating features.

Subdivision is more flexible than splines as the coefficients of subdivision can be ma-

nipulated in order to achieve effects such as sharp creases and control the behaviour

of boundary curves, in addition to choosing locations of control points.

4.1.1 Basic subdivision scheme distinction

The first and foremost distinction between subdivision schemes is that of approximating

and interpolating schemes [59]. Let us take a vector of points, that will be our control

points of a given curve:

p =



...

p−2

p−1

p0

p1

p2

...


. (4.2)

Let us now define the relationship between these control points at j different levels of

subdivision

pj+1 = Spj , (4.3)

where S is the subdivision matrix. Using as example the case of the B-spline, the compo-

nents of S will be

S2i+k,i = sk =
l

2l

(
l + 1

k

)
, (4.4)
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where the non-zero entries in each row are the weights of the refinement equation, and

successive rows are copies shifted by one column to the right every other row. For further

details on the mathematical background we refer the reader to [59].

Looking more closely at one component, i, of our control points we see that

pj+1
i =

∑
l

Si,l p
j
l . (4.5)

In order to find which sk is affecting which term, the above can be divided into odd and

even entries.

Hence for the odd entries we have

pj+1
2i+1 =

∑
l

S2i+1,l p
j
l =

∑
l

s2(i−l)+1 p
j
l , (4.6)

and for the even entries

pj+1
2i =

∑
l

S2i,l p
j
l =

∑
l

s2(i−l) p
j
l . (4.7)

From which two different subdivision rules can be obtained, one for the new even control

points of the curve, and one for the new odd control points. Another way to look at the

distinction between even and odd subdivision, is to notice that odd points at level j+1 are

newly inserted, while even points at level j + 1 correspond to the old points from level j.

Subdivision schemes that have these properties are called interpolating, since points, once

they have been computed, will never move again.

In the case where even points, at level j + 1, are local averages of points at level j so

that pj+1
2i 6= pjl , the scheme is called approximating. This last is the case of cubic splines,

whilst the previous one is that of the 4 point scheme [123] used for the example in figure

4.1. Note that the subdivision matrix S encodes the refinement equation for the B-spline

in the case where this is used in the definition of the curve.

Let us consider for example the cases shown in figure 4.2. Here we can see how in the

approximating subdivision scheme the location of the old points is also going to be modified,

by noticing how all the points in the new level are influenced by more than one point in the

previous level. We can also see this by examining the relationship between control points

at different levels of subdivision, from equation (4.3) using the subdivision matrix for the

cubic B-spline:
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Figure 4.2: Approximating and interpolating schemes. On the top the case of a cubic B-

spline approximating subdivision. The bottom case is the 4 point interpolating subdivision

rule.
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If instead we look at the interpolating 4 point subdivision scheme as shown in the ex-

ample in figure 4.2, we can see how only the new points are affected by the points in the

previous level. In this case the relationship between control points at different levels of

subdivision in equation (4.3) is as follows

pj+1
−3

pj+1
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0
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1

pj+1
2

pj+1
−3
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=

1

16
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
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pj−1
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
. (4.9)
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Another interesting property of subdivision is that it has a geometric speed of convergence,

in other words the difference between the actual curve and the piecewise one decreases by

a constant factor on every subdivision step. However the most important feature is linked

to the subdivision matrix, which can be used to create a variety of different curves by

manipulating its coefficients. For example it could be changed within a subdivision level

or between subdivision levels. This becomes particularly interesting where features such

as sharp edges need to be treated differently.

4.1.2 Surface subdivision techniques

The variety of schemes available is widespread and it is not our purpose to present an

exhaustive discussion of these. However we should specify the criteria used to classify

most schemes, which are:

� the type of refinement rule (face split or vertex split);

� the type of generated surface mesh (triangular or quadrilateral);

� whether the scheme is approximating or interpolating;

� smoothness of the limit surfaces for regular meshes (C1, C2 etc.).

A summary of the most widely known and used type of schemes is given in table 4.1[59].

Face Split

Triangular meshes Quad meshes

Approximating Loop(C2) Catmull-Clark (C2)

Interpolating Mod. Butterfly (C1) Kobbelt (C1)

Vertex split

Doo-Sabin, Midedge (C1)

Biquadratic (C2)

Table 4.1: Schemes classification.

The first choice that must be made is that of the type of mesh that is going to be used for

the subdivision process. We are only interested in surface meshes that are triangular for
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now, but it is important to know that such schemes are available for quadrilateral meshes

for future research to be done with hybrid grids. Once the tiling of the plane is fixed, the

decision that has to follow is how to refine it. The two main approaches to do this are the

face or the vertex split, which can also be referred to as primal or dual schemes. In the

first case the edges of a face are split, whilst in the second the vertex is split into the faces

surrounding it (see figure 4.3).

Figure 4.3: To the left the face split scheme. To the right the vertex split.

For demonstration purposes only the quadrilateral tilings have been shown in figure 4.3 as

in the case of triangles vertex split schemes result in non-nesting hexagonal tilings, whilst

quadrilateral meshes support both subdivision schemes easily. Once again we will concen-

trate on only one scheme, the face split, due to the fact that the adaptation module splits

the edges when refining a mesh.

As in the case of curves previously examined, face-split schemes can be either interpo-

lating or approximating. It is our choice therefore to concentrate onto the interpolating

schemes since we would like to maintain the original control points in the same position,

as they are on the exact surface.

Therefore only part of the modified butterfly scheme [124, 60] is going to be taken into

account and used as a basis onto which construct our interpolatory subdivision for ap-

proaching the new node placements to the exact surface or curve. On boundary and

creases, where usually curves will be defining the geometry in our CAD design, the 4 point

subdivision scheme as shown in the previous sections should be used. This is made possible

by the use of patches as in the previous chapter, whereby nodes belonging to more than

one patch can be identified and the 4 point scheme used. On interior points the stencil

shown in figure 4.4 can be used.

Some boundary rules must be set though for points to be added on vertices which do not lie

on borders, but are connected to them. A reduced set of boundary and crease rules includes

three main types: regular interior-crease, regular crease-crease 1, and regular crease-crease
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1/8

1/2

−1/16−1/16

−1/16 −1/161/8

1/2
−1/16 −1/169/16 9/16

Figure 4.4: To the left the normal butterfly scheme for internal vertices. To the right the

mask for crease and boundary nodes.

2. To put it all into a system, the main cases can be classified by types of head and tail

vertices of the edge on which we add a new vertex. Some of these are illustrated in figure 4.5.

3/16

5/8

−1/8−1/16

−1/161/16

3/8

1/4

1/2

−1/8−1/8

1/2 1/21/2

0

0 0

0 0

Figure 4.5: Regular modified butterfly boundary and crease rules. From left to right

respectively: interior-crease rule, crease-crease rule 1, and crease-crease rule 2.

It is clear that some modifications and additions must be brought to the scheme in order

to adapt it to our needs. A quick example of this is the possibility of having a border,

from the newly added node in the crease-crease rule 1 in figure 4.5 to the top node, and

then wanting to refine that edge. This is clearly an exceptional case, but it may happen

as we are not dealing with classical subdivision, where all the edges are refined, but using

the idea to apply it to our case in order to make node insertion closer to the underlying

geometric boundary.
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4.2 Modified subdivision techniques

Although the butterfly subdivision scheme adapts well to near-regular grids, and allows for

very good approximations at creases and boundary nodes with the four point subdivision

scheme, it may lack some precision when faced with interior sharp features and with more

irregular grids. In fact it is not so obvious how to define a sharp feature in a mesh, which

is then recognisable, without manipulating the mesh itself.

The objective in fact remains that of being able to use this interpolation when the ge-

ometry is too complex or intricate for a relatively simple use with the CAD library, and

sometimes it may not be possible to place a patch intersection at every sharp feature

present. This last method remains in fact the only safe and secure way, without a geomet-

ric description, to ensure the feature is maintained intact. Therefore some modifications

to tune the schemes to our needs have been made. In particular we have concentrated on

the 3D aspect of the scheme, since the 2D scheme implemented, suffers less the problems

noted above.

4.2.1 Distance based butterfly scheme

Let us consider the butterfly scheme just described, and modify it as shown in figure 4.6.

c b

c

0

11 c

c

1

2

3

ζ
0

b

a
a

0

Figure 4.6: Adapted modified butterfly scheme.

If we now try to express the same scheme as before with these nodes, it would give us:

ζ =
1

16
{8[a0 + a1] + 2[b0 + b1]− [c0 + c1 + c2 + c3]} , (4.10)

where ζ is the new point inserted. A new system of weights is needed to take into ac-

count the possible grid irregularity. Taking the distance between each node and a virtual
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mid-segment point ξ, it may then be used as an inverse proportional weight to allow for

closer nodes to have a stronger effect on the new position than the farther ones. However,

since we would like to keep the key weights of the scheme above, we only apply this to the

different areas of the scheme.

Let us first define the weights, which remain unchanged for the nodes at the end of the

split segment, since ξ is at half way between them, and for the others are:

wbi =
1

‖ξ − bi‖
, wci =

1

‖ξ − ci‖
, (4.11)

where ‖ · ‖ stands for the Euclidean norm, and,

Wb =
2∑
i=1

wbi , Wc =
4∑
i=1

wci . (4.12)

Using these weights in equation (4.10) we obtain the following:

ζ =
1

16
{8[a0 + a1] + 2[2

1

Wb

(
2∑
i=1

wbibi)]− [4
1

Wc

(
4∑
i=1

wcici)]} . (4.13)

In this way the original weight distribution is still: 1 for the referring segment nodes, 1/4

for the two nodes opposite the segment, and −1/4 for the four nodes directly related to

ones surrounding the segment. At the same time, an internal weight repartition based on

the inverse of the distance is achieved. Note that for the boundary rules shown in figure

4.5 particular care must be taken since it is not so straightforward to apply. This is due

to the different weights given because of the loss of symmetry in the scheme.

4.2.2 Multi-node scheme modification

A further modification of this scheme is represented in figure 4.7. Here, rather than limiting

the scheme to four surrounding nodes, we extend it to all the nodes connected to the

referring segment end nodes. The system used remains very similar to the one just outlined

in the above paragraph.

The nodes which are not directly related to the cells having the segment in common, are

split in two groups, each associated with one of the two a nodes. The definition for the

weights of nodes b remains the same as in equation (4.11), the same is also true for c, with

the addition of:

wdi
=

1

‖ξ − di‖
, (4.14)
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Figure 4.7: Adapted modified butterfly scheme with multiple neighbours.

and whilst b remains unchanged also in (4.12), the definition for c is changed and that of

d is added:

Wc =
n∑
i=1

wci , Wd =
m∑
i=1

wdi
. (4.15)

Adapting this new stencil to the system expressed in (4.13) we obtain:

ζ =
1

16
{8[a0 + a1] + 2[2

1

Wb

(
2∑
i=1

wbibi)]− [2
1

Wc

(
n∑
i=1

wcici)]− [2
1

Wd

(
m∑
i=1

wdi
di)]} , (4.16)

where n and m are the neighbour nodes of a0 and a1 respectively. As we shall see in the

following sections, this scheme allows for a somewhat more precise idea of the surrounding

nodes positions, without disrupting the simple and effective weight system on which it is

based.

This is possible since the internal weighting system of each area of the scheme adds up

to unity, which is the reason why it must then be multiplied by an extra weight on top

of that from the scheme. It is clear to see this when comparing (4.10) and (4.13), where

a factor 2 has been introduced for the b nodes, and a factor of 4 for the c nodes. Hence

in (4.16) it does not matter whether n and m are different, or how many there are, as in

the end the sum of the internal weights is multiplied by it’s inverse, bringing it back to

unity (weight wise). However, the drawback with regards to the previous stencil is a lesser

variety of stencils for particular cases.
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4.2.3 Diamond difference based scheme

A more basic method, founded on directional distances, has also been devised. If we

consider the stencil shown in figure 4.8, only the surface elements that share the edge to

be refined are used to interpolate the new point position. The particular to notice in the

stencil is the dashed line representing the imaginary edge between the b nodes. We start

by measuring first the directional changes along the two internal edges of the diamond:

dxa = ‖xa1 − xa0‖ , dxb = ‖xb1 − xb0‖ , (4.17)

and in a similar manner we get dya, dyb, dza and dzb, and obtain:

Da = dxa + dya + dza , Db = dxb + dyb + dzb . (4.18)

b

1

10

b

a a

0

ζ

Figure 4.8: Diamond stencil with fictitious edge dashed.

In order to proceed, we introduce two variables % and ς. The scope of these two variables

is to act as checks on the directional variation along the two internal edges. This allows to

estimate whether the use of one segment midpoint or the other is more appropriate for the

new point placement. In particular, we may chose to use the midpoint of only one segment

if the following conditions are satisfied:
dxb > %dxa

dya > ςdyb

dza > ςdzb

or


dyb > %dya

dxa > ςdxb

dza > ςdzb

or


dzb > %dza

dxa > ςdxb

dya > ςdyb

(4.19)

to use only b0b1 segment, and:
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
dxa > %dxb

dyb > ςdya

dzb > ςdza

or


dya > %dyb

dxb > ςdxa

dzb > ςdza

or


dza > %dzb

dxb > ςdxa

dyb > ςdya

(4.20)

to use only a0a1.

The idea behind this is simple. Consider one direction only, to begin with, along the two

internal segments of the diamond. If the variation along that direction is clearly greater

on one segment than the other, we continue to consider the other two directions. If the

variation in both these directions is greater on the other segment respect to the previous

one, then we consider only the segment with the greater change in only one direction. The

values of % and ς are therefore variable. Their values depend on where we want to set the

limits of how much greater the difference in the directions must be to use only one set of

nodes rather than the other. Here values of 1.5 for % and 1.1 for ς were used. When these

above conditions aren’t satisfied, the position of ζ is calculated using the midpoints ξ and

χ of the internal segments between the set of points a and b respectively. Then we use

Da and Db from eq. (4.18) as weights in the following way:

ζ =
1

Dab

(
1

Da

ξ +
1

Db

χ

)
, (4.21)

where

Dab =
1

Da

+
1

Db

. (4.22)

In this way all four points of the diamond stencil will influence the new point position. Also

the influence is inversely proportional to the overall variation in the x, y and z directions,

along the two internal edges. Since the points to which the weights will be applied are the

midpoints of the edges, the new point will lie somewhere along the straight line connecting

these two points.

4.3 Implementation

First we take into consideration the two dimensional cases, which are relatively simple to

implement and have only one type of rule for border nodes. The normal interpolation rule

used for the boundary, is the four point rule of equation (4.1) shown also in figure 4.4

on the right. The border rule introduced here is shown schematically in figure 4.9 and in

equation:
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ζ =
1

18
[(−1) · a0 + 10 · a1 + 9 · a2] . (4.23)

10/18 9/18−1/18

a a aζ1 20

Figure 4.9: Border node rule for 2D four point rule.

A further control is introduced to avoid the accidental use of the normal rule when in pres-

ence sharp features (such as a cusp), when these haven’t been modelled as separate patches

in order to distinguish a border zone. This is done by checking that the angle between

two segments is less than a given parameter set by the user beforehand. An example of

these angles is given in figure 4.10. The result is that if one of the angles is too high, the

border rule is used with the other segment satisfying the condition. If both segments fail

to pass the control, then the midpoint of the segment is taken. The same is also done when

examining a border rule case, with the angle greater than the set value.

α β

Figure 4.10: Angle control on four point scheme.

We can now move onto the three dimensional implementation. This is less straightforward

than the previous one, since we are now dealing with surfaces rather than curves in a

plane. In particular, all the different cases must be thoroughly examined before modifying

the scheme for special rules to be added. Let us first consider the distance based butterfly

scheme. Here the hardest part is finding the nodes which are associated to the scheme for

each particular edge marked for refinement. Then the various surface elements contained

in the stencil are associated to a patch. At this point all the elements of the stencil are

considered, and the ones belonging to the same patch are picked to find the correct scheme

to apply. This clearly means that if the two principal faces, adjacent to the segment that

is being refined, belong to different patches, then the segment lies on the border and the

crease four point rule is applied.
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Moving onto the multi-node scheme, we encounter similar problems to those of the above

scheme. The process is slightly more straightforward, in the sense that all the surrounding

nodes, of vertices of the edge to be refined, are identified. The patch association is now

done on the nodes rather than faces, and the borders are recognised by end nodes of a

segment belonging to the same multiple patches. In this way a series of checks may be

carried out to control the rule that should be applied. As in the previous case, if a segment

lies on the border of two patches, then the crease four point rule is applied. If instead, only

one of the two nodes of the edge to be refined lies on the boundary, then the neighbouring

nodes of that vertex are ignored and the scheme (4.16) changed to:

ζ =
1

18
{9[a0] + 7[a1] + 2[2

1

Wb

(
2∑
i=1

wbibi)]− [2
1

Wc

(
n∑
i=1

wcici)]} , (4.24)

in the case where node a1 belongs to more than one patch. There exists the possibil-

ity that the other border nodes are not the b points and therefore some of the d vertices

could still be taken into account. However, for simplicity, the rule in eq. (4.24) is preferable.

d d

d d

d d

d d

d

d d

d1

1

1

2

3 1

1

1

2

3

1

1

1

2

3 1

1

1

2

3

a

a a

b

a

b

b b

d00
d00

d00
d00

b b

b b

Figure 4.11: Border possibilities example for multi-node scheme.
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If we consider the different possibilities shown in figure 4.11, we find that: the first on the

top left shows a possible configuration which would justify the use of at least two nodes d

in the stencil, the top right and bottom left configurations would induce an unfavourable

point influence coming from only point d0 in the first case and also point d1 from the other.

For the top right and lower left cases a new stencil should be used, but the difficulty lies

in identifying when to use it, as it could be erroneously applied to the case in the bottom

right of the figure, where the normal stencil would perform better, excluding only node d3.

a

a

b

b

0

1

0

ξ

1y

x

z

Figure 4.12: Directional distance control.

A further check is put in place to see which stencil to use and avoid inconsistencies during

the subdivision process. The use of the directional variance in the mesh, such as that

described in eq. (4.17) is particularly interesting. Let us consider our usual midpoint ξ

(fig. 4.12) and find the directional distance from this to the vertices a and b,

dxa0 = ‖xξ − xa0‖ , dxa1 = ‖xξ − xa1‖ , dxb0 = ‖xξ − xb0‖ , dxb1 = ‖xξ − xb1‖ . (4.25)

The average difference in the x direction is then computed as:

dx̄ =
dxa0 + dxa1 + dxb0 + dxb1

4
(4.26)

the same is also done for y and z directions. Note that when in a plane, such as the sym-

metry plane, one of the average values will be zero. Since it will be used for a division as

we shall see in the following paragraph, it is set to a computational zero in order to avoid

errors. This will guarantee the proper functioning of what follows without manipulating

its significance. As we shall see, it is also true that if the average adds up to zero, then
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the value than we shall divide will also be zero, leaving unchanged the idea behind the

operation.

We now proceed to the second step of this check, which consists in comparing the change

in direction of the b vertices, with respect to the average:

κxb0 =
dxb0
dx̄

, κxb1 =
dxb1
dx̄

, (4.27)

with the same procedure applied to the other directions also. The limit for the κ variable

introduced is user dependent, and should be set low enough to avoid anomalies, yet high

enough to avoid restraining the choice to just the midpoint rule. In fact if any of the

values of κ is greater than a certain tolerance, the midpoint rule is applied. The same

procedure is then applied for each of the neighbouring nodes. In case a node does not

satisfy the condition and is greater than a set tolerance (specific for neighbouring nodes),

it is neglected.

Another control measure is that of evaluating the angles inside the two faces adjacent

to the marked segment. In particular the two angles at the vertices of the segment as

shown in figure 4.13. If one of the angles is greater than a set value then the surface ele-

ment is considered too distorted for use with the scheme. The reference angle was chosen

at 80◦.

b

1

1

1

1
0

α

β

α0

0 β

b

a a

0

ζ

Figure 4.13: Angle control at refined segment vertices.

Finally we look at the diamond difference based scheme. As in the distance butterfly case,

we find what patches the two faces adjacent to the edge belong to. In this way the borders

are found and the four point crease rule may be used. Also, the same angle check in place

for the multi-node scheme shown in figure 4.13, is used.
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4.4 Applications

The effectiveness of the procedures introduced is then verified with two test cases. The

first is a NACA 0012 airfoil, used for the 2D validation. The second test case is represented

by the concept aircraft. SmartFish shown in figure 2.27. This is a particularly difficult

test case to work with, due to the continuously varying geometry, sharp corners and cusps

present. Also for these cases, solutions were obtained using the parallel, unstructured grid,

Euler solver THOR. The geometries are described with non-dimensional units in all cases.

4.4.1 2D: NACA 0012 airfoil

The transonic flow conditions, with Mach number 0.85 have been used to test the case.

Two angles of attack have been considered, with α = 0◦ and α = 1◦. The first in particu-

lar, to see the influence on the smoothness of the solution and adaptation process, for the

symmetric case. The airfoil chord is 1 unit long with origin at the tip, and the far field is of

radius 20 units. The original mesh is described with 2 355 nodes, 4 537 triangular elements,

and 173 line elements, as shown in figure 4.14. In both angles of attack computations, the

first two steps are done adapting the grid to a first order solution, and in the third step a

second order computation without adaptation is carried out. Following that, the mesh is

always adapted to a second order solution, with respect to an a posteriori error estimation

of the Mach number on the node, that will be discussed later in this work.

Let us first examine the zero angle of attack case. Figures 4.15 to 4.17 show the various

steps in the adaptation process, and how this correctly refines the mesh in the areas where

flow features are more interesting. In particular the tip of the airfoil, and the area where

the shocks occur are well adapted. As we may see from the first figure (4.15), the grids are

very similar in the first steps of the process. However, in figure 4.15 (c) slight differences

are perceptible, such are the greater refinement in the tip zone and on the lower side of

the airfoil after the shock, in the mesh without the subdivision being used. This is less

apparent when looking at the final grids and solution from slightly further away, as in figure

4.16 (a) and (b). It is clearer when looking at part (c), where the negative Cp is shown

along the airfoil. Here the tip values are greatly disturbed in the part without subdivision,

as well as having the upper and lower shocks not coinciding. A detailed view of the tip

region after the final adaptation is shown in figure 4.17, where the influence of the original

grid adapted with the midpoint rule is more evident.

In order to view the detail of the difference between the subdivided grid and the one using

the midpoint division, an enhancement of the tip is shown in figure 4.18. The further

enhancement in (c) shows how the subdivision continues to interpolate the new grid points
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Figure 4.14: NACA 0012 initial mesh.

maintaining the ones from previous levels fixed.

Passing onto the angle of attack 1◦ case, we can see once again how the solution is more

disturbed at the tip in the computation where subdivision was not used (fig. 4.19). Also,

in figure 4.20, a detail of the mesh downstream illustrates how the far field is also well

described by the subdivision with respect to the normal midpoint division.
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(a)

(b)

(c)

Figure 4.15: NACA 0012 adaptation process, on the left with subdivision, on the right

without, grids and solution after: (a) 2 steps, (b) 3 steps, (c) 4 steps. Solution field is

Mach number.
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(a)

(b)

(c)

Figure 4.16: NACA 0012 adaptation process, on the left with subdivision, on the right

without: (a) grids and solution after 5 steps, (b) solution, (c) −Cp on the wing. Solution

field is Mach number, isolines Cp.
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(a)

(b)

Figure 4.17: NACA 0012 adaptation process, on the left with subdivision, on the right

without, tip closeup of: (a) grids and solution, (b) solution. Solution field is Mach number,

isolines Cp.
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(a) (b)

(c) (d)

Figure 4.18: NACA 0012 tip detail with superimposed adapted grids: (a) original grid, (b)

first step with and without subdivision, (c) further detail of subdivided second step, with

first step and original mesh, (d) further detail of midpoint division grids step one and two.
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(a)

(b)

(c)

Figure 4.19: NACA 0012 angle of attack 1◦, on the left with subdivision, on the right

without: (a) final grids and solution, (b) solution, (c) −Cp on the wing. Solution field is

Mach number, isolines Cp.
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Figure 4.20: NACA 0012 angle of attack 1◦, far field downstream detail with superimposed

grids with and without subdivision.

4.4.2 3D: Concept aircraft

Flow conditions for this case were set to Mach number 0.85, and an angle of attack of

α = 2◦. The aircraft body is approximately 1250 units long with origin at the tip of the

wing section cutting the symmetry plane, and a wingspan of 490 units. The radius of the

far field is approximately 25 times the body length, with centre at body mid-length. The

original mesh is described with 129 865 nodes, 676 524 tetrahedral elements, and 65 770

triangular surface elements, as shown in figure 4.21.

The first two steps are computations carried out to set up the problem, with a first order

solution in step one, and a second order solution in step two. The grid is then adapted

with respect to Mach number, using the different subdivision schemes described above, and

an a posteriori error estimator that will be described in a later chapter. The adaptation

is performed on the solution obtained from the second step, which is the starting point

for all the trials of the different types of subdivisions that follow. Hence the segments

selected for adaption will be the same for all examples, and the resulting grids will look

very much alike. An example of one of the adapted meshes is shown in figure 4.22. Note

that although structural optimisation is selected, no smoothing is performed, in order to

verify the methods differences and effectiveness. The details of some critical zones of the
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Figure 4.21: Initial grid of SmartFish, view from below and above.

grid, on the other hand, will show some differences.

First an initial detail of the tip and the tail is shown in figure 4.23, with the adapted

mesh without subdivision. Then, in order to evaluate the subdivision process, figures 4.24

to 4.26 show details of the tip and tail with and without the superimposed original grid. In

all subdivisions the larger segments, that tend to be further from the underlying geometry,

are correctly divided by moving the node away from the midpoint and towards the geom-

etry. The first two subdivisions in particular seem to get a smoother grid, whilst the third

is not so evident. However the lower straight line feature at the tail is maintained better

with the diamond difference scheme, whilst the other two methods perform similarly, with

a slightly better sharpness obtained by the multi-node. This marked difference is due to

% and ς. Changing these to higher values would cause less difference between the results

of the three schemes, but a probable loss of control of sharp features by the last scheme.

This is a compromise for the user to decide which direction to take from case to case.

Results displayed in figures 4.27 and 4.28 show the initial solutions and those after adapta-

tions with the various strategies. The disturbance created by the grid, not describing well
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Figure 4.22: Adapted mesh, view from below and above.

enough the areas of the geometry with higher gradient, is clearly visible in the refinement

without subdivision (fig. 4.27 (c)). The solutions obtained with the diamond difference,

and the multi-node in particular, show a marginal improvement overall, whilst the distance

based butterfly doesn’t seem to ameliorate much the solution.
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(a)

(b)

Figure 4.23: Original mesh detail of tip (a) and tail (b) on the left, and standard midpoint

subdivision on the right.
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(a)

(b)

Figure 4.24: Distance based butterfly subdivision, detail of (a) tip and (b) tail, with and

without original grid superimposed.
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(a)

(b)

Figure 4.25: Multi-node subdivision, detail of (a) tip and (b) tail, with and without original

grid superimposed.
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(a)

(b)

Figure 4.26: Diamond difference scheme subdivision, detail of (a) tip and (b) tail, with

and without original grid superimposed.
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(a)

(b)

(c)

Figure 4.27: First (top) and second (middle) step soultions. At the bottom, solution for

the adapted mesh without subdivision. Solution field is Mach number.
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(a)

(b)

(c)

Figure 4.28: Distance based butterfly, multi-node, and diamond difference subdivisions

from top to bottom. Solution field is Mach number.
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5
Error Estimation

In this chapter a posteriori error estimation along the lines of the Zienkiewicz and Zhu (ZZ)-

philosophy is discussed and implemented as mesh adaptation criteria. One of the main

reasons for choosing these developments come from the interest of simulating problems in

aeronautics with shocks and discontinuities in the solution field, and be able to capture

these phenomena with element based criteria. In order to efficiently and effectively adapt

a mesh to a solution field, the criteria used for the adaptation process needs to be as

accurate as possible. Due to the nature of the solution, which is obtained by discretisation

of a continuum model, numerical error is intrinsic in the calculation. A posteriori error

estimation allows us to somehow assess the accuracy by using the computed solution itself.

Various a posteriori error estimation techniques have been developed over the years, the

most popular, being widely used and presented in literature, are reported thoroughly in

reviews such as [19, 94, 18] and many more. Among these primes an estimator developed

two decades ago by Zienkiewicz and Zhu [15, 125, 16, 17, 20, 21], hence it’s most popular

nickname ZZ. The reasons for this diffused use is its simplicity and solidity. Initially

conceived for structural mechanics finite element codes, the method proved valid for many

fields as it is independent of the problem and governing equations. The concept driving

the method is that the exact solution u can be replaced by a recovered one u∗. The

approximation of the error estimation can then be measured as the difference between the

recovered solution and the numerical solution:

‖e∗‖ = ‖u∗ − uh‖ (5.1)

in a suitable norm.

From the above, and considering that fields such as the gradient σh are derived from

the solution uh and therefore less accurate, the improved gradient σ∗
h is reconstructed

[16, 126, 22]. In this way the gradient is projected onto a richer space, thereby allowing for

an estimation of the solution error in the energy norm. Although the method is common
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amongst the research community, theoretical properties are not yet very well understood.

Research has being done over the years but it still remains an unfinished topic of discussion

[127, 128, 129, 130, 131, 132, 133].

Here we focus on an a posteriori recovery-based error estimator developed by Maisano

et al. [23], in particular the first of three proposed, where the gradient is re-interpolated

based on a choice of weighting coefficients. This can be used in the adaptation procedure

to refine the mesh in those areas where the local error exceeds a set tolerance, hence further

increasing the accuracy of the solution in those regions during the next calculation step

(sec. 2.2). Variants of this type of error estimates are also considered.

5.1 Recovery procedures

Let us set up the problem first. Consider the governing system of partial differential

equations written in a generalised form as:{
Lu = f in Ω,

Bu = g on ∂Ω,
(5.2)

where L and B are suitable differential operators, possibly nonlinear, f and g are the data

of the problem, Ω the computational domain, with ∂Ω its boundary, an open bounded

subset of Rd, with d = 1, 2, 3. Problem (5.2) may be considered as the standard Poisson

problem or the linear elasticity problem which fit directly into this framework, whilst for

incompressible fluid dynamics an extension is also directly possible. For compressible fluid

dynamics equations, the operator L is no longer symmetric positive definite, and the system

can be written under the form: Lu =
∂u

∂t
+ A(u, x, t)u+B(u, x, t) = f,

+ Boundary Conditions,
(5.3)

where A(t) and B(t) represent respectively the non-linear advection and diffusion oper-

ators. This generic system of non-linear PDE’s applies to general compressible flow and

other systems in computational flows. To simulate steady state compressible flow it is usual

to pseudo-time iterate, to steady state, as equation (5.3) is of well defined type (parabolic,

hyperbolic) whereas the steady state equations are not [134, 135]. In the discretised sys-

tem, the underlying matrix systems are better conditioned.
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To propose “a posteriori” recovery error estimators, it is useful to recall the underlying

finite element (FE) type scheme used to solve the system (5.3). Assuming that our model

is the system of equations for compressible fluid flow, a re-organisation of the operators

allows a so-called conservative formulation for the Euler equation part which is grouped

on the LHS of the following system:

∂u

∂t
+∇ · F(u) = f + B(u,∇u, x, t) . (5.4)

Neglecting the RHS, the system becomes hyperbolic, the exact solution of which can allow

discontinuities (shocks, slip lines etc..). The mathematical and discretised formulation must

take these characteristics into account. In order to maintain conservativity and consistency

it is usual to discretise the Euler equations using equivalently upwinded techniques. On

FE grids the approximate solution uh is represented by a liner function over each element

T :

uTh (x, t) =
Ne∑
i=1

uh,i(t)φi(x) , (5.5)

where Ne is the number of nodes per element T , and φi(x) the basis function associated

to the node i. As is well known, [136], FE Galerkin procedures are unstable for hyperbolic

problems. Upwinded FE approximations can be devised by performing biasing of the

basis functions as in Streamline Upwind Petrov Galerkin (SUPG) techniques, and adding

dissipation terms for controlling discontinuities, [137]. This is equivalent to performing

finite volume methods (FVM) on structured grids. Alternatively, finite volume numerical

schemes can be adapted to unstructured grids by considering equivalent control volumes

on the FE mesh - made up by joining the barycentre of the elements and agglomerating

the partial volumes around each node as shown in figure 5.1.

Then the numerical scheme is defined by flux difference schemes across the boundary

between two cells Vi and Vj:

∇ · F(uh) =
∑
ηij

F(uh) · ~nij .

These schemes have been widely developed from 1984 to 1996; they are based on a one

dimensional flux evaluation across the face ηij between the neighbouring cells Vi and Vj (like

Vi and Vi+1 in structured meshes) and are hence highly mesh and directional dependent.

In order to obtain schemes that relate the multidimensionality of the wave propagation,

multidimensional upwinded schemes [138] and other weighted residual schemes, such as

discontinuous Galerkin, are devised.
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V

i

Vj

i

j

Figure 5.1: Equivalent control volumes on FE mesh.

To construct a recovery based error estimator, we must consider the numerical algorithm

rendering the approximate solutions uh. We will proceed taking a weighted residual finite

element method (FEM). Considering the Euler part of equation (5.4) and discretising using

a finite element space Vh, consisting of continuous piecewise linear functions, and uh ∈ Vh
be the Galerkin approximation to the solution u in (5.2): we obtain a system like

∑
Th

∫
T

∂uh
∂t

dx = −
∑
Th

∫
T

∇ · F (uh)dx = −
∑
Th

∫
∂Th

∂F (uh)

∂u

∂uh
∂x

~ni , (5.6)

using the diagonalised form of the Euler fluxes. The RHS is the residual over element

Th, and the ~ni are the inward normals to the element for node i. This residual is then

redistributed to the nodes using distribution coefficients such that summing up over all

elements surrounding i renders the nodal residual. The a posteriori error between the

solution and its approximation is related to its gradient over the elements via this residual

scheme. For linear base functions, the low order gradient over an element is constant on

each element T:

∇uh|T =
∑
i

ui∇φi|T =
1

|T |

Ne∑
i=1

uh,i~ni .

Then noting σh as the piecewise constant gradient of uh, and σ the corresponding exact

value, the recovery based estimators work on the value σ − σh.

Note that the methods described in the following sections are applicable in both two and

three dimensions regardless, for triangles and tetrahedra, with due modifications pointed
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out where necessary.

5.1.1 Zienkiewicz-Zhu like procedure

Following the procedure devised in [139], we start by describing the first method. The

approach consists in recovering the gradient σ∗
h at each nodal point ζi. This is done by

using the sample points sj of a patch of n elements enveloping the nodal point, as shown

in figure 5.2.

ζ
i

s j

2P

P3P1

Figure 5.2: Sample and recovery points in a patch.

Hence we must first find the position of these sample points, which is taken as the average

of the positions of the nodes that make up the element:

sj =
1

Ne

Ne∑
i=1

Pi (5.7)

which is valid for any element type.

The computation of the constant gradient of the solution σh over the surrounding ele-

ments, is the next step. In order to do this we consider the affine n-simplex as shown in

figure 5.3, with n = 2 for the case of triangular elements, i.e. considering only the plane

xy in the figure, and n = 3 for the tetrahedra [140].

The element being considered can now be mapped onto the simplex by the following

coordinates transformation:
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y

z φ

ξx

0

1

1

1

ψ

P1

P

P

P

2

4

3

Figure 5.3: Affine map between triangle/tetrahedron and standard 2/3-simplex.

x = x1 + (x2 − x1)ξ + (x3 − x1)ψ ,

y = y1 + (y2 − y1)ξ + (y3 − y1)ψ ,
(5.8)

in the two dimensional case, and:

x = x1 + (x2 − x1)ξ + (x3 − x1)ψ + (x4 − x1)φ ,

y = y1 + (y2 − y1)ξ + (y3 − y1)ψ + (y4 − y1)φ ,

z = z1 + (z2 − z1)ξ + (z3 − z1)ψ + (z4 − z1)φ ,

(5.9)

in the three dimensional case. Whilst the vertices of the simplex are noted by the points:

e0 = (1, 0, 0, 0)

e1 = (0, 1, 0, 0)

e2 = (0, 0, 1, 0)

e3 = (0, 0, 0, 1)

(5.10)

where e3 is not considered in the two dimensional case, as is the last column of the first

three points.

Given the Jacobian matrix for the triangle:

J =

(
∂x
∂ξ

∂x
∂ψ

∂y
∂ξ

∂y
∂ψ

)
, (5.11)

and for the tetrahedron:
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J =


∂x
∂ξ

∂x
∂ψ

∂x
∂φ

∂y
∂ξ

∂y
∂ψ

∂y
∂φ

∂z
∂ξ

∂z
∂ψ

∂z
∂φ

 , (5.12)

this results, in the two dimensional case to:

J =

(
x2 − x1 x3 − x1

y2 − y1 y3 − y1

)
, (5.13)

and in 3D to:

J =

x2 − x1 x3 − x1 x4 − x1

y2 − y1 y3 − y1 y4 − y1

z2 − z1 z3 − z1 z4 − z1

 . (5.14)

The linear weighting functions are then taken as:

N1 = 1− ξ − ψ − φ

N2 = ξ

N3 = ψ

N4 = φ

(5.15)

where in the 2D case N4 and φ in N1 are not considered. The gradient of u is then defined

as:

~∇u =
∂u(x, y)

∂x
~ex +

∂u(x, y)

∂y
~ey , (5.16)

and

~∇u =
∂u(x, y, z)

∂x
~ex +

∂u(x, y, z)

∂y
~ey +

∂u(x, y, z)

∂z
~ez , (5.17)

for 2D and 3D respectively. The linear approximation of uh over the element may now be

taken, for the 2D case:

~∇uh(ξ, ψ) =

(
−u1 + u2

−u1 + u3

)
, (5.18)

and for the 3D:
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~∇uh(ξ, ψ, φ) =

−u1 + u2

−u1 + u3

−u1 + u4

 . (5.19)

It suffices now to apply the inverse of the transposed Jacobian matrix computed earlier,

to the equation of ~∇uh to obtain the constant gradient over the element.

~∇uh(x, y) = (JT )−1 · ~∇uh(ξ, ψ) , (5.20)

~∇uh(x, y, z) = (JT )−1 · ~∇uh(ξ, ψ, φ) , (5.21)

where ~∇uh is equivalent to σh. The recovered gradient is then found by means of a

weighted average of the surrounding elements constant gradient. The weights are based on

the distance from the sampling points to the node:

wj =
1

‖ζi − sj‖
, (5.22)

where ‖ · ‖ stands for the Euclidean norm, and

W =
n∑
j=1

wj . (5.23)

Note that the above weight system is not the only available. Other widely used methods

rely on the area Aj (or volume Vj) of the surrounding elements, or more simply the number

of surrounding elements:

wj = |Aj| , wj = |Vj| or wj =
1

n
.

From the above equations we now have all that is needed to recover the gradient:

σ∗
h(ζi) =

1

W

n∑
j=1

σh(sj)wj , (5.24)

which is the same for both two and three dimensions.

Once all this procedure is carried out for every node in the mesh, the following error

estimator can be devised:
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η1 = ‖σ∗
h − σh‖L2(Ω) ' 9u− uh9 , (5.25)

with 9 · 9 standing for the suitable energy norm.

Since we are interested in using the error estimator for adapting the mesh, we need to

write this in a local fashion. Let Th be the finite representation of our domain and {Kj}
the elements discretising it. The error estimator can then be expressed as a sum of the

local elements error indicators:

η1 =
(∑
K∈T

η2
1,K

)(1/2)

, (5.26)

where the local error indicator represents the difference between the piecewise linear re-

covered gradient field, and the piecewise constant gradient field of the element

η1,K = ‖σ∗
h,i,K − σh,K‖L2,K , (5.27)

which can be rewritten as:

η1,K =

[∫
K

(σ∗
h,K − σh,K)2 dV

]1/2

, (5.28)

η1,K =
[
(σ∗

h,K − σh,K)TMK(σ∗
h,K − σh,K)

]1/2
, (5.29)

where MK is the mass matrix of the element K. This is evaluated from:

M lm
K =

∫
K

ϕlϕm , (5.30)

and for the 2D and 3D respectively

∫
AK

ϕlϕm dA =

{
1
6
AK if l = m,

1
12
AK if l 6= m.

(5.31)

∫
VK

ϕlϕm dV =

{
1
10
VK if l = m,

1
20
VK if l 6= m.

(5.32)

which gives us the explicit form of the mass matrices for the linear triangle and tetrahedron:
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MK =
1

12
AK



2 0 1 0 1 0

0 2 0 1 0 1

1 0 2 0 1 0

0 1 0 2 0 1

1 0 1 0 2 0

0 0 0 1 0 2


, (5.33)

MK =
1

20
VK



2 0 0 1 0 0 1 0 0 1 0 0

0 2 0 0 1 0 0 1 0 0 1 0

0 0 2 0 0 1 0 0 1 0 0 1

1 0 0 2 0 0 1 0 0 1 0 0

0 1 0 0 2 0 0 1 0 0 1 0

0 0 1 0 0 2 0 0 1 0 0 1

1 0 0 1 0 0 2 0 0 1 0 0

0 1 0 0 1 0 0 2 0 0 1 0

0 0 1 0 0 1 0 0 2 0 0 1

1 0 0 1 0 0 1 0 0 2 0 0

0 1 0 0 1 0 0 1 0 0 2 0

0 0 1 0 0 1 0 0 1 0 0 2



. (5.34)

Now that we have the mass matrix we pass on to the difference between the reconstructed

gradient and the constant one:

(σ∗
h,K − σh,K)T =

[
σ̂h,P1 , σ̂h,P2 , σ̂h,P3 , σ̂h,P4

]
, (5.35)

for the tetrahedron, and without σ̂h,P4 for the triangle keeping in mind that the vectors

change also in size.

The single element of this vector is described as:

σ̂h,Pi
= σ∗

h,P1,K
− σh,K . (5.36)

Boundary nodes

For nodes on the boundary a slightly different approach is required when reconstructing

the gradient. Rather than using the original recovery procedure suggested in [125], we

use the first alternative suggested in [139]. The starting point here is at the end of the
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previous step, with all gradients having been reconstructed on internal nodes ζkj . Then our

boundary nodes become ζBi , as shown in figure 5.4.

i

ζ j

ζ

ζ ζ

B

j j

1 2

ζB

i

Figure 5.4: Recovery procedure for the boundary node ζBi : case of one internal adjacent

node (on the left), and of multiple adjacent internal nodes (on the right).

Once all the neighbouring internal nodes have been identified, they are added to the set

of sampling points. The gradient on the boundary nodes can now be reconstructed using

the constant gradients of the elements they belong to and the recovered gradients at the

internal nodes that they are connected to. Equation (5.24) is then applied to the new set

of sampling points for each boundary node, and the gradient is recovered.

Shock Capturing

This is a particularly interesting feature that well adapts to the problems studied here.

The idea behind this is to make use of the freshly recovered gradients and the element

constant gradients. The conditions to capture the shock are stated as:
‖σ∗

h(ζj)‖ < ‖σh,K‖ , j = i, Ne ,

| ‖σ̄∗
h,j‖ − ‖σh,K‖ |
‖σh,K‖

≥ Φ ,

(5.37)

where the absolute values and Euclidian norm are intended, and

σ̄∗
h,i =

1

Ne

Ne∑
i=1

σ∗
h (5.38)

whilst Φ is the tolerance value of the percentage in difference between the average recovered

gradient over the element, and the constant gradient. The concept behind these inequalities

is that, for a shock to be present in an element, both the following should be true:
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1. All the element nodal values of the recovered gradient are less than the element

constant gradient;

2. The jump between the averaged recovered gradient over the element and the constant

gradient of the same element has to be at least 25% of the latter.

If these conditions, also known as shock capturing conditions (SCC), are both satisfied,

then the element could possibly have a shock inside it. If this is not the case then it should

not undergo further refinement in a following adaptation step. For further details on the

mathematical background of the above conditions the reader is referred to the work by

Maisano et al.[23].

5.1.2 Face gradient error estimator

Here the procedure above is followed up to the definition of the error estimator η1 (5.25).

The piecewise constant gradient and the linear reconstructed one are used in a different

manner. To construct the error estimator we make use of the element constant gradient

only, and we shall see in a later section how the reconstructed gradient is used to devise

an error indicator from the estimator. Let us consider equation (2.7) in section 2.2.1, and

the discrete second derivative there defined as D2
h. This can be estimated as[111]:

D2
huh|Tk

= max
Tk′∈V (Tk)

|~∇uh(Gk′)− ~∇uh(Gk)|
Gk′ −Gk

, (5.39)

where V (Tk) is the set of elements sharing a common interface (edge or face) with element

Tk, and Gk is the centroid of element Tk. The discrete second derivative D2
h can also be

written as:

D2
huh|Tk

= max
edges∈Tk

hedge

∣∣∣∣[ ∂un
∂nedge

]∣∣∣∣ , (5.40)

where [·] is the jump of the gradient across the element interface, which will either be an

edge in 2D, or a face in 3D. The above correspond to discrete H2 norms, therefore (2.7)

can be used.

Then the error estimator rather than being computed on the element, it is done at face

level. Similarly to the above equation, this is achieved by using just the constant piecewise

gradients of the elements, giving:

η2,i = ‖σh,Kl
− σh,Km‖ , (5.41)
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where i is the face in common between elements Kl and Km, and the norm is Euclidean.

The boundary procedure and that for capturing the shock remains the same as for the

previous method.

5.1.3 Simple error estimator

In this method we proceed following the basic idea behind the first error estimator, but

rather than reconstruct the gradient on the node, we reconstruct a solution field to obtain

a reconstructed solution at the node. If we consider figure 5.2 again, and uh at the Pi
nodes, we can take the average value on the element of uh as:

ūh,j =
1

Ne

Ne∑
i=1

Pi . (5.42)

We can now find the reconstructed u∗h at node ζ:

u∗h(ζi) =
1

W

n∑
j=1

ūh,jwj . (5.43)

The simple local error estimator can then be derived:

η3,i = ‖u∗h − uh‖ , (5.44)

with the norm being Euclidean.

This indicator was developed as a simple improvement to the physical criteria described in

section 2.2.2. Boundary conditions are treated in the same manner as the above methods,

replacing the reconstructed gradient at ζkj with u∗j .

The shock capturing procedure on the other hand, is modified in the following way:
‖u∗h(ζj)‖ < ‖uh,K‖ , j = i, Ne ,

| ‖ū∗h,j‖ − ‖uh,K‖ |
‖uh,K‖

≥ Φ ,

(5.45)

and

ū∗h,i =
1

Ne

Ne∑
i=1

u∗h,i . (5.46)
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5.2 Implementation

ZZ like estimator

As we have seen from the previous section we can find the error indicator ηi,K for both

triangular and tetrahedral grids. This however is not particularly useful for adapting the

mesh locally. In order to obtain a useful measure for adaptation, the local percentage error

needs to be defined. This is given by the following relationship:

η%
1,K =

η1,K

1
2
(‖uh‖L2,K + um,K)

, (5.47)

where

um,K =
1

NK

NK∑
j=1

‖uh‖L2,j , (5.48)

is the mean value of ‖uh‖L2,K in the NK neighbouring cells of element K. The procedure

to compute ‖uh‖L2,K is the same followed in the previous section to find the local error

indicator η1,K , whereby:

‖uh‖L2,K =
[
(ûh,Pi

)TMK(ûh,Pi
)
]1/2

, (5.49)

where ûh,Pi
is the vector of our solution at the nodes of the element. We make again use

of our element mass matrices for the triangular and tetrahedral elements, which are now

smaller since uh in our case is normally a scalar:

MK =
1

12
AK

 2 1 1

1 2 1

1 1 2

 , (5.50)

MK =
1

20
VK


2 1 1 1

1 2 1 1

1 1 2 1

1 1 1 2

 . (5.51)

Finally for a given test-case, let ε1 be the tolerance associated with the error indicator η1,K .

Then the adaptive procedure consists of refining the elements satisfying

η%
1 > ε1 . (5.52)
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Since however the refinement is carried out at a segment level rather than element-wise,

the way we proceed is to assign to the nodes the highest η%
1,K of the elements it belongs

to. Then, if both η%
1,K at the nodes of the segment satisfy (5.52), the segment is marked

for refinement.

Notice that the error indicator may also be modified by the shock capturing procedure

if the SCC are satisfied, by increasing it’s η%
1,K value above ε1.

Face gradient error indicator

The local percentage error indicator developed here makes use of the recovered gradients

at the nodes to give a measure of the η2,i. A first step is to find the nodes of the face being

evaluated, and averaging the recovered gradient such that:

σ̄∗
h,i =

1

d

d∑
j=1

σ∗
h,j , (5.53)

where σ̄∗
h,i is the average over face i, and d is the dimension of the case, since in 2D the face

of a triangle is composed by the edge (which has two nodes), and in 3D by the triangular

face of the tetrahedron with three nodes defining it. The percentage error indicator takes

the form:

η%
2,i =

η2,i

‖σ̄∗
h,i‖

. (5.54)

As in the previous case, the highest value of η%
2,i of the faces to which a node belongs to, is

assigned to it. The procedure for finding which edges to refine is the same as that described

just above.

Simple error indicator

Following on from 5.1.3, and in a similar manner to the previous paragraphs, from the

error indicator η3,i we can derive the local percentage error indicator η%
3,i, which is simply:

η%
3,i =

η3,i

|uh,j|
(5.55)

where | · | is the absolute value.
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5.3 Applications

The error estimators are then tested with the some of the geometries seen in the previous

chapters. The flow solver used to obtain the solutions is, as previously, THOR. In particular

we examine the test cases of the ONERA M6 wing and the wedge.

A two dimensional example of the simple error estimator is also available in section 2.6.1.

There we can notice how the difference method tends to refine the mesh in the areas from

the tip to the shocks. The simple error estimation concentrates on the tip and shocks,

although the shock capturing procedure had not been introduced yet at the time, as well

as around the profile. The effect of these differences can be clearly seen in the solution

fields shown in fig. 2.20, where the shocks are much more defined in the error estimation

case.

5.3.1 3D Wedge

The initial grid used for this test case is shown in figure 2.21 in section 2.6.2. The solution

here is obtained for free-stream Mach number 2.0, and is adapted with the simple error

estimator with respect to density. The number of nodes and elements was kept similar

between this computation and that of section 2.6.2, in order to be able to compare the two

methods. The adaptation steps were also the same, and are resumed in figures 5.5 to 5.5:

Figure 5.5 (a) Refined only mesh 7 176 NE, 1 390 NN, 1 324 BF and (b)&(c) solution;

Figure 5.6 (a) Refined only mesh 42 963 NE, 7 558 NN, 4 382 BF and (b)&(c) the solution

obtained;

Figure 5.7 (a) Mesh after 1 step refinement followed by 1 step derefinement 148 688 NE,

24 335 NN, 9 270 BF and (b)&(c) the solution obtained;

Figure 5.8 (a) Mesh after 1 step refinement followed by 1 step derefinement 404 002 NE,

64 266 NN, 18 636 BF and (b)&(c) the solution obtained;

Figure 5.9 (a) Mesh after 1 step refinement followed by 1 step derefinement 1 025 857

NE, 159 675 NN, 34 986 BF and (b)&(c) the solution obtained.

Although the first two steps are very much the same if compared to the computation of

section 2.6.2, the first differences can be noticed starting from the third step. The boundary

faces in particular are increasing using the simple error estimation. This is clear to see by

the last step of the test, where the boundary faces are double in the results obtained with

the simple error estimation.
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(a)

(b) (c)

Figure 5.5: 3D wedge mesh and relative solution. 1 step adaptation (no smoothing).
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(a)

(b) (c)

Figure 5.6: 3D wedge mesh and solution. 1 step adaptation (following from figure 5.5).
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(a)

(b) (c)

Figure 5.7: 3D wedge mesh and solution. 2 step adaptation (following from figure 5.6).
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(a)

(b) (c)

Figure 5.8: 3D wedge mesh and solution. 2 step adaptation (following from figure 5.7).
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(a)

(b) (c)

Figure 5.9: 3D wedge mesh and solution. 2 step adaptation (following from figure 5.8).
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5.3.2 ONERA M6

The results obtained with this geometry are generally satisfactory in the case of the first

two error estimators, whilst less optimal for the simple error estimator. However the solu-

tions are relatively good in all three cases, given the initial grid coarseness. This in fact

could pose a problem in the initial adaptation steps, due to small perturbations caused by

the mesh size, whereby the SCC might be satisfied in areas where no shock is present. The

initial mesh and conditions are the same described in section 3.5.3, with transonic flow

over the wing. Also in this case, the solution was restarted after two initial steps to set up

the problem correctly.

In order to do a reliable comparison, all adaptation parameters are kept the same for

the computations with the different error estimators. In particular the mesh was adapted

with respect to Mach number. As we can see from table 5.1, the mesh sizes are relatively

similar, with a slightly less populated mesh in the case of the simple error estimator.

Characteristic Error estimator

number ZZ-like Face-grad Simple

N nodes 266 714 264 013 226 049

N elements 1 495 724 1 480 961 1 279 895

N surf el 82 488 81 930 63 630

Table 5.1: Grid sizes for ONERA M6 computations with the relative error estimator.

The results are presented in figures 5.10 to 5.12. The first illustrates the grid obtained

with the ZZ-like error estimator, and its relative solution. Here we can see how the typical

λ shock wave is well captured, and how the mesh is correctly refined in that area. It

is also very interesting to notice how the much more feeble shock on the lower side is

evidently captured by the technique. The similarities with the Face-grad estimator are due

to the shock capturing procedure that is the same as for the ZZ-like estimator. The Simple

estimator on the other hand did not capture the first part of the shock wave, and refined

the mesh in areas of little or no interest. Although the performance seemed to be good for

other test cases, more work is needed on its formulation to improve it.
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(a)

(b)

Figure 5.10: Grid and solution on the ONERA M6 wing, with the ZZ like error estimator.
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(a)

(b)

Figure 5.11: Grid and solution on the ONERA M6 wing, with the face gradient error

estimator.
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(a)

(b)

Figure 5.12: Grid and solution on the ONERA M6 wing, with the simple error estimator.
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6
Parallelisation

The aim of this chapter is to provide an overview of the parallelisation issues of automatic

adaptive meshing of unstructured grids methods.

For an efficient and scalable implementation of calculation techniques on unstructured

grids, parallel codes have to be developed. Data, including the grid’s geometry description,

the successive adapted grid structures, the solution solver’s Jacobian matrix, the solution

state variable and work vectors, must be partitioned among the processors in order to

minimise the amount of intra-processor communications. The definition of a distributed

data structure, well-suited for all the computational phases, is the first problem to be

addressed. The meshes change during the solution progress, hence a dynamic partitioning

is required to re-balance the separate partitions on the chosen number of processors. Some

algorithms of mesh partitioning and their modification required and obtained here are

shown.

6.1 Parallelisation of the solution method

Although in this thesis the work is focused on mesh adaptation, a short summary of the

parallelisation of the solution solver used is given here. More details can be found in [141].

The solution techniques used are based on either finite element type solvers or equivalent

finite volume type solvers on unstructured grids. The first type computes a residual at

element level (5.6), defined as

R(T )(u) =

∫
T

{
G1(u)

∂u

∂x1

+G2(u)
∂u

∂x2

+G3(u)
∂u

∂x3

}
dT .

Then, the main idea is to redistribute this quantity to the nodes of the element, according

to the choice of the scheme. The second type has many variants. Some of these variants

take as control volumes the cell itself, and particular care has to be taken for the cell face

normals in the finite volume flux which defines the numerical scheme. The parallelisation
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issues are similar to finite element ones, with an additional difficulty of the inter-cell (con-

trol volume) face normals that have to be communicated and exchanged when the cell faces

are shared between two adjacent processors.

The more usual equivalent finite volume method, that renders coherent finite volume

schemes with the structured mesh finite volume world, uses control volumes that are con-

structed on the geometrical (homological) dual of the P1-finite element simplex. These

control volumes - or dual cells - are constructed by joining the barycentre of the neigh-

bouring elements around a node (fig. 5.1). The communication information of the fluxes

through the faces of these cells requires very well laid out inter-processor information.

Therefore the mesh partitioning algorithm and the choice of overlapping/non-overlapping

inter-processor information has a significant effect.

The spatial discretisation of the equation set results in a system of nonlinear equations

of type

S
dU

dt
+ R(U) = 0 , (6.1)

with a convenient initial and boundary conditions. In (6.1), S is a non-singular (lumped)

mass-matrix.

System (6.1) is discretised in time using an implicit scheme such as a backward Euler

scheme. Starting from a given U0, the solution at the time step k = 1, 2, . . . , is found by

solving the non-linear system of equations

S
Uk −Uk−1

δk
+ R(Uk) = 0

or, equivalently,

Sδ−1
k Uk − Sδ−1

k Uk−1 + R(Uk) = 0 , (6.2)

where δk is the time increment at step k.

Taking Newton iterations at time levels k for the solution of (6.2) would then read:

Uk,l = Uk,l−1 +

[
Sδ−1

k +
∂R

∂U
(Uk,l−1)

]−1

(−Sδ−1
k Uk,l−1 −R(Uk,l−1) + Sδ−1

k Uk−1) (6.3)

with l = 0, 1, . . . , being the index associated to an iterative Newton procedure, and Uk,0 =

Uk−1. The iterations should stop when either a certain tolerance level is reached, or after a

fixed number of iterations. At each intermediate Newton iteration a sub problem of linear

form is to be solved:
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Uk = Uk−1 +

[
Sδ−1

k +
∂R

∂U
(Uk−1)

]−1

(−R(Uk−1)) , (6.4)

that can be written, dropping the index k, as

Au = f , (6.5)

where A ∈ Rn×n and u, f ∈ Rn. More precisely,

A =

[
Sδ−1

k +
∂R

∂U
(Uk−1)

]
,

u = (Uk −Uk−1) ,

f = −R(Uk−1) .

This system is solved by parallel Krylov iterations with Schwarz-type preconditioners. To

overcome the locality of these preconditioners, they are made up of local corrections and

global components. The local part, acting at the subdomain level, captures the strong

couplings that appear between neighbouring subdomains, while the global part provides

an overall communication among the subdomains.

The global component is usually referred to as a “coarse space correction”, since usu-

ally it is defined on a space that is coarse with respect to the fine space containing the

solution. The complexity of this auxiliary problem is much lower than that of the original

problem, and its role is to diffuse information among the subdomains. In an analogous

manner to multigrid methods, this coarse space is used to correct the “smooth” part of

the error, whereas the local preconditioner is used to dump the “high-frequency” part of

the error.

In all generality, the global correction term has the form B0 = RT
0A

−1
0 R0, where A0 cor-

responds to the discretisation of the original problem on a coarse space V0, and R0 is the

restriction operator from the fine space to the coarse space. The resulting preconditioner

reads

P−1
C,add = B0 + P−1

S =
M∑
i=0

Bi. (6.6)

This preconditioner is fully additive since all the corrections on the subdomains and on

the coarse space are added together. Alternatively, an hybrid preconditioner can be used:

P−1
C,hybrid = P−1

S +B0 − P−1
S AB0. (6.7)
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The preconditioner (6.7) is called hybrid because the corrections on the subdomains are

treated in an additive way (the term P−1
S + B0), as well as in a multiplicative way (the

term P−1
S AB0). For more details, the reader is referred to [142].

The key element to obtain a scalable and efficient preconditioner is the proper definition

of the coarse space. The general approach is to discretise the original problem on a coarse

grid. However, the construction of the coarse grid and of the corresponding restriction

operator R0 can be difficult or computationally expensive for problems defined on unstruc-

tured grids in domains of complex shape, as typical in aeronautical applications. For this

reason, agglomeration procedures are used to construct the coarse matrix for a two-level

Schwarz preconditioner. The procedure is completely algebraic and very well-suited for

unstructured grids.

6.1.1 Definition of distributed data structure

The development of a scalable parallel code requires the definition of an efficient distributed

data structure. This data structure must efficiently handle the preconditioning phase, as

well as all the other computational kernels of the scheme. The architecture type of the

parallel computer is a distributed memory architecture. MPI message passing is used.

Usually the starting grid, of moderate size, and the underlying geometrical description

(CAD) has been generated on a sequential computer like a linux workstation. The first

step is the partition of the grid among the M processors. To that aim, we have used the

k-way graph partitioning algorithms [73]. Given a graph G = (V,E) with |V | = n, we

partition V into k subsets V1, V2, . . . , Vk such that Vi ∩ Vj = ∅, |Vi| = n/k, and
⋃
i Vi = V ,

and the number of edges of E whose incident vertexes belong to different subsets is min-

imised. A k-way partition is commonly represented by a partition vector p of length n,

such that for every vertex v ∈ V, P [v] is an integer between 1 and k, indicating the partition

at which vertex v belongs to. Given a partition P , the number of edges whose incident

vertexes belong to different subsets is called the edge-cut of the partition.

The k-way partition problem is frequently solved by recursive bisection. That is, we first

obtain a 2−way partition of Vm and then we further subdivide each part using 2−way

partitions. After log k phases, the graph G is partitioned into k parts. Thus, the problem

of performing a k-way partition can be solved by performing a sequence of 2−way parts

or bisections. Even though this scheme does not necessarily lead to optimal partitioning,

it is used extensively due to its simplicity.

A 2−way partitioning using a multilevel graph bisection algorithm, can be written as
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follows, as described in detail in [73]

1. Coarsening phase. The graph G is transformed into a sequence of smaller graphs

G1, . . . , Gm such that |V | > |V1| > |V2| > . . . > |Vm|;

2. Partition phase. A 2-way partition Pm of the graph Gm = (Vm, Em) is computed

that partitions Vm into two parts, each containing half the vertexes of G;

3. Uncoarsening phase. The partition Pm of Gm is projected back to G by going through

intermediate partitions Pm−1, Pm−2, . . . , P1, P .

Figure 6.1: Example of vertex-oriented (left) and element-oriented domain decomposition

(right).

The k-way algorithm can be used to decompose the direct graph or the dual graph of the

grid, leading to vertex-oriented (VO) or element-oriented (EO) decompositions shown in

figure 6.1. In the former, each vertex of the grid is assigned to a different processor, while

in the latter the decomposition is done element-wise. A numerical comparison between the

two approaches for the compressible Euler equations using explicit time-marching scheme

can be found in [77], while results concerning implicit time-marching schemes can be found

in [143]. VO decomposition allows a very suitable parallel data structure for the precon-

ditioned type solver described briefly above. An example of a partitioned surface mesh is

shown in figure 6.2. Each vertex of the computational grid is assigned to a unique proces-

sor, whereas there exist elements shared by more processors. These elements are stored on

all processors which have at least one node of the element.

From the point of view of the parallel application, grid generation and graph partitioning

result in a description of the processor M file; each M file contains a list of elements, their

grid connectivity and coordinates, a list of the boundary elements and nodes, and their

type (wall type - wing, fuselage, engine inlet,etc; symmetry plane, infinite inflow, outflow
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Figure 6.2: SmartFish partitioned mesh exploded view.

plane..etc). Also, a local-to-global mapping must be provided, to enable communication

among the processors.

6.2 Parallelisation of the grid adaptation techniques

The adaptation techniques dynamically adapt the grid by localised refinement and dere-

finement during the calculation. Grid quality optimisation and moving by elastic spring

analogies are performed. The multi-processor distribution of the mesh requires to be

continuously repartitioned to maintain load balancing and manage the modifications of

the internal grid data structure. This whole procedure requires repeated internal data

structure modifications to track down the inter-processor boundaries, the new (old) nodes,

elements and connectivity, and local re-ordering and re-numbering operations are required.

In figure 6.3 the main operations to be performed during the parallel mesh adaption are

given. The renumbering phase is repeated twice per adaptation sweep, since, to perform

the operations of structural changes like swapping and collapsing, and also the smoothing

operations, the solver must exchange data, therefore requiring a new global numbering.

The solution algorithm gives an approximate solution of problem (6.1), for a discretisation

on a given grid, say T (0)
h . At adaptation cycle i, the solution U(i) corresponding to the

solution of the transient problem on the grid T (i−1)
h , is projected on the grid T (i)

h , and then
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Sol on proc 1 Sol on proc 2 Sol on proc M

collapse 1 collapse 2 collapse M
Swap /Swap /Swap /

deref 1
Refinement /

deref 2 deref M
Refinement /Refinement /

Smooth 1 Smooth 2 Smooth M

Convergence?

End the solver

Renumbering

Renumbering

NO

YES

Figure 6.3: Flow-chart for the parallel mesh adaption.
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used as a starting solution for problem (6.1), discretised on T (i)
h .

The goal of grid adaptation is to increase the accuracy of the solution process by lo-

cally enforcing the h-adaptivity using smaller discretisation elements. This process tends

to uniformly equidistribute the local error ηh throughout the grid, T h. The first step in a

grid adaptation algorithm is therefore to locally evaluate criteria corresponding to the so-

lution error estimate, and mark out the zones to be modified in order to minimise globally

the error. The criteria used should be as close as possible to the error estimations of the

underlying discretisation scheme. There are several derivations of adaptation criteria. As

described in section 2.2 adaptation requires in all cases a local error estimate per grid cell,

η(Tk), moderated by some tolerance levels.

Here the local estimates are all based on a-posteriori criteria, which require a solution

on the starting grid. Then, grid refinement and derefinement operations are performed,

taking as adaptation criteria functions of the current solution field (local error), and geo-

metrical properties of the current grid (optimisation). Then, an optimisation step follows,

based on geometrical properties of the current grid, followed by repartition, reordering and

renumbering.

The incorporation of parallel grid adaptation within the solution process requires load

balancing partitioning techniques to obtain well balanced subdomains. This introduces

other algorithmic concepts such as parallel sorting and renumbering techniques.

The grid adaptation techniques are applied globally throughout a pre-partitioned mesh,

and require careful renumbering and re-ordering internally per processor (local) and glob-

ally of the addresses of the entities, cells, shells, faces, edges, nodes... in order that the

adaptation renders a global mesh that is in turn re-partitioned again. All this is dynamic

and needs to have the partitioning procedure as an integral part of the adaptation proce-

dure.

Let us outline some of the key steps of adaptation and how to install a parallel data

structure to allow this in parallel.

6.2.1 Smoothing

The solution of the smoothing procedure depends strongly on the connectivity of the

mesh. Following the notation of the chapter on mesh adaptation procedures, in the case

of Ni 6= Nopt, the node neighbour number Ni, affects the overall node displacements.

The structural optimisation described in section 2.5 allows again each node to have Nopt

neighbouring nodes. The smoothing procedures do not modify significantly the internal
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mesh topology, the parallelisation is hence straightforward as long as a coherent numbering

of the nodes, segments, faces and cells is employed.

6.2.2 Refinement/Derefinement

The parallelisation of the refinement and derefinement stages leads to the tracking of

nodes created on an updated segment, which are considered as new border (interface)

nodes. Refinement and derefinement phases will first mark out candidate border segments.

Then the deletion phase is applied on the nodes, and the border segment re-constructed.

The parallelisation of the above concepts requires careful renumbering and re-ordering

techniques internally per processor, locally and globally. Also the choice of the number

of overlapping within the subdomains (partitions) is crucial. One of the main difficulties

was due to an external choice of overlapping partitioning to fit into a pre-written multigrid

algorithm. The segments in the interface layer are distributed on one processor, and are

considered as external on the other (see figure 6.4).

internal segment

box segment

external segment

layer segment

external point

internal point

border point

Figure 6.4: Layers of the segments during parallel adaptation

In particular, for refinement : Nodes created on an updated segment become new pro-

cessor interface border nodes :
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#0

#1

#2

For coarsening, when attempting to delete a border node, a border segment must be

chosen :

6.2.3 Structural changes

Diagonal swapping and Edge collapsing work as shown in the following sketch :

?

The parallelisation of such structural changes is one of the hardest points, especially for

the choice of overlapping partitions. For these reasons the swapping and collapsing works

most efficiently on the internal segments. However, diagonal swapping or face swapping is

still straightforward across partition interfaces. Collapsing is often harder to control.

The basic stages encountered with completely parallel mesh adaptation are

1. Initial input file. This file is transferred continuously onto the parallel network,

filling up a first layer of neighbouring processors with the mesh entities - nodes,

element connectivities, boundary patch definitions - until completion.
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2. Domain decomposition, reordering, renumbering. Once the raw data has

been distributed, the grid is then partitioned using ParMetis. The mesh entities

are marked out together with the appropriate boundary interface entities. Then all

entities are re-ordered and renumbered according to the new internal structure.

3. Initialisation and solution. A first solution is calculated throughout the proces-

sors. The different criteria for mesh adaptation are applied and the selected edges

marked for adaptation.

4. Mesh adaptation phase. The adaptation phase is non-hierarchical (i.e. no mem-

ory of filiation). Consistent renumbering and reordering after every structural or

geometrical modification within a single adaptation cycle, (criteria marking, dere-

finement, refinement, smoothing and stretching) is hence required to flag out the

mesh entities. The different stages are

• refinement and derefinement respecting boundary patches

• reorder and renumber

• structural optimisation - diagonal swapping

• reorder and renumber

• structural optimisation - edge collapsing

• reorder and renumber

• stretching, smoothing, regularisation

5. Partitioning - return to [2]. The resultant mesh is now re-partitioned for re-

distribution and further calculation. The partitioning algorithms in [73] are usually

based on Recursive Bisection (RCB or RGB) and are parallel sorting algorithms
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see figure 6.5. Each processor keeps part of the original data and redistributes the

remainder to its neighbours.

Figure 6.5: Parallel sorting algorithm for dynamic domain partitioning with RCB [77]

The elements entities maintains the book-keeping of the localisation using partitioning

algorithms provided by an integrated use of ParMETIS, (i.e. directly integrating the

package into the code) allowing for the use of efficient and optimal partition techniques.

6.2.4 Partitioning and Repartitioning

From the point of view of parallel computing, statically partitioned grid adaptation proce-

dure may result in an unbalanced distribution of the workload among the processors. Here

the updated adapted grids are repartitioned dynamically within the parallel adaptation

procedure using a parallel graph partitioning algorithm. For these purposes, the library

ParMETIS [72] can be used dynamically within the source code, as well as home-made par-

titioners as described above and in [77]. ParMETIS is called concurrently by each process

and gives the new destination for each internal node. Then, data structure corresponding
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to moved nodes are sent using MPI calls.

Two main partitioning types are proposed in ParMETIS: diffusing and remapping. Here

we mainly use the remapping schemes as in figure 6.6, which redistribute the reference

decomposition, and lead to partitions with smaller edge cuts.

6.2.5 Reorder and Renumber

As can be seen in figure 6.3, the reordering and renumbering operations are multiple and

crucial in the parallel mesh adaptation technique. As nodes are reordered and renumbered

all the vectors and matrices used in the code may have to be re-allocated in memory. In

particular, the data structure for the parallel matrix-vector product must be recomputed.

Fast and efficient multiple renumbering techniques are necessary for the grid entities: ele-

ments, segments, faces and nodes. To achieve this, explicit MPI library routines are used

and a fast dynamic binomial search tree is developed to sort during the renumbering pro-

cedures. This sorting algorithm is based on a balanced binomial search tree algorithm AVL

(Adelson-Velskii and Landis), [144].

Let us briefly describe the search tree algorithm. An AVL tree is a dynamically bal-

anced binary search tree that is balanced according to its height H (see figure 6.7), defined

by the number of nodes in the longest path from the root to any leaf.

For any node in the tree, the height of the left and right subtrees differ by at most one.

To implement such a tree, a recursive operation on interlinked nodes is applied.

When a new node is inserted into the tree, it appears at the root, then moves along the

branches until it finds an attachment to the tree. Once the node is inserted, the tree

balance is checked. If no imbalance is found, another node is inserted and the process

continues. If an imbalance is found, the heights of some nodes are fixed and the process

repeated. When a node is deleted, the root becomes unbalanced. The look-up is performed

to balance again.

Pairs of subtrees of each node hence differ by at most 1, which keeps the difference in

height H between different branches minimal, and H ≤ n ≤ 2H − 1.

1. Evaluate the difference of the height between different branches H

2. Balance requirement: sub-trees of every node differ in height by at most one

3. Every sub-tree is an AVL tree.

4. new nodes are inserted into the tree at the root and move along branches until they

find an attachment

5. Imbalance? - No =⇒ insert another node

6. Imbalance? - Yes =⇒ fix H and repeat process
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⇓

Figure 6.6: Effect of re-partitioning scheme using the remapping algorithm illustrated on

an airfoil problem. On the top the original partition remapped below.
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Balance requirement : left and

right sub-trees differ by at most

1 in height

Insertion:

A new item is added to left sub-

tree of node 1, causing its height

to become greater than 2’s right

sub-tree - right-rotation is per-

formed to correct imbalance

Figure 6.7: AVL binary tree insertion

7. delete node =⇒ root is unbalanced – repeat look-up procedure to re-balance.

The operations of look-up, insertion and deletion are of O(log n), where n is the number

of nodes in the tree, when the tree is balanced. Search steps S(n) needed to find an item,

are bounded by log(n) ≤ S(n) ≤ n.

The renumbering details across a partition can be schematically represented as follows ;

where

N internal
+ N update

+ + N node

N int seg
+ N box seg

+ + N upd seg
+ + + N opn seg

+ + + + N seg

N int cell

+ N upd cell

+ + N cell

where N ∗ denotes the node entities in the adaptation procedure following the nomen-

clature of the AZTEC iterative library [145], which is used to assure the liason between

adaptation and solver.
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6.3 Performance aspects

In order to verify the performance of the adaptive procedures, some of the test cases

presented in the previous chapters have been re-run. First a 2D NACA 0012 airfoil is used

to test the code on the Linux cluster (Pleiades1) used for the computations, as well as

measuring the CFD code and the adaptation parts elapse time. In particular the nodes

used for the computations reported here are bi-processor, bi-core.

Then various 3D test cases, are used to measure the total time of the adaptation process

with respect to the CFD time, and the breakdown of the adaptation process stages.

6.3.1 2D results

In order to test the charge of the adaptation process, with respect to the total time of the

CFD computation, a same NACA 0012 airfoil case was executed with a different number of

processors. In particular the adaptation process was run with refinement and derefinement

procedures, adaptation with respect to Mach gradient, reprojection as described in the

chapter on geometry approximation, 20 optimisation cycles (swapping and collapsing),

and 20 smoothing cycles. Four adaptation steps were carried out, hence from an initial

grid of 2 355 nodes, 4 537 triangular elements, and 173 boundary faces, the flow solver is

run and the solution adapted in turn four times, and a final solution obtained from the final

adapted grid. The final grid characteristics for the computations with different number of

processors are reported in table 6.1. In figure 6.8 instead we report the total computational

execution time of the flow solver and that of the adaptation process. As we can notice, the

total time of adaptation can be considered negligible compared to the solution time, being

at most, less than 1.2% of the total CFD computation time.

Processors N nodes N elements N surf el

1 35 130 69 615 645

2 35 082 69 527 637

4 34 335 68 031 639

8 34 839 69 035 643

Table 6.1: Final grid sizes for different number of processors after 4 adaptation steps. 2D

NACA 0012 airfoil.

1http://pleiades.epfl.ch/
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Figure 6.8: Execution time for flow solver and adaptation process on multiple processors.

2D NACA 0012, four adaptation steps.

6.3.2 3D results

In a similar way to that of the 2D case above, we first compare the execution time of

the flow solver and that of the adaptation with a different number of processors. The

test is carried out with the 3D Wedge examples of the previous chapters, with an initial

mesh of 306 415 tetrahedral elements, 54 370 nodes and 12 906 boundary faces. The adap-

tation process was run with refinement only, with respect to the difference in density on

the segments, 30 optimisation passes and 10 smoothing cycles. Three adaptation steps

were performed, each one after obtaining a partial solution with the flow solver, and a

final solution obtained from the final adapted grid. This was carried out for 8, 16 and

32 processors as shown in table 6.2 with the final adapted grids characteristics. The final

mesh and solution obtained with 32 processors was then used for a single adaptation step,

using 64 and 128 processors. In this last case only one solution step is required, as for

the adaptation, since the grid is immediately adapted to the solution obtained with the

previous computation.

Here the computations start from 8 processors, rather than 1, due to memory requirements

for the grid obtained after the third adaptation step. Figures 6.9 and 6.10 show the

computational times plotted for the three adaptation steps, and for the restart, on a
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Processors N nodes N elements N surf el

8 1 118 350 6 721 070 50 714

16 1 123 326 6 753 716 50 963

32 1 130 577 6 801 332 51 073

64 3 843 209 23 302 721 85 652

128 3 842 653 23 290 638 85 641

Table 6.2: Final grid sizes for different number of processors after 3 adaptation steps, and

after 1 adaptation step for 64 and 128 restarting from 32 final solution and grid. 3D Wedge.

different number of processors. Once again the total adaptation time is negligible compared

to that of the flow solver, reaching at most 2% of the total solution time.
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Figure 6.9: Execution time for flow solver and adaptation process on multiple processors.

3D wedge, three adaptation steps.

Adaptation execution breakdown

Although the adaptation execution times are far less than the total computation, where the

flow solver is accounted for, it is interesting to examine the various stages of the adaptation

cycle and see the impact these have on the use of computational resources used. There-

fore what follows is a breakdown of the adaptive cycle in three main blocks, as shown
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Figure 6.10: Execution time for flow solver and adaptation process on multiple processors.

3D wedge, one adaptation step after restart.

in figure 6.3, with the refinement/derefinement and renumbering as a first block, swap-

ping/collapsing and renumbering a second block, and smoothing being the third and last

block.

The previous 3D wedge initial mesh was used to start a computation with two adap-

tation steps on 4 processors, and a third adaptation step for 8, 16 and 32 processors. The

reason for this choice is that it is not possible to run three adaptation steps on 4 proces-

sors, due to memory constraints. The final solution and mesh of this last computation

were once again used as a starting point for an adaptation step carried out with 64 and

128 processors. Adaptation conditions were maintained the same as for the previous case.

Grids for all steps and number of processors are given in table 6.3. Figures 6.11 and 6.12

show the breakdown of the adaptation process time for the first two steps with multiple

processors, and figure 6.13 that of the third step. Figure 6.14 instead shows the breakdown

for the restarted case.

As we can see from the above examples, the two optimisation procedures are far more

time consuming than the refinement/derefinement block for the case where the difference

physical criteria is chosen.
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Steps Processors N nodes N elements N surf el

Step 1

4 140 180 811 918 20 902

8 140 129 811 258 20 868

16 140 133 810 941 20 915

32 140 108 810 176 20 941

Step 2

4 362 718 2 145 897 31 844

8 364 891 2 158 249 31 728

16 365 409 2 161 629 31 911

32 367 912 2 176 392 31 923

Step 3
8 1 118 350 6 721 070 50 714

16 1 123 896 6 756 786 50 931

32 1 131 649 6 806 732 50 949

restart
64 3 843 363 23 310 788 85 648

128 3 842 828 23 298 937 85 647

Table 6.3: Step by step grid sizes for different number of processors after 1, 2 and 3

adaptation steps, and after 1 adaptation step for 64 and 128 restarting from 32 final

solution and grid. 3D Wedge.
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Figure 6.11: Execution time for adaptation blocks on multiple processors. 3D wedge, first

adaptation step.
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Figure 6.12: Execution time for adaptation blocks on multiple processors. 3D wedge,

second adaptation step.
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Figure 6.13: Execution time for adaptation blocks on multiple processors. 3D wedge, third

adaptation step.

167



CHAPTER 6. PARALLELISATION

 1

 10

 100

 128 64

Lo
g 

Ti
m

e(
s)

Number of processors

Adaptation breakdown time for 3D case, 1 step restart

Ref/Deref
Swap/Collapse 

Smooth 

Figure 6.14: Execution time for adaptation blocks on multiple processors. 3D wedge, one

adaptation step after restart.

Subdivision schemes

We now consider the adaptation time when using the different subdivision schemes as

described in the geometry approximation chapter. The test case used here is the SmartFish

concept aircraft, with an initial grid of 676 524 tetrahedral elements, 129 865 nodes and

65 770 boundary faces. The idea here is to measure the difference between the various

schemes, hence rather than using a varying number of processors, we fix this to 8. For

these tests we turned the smoothing off and the adaptation process was carried out for one

step with refinement and derefinement, 20 optimisation passes, using the ZZ-like indicator

with respect to Mach number as criteria. Table 6.4 shows the different grids obtained for the

subdivision schemes, where the differences are due to the swapping/collapsing procedure.

In figure 6.15 the time in seconds for the adaptation process blocks, when using different

subdivision schemes, is given. As we can see all times are of the same magnitude, with the

diamond difference and distance based butterfly schemes performing slightly worse than

the multi-node version.
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Subdivision type N nodes N elements N surf el

Mid-point 554 750 3 080 199 199 666

Multi-node 554 760 3 080 450 199 654

Diamond difference 554 762 3 081 941 199 630

Distance butterfly 554 623 3 080 210 199 368

Table 6.4: Grid sizes for different subdivision schemes and after 1 adaptation step with 8

processors. SmartFish test case.
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Figure 6.15: Adaptation blocks times for different subdivision schemes and after 1 adap-

tation step with 8 processors. SmartFish test case.
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CAD projection

We now examine the execution times of the various adaptation blocks as described above

when CAD projection is used, as described in the chapter on geometry conservation. The

test case used here is that of the ONERA M6 wing. Here the initial grid is composed by

477 262 tetrahedral elements, 91 379 nodes and 38 926 boundary faces. Once again only a

set number of processors is used for this computation, which will be 16, since we are only

interested in observing the overhead when using CAD projection. Here a single adaptation

step was carried out, with respect to the Mach number, using the simple error estimator for

the refinement and derefinement and with the addition of the physical difference criteria

for the refinement. Smoothing iterations were set to 10 and optimisation steps to 20.

Furthermore the case was run with reprojection of new nodes only in a first computation,

and of all nodes in-between smoothing for another one. Table 6.5 shows the different grids

obtained for the different cases, whilst figure 6.16 shows the execution times for the three

adaptation blocks. Smoothing time in figure 6.16, for the case when CAD projection is

used during the smoothing operation, can be broken down into two parts to obtain the

real smoothing time and the projection time, as shown in figure 6.17. As we can notice

from this last figure, the projection time becomes more important when carried out for all

surface nodes, increasing threefold the whole smoothing time block. However, it is also

interesting to notice how the actual smoothing time decreases, due to re-projection, when

compared to the smoothing times of figure 6.16.

Projection type N nodes N elements N surf el

No Projection 171 219 955 543 57 700

CAD new nodes 171 194 955 793 57 660

CAD new and smoothing 171 192 955 863 57 658

Table 6.5: Grid sizes for CAD projection after 1 adaptation step with 16 processors.

ONERA M6 wing.

Error indicators

Finally we consider the execution times of the different adaptation stages when using

the different error indicators discussed in the previous chapter. The ONERA M6 wing

described earlier is used, and the number of processors is again fixed at 16 since the

objective here is to evaluate the different error indicators performances. A single adaptation

step is performed with respect to Mach number for the three different indicators, for
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Figure 6.16: Adaptation blocks times for CAD projection after 1 adaptation step with 16

processors. ONERA M6 wing.
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Figure 6.17: Projection and smoothing time breakdown for CAD projection during smooth-

ing. ONERA M6 wing.
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both refinement and derefinement. One case was run using the simple error indicator for

derefinement with respect to Mach number and a mixture of ZZ-like indicator and the

physical difference criteria with respect to density. In all cases CAD projection for new

nodes only was used, and 20 cycles of both optimisation and smoothing were carried out.

Table 6.6 shows the grid sizes obtained with the different error indicators, which is more

important here than in other cases, as it must be considered when examining figure 6.18.

In fact the different mesh sizes obtained have an effect on the overall adaptation times.

What is interesting to point out here, is that despite mesh sizes and results (as shown

at the end of the previous chapter) being very similar for the face gradient and ZZ-like

indicators, the latter is more time consuming. Note that times for error indicators are

measured during the refinement/derefinement stage. For completeness all times of the

adaptation are presented in figure 6.18.

Error indicator N nodes N elements N surf el

Mixed 246 084 1 382 446 75 096

Simple 226 061 1 280 510 63 622

Face-grad 263 766 1 478 357 81 962

ZZ-like 264 392 1 483 283 82 010

Table 6.6: Grid sizes for different error indicators and after 1 adaptation step with 16

processors. ONERA M6 wing.
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Figure 6.18: Adaptation blocks times for different error indicators and after 1 adaptation

step with 16 processors. ONERA M6 wing.
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7
Summary, Conclusions and Perspectives

The work presented in this thesis addresses several important aspects in the field of mesh

adaptation. The main concepts of the adaptive techniques used are described in detail, and

some original methods for improving the whole procedure, by conforming to the geometry,

are introduced. This is completed by the addition of a posteriori error indicators, and a

description of the parallel algorithms used.

When creating a computational discretisation of an object, the precise geometrical def-

inition is required in order to generate a grid. This is also true when refining the mesh

in locations where the stresses will be higher, or where flow features are going to appear.

However, it is rare to know the exact location of these stresses and flow features a priori,

hence the mesh is adapted manually in large portions of a computational domain. The use

of dynamic integrated mesh adaptation avoids the need of prior knowledge of the solution

features and their locations. Given an initial coarse grid, the mesh adaptation process will

automatically detect the critical zones of the solution, and adapt the mesh accordingly,

enhancing the accuracy and rendering an improved solution.

There remains a problem in the process described above. Just as one cannot discretise

a geometry without the set of curves and surfaces defining it, the adaptation algorithm

cannot place the refined elements on the underlying geometry without its computational

representation. This was the first goal achieved here, by inserting a dedicated library for

the treatment of the most commonly used geometric representations in present day CAD

software. The results presented clearly show the importance of maintaining the geometric

representation, with undoubted benefits to the acquisition of a precise solution.

Encouraging results have also been obtained from the proposed use of interpolating sub-

division in the cases where no geometrical description is available. In particular three

alternative schemes have been proposed, and all provided satisfactory solutions for a com-
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plex geometry. These methods also proved to be very efficient, in a parallel environment.

Furthermore, a posteriori error estimators based on recovery procedures have been im-

plemented, with interesting results. Three alternatives were proposed, two based on the

recovered gradient of the solution and one based on the solution itself. The adaptations

obtained from these error estimators, showed in particular, good capabilities of capturing

shock waves, using an included shock capturing procedure.

In order to carry out all the above processes on realistic simulations with computational

meshes of the order of one million nodes, mono processor-serial calculations are not feasible.

It is hence mandatory that all the above techniques be developed in parallel. Numerical

investigations on the parallel performances of these methods proved the efficiency of all

parts of the adaptation process. Execution time of the adaptation is low compared to that

of the physics solver. Moreover, the various techniques implemented are also computation-

ally efficient as shown from the results presented in the chapter on parallel aspects.

The original contributions of this work can be summarised in:

� Inclusion of geometry description in a parallel mesh adaptation environment;

� Study on reprojection algorithms for representing surface geometries;

� A posteriori error estimates for adaptation criterion, blending physical gradients and

mathematical error estimation;

� Test cases of challenging geometries using the above methods in a completely parallel

environment.

7.1 Future work

The perspectives for this type of domain are multiple and continuosly changing, since it

covers a wide range of active research topics. Here we try to identify those which could be

most interesting to apply to the work proposed here.

Isogeometric analysis

This is a particularly interesting subject which has been further developed in recent years

by the group of Prof. Hughes [68]. It is a very promising project which makes further

use of NURBS, other than just as CAD description. The idea behind it is to use the
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geometry definition of the bounding surfaces in such a way to replace finite elements with

“NURBS elements” leading to Isogeometric Analysis. This has the advantage of losing the

CAD-CFD interface, since the geometry itself is used as the computational mesh.

Hybrid grids

Use of hybrid meshes for the discretisation of the domain is a topic that has attracted a lot

of interest in recent years [82, 83, 84, 86, 87, 88, 90, 146, 147, 148]. The scope of the use of

hybrid grids is straightforward: take the advantages of both structured and unstructured

grids and incorporate them to overcome the disadvantages. In general this mixture is done

in order to better capture the features of the flow field in different areas. With hexahedra

or prisms being used for boundary layers and wakes, where the gradients are high and the

flow is strongly directional following the body surface, and tetrahedra to cover the rest of

the domain and other features, such as shocks and vortices [149]. The adaptation schemes

however increase vastly in complexity due to the new topology of the mesh which makes

refinement and de-refinement much more difficult. A first step in reducing this difficulty is

achieved by using the same type of elements in specific areas as described above, and confine

the problem to an interface with specific elements such as pyramids. Complex and memory

consuming data structures are also an issue that should not be underestimated. Division

rules for refinement/coarsening that minimise the number of pyramids and simplify the

implementation of adaptation are required.
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[71] F. Perazzo, R. Löhner, and L. Perez-Pozo. Adaptive methodology for meshless finite

point method. Adv. Eng. Softw., 39:156–166, 2008.

[72] G. Karypis and V. Kumar. ParMETIS: Parallel graph partitioning and sparse ma-

trix ordering library. Technical Report 97-060, Department of Computer Science,

University of Minnesota, 1998.

[73] G. Karypis and V. Kumar. A fast and high quality multilevel scheme for partitioning

irregular graphs. SIAM J. Sci. Comput, 20(1):359–392, 1998.

[74] C. Walshaw and M. Cross. Mesh partitioning: a multilevel balancing and refinement

algorithm. SIAM J. Sci. Comput, 22(1):63–80, 2000.

[75] R.E. Bank and R.K. Smith. An algebraic multilevel multigraph algorithm. SIAM J.

Sci. Comput, 23(5):1572–1592, 2002.

182



BIBLIOGRAPHY

[76] H.L. de Cougny M. Shephard. Parallel refiniment and coarsening of tetraherdal

meshes. Comput. Methods Appl. Mech. Engng., 46:1101–1125, 1999.

[77] P. Leyland and R. Richter. Completely parallel compressible flow simulations using

adaptive unstructured meshes. Comput. Methods Appl. Mech. Engng., 184:467–483,

2000.

[78] L. Oliker, R. Biswas, and H.N. Gabow. Parallel tetrahedral mesh adaptation with

dynamic load balancing. Parallel Computing, 266(12):1583–1608, 2000.

[79] J. Waltz. Parallel adaptive refinement for unsteady flow calculations on 3D unstruc-

tured grids. Int. J. Numer. Meth. Fluids, 46:37–57, 2004.

[80] Y.M. Park and O.J. Kwon. A parallel unstructured dynamic mesh adaptation algo-

rithm for 3D unsteady flows. Int. J. Numer. Meth. Fluids, 48:671–690, 2005.

[81] J.A. Shaw. Hybrid grids. In J.F. Thompson, editor, CRC Handbook of Grid Gener-

ation. CRC Press, Boca Raton, FL, 1999.

[82] Y. Kallinderis, A. Khawaja, and H. McMorris. Hybrid prismatic/tetrahedral grid

generation for viscous flows around complex geometries. AIAA Journal, 34:291–298,

1996.

[83] V. Parthasarathy and Y. Kallinderis. Adaptive prismatic-tetrahedral grid refinement

and redistribution for viscous flows. AIAA Journal, 34:707–716, 1996.

[84] Y. Kallinderis. A 3-D finite-volume method for the Navier-Stokes equations with

adaptive hybrid grids. Appl. Numer. Math., 20:387–406, 1996.

[85] Y. Kallinderis. Prismatic/tetrahedral grid generation for complex geometries. In

Computational Fluid Dynamics, Lecture Series 1996-06. von Karman Institute for

Fluid Dynamics, Rhode Saint Genése, Belgium, 1996.
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