
scala

Programming
Languages Today
The Tower of Babel’s construction 
stopped when its builder started speak-
ing too many different languages. Are 
we seeing the same effect in software?

Inter-
operable

Functional
Object-
Oriented

Scala fits seamlessly into a Java 
environment. All of Java’s con-
cepts map transparently to 
Scala. It is possible to call Java 
methods, select fields, inherit 
classes or implement interfac-
es from Scala code.
Java frameworks and tools, like 
jdb, Wicket, Hibernate, Spring or 
Terracotta also just work.
Performance is comparable 
with Java, and JVM improve-
ments benefit directly to Scala.
Scala libraries can also be used 
from Java, albeit not as easily.

Seen at the byte-
code level, Scala 

is just another 
Java library.

Many algorithms 
are written con-

cisely using func-
tional idioms.

Martin Odersky with the current 

and past LAMP team: Philippe Al-

therr, Vincent Cremet, Iulian Dra-

gos, Gilles Dubochet, Burak Emir, 

Sebastian Hack, Philipp Haller, 

Sean McDirmid, Ingo Maier, 

Adriaan Moors, Stéphane Mich-

eloud, Nikolay Mihaylov, Lukas 

Rytz, Michel Schinz, Alexander 

Spoon,  Erik Stenman, Geoffrey 

Washburn and Matthias Zenger.

JavaScript on the client, Python for server-side scripting, Java for busi-
ness logic and SQL for database access, all cobbled together with XML. 
This is quite typical for large software systems today.
Each language may be used at what it does best. But cross-language 
communication must rely on a “lowest common denominator” like XML 
or worse, strings (as in SQL). This complicates deployment, makes sys-
tems fragile and is a big source of misunderstandings and errors. 

def sort(list: List) =
 list match {
  case Nil => Nil
  case pvt :: rst =>
   sort(rst filter (_ < pvt))
   ::: List(pvt) :::
   sort(rst filter (_ > pvt))   
 }

abstract class IntQ {
 def get: Int
 def put(x: Int)
}
class ImpQ extends IntQ {
 private val buf =
  new ArrayBuffer[Int]
 def get = buf.remove(0)
 def put = buf += x
}
trait Dbl extends IntQ {
 abstract override
 def put(x: Int) =
  super.put(2*x)
}
val q = new ImpQ with DblQ
q.put(1); q.get == 2

val s: ServerSocketChannel = …
while (s.isOpen) {
 val client = s.accept
 val bs =
  ByteBuffer.allocate(4096)
 client.read(bs)
 bs.flip
 client.write(bs) }

Scala is a functional language 
in the sense that every func-
tion is a value. Functions can be 
anonymous, curried or nested.
Many useful higher-order func-
tions are implemented as meth-
ods of Scala classes.
A function can be partial if it is 
not defined on all of its domain. 
It can be tested for whether it is 
defined on a given value.
Pattern matching blocks are 
partial functions, which allows 
complex control structures to 
be expressed easily.

Every value in Scala is an object. 
Java’s deviations from a pure 
object model — primitives, 
statics — have been removed.
Functions are objects too: their 
behaviour is implemented by 
their “apply” method. They can 
be specialised by extension.
Scala’s object model is richer 
than that of Java, and permits 
a form of multiple inheritance.
Besides parametric class types, 
similar to those of Java, Scala 
provides structural, existential 
and path-dependant types.

Research Today, Scala is a language that scales down and up eas-
ily. It also works well with its mixed community of expert (design-
ing the framework) and nonexpert users. The original goal of de-
signing a more expressive language is all but reached: small and 
large problems can be solved, experts and beginners can use the 
language at their own level.
However, Scala’s capability to guarantee safety is still limited, de-
spite its rich type system. Domain-specific safety properties cannot 
always be encoded in the type system. Various research projects 
at LAMP are looking at means to provide pluggable type-systems 
and type annotations.
Also, our claim that “everything can be implemented as a library” 
still remains contentious, and LAMP is researching means to im-
plement modern language features, such as transactions or em-
bedded query languages, as libraries.

Example The quick-sort al-
gorithm is implemented on 
the right. The first element be-
comes the pivot (pvt) and quick 
sort is recursively called on all 
elements smaller, respectively 
larger than pvt.

Example A queue of integers 
is defined and  implemented 
(ImpQ). Dbl modifies any queue’s 
behaviour. A new instance q 
is created, inheriting both the 
standard implementation and 
the doubling behaviour.

Example The Scala program on 
the right implements a minimal 
echo server using Java’s NIO li-
brary. Java classes and meth-
ods, like ByteBuffer of write, 
are used transparently and have 
no performance overhead.

Scalable
Languages

A scalable lan-
guage works for 
very small and 
very large pro-
grams. 
Cross-languages 
communication 
becomes unnec-
essary.

A language is scalable if it is suitable 
for very small as well as very large 
programs. This means that a single 
language can be used both for exten-
sion scripts and for the heavy lifting.
Domain-specific needs are provided 
for by libraries and embedded lan-
guages, instead of external tools.
Scala shows that such languages can 
exist. It is equally suitable for finan-
cial applications, massive multiplayer 
online games, web frameworks such 
as Lift or compilers. Unsurprisingly, 
the Scala compiler itself is written in 
Scala.

Scripting Script writers are 
primarily concerned with con-
ciseness. Scala’s type inference, 
efficient syntax and boiler-
plate-scrapping features all fit 
this requirement perfectly. An 
interactive shell is available.

Composition There is no dedi-
cated module system in Scala. 
Instead, classes and traits can 
be composed via mixins. Mod-
ule abstraction is obtained 
through type parameters, type 
members and self types.

Scala
vs. Java

In Scala In Java
Method definitions

def mth(x: Int): Int = {
  result }

int mth(int x) {
  return result; }

Variable definitions

var x: Int = … int x = …;

val s: String = … final String s = …;

Method calls

obj.mth(arg) obj.mth(arg);

obj mth arg no operator overloading

Choice expressions

if (cond) exp1 else exp2 cond ? exp1 : exp2;

expr match {
  case pat1 => exp1
  case patn => expn
}

switch (expr) {
  case pat1 : return exp1;
  case patn : return expn;
}

Classes

class Sample (x: Int,
              val p: Int)
{
  def mth1(y: Int) = …
}

class Sample {
  private final int x;
  public final int p;
  Sample(int x, int p) {
    this.x = x;
    this.p = p; }
  int mth1(int y) {
    return …; }
}

Objects

object Sample {
  def mth2(x: Int) = …
}

class Sample {
  static int mth2(int x) {
    return …; }
}

Traits and mixins

trait T {
  def mth1(x: String): Int
  def mth2(x: Int) = …
  var field = …
}

interface T {
  int mth1(String x);
}
no concrete methods or fields

class C extends Sup with T class C extends Sup
        implements T

Except for type annotations, 
Scala’s syntax is very similar to 
Java’s. On the other hand, fea-
tures such as semicolons and 
type inference and lightweight 
classes and functions mean 
Scala’s syntax feels a lot lighter.

Concurrency using
Actors and Messages

Example The ping-pong program is a 
fascinating concurrent system where 
two players send each other “ping”, 
respectively “pong” messages until 
they get bored.
Actors are defined using the actor 
method. The react loop of the actor 
is defined as a partial function on 
all messages it can receive at that 
point.
An actor will block until one message 
on which it reacts is received.
An actor sends messages using the 
send (!) operator and the implicit 
sender reference.

Actors encapsu-
late state and be-
haviour (like ob-
jects). They are 
also active and 
communicate 
through asyn-
chronous mes-
sage passing.

Actors implement the concurrent 
programming model of Erlang in Sca-
la. Like objects, actors have state and 
behaviour. Unlike objects, they  do 
not communicate through method 
calls but by sending asynchronous 
messages to other actors’ mailboxes.
The treatment of incoming messages 
is done on an actor’s thread so that all 
actors work concurrently. If an actor’s 
mailbox is empty, the actor blocks 
until it receives something.
Concurrent actors can synchronize 
by waiting for messages. This is safer 
than lock-based synchronization.

val player1 = actor { 
  loop { react {
    case Ping =>
      sender ! Pong
    case Stop => exit
  } }
}
val player2 = actor {
  player1 ! Ping
  loop { react {
    case Pong =>
      if (gotBored) {
        sender ! Stop
        exit
      }
      else sender ! Ping
  } }
}

Performance It is not necessary to 
map each actor to a JVM thread. In-
stead, a thread pool is shared amongst 
actors so that blocked actors do not 
use scarce resources. Performance of 
actor-based concurrent application 
was found to be very high.

Inversion of control In pub-
lish-subscribe, a reaction to a 
message is in the publisher de-
spite it conceptually being part 
of the subscriber’s behaviour. 
In contrast, control in actors is 
not inverted.

If a domain-specific concern is 
embedded in a program, it is 
possible to type-check it w.r.t. 
the rest of the program. Scala 
embeds concerns such as rela-
tional queries or grammars as 
libraries in a type-safe way.

This poster was conceived by Gilles Dubochet

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Infoscience - École polytechnique fédérale de Lausanne

https://core.ac.uk/display/147941674?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

