
On Obstruction-Free Transactions∗

Rachid Guerraoui Michał Kapałka
School of Computer and Communication Sciences, EPFL,

Lausanne, Switzerland

April 10, 2008

Abstract

This paper studies obstruction-free software transac-
tional memory systems (OFTMs). These systems are ap-
pealing, for they combine the atomicity property of trans-
actions with a liveness property that ensures the commit-
ment of every transaction that eventually encounters no
contention.

We precisely define OFTMs and establish two of their
fundamental properties. First, we prove that the con-
sensus number of such systems is 2. This indicates that
OFTMs cannot be implemented with plain read/write
shared memory, on the one hand, but, on the other
hand, do not require powerful universal objects, such as
compare-and-swap. Second, we prove that OFTMs can-
not ensure disjoint-access-parallelism (in a strict sense).
This may result in artificial “hot spots” and thus limit the
performance of OFTMs.

1 Introduction

Transactional memory (TM) is a new software paradigm
in which processes (threads) of an application commu-
nicate using lightweight, in-memory transactions. Basi-
cally, a process that wants to access a shared data struc-
ture executes some operations on this structure inside an
atomic program called a transaction. When the transac-
tion commits, all these operations appear as if they took
place instantaneously, at some single, unique point in
time. When the transaction aborts, however, all the op-
erations are rolled back and their effects are never vis-
ible to other transactions. This method of providing
thread-safety is as easy to use as coarse-grained locking
and, in many cases, nearly as efficient on multi-core sys-
tems as hand-crafted, fine-grained locking [20, 24]. More-
over, unlike lock-based schemes, transactions are com-
posable [16].

Transactional memory can be implemented as a soft-
ware library. Such a TM implementation is called a soft-
ware TM (STM) [28]. A specific class of STMs is partic-
ularly interesting: those called obstruction-free STMs [18]
(which we call OFTMs). Roughly speaking, an OFTM
guarantees progress for every process that eventually

∗EPFL Technical Report LPD-REPORT-2008-012. Submitted for pub-
lication.

does not encounter contention. OFTMs are appealing
in real-time systems where priority inversion is an im-
portant issue, as well as within operating systems where
kernel-level transactions (e.g., inside interrupt handlers)
must be able to preempt (and, in many cases, abort) user-
level ones at any time [29]. In an OFTM, a process that
is preempted, delayed or even crashed cannot inhibit the
progress of other processes.

Whereas a lot of practical experiments have been con-
ducted to fine tune the performance of OFTMs [18, 25, 1,
8, 29], very little research has been devoted to establish
the theoretical power and limitations of such systems.
This paper is a preliminary step in that direction.

A typical OFTM. All current OFTMs [18, 25, 1, 8, 29]
employ the same basic high-level principle, and differ
mostly in the optimization techniques they use to lower
the overhead of transaction processing. The best way to
explain the principle is to look at the first, and arguably
simplest, OFTM called DSTM [18].

The basic idea is the following. To update some ob-
ject x, a transaction Ti acquires an exclusive ownership of
x (using a compare-and-swap (CAS) operation). From this
moment on, x contains the information that it is owned
by Ti and points to the transaction descriptor of Ti, which
indicates whether Ti is still live, already committed or
aborted. The ownership of x by Ti is exclusive but revo-
cable: otherwise the STM would not be obstruction-free.
Indeed, if another transaction Tk wants to update x be-
fore Ti is completed, Tk cannot get blocked waiting for
Ti to terminate. A contention manager might tell Tk to
back off for some fixed time (maybe random) to give Ti
a chance, but eventually Tk must be able to abort Ti and
acquire x without any interaction with Ti.

If Ti wants to read some object y, then Ti just needs to
make sure that no other transaction Tk is currently up-
dating y; if not, then Ti may have to eventually abort Tk.
Once y is not updated by any transaction, Ti simply reads
the current state of y, without writing anything to shared
memory. Later, when Ti reads other objects, or tries to
commit, the state of y is re-read to ensure that Ti still ob-
serves a consistent state of the system (i.e., that nobody
changed y after it was read by Ti).

Once a transaction Ti acquires ownership of all the ob-
jects Ti wants to update (and reads all objects it had to),
Ti tries to commit by atomically changing its status field

1

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Infoscience - École polytechnique fédérale de Lausanne

https://core.ac.uk/display/147941631?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

from “live” to “committed” (using CAS). Clearly, Ti will
fail to do so if any other transaction has already aborted
Ti, by atomically changing the status field of Ti from
“live” to “aborted” (again, using CAS). Once Ti commits,
all further transactions see the updates done by Ti.

The computational power of an OFTM. DSTM uses CAS
for both object acquisition and transaction commitment.
In fact, all current OFTMs use CAS, which seems at first
glance necessary to ensure both obstruction-freedom and
atomicity. It is natural to ask whether we can implement
an OFTM using objects that support only weaker opera-
tions than CAS (i.e., objects lower in the Herlihy’s hierar-
chy [17]), e.g., read-write registers.

An object that supports a CAS operation (e.g., a CAS
object) is universal. It can wait-free [17] implement any
atomic object shared by any number of processes. On the
contrary, an OFTM seems generally unable to implement
wait-free atomic objects, for it can abort any transaction
when some other transaction is concurrently executing
steps. This suggests that OFTMs have lower computa-
tional power than CAS, and might be implemented using
weaker objects.

We show in Section 4 that an OFTM is not universal
for 3 or more processes. The proof goes through showing
a computational equivalence of an OFTM to “fail-only”
consensus, an object introduced in [6] and called here fo-
consensus. This equivalence result is, we believe, interest-
ing in its own right, for it may help devising further im-
possibilities (as fo-consensus has much simpler semantics
than an OFTM). We prove here that fo-consensus cannot
solve (wait-free) consensus for 3 processes or more and,
using the observation of [6] (that fo-consensus can imple-
ment consensus in a system of 2 processes), we establish
that the consensus number of an OFTM is 2. This means
that, on the one hand, an OFTM cannot be implemented
from only read-write registers, but, on the other hand, ob-
jects as powerful as CAS are not necessary to implement
an OFTM. In fact, we exhibit an OFTM implementation
that uses only one-shot objects of consensus number 2
and registers.

The parallelism of an OFTM. An STM implementation
should minimize the interactions between transactions
that access disjoint sets of (application-level) objects. Ba-
sically, if a transaction Ti does not access any object ac-
cessed by another transaction Tk, then neither of these
transactions should delay the other one. Ideally, the
STM should ensure that the processes executing Ti and
Tk do not perform conflicting operations on the underly-
ing memory locations. This property prevents artificial
“hot spots”—memory locations that are accessed concur-
rently and in a conflicting way by unrelated transactions.
These may provoke “useless” cache invalidations—thus
decreasing performance. We call this property strict
disjoint-access-parallelism. (Among the properties defined
in [3], strict disjoint-access-parallelism corresponds to 1-
local contention (or 0-local contention according to [7]).
Our property also expresses similar goals as the notion

of disjoint-access-parallelism introduced in [22]. How-
ever, the property of [22], unlike our strict disjoint-access-
parallelism, allows transactions that are indirectly con-
nected (via other transactions), to delay each other.)

Lock-based TM implementations, most of which use
some variant of the known two-phase locking protocol,
are usually strictly disjoint-access-parallel (e.g., TL [11]).
Notable exceptions are those TMs that use global times-
tamps in order to speed up the read validation process,
e.g., TL2 [10] and TinySTM [13]. In those implementa-
tions, every transaction has to access a common memory
location to determine its timestamp.

It could seem, at first, that DSTM (and other OFTMs) is
strictly disjoint-access-parallel. Unfortunately, this is not
the case. Consider a transaction Tm that updated both x
and y, and then got suspended for a long time. Objects x
and y both point to the transaction descriptor of Tm. Thus,
a transaction Ti when accessing x, and a transaction Tk
when accessing y will both go to Tm’s transaction descrip-
tor and possibly update it in order to abort Tm. Hence, Ti
and Tk may contend on the same memory location, even
if Ti and Tk use only object x and y, respectively.

Unfortunately, there is no remedy to this situation: If a
separate transaction descriptor of Tm is created for each
object, then there is no way to atomically commit Tm.
Indeed, if the status of Tm is changed in the descriptor
pointed by x, and not yet by y, then some transactions
may read the values written by Tm and commit, thus forc-
ing Tm to also eventually commit, while the others may
read old object values and cause an irrecoverable conflict
with Tm, thus requiring that Tm is eventually aborted.

In fact, we prove in this paper (Section 5) that no OFTM
can be strictly disjoint-access-parallel. This means that
transactions that are themselves unrelated, but happen to
have some indirect connection via other transactions, can
delay each other.

Scoping the Results. Proving our results requires a pre-
cise definition of the notion of an OFTM. While indeed
the term has been widely used, it has never been formally
stated. We propose a precise, yet general, definition of an
OFTM (Section 2) and we prove its equivalence to two
alternatives (Section 3).

For presentation simplicity, we consider, as a safety
property of an OFTM, basic serializability [26]. Our re-
sults also hold for OFTMs that ensure the stronger opac-
ity property [15], which preserves real-time ordering and
ensures that non-committed transactions observe a con-
sistent state of the system. The results also hold for a
weak definition of an OFTM that allows crashed pro-
cesses to block the progress of others even for very a long,
but always finite, period of time [9, 4] (see Section 6).

2

pi

High-level

Low-level

A.move()

x.inc()

base object x

ok y.dec()

base object y

ok

ok
. . .

Figure 1: An example execution of an operation move on a high-level object A by a process pi. Operation move is
implemented using operations inc and dec on base objects x and y.

2 Preliminaries

2.1 Overview

Processes. We consider a classical asynchronous shared-
memory system [17, 23] of n processes (threads) p1, . . . ,
pn, of which n− 1 may, at any time, fail by crashing. Once
a process crashes, it does not take any further actions. The
failures model the fact that processes may often be de-
layed arbitrarily (e.g., when de-scheduled, waiting for IO
operations, or encountering a page fault), in which case
they should not block other processes (the very idea be-
hind obstruction-freedom). A process that does not crash
(in a given execution) is said to be correct.

Objects. We consider the actions taken by processes at
two levels (cf. Figure 1). At the low-level, we consider
processes executing operations on base objects (e.g., hard-
ware memory locations). At a high level, we consider (the
same) processes executing operations on high-level objects
that are implemented using base objects. When a process
pi invokes an operation op on a high-level object x, pi fol-
lows the implementation of op that determines the oper-
ations on base objects pi must execute in order to provide
the correct semantics of op on x. The two-level distinc-
tion is relative: an object x is a high-level object when we
look at its implementation, or a base object when we look
at another high-level object y implemented from x (and
possibly other base objects).

An execution of each operation is delimited by two
events: the invocation and the response from the opera-
tion. We assume that, in every execution, all events can
be totally ordered according to their execution time. If
several events are executed at the same time (e.g., on
multiprocessor systems), they can be ordered arbitrarily.
Events of operations on high-level objects, issued by a
process pi, are local to pi. However, pi’s events on base
objects, which we call steps, can be visible to other pro-
cesses. We assume that every shared object1 is wait-free:
if a correct process pi invokes an operation on x, then pi
eventually returns from the operation.

A register object exports only operations: read that re-
turns the current value (state) of the register, and write(v)
that changes the state of the register to value v. Thus, a
register acts as a simple variable, and so in the algorithms
we use registers as variables instead of specifying explic-

1When we say “(shared) object x” we mean “base or high-level ob-
ject x”.

itly the read and write operations. We assume that every
register is atomic (i.e., linearizable [21]).

We say that object x can implement object y if there exists
an algorithm that implements y using some number of
instances of x (i.e., a number of objects of the same type as
x) and registers. We say that objects x and y are equivalent
if x can implement y and y can implement x.

Histories. A (high-level) history of a shared object x is a
sequence of all events of operations executed on x by all
processes in a given execution. A low-level history of an
implementation Ix of a high-level object x is a sequence
of: (1) all events of operations executed on x, and (2) all
steps executed on behalf of Ix, by all processes in a given
execution. We assume a typical well-formedness prop-
erty of every (high-level or low-level) history: at each
process pi, no two operations on high-level objects (and
no two operations on base objects) overlap, i.e., pi exe-
cutes operations on high-level objects, and also on base
objects, sequentially, as it is shown in Figure 1.

More formally, let H be a (low-level or high-level) his-
tory. Then, H|pi denotes the longest subsequence of
events in H that are executed by process pi. If E is a low-
level history of an implementation Ix of a shared object
x, then we denote by E|H the longest subsequence of E
containing only events on shared object x.

A high-level history is well-formed, if, for every pro-
cess pi, H|pi is a sequence of the form invocation, response,
. . . , where invocation is an invocation event, and response
is a response that matches the preceding invocation (i.e.,
concerns the same shared object, operation and process).

A low-level history E is well-formed, if E|H is well-
formed, and, for every process pi, in E|pi: (1) there is
no step between a response event and the subsequent in-
vocation event of an operation on a shared object, and
(2) the sequence of steps between any invocation event
and the subsequent response event of an operation on a
shared object is of the form: invocation, response, . . . , invo-
cation, response, where invocation is an invocation of an op-
eration on a base object, and response is a response event
that matches the preceding invocation (i.e., concerns the
same base object, operation and process).

2.2 Transactional Memory

Overview. A transactional memory (TM) allows for pro-
cesses to communicate by reading or updating, within
transactions, shared variables, which we call here trans-

3

actional variables (or t-variables, for short)2. Once a trans-
action Tk executed by a process pi commits, all the changes
to t-variables done by pi within Tk are atomically applied.
If Tk aborts, however, the changes are rolled back and are
never visible to other transactions.

Every transaction has a unique transaction identifier
(e.g., Tk, Ti,k, etc.). A transaction Tk is executed, in a
given low-level history E, by at most one process, de-
noted by pE(Tk)3. We assume that once Tk is committed
or aborted, no process performs any operations within Tk.
Thus, when a process pi wants to restart a computation of
a transaction that has just (become) aborted, pi simply re-
peats the computation within a new transaction (with a
different identifier).

TM as a shared object. A TM can be viewed as an ob-
ject with operations that allow for the following: (1) read-
ing or writing a t-variable x within a transaction Tk (re-
turns the response of the operation or a special value Ak),
(2) requesting transaction Tk to be committed (operation
tryC(Tk) that returns either Ak or Ck), and (3) request-
ing transaction Tk to be aborted (operation tryA(Tk) that
always returns Ak). The special return value Ak (abort
event) is returned by a TM to indicate that transaction Tk
has been aborted. The return value Ck (commit event) is a
confirmation that Tk has been committed. For simplicity,
we say that a transaction Tk performs a TM operation, or
executes an event or step, meaning that some process pi
performs the operation, or executes the event or step of
the considered STM implementation, within Tk.

It is worth noting that the TM operations described
here are used only on the interface between an appli-
cation (transactions) and a TM. When processes execute
steps of a TM implementation itself, they may do much
more than the TM external interface allows for. For ex-
ample, they may abort transactions executed by other
processes, or even help other processes in processing
their transactions4. (Note that the same processes exe-
cute transactions on behalf of both an application and a
TM implementation if the TM is not provided by hard-
ware.)

Transactions. Let H be a (low-level or high-level) history
of a TM (shared object) and Tk be a transaction. We say
that Tk is in H, and write Tk ∈ H, if there is some event
executed by Tk in H.

We say that a transaction Tk is committed (respectively,
aborted) in H, if H contains commit event Ck (resp., abort
event Ak). A transaction that is committed or aborted (in
H) is completed. A transaction that is not completed (in

2In general, transactions may use objects of any type; however, the
proofs of our results are more easily explained with only read-write
t-variables (transactional registers). This does not, however, limit the
generality of our results, as explained in Section 6.

3We use unique transaction identifiers for convenience and simplic-
ity of notation. Such identifiers can be generated locally by each process,
e.g., by combining the id of the process with the value of a process-local
transaction counter.

4The TM model given here also does not support non-transactional
accesses to t-variables, which are outside the scope of this paper.

H) is called live. We say that a transaction Tk is forcefully
aborted in H, if Tk is aborted in H but Tk has not issued
tryA(Tk) in H. (The ability to forcefully abort a transac-
tion is essential for optimistic concurrency schemes.)

We say that a transaction Tk precedes a transaction Tm
(in a history H), if Tk is completed and the last event of Tk
precedes (in H) the first event of Tm. We say that transac-
tions Tk and Tm are concurrent in a history H, if neither Tk
precedes Tm, nor Tm precedes Tk (in H). We assume that
transactions at any single process are never concurrent.

Serializability. Serializability [26] is a safety property
that describes the semantics of a TM. Intuitively, serializ-
ability requires that in every history H of a TM, all trans-
actions that have committed in H issue the same invoca-
tion events and receive the same responses as in some
sequential history S consisting of those transactions (in a
sequential history, no two transactions are concurrent).
A transaction Tk commits somewhere between its invo-
cation of operation tryC(Tk) and the subsequent Ck re-
sponse. Thus, a transaction that is commit-pending, i.e.,
that has invoked tryC(Tk), but has not received a match-
ing response yet, may have already committed (or not).

More formally, let H be any history of a TM object. If
Tk is a transaction, then H|Tk denotes the sequence of
events of operations performed by Tk in H. Intuitively,
we consider two histories to be equivalent, if they contain
the same transactions, and every transaction issues the
same invocation events and receives the same response
events in both histories. Thus, equivalent histories differ
only in the relative position of events of different transac-
tions. More precisely, we say that histories H and H′ are
equivalent, and write H ≡ H′, if, for every transaction Ti,
H|Ti = H′|Ti.

Let H be any history. We say that H is sequential
if no two transactions are concurrent in H. A commit-
completion of H is any well-formed history of the form
H · C, where C is a sequence of commit events. In par-
ticular, H is a commit-completion of itself. We denote by
committed(H) the longest subsequence of H that contains
only committed transactions.

A sequential history S is legal if every read of a t-
variable x returns the value written by the last preced-
ing write of x in S (or the initial value of x if there is no
preceding write).

Definition 1 A TM implementation I ensures serializability
if, for every history H of I, there is a commit-completion H′ of
H, such that committed(H′) is equivalent to some sequential,
legal history S.

2.3 Obstruction-Free STM Implementations

In this section, we define precisely what an OFTM is. We
give here a definition based on the formal description
of obstruction-free objects from [6]. We use this OFTM
definition throughout our paper. Later, in Section 3, we
consider alternative definitions. We show, however, that
these are computationally equivalent to the one we give

4

here (Section 3), and that the results proved in this paper
hold also for those definitions (Section 6).

The definition we consider here uses the notion of step
contention [6]: it says, intuitively, that a transaction Tk
executed by a process pi can be forcefully aborted only if
some process other than pi executed a step concurrently
to Tk.

More precisely, let E be any low-level history of some
STM implementation I. We say that a transaction Tk en-
counters step contention in E, if there is a step of a process
other than pE(Tk) in E after the first event of Tk and before
the commit or abort event of Tk (if any).

Definition 2 We say that an STM implementation I is
obstruction-free (i.e., is an OFTM) if in every low-level his-
tory E of I, and for every transaction Tk ∈ E, if Tk is forcefully
aborted in E, then Tk encounters step contention in E.

3 Alternative Definitions
of OFTM

Alternative definitions of OFTMs based on the concept
of interval contention (instead of step contention) can also
be considered [4]. Basically, we can allow a transaction
Tk to be forcefully aborted only when there is a transac-
tion Ti that is concurrent to Tk and that is executed by a
process that has not crashed yet. We have at least two
possible definitions here: In the simplest case (which we
call ic-obstruction-freedom), we can assume that a process
that crashes cannot cause any further transaction to be
forcefully aborted. A weaker variant of this definition
(eventual ic-obstruction-freedom), inspired by [4], allows a
crashed process to obstruct other processes (and their
transactions) for arbitrary, but finite time. More specifi-
cally:

Definition 3 We say that an STM implementation I is ic-
obstruction-free (i.e., is an ic-OFTM), if in every low-level
history E of I, and for every transaction Tk ∈ E, if Tk is force-
fully aborted, then there exists a transaction Ti concurrent to
Tk, such that process pE(Ti) has not crashed before the first
event of Tk.

Definition 4 We say that an STM implementation I is even-
tually ic-obstruction-free (i.e., is an eventual ic-OFTM), if
for every low-level history E of I there exists a finite period of
time d, such that for every transaction Tk ∈ E that is forcefully
aborted, there exists a transaction Ti concurrent to Tk, such
that process pE(Ti) has not crashed earlier than d before the
first event of Tk.

Clearly, every STM that is obstruction-free is also ic-
obstruction-free: a process that has crashed can no longer
perform any steps. The opposite is also true: because
slow processes cannot be distinguished from crashed
ones, the only way for a process pi to ensure that other
processes are alive is for pi to observe steps of other pro-
cesses. Thus:

Theorem 5 Every OFTM is an ic-OFTM, and every
ic-OFTM is an OFTM.

Clearly, every OFTM that is (ic-)obstruction-free is also
eventually ic-obstruction-free. However, the opposite is
not true: a history of an eventual ic-OFTM may contain
finite sequences of forcefully-aborted transactions that
are concurrent only to some transaction executed by a
crashed process.

Nevertheless, one can implement an (ic-)OFTM using an
eventual ic-OFTM. The transformation is not straightfor-
ward, though. For example, one could think that sim-
ply restarting every forcefully aborted transaction sev-
eral times would provide ic-obstruction-freedom. But an
eventual ic-OFTM may forcefully abort transactions at a
single process arbitrarily (albeit finitely) many times in a
row with ic-obstruction-freedom violation. Furthermore,
restarting a computation of a transaction cannot be done
by a TM implementation itself: the restarted transaction
may see different states of the system and it is up to the
application using a TM to decide then what operations
on which t-variables to perform within the transaction.
In Appendix A, we prove the following result:

Theorem 6 Every eventual ic-OFTM can implement an
OFTM. Every OFTM is an eventual ic-OFTM.

4 An OFTM Cannot Solve
3-Consensus

The consensus problem consists for a number of processes
to agree (decide) on a single value chosen from the set of
values these processes have proposed. It is known that in
an asynchronous system in which some processes may
crash, solving consensus is impossible when only regis-
ters are available [14].

In this section, we show that it is impossible to solve
consensus for 3 processes (called 3-consensus) using only
OFTMs and registers (as base objects). We prove this re-
sult in two steps: First, we show that an OFTM is equiva-
lent to a “fail-only” consensus object [6] (or fo-consensus,
for short), i.e., that an OFTM can implement fo-consensus
and vice versa. Then, we prove that fo-consensus cannot
implement 3-consensus.

4.1 Definitions

Solving consensus consists in ensuring the following
properties: (1) every value decided is one of the values
proposed (validity); and (2) no two processes decide dif-
ferent values (agreement). The consensus number of an ob-
ject O is the maximum number of processes among which
one can solve consensus using any number of instances of
O (i.e., base objects of the same type as O) and registers.

Intuitively, fo-consensus provides an implementation of
consensus (via an operation propose), but allows propose
to abort when it cannot return a decision value because of

5

Algorithm 1: Implementing fo-consensus from an
OFTM (code for a process pi)
uses: V – a t-variable
initially: V = ⊥, k = 0

upon propose(vi) do1

k← k + 1;2

within transaction Ti,k do3

if V = ⊥ then V ← vi;4

else vi ← V;5

on event Ci,k do return vi;6

on event Ai,k do return ⊥;7

concurrent invocations of propose. When propose aborts,
it means that the operation did not take place, and so
the value proposed using this operation has not been
“registered” by the fo-consensus object (recall that only
a value that has been proposed, and “registered”, can be
decided). A process which propose operation has been
aborted may retry the operation many times (possibly
with different proposed value), until a decision value is
returned.

More precisely, let D be any set, such that ⊥ /∈ D. Fo-
consensus (object) implements a single operation, called
propose, that takes a value v ∈ D as an argument and re-
turns a value v′ ∈ D ∪ {⊥}. If a process pi is returned
a non-⊥ value v′ from propose(v), we say that pi decides
value v′. Once pi decides some value, pi does not invoke
propose anymore. When operation propose returns ⊥, we
say that the operation aborts.

Let E be any low-level history of a fo-consensus im-
plementation Ic. We say that a propose operation exe-
cuted by a process pi is step contention-free (in E) if there
is no step of a process other than pi between the invo-
cation and the response events of this operation (in E).
Fo-consensus satisfies the following properties (for every
E): (1) fo-validity says that if some process decides value
v, then v is proposed by some propose operation that does
not abort; (2) agreement says that no two processes decide
different values; and (3) fo-obstruction-freedom says that if
a propose operation is step contention-free, then the oper-
ation does not abort.

4.2 Equivalence

We prove that an OFTM is equivalent to fo-consensus by
showing that: (1) one can implement fo-consensus us-
ing an OFTM base object, and (2) one can implement an
OFTM using fo-consensus objects and registers.

Lemma 7 Every OFTM can implement fo-consensus.

Proof. Implementing fo-consensus using an OFTM is
straightforward. Algorithm 1 does so by having every
process pi that invokes propose use a transaction Ti,k

5 to

5The variable k is used here to generate a unique transaction id i, k,
where i is the id of process pi .

atomically change the value of t-variable V from ⊥ to the
value proposed by pi. If Ti,k commits, then pi can safely
decide on the non-⊥ value that is in V (written by Ti,k
or read by Ti,k). Indeed, by serializability, only one com-
mitted transaction can observe that V = ⊥ and set V to
a non-⊥ value. Thus, agreement and fo-validity are en-
sured. Furthermore, Ti,k can be aborted only if Ti,k en-
counters step contention. But then the containing propose
operation is not step contention-free and can abort with-
out violating fo-obstruction-freedom. �

For simplicity, we use the “within transaction Tm . . . on
event . . . ” notation in Algorithm 1 instead of referring ex-
plicitly to the TM operations described in Section 2.2. The
precise meaning of this notation is the following: A read
(or write) of a t-variable x inside a “within transaction Tm
. . . on event” block B means that transaction Tm (i.e., the
process pi that executes Tm) should invoke a read (write)
operation of x on the TM and wait (or execute the code of
the TM implementation) until Tm receives a subsequent
response from the operation. If the response is Am, the
“on event Am” block is executed. Otherwise, the execu-
tion of block B continues. If B is completed successfully
(i.e., without any operation returning Am), Tm sends the
TM a commit request, i.e., invokes operation tryC(Tm) of
the TM. If the response of the request is Cm (or Am), the
“on event Cm” (respectively, “on event Am”) block is exe-
cuted.

Lemma 8 An OFTM can be implemented from fo-consensus
(and registers).

Proof. Implementing an OFTM using fo-consensus (and
registers) is a more difficult task. The idea, presented in
Algorithm 2 (see Appendix B for its proof of correctness),
is to use a scheme similar to that underlying DSTM [18],
but replace CAS with fo-consensus. Clearly, the trans-
formation is not immediate: fo-consensus is a one-shot
object, while a CAS object can change its state infinitely
many times. This suggests the need for an unbounded
number of fo-consensus objects to implement an OFTM.
Basically, the major difference between DSTM and Algo-
rithm 2 is that, because in our algorithm we cannot use
CAS, the indirection to object data and to owner trans-
action’s identifier, which are handled in DSTM via single
CAS pointers, have to be represented in our OFTM im-
plementation by (infinite) arrays of fo-consensus objects.

The idea behind the algorithm is very simple. If a trans-
action Tk wants to read or update a t-variable x, then
Tk must be granted an exclusive, but revocable, owner-
ship on x (procedure acquire). To do so, the algorithm
first searches for the latest committed state of x (lines 13–
23). Then, if there is any live transaction Ti that cur-
rently owns object x, Ti is aborted (lines 16–20). Fi-
nally, Tk is set as the current owner of x (line 14). Com-
mitting or aborting a transaction Tk is done by propos-
ing value committed, or aborted, to the corresponding
fo-consensus State[Tk]. Clearly, Tk can commit only if
no other transaction aborted Tk before. Also, Tk can be

6

Algorithm 2: Implementing an OFTM from fo-con-
sensus and registers
uses: Owner, State – arrays of fo-consensus objects;

TVar, Aborted, V – arrays of registers (other
variables are local to transaction Tk)

initially: Aborted[Tk] = false for every transaction Tk,
V[x] = ⊥ for every t-variable x, wset = ∅

upon read of t-variable x by Tk do1

return acquire(Tk, x);2

upon write of value v to t-variable x by Tk do3

s← acquire(Tk, x);4

if s = Ak then return Ak;5

TVar[x, Tk]← v;6

return ok;7

procedure acquire(Tk, x)8

if x /∈ wset then9

version← 1;10

state← initial state of x;11

v← V[x];12

repeat13

owner← Owner[x, version].propose(Tk);14

if owner = ⊥ then return Ak;15

if owner 6= Tk then16

s← State[owner].propose(aborted);17

if s = ⊥ then return Ak;18

if s = committed then19

state← TVar[x, owner];
else Aborted[owner]← true;20

if V[x] 6= v then return Ak;21

version← version + 1;22

until owner = Tk ;23

wset← wset∪ {x};24

TVar[x, Tk]← state;25

V[x]← Tk;26

else state← TVar[x, Tk];27

if Aborted[Tk] then return Ak;28

return state;29

upon tryCk do30

s← State[Tk].propose(committed);31

if s = committed then return Ck;32

else return Ak;33

upon tryAk do34

return Ak;35

aborted by another transaction Ti only if Tk has not com-
mitted yet.

The first time a transaction Tk accesses a t-variable x,
Tk creates a new version of x. Each version of x is mapped
onto a single transaction via the array of fo-consensus ob-
jects Owner. Transaction Tk creates a new version of x by

proposing its id to subsequent elements of Owner[x, . . .]6

until Tk decides its id (lines 13–23). While doing so, Tk
also finds all the transactions that owned x before, i.e.,
that owned previous versions of x. If any such transac-
tion Ti has committed, Tk reads the latest value written to
x by Ti from register TVar[x, Ti] (line 19). If Ti is live, how-
ever, i.e., Ti is still the exclusive owner of x, Tk must abort
Ti before going further (lines 17–20). This ensures that at
any time there is indeed only one owner of x. Once Tk
succeeds in becoming an owner of x, Tk saves the newest
value of x in register TVar[x, Tk]. If transaction Tk accesses
x for the second time, Tk is already an owner of x, and so
Tk can proceed without going through the array Owner
again.

Two important implementation details remain to be ex-
plained, both essential for the correctness of the imple-
mentation. First, at the end of procedure acquire, issued
by Tk, if register Aborted[Tk] is true, transaction Tk aborts.
This is to ensure that Tk completes (and thus stops taking
further actions) as soon as possible after Tk loses an own-
ership on some of the t-variables Tk has become an owner
for. Second, transaction Tk, while traversing the array
Owner[x, . . .], checks periodically if the value of register
V[x] has not changed. The value V[x] changes each time
some transaction becomes an owner of x. If Tk did not
check V[x], it could happen that Tk would never exit from
the repeat loop (lines 13–23), thus violating wait-freedom
of the OFTM object. �

4.3 Impossibility Result

Theorem 9 Fo-consensus cannot implement 3-consensus.

The intuition behind the proof is the following. We
assume, by contradiction, that there exists an algorithm
A that implements 3-consensus using only fo-consensus
objects and registers. We then derive a contradiction by
using a classical “valency argument” [14]. Basically, we
show that if A ensures the validity and agreement prop-
erties of consensus, then A may violate wait-freedom in
some executions, i.e., it may happen that some correct
process proposes a value and is never returned a deci-
sion value. We do so by proving that any finite low-level
history E of A, after which more than one value can be
decided, can be extended into a low-level history E′ in
such a way that still more than one value can be decided
after E′. Note that a process pi may decide value v after
a low-level history E only if pi is sure that no value other
than v can be decided by other processes after E (other-
wise, agreement could be violated).

6Algorithm 2 uses the name (symbol) of a t-variable x to index some
of its arrays. This means that, a priori, the algorithm is not dynamic,
i.e., it requires that t-variables are allocated statically at the beginning of
each execution. Note, however, that the sole purpose of the algorithm is
to prove the equivalence result. In fact, its use of unbounded memory
and high time complexity make it rather impractical. On the other hand,
the algorithm supports an infinite number of t-variables, which makes
dynamic allocation of t-variables a non-issue.

7

Proof. Assume, by contradiction, that there exists an al-
gorithm A that solves consensus using only fo-consensus
objects and registers, in a system of 3 processes: p1, p2
and, p3 (i.e., A implements a 3-consensus object C). With-
out loss of generality, assume that: (1) the processes can
propose only values 0 and 1 to C, (2) every correct pro-
cess eventually proposes a value to C, and (3) the initial
state of the system is fixed.

Every process pi starts executing A by proposing value
0 or 1 to C. Unless pi crashes, pi eventually decides value
of 0 or 1. Once any process pi decides a value v, no other
process can decide a value different than v; otherwise,
agreement would be violated. Thus, in every infinite low-
level history E of implementation A there is a point after
which the decision value is fixed to 0 or 1.

In this proof, we consider only those low-level histo-
ries that are complete. A history E is complete if it does
not contain any pending (low-level) operation invocation
step. (An invocation of an operation is pending at a pro-
cess pi in E, if the invocation is not followed by a (corre-
sponding) response at pi.) A low-level history E is valid
if E can be generated by algorithm A. Two histories E
and E′ are said to be indistinguishable for a process pi, if
pi invokes the same operations and receives the same re-
sponses in E as in E′.

An extension of E is any low-level history E′ of C, such
that E is a prefix of E′. We say that E is 0-valent (respec-
tively, 1-valent), if in every extension of E only value 0
(respectively, 1) is decided (in C) by any process. A his-
tory that is not 0-valent or 1-valent is called bivalent [14].
Note that because E defines precisely the state of base ob-
jects after E (assuming E is complete), the “valency” of E
is also defined.

The result of [14] implies the existence of at least one
low-level history of C in which all processes propose a
value and that is bivalent. In the following theorem, we
prove that, given a bivalent history E, we can find an ex-
tension E′ of E, E′ 6= E, such that E′ is also bivalent. This
means that there exists an infinitely long history that is
bivalent. That is, there is a history in which all correct
processes propose some values to consensus object C but
none of them decides, which violates wait-freedom.

Claim 10 For every finite bivalent complete low-level history
E of A there exists a complete valid extension E′ of E, E′ 6= E,
such that E′ is also bivalent.

Proof. By contradiction, assume that there exists a biva-
lent complete history E, such that every complete exten-
sion E′ of E is univalent. By [14], for every such history
E′, every process’s next step executed after the last event
of E should be an invocation of the propose operation on
some fo-consensus object.

Denote by c.propose(pk, v) a sequence of an invocation
and a response event of the propose operation, executed
on fo-consensus object c by process pk and returning
value v. Denote by [cr.propose(pi, vl), cs.propose(pk, vm)]
a minimal sequence S of events, such that (1) process pi

invokes the propose operation on fo-consensus object cr
and is returned value vl in S, and (2) process pk invokes
the propose operation on fo-consensus object cs and is re-
turned value vm in S. Note that the two propose operations
in S may be concurrent (overlapping), and so one or both
of them may abort.

Let v1, v2, and v3 be some values different than ⊥, for
which the following complete extensions of E are valid7:
E1 = E · cr.propose(p1, v1), E2 = E · cs.propose(p2, v2), and
E3 = E · ct.propose(p3, v3). Assume that E1 and E3 are
0-valent, and E2 is 1-valent (the other cases are symmet-
rical).

First, we show that cr, cs, and ct are the same fo-
consensus object. Suppose that cr and cs are differ-
ent objects. But then the valid history E′ = E1 ·
cs.propose(p2, v2) is indistinguishable for process p3 from
the valid history E′′ = E2 · cr.propose(p1, v1). Thus, if p1
and p2 crash just after E′ or E′′, p3 will decide the same
value after E′ and E′′—a contradiction with the fact that
E′ is 0-valent (because E1 is 0-valent) and E′′ is 1-valent
(because E2 is 1-valent). Analogously, we can show that
cs = ct. Hence, cr = cs = ct = c.

Consider the following (valid) history, which is a com-
plete extension of history E: E4 = E · [c.propose(p1,⊥),
c.propose(p3,⊥)]. There are two cases to consider:

Case 1: E4 is 0-valent. History E4 is indistinguishable
for p2 from history E, and fo-consensus c is in the same
state after E and E4. Hence, the extension E′ = E4 ·
c.propose(p2, v2) of E4 is valid and indistinguishable for
process p2 from history E2. But E2 is 1-valent, and so in
every extension of E′ process p2 will decide 1 if p1 and p3
crash just after E4—a contradiction with the fact that E′ is
0-valent (because E4 is 0-valent).

Case 2: E4 is 1-valent. Consider the following (valid) his-
tory: E5 = E · [c.propose(p1,⊥), c.propose(p2,⊥)]. History
E5 is indistinguishable for process p1 from history E4, and
the state of fo-consensus c is the same after E4 and E5.
Hence, E5 is 1-valent: otherwise, if p2 and p3 crashed just
after E4 or E5, p1 could not decide different values after
E4 (which is 1-valent) and after E5.

History E5 is indistinguishable for process p3 from his-
tory E, and fo-consensus c is in the same state after E and
E5. Hence, the extension E′ = E5 · c.propose(p3, v3) of E5
is valid and indistinguishable for process p3 from history
E3. But E3 is 0-valent, and so in every extension of E′ pro-
cess p3 will decide 0 if p1 and p2 crash just after E5—a
contradiction with the fact that E′ is 1-valent (because E5
is 1-valent). � �

From Lemma 7, Lemma 8, Theorem 9, and the claim
of [6] that consensus can be implemented from fo-
consensus and registers in a system of 2 processes, we
have:

Corollary 11 The consensus number of an OFTM equals 2.

7We denote by E · S the concatenation of history E and sequence S of
events.

8

p1 (H1): T1

p2 (H2):

p3 (H3):

R(w) : 0, R(z) : 0
W(x, 1), W(y, 1) tryC s

C1

E1
Ep Ep·2 Ep·2·s Ep·2·s·3

T2
R(x) : 0, W(w, 1)

C2

T3

should be 0︷ ︸︸ ︷
R(y) : 1 , W(z, 1)

C3

Figure 2: Execution used in the strict disjoint-access-parallelism impossibility proof. R(x) : 0 denotes a read of a
t-variable x returning value 0, and W(x, 1) denotes a write of value 1 to a t-variable x.

5 Impossibility of Strict
Disjoint-Access-Parallelism

In this section, we prove that no OFTM can be strictly
disjoint-access-parallel. We first define precisely our no-
tion of strict disjoint-access-parallelism. Then, we prove
our result. We discuss its scope in Section 6.

5.1 Definitions

To define the notion of strict disjoint-access-parallelism,
we distinguish base object operations that modify the
state of the object, and those that are read-only. We say
that two processes (or transactions executed by these pro-
cesses) conflict on a base object x, if both processes execute
each an operation on x and at least one of these opera-
tions modifies the state of x.

Intuitively, an STM is strictly disjoint-access-parallel if it
ensures that processes executing transactions which ac-
cess disjoint sets of t-variables do not conflict on common
base objects. More precisely:

Definition 12 We say that an STM implementation I is
strictly disjoint-access-parallel if, for every low-level history
E of I and every two transactions Ti and Tk, if Ti and Tk con-
flict on a base object, then Ti and Tk both access some common
t-variable.

5.2 Impossibility Result

Theorem 13 No OFTM is strictly disjoint-access-parallel.

The intuition behind the proof of the result is the fol-
lowing. We assume, by contradiction, that there is an
OFTM that is strictly disjoint-access-parallel, and we con-
sider the scenario depicted in Figure 2, with transactions
T1, T2, and T3 involved in low-level histories E1 and
Ep·2·s·3. The transactions access t-variables x, y, w, and
z, initialized to 0. Transaction T1 reads value 0 from w
and z, and writes value 1 to both x and y, while trans-
actions T2 and T3 read, respectively, x and y, and write
value 1 to, respectively, w and z. In low-level history E1,
transaction T1 executes alone. Thus, T1 modifies x and y
and eventually commits (by the properties of an OFTM,
T1 cannot be forcefully aborted in E1).

Suppose now that process p1, which executes T1, gets
suspended at some point t in E1 and either T2 or T3 is
executed and committed before p1 resumes taking steps.
(Note that p2 and p3 cannot wait for p1 to take steps,
because the system is asynchronous and p1 might have
crashed; neither T2 nor T3 can be forcefully aborted, be-
cause p1 does not take any steps when any of these trans-
actions are executed.) Clearly, if t is before the invocation
of tryC(T1), then T2 and T3 cannot read value 1 from x
or y. This is because T1 might invoke tryA(T1) instead of
tryC(T1), in which case value 1 may never be seen by any
committed transaction. If t is after the commit event of
T1, then both T2 and T3 can only read value 1 from x or
y—otherwise serializability would be violated, because
T1 reads value 0 from w and z. This means that there
must be some “critical” step s, such that (1) if t is before s,
then neither T2 nor T3 can read 1 from x or y, and (2) if t
is after s then at least one of the two transactions, say T3,
reads 1 from x or y (the other case is symmetrical).

Consider a low-level history Ep·2·s·3 in which transac-
tion T2 is executed and committed before step s, then p1
executes step s, and finally transaction T3 is executed and
committed (with p1 being suspended during the execu-
tion of T2 and T3). By our assumption, T2 reads 0 from x in
Ep·2·s·3. This means that T1 cannot commit, as the conflict
between T1 and T2 is not resolvable without aborting one
of the two transactions or violating serializability. Trans-
action T3 executes after step s and, as T2 and T3 access dif-
ferent t-variables, process p3 cannot read any base objects
that are modified by p2. Hence, transaction T2 is effec-
tively “invisible” to p3. But then T3 reads value 1 from y.
However, this means that T1, which is the only transac-
tion that writes to y, must be committed—otherwise se-
rializability is violated. Hence, on the one hand, T1 must
commit, but, on the other hand, T1 cannot commit, and
so we reach a contradiction.
Proof. Assume, by contradiction, that there exists an algo-
rithm I that implements a strictly disjoint-access-parallel
OFTM. Consider three transactions that access t-variables
x, y, w and z initialized to 0:

1. T1 that reads w and z, and writes value 1 to x and y,

2. T2 that reads x and writes value 1 to w, and

3. T3 that reads y and writes value 1 to z.

9

Consider the following histories, each containing all
events of a single transaction that eventually commits
(cf. Figure 2):

1. H1 with events of T1 (reading value 0 from w and z),

2. H2 with events of T2 reading value 0 from x,

3. H′2 with events of T2 reading value 1 from x,

4. H3 with events of T3 reading value 0 from y, and

5. H′3 with events of T3 reading value 1 from y.

We assume that T1 is executed by process p1, T2—by pro-
cess p2, and T3—by process p3.

Let E be any low-level history of I and H be any history.
We say that E can be extended with H by a process pi, if there
exists a low-level history E′ of I, such that E′ = E · Ei,
where Ei|pi = Ei (i.e., Ei consists of only events and steps
of process pi), and Ei|H = H (i.e., the history correspond-
ing to Ei is H).

By obstruction-freedom, there is a low-level history E1
of I, such that E1|H = H1 and E1|p1 = E1 (i.e., T1 cannot
be forcefully aborted in E1). Let Ep be the longest prefix of
E1, such that Ep can be extended with neither H′2 nor H′3
by p2 and p3, respectively. Clearly, Ep exists, because no
transaction can read 1 from x or y and commit until it is
known that T1 will commit, i.e., until T1 invokes tryC(T1)
(otherwise serializability would be violated if T1 aborted,
e.g., by invoking tryA(T1)).

By obstruction-freedom, we can extend Ep with H2 by
process p2. That is because p2 cannot say whether p1
has crashed or is just very slow (as the system is asyn-
chronous), and so p2 has to eventually complete its trans-
action on its own. Let us denote by Ep·2 the resulting
low-level history, i.e., a low-level history of I of the form
Ep · E2, where E2|H = H2 and E2|p2 = E2.

Let Ep·s be the prefix of E1 that contains exactly one
step of p1 (step s) more than Ep, i.e., Ep·s = Ep · 〈 s 〉.
(Note that events of TM operations implemented by I at
process p1 are invisible to other processes; only steps of
I executed by p1 can be observed by others.) By the def-
inition of Ep, low-level history Ep·s can be extended with
either H′2 or H′3 by p2 or p3, respectively. Without loss of
generality, we can assume that Ep·s can be extended with
H′3 by p3 (the case when Ep·s can be extended with H′2
but not with H′3 is symmetrical). Let Ep·s·3 be the result-
ing low-level history, i.e., a low-level history of the form
Ep·s · E′3, where E′3|H = H′3 and E′3|p3 = E′3.

Consider low-level history Ep·2·s = Ep·2 · 〈s〉 obtained
by extending Ep·2 with the single step s of process p1.
Transactions T2 and T3 access different subsets of t-
variables (x and w vs. y and z), and so process p3, when
executing transaction T3, cannot access any base object
state of which is modified by p2 executing T2. Therefore,
low-level history Ep·2·s can be extended with H′3 by p3,
because Ep·s can be extended with H′3 by p3. Let Ep·2·s·3
be the resulting low-level history, i.e., a low-level history
of the form Ep·2·s · E′3, where E′3|H = H′3 and E′3|p3 = E′3.

Note that process p3 executes exactly the same steps and
events in Ep·2·s·3 as in Ep·s·3.

However, low-level history Ep·2·s·3 violates serializabil-
ity as we explain now: First, transaction T3 reads the
value written to y by T1 and commits. Thus, T1 must
have committed in Ep·2·s·3. Second, transaction T1 reads
the initial value of w, before w is modified by T2, and so
T1 must be ordered before T2. However, T2 reads the ini-
tial value of x, modified by T1 that must have committed,
and writes value 1 to w. Thus, T2 must be ordered before
T1. Hence, there is no sequential history S that is equiva-
lent to Ep·2·s·3 and legal, and so we reach a contradiction
with serializability. �

6 Scoping the Results

In this section, we discuss the scope of our results.

Obstruction-freedom. The results in Sections 4 (equiv-
alence to fo-consensus) and 5 (impossibility of strict
disjoint-access-parallelism) are proved for OFTMs. It is
worth discussing, whereas those results hold also for
weaker definitions that are presented, and compared, in
Section 3.

Theorems 5 and 6 imply, together with Lemmas 7
and 8, that an ic-OFTM and an eventual ic-OFTM are
also equivalent to fo-consensus, and thus have consen-
sus number of 2. Theorem 5 also implies, together with
Theorem 13, that an ic-OFTM cannot be strictly disjoint-
access-parallel.

However, it is not obvious that strict disjoint-access-
parallelism is impossible for an eventual ic-OFTM. To
prove that, we go back to the proof of Theorem 13. In
the proof, transactions T2 and T3 could not be forcefully
aborted. However, an eventual ic-OFTM could abort T2
and T3, because T1 is concurrent to both T2 and T3. But
process p1 does not take any steps while T2 and T3 exe-
cute. Hence, p2 and p3 cannot say whether p1 has crashed
or is just suspended (as the system is asynchronous).
Therefore, if we keep restarting transactions T2 and T3
(i.e., their computations), those transactions will eventu-
ally commit. Hence, we can reach the same contradiction
as in the proof of Theorem 13: even eventual ic-OFTMs
cannot be strictly disjoint-access-parallel.

Opacity. Serializability is a relatively weak safety prop-
erty for a TM. Most STM implementations ensure a
stronger correctness criterion called opacity [15], which
adds to serializability the requirements that (1) all trans-
actions (even non-committed ones) always observe a con-
sistent state of the system, and (2) the real-time order of
transactions is preserved. An OFTM that ensures opac-
ity is still equivalent to fo-consensus—Algorithm 2, in
fact, guarantees opacity (see its correctness proof in Ap-
pendix B). Hence, an OFTM ensuring opacity has still
consensus number 2, i.e., opacity does not make an
OFTM able to implement 3-consensus. Also, the impossi-
bility of strict disjoint-access-parallelism clearly holds for

10

any OFTM that ensures opacity.

Arbitrary t-variables. In the proofs of the results pre-
sented in this paper, we considered only t-variables
that can be read and written (i.e., transactional regis-
ters). Some of the results may not hold if read-write t-
variables are not provided by an OFTM. For example,
an OFTM that supports only write-only t-variables (i.e.,
where transactions cannot read transactional data) can
be trivially implemented without any base objects, and
thus has a consensus number of 1. However, read-write
t-variables are considered essential, and so they are pro-
vided by every existing TM.

It is interesting, however, to see what happens when
an OFTM supports t-variables that export some opera-
tions in addition to read and write. Clearly, such an OFTM
is strictly more difficult to implement than an OFTM
that supports only registers. Hence, it cannot be strictly
disjoint-access-parallel, and cannot have consensus num-
ber lower than 2.

Now, consider an OFTM implementation A that sup-
ports only read-write t-variables, and let Q be a type
(class) of an object that exports operations other than read
and write. Let B be an implementation of an object of type
Q, in a sequential, non-transactional system, that uses
only read-write variables. Using a single instance of A,
we can implement an OFTM that provides t-variables of
type Q. Basically, whenever a transaction invokes an op-
eration op of a t-variable of type Q, we follow the imple-
mentation B, using read-write t-variables instead of non-
transactional variables. Because all operations performed
by a transaction should appear as if they were executed
atomically, B executed by a transaction must provide a
correct implementation of an object of type Q. This means
that supporting t-variables that export operations other
than read and write does not increase the computational
power of an OFTM, i.e., its consensus number8.

Disjoint-access-parallelism. The original notion of
disjoint-access-parallelism, introduced in [22], allows for
transactions that are indirectly connected via other trans-
actions to conflict on common base objects. For exam-
ple, if a transaction T1 accesses t-variable x, T2 accesses
y, and T3 accesses both x and y, then there is a depen-
dency chain from T1 to T2 via T3, even though the two
transactions T1 and T2 use different t-variables. Disjoint-
access-parallelism allows then the processes executing T1
and T2 to delay one another. Disjoint-access-parallelism
in the sense of [22] can be ensured by an OFTM imple-
mentation, e.g., DSTM.

8However, an OFTM that supports t-variables of type Q directly may
be, in principle, more efficient than an OFTM that implements such t-
variables using transactional registers. For example, commutativity or
conflict relations between some operations of Q may be exploited to
allow for more concurrency between transactions.

7 Concluding Remarks

Obstruction-freedom. The concept of obstruction-free
shared object implementations has been first informally
introduced in [19]. A formalization of the concept was
then proposed in [6]. In short, the definition of [6] re-
quires operations to return if there is no step contention.
If there is, the operations could abort but need to re-
turn control to the application, i.e., rather than live-
lock forever. An alternative definition, based on interval
contention, was proposed in [4] through the concept of
“abortable” objects. In particular, it is argued there that a
definition based on step contention (as in [6]) is not com-
posable.

The concept of obstruction-free TM implementation
was first informally discussed in [18]. Many OFTMs
have been proposed since then, including DSTM [18],
ASTM [25], RSTM [1] and NZTM [29]. However, until
our paper, there has been no formal definition of the con-
cept. Our definition of an OFTM is a logical extension
of that in [6] to transactions. However, we also consider
(in Section 3) alternative definitions (e.g., inspired by [4])
and discuss their computational equivalence to our defi-
nition. We point out the fact that our results apply also to
these alternative definitions.

Limitations of OFTMs. The first paper to discuss the
limitations of OFTMs was [12]. The paper argues about
several practical disadvantages of ensuring obstruction-
freedom, and discusses how those can be overcome us-
ing simple, lock-based schemes. In particular, the paper
points out the necessity for an OFTM to use indirection (a
claim questioned by [29]), which results in cache-locality
problems, and the difficulty of limiting the number of
concurrent transactions to the number of physical pro-
cessors. Our consensus impossibility result is clearly of
different nature than the claims in [12]. The impossibil-
ity of strict disjoint-access-parallelism is indeed related
to cache issues. However, those issues result from trans-
actional metadata accessed by transactions that are not
directly related, rather than from indirections towards
states of transactional objects [12].

It is worth noting that some lower bounds on
obstruction-free implementations have already been es-
tablished. In [5], space and time complexity lower
bounds for obstruction-free implementations of so-called
perturbable objects have been derived. As an OFTM can be
used to implement any perturbable object, these lower
bounds naturally hold also for OFTMs. However, the
lower bounds concerning time and space complexity are
clearly of a different nature than our consensus number
proof and our strict disjoint-access-parallelism impossi-
bility. The last result in [5], which is a lower bound on the
number of stalls a process may incur in some executions,
is similar in scope to our strict disjoint-access-parallelism
proof. However, this particular result of [5] holds only
when there are no aborts, which is clearly not the case
for OFTMs. In [15], a complexity lower bound for a class

11

of STM implementations that ensure opacity is proved.
However, the bound is not inherent to OFTMs: it holds
for OFTMs as well as for lock-based STMs.

Consensus number of OFTMs. In [6], a “fail-only” con-
sensus object is introduced and shown to have consensus
number at least 2. We use this object as an intermediate
abstraction for our first result: that is, we (1) prove than
an OFTM is equivalent to a “fail-only” consensus, and
(2) show that a “fail-only” consensus (and thus an OFTM)
has consensus number at most 2. The proof of (2) uses the
classical “valency argument” first introduced in [14].

It is also important to notice that the consensus number
of objects roughly similar to TMs have already been de-
termined. In particular, in [2, 27] upper and lower bounds
on the consensus number of several classes of multi-
objects are given. Multi-objects, however, differ from TMs
in that: (1) the sequence of operations that are to be ex-
ecuted atomically (a multi-object operation) is known in
advance (unlike in transactions), (2) a multi-object opera-
tion cannot abort, and (3) a multi-object consists of a set
of objects with the same type and a specified, finite con-
sensus number (transactions can use objects of any type
and in any way).

8 Acknowledgements

We would like to thank Hagit Attiya, Petr Kouznetsov,
Eshcar Hillel, and the anonymous reviewers for their
help and valuable comments.

References

[1] RSTM—the Rochester software transactional mem-
ory runtime. http://www.cs.rochester.edu/
research/synchronization/rstm.

[2] Y. Afek, M. Merritt, and G. Taubenfeld. The power
of multi-objects. In Proceedings of the 15th Annual
ACM Symposium on Principles of Distributed Comput-
ing (PODC), 1996.

[3] Y. Afek, M. Merritt, G. Taubenfeld, and D. Touitou.
Disentangling multi-object operations (extended ab-
stract). In Proceedings of the 16th Annual ACM Sympo-
sium on Principles of Distributed Computing (PODC),
pages 111–120. ACM, 1997.

[4] M. K. Aguilera, S. Frolund, V. Hadzilacos, S. L. Horn,
and S. Toueg. Abortable and query-abortable objects
and their efficient implementation. In Proceedings of
the 26th Annual ACM Symposium on Principles of Dis-
tributed Computing (PODC), pages 23–32, New York,
NY, USA, 2007. ACM.

[5] H. Attiya, R. Guerraoui, D. Hendler, and
P. Kouznetsov. Synchronizing without locks is
inherently expensive. In Proceedings of the 25th

Annual ACM Symposium on Principles of Distributed
Computing (PODC), 2006.

[6] H. Attiya, R. Guerraoui, and P. Kouznetsov. Com-
puting with reads and writes in the absence of step
contention. In Proceedings of the 19th International
Symposium on Distributed Computing (DISC), 2005.

[7] H. Attiya and E. Hillel. Built-in coloring for highly-
concurrent doubly-linked lists. In Proceedings of the
20th International Symposium on Distributed Comput-
ing (DISC), 2006.

[8] J. Cachopo and A. Rito-Silva. Versioned boxes as
the basis for memory transactions. In Proceedings
of the Workshop on Synchronization and Concurrency in
Object-Oriented Languages (SCOOL), 2005.

[9] T. D. Chandra and S. Toueg. Unreliable failure de-
tectors for reliable distributed systems. Journal of the
ACM, 43(2):225–267, March 1996.

[10] D. Dice, O. Shalev, and N. Shavit. Transactional lock-
ing II. In Proceedings of the 20th International Sympo-
sium on Distributed Computing (DISC), 2006.

[11] D. Dice and N. Shavit. What really makes transac-
tions fast? In Proceedings of the 1st ACM SIGPLAN
Workshop on Transactional Computing (TRANSACT),
2006.

[12] R. Ennals. Software transactional memory should
not be obstruction-free. Technical Report IRC-TR-
06-052, Intel Research Cambridge Tech Report, Jan
2006.

[13] P. Felber, C. Fetzer, and T. Riegel. Dynamic perfor-
mance tuning of word-based software transactional
memory. In Proceedings of the 13th ACM SIGPLAN
Symposium on Principles and Practice of Parallel Pro-
gramming (PPoPP), 2008.

[14] M. J. Fischer, N. A. Lynch, and M. S. Paterson. Im-
possibility of distributed consensus with one faulty
process. Journal of the ACM, 32(3):374–382, April
1985.

[15] R. Guerraoui and M. Kapałka. On the correctness
of transactional memory. In Proceedings of the 13th
ACM SIGPLAN Symposium on Principles and Practice
of Parallel Programming (PPoPP), 2008.

[16] T. Harris, S. Marlow, S. P. Jones, and M. Herlihy.
Composable memory transactions. In Proceedings of
the 10th ACM SIGPLAN Symposium on Principles and
Practice of Parallel Programming (PPoPP), 2005.

[17] M. Herlihy. Wait-free synchronization. ACM
Transactions on Programming Languages and Systems,
13(1):124–149, January 1991.

12

[18] M. Herlihy, V. Luchangco, M. Moir, and W. N.
Scherer III. Software transactional memory for
dynamic-sized data structures. In Proceedings of the
22nd Annual ACM Symposium on Principles of Dis-
tributed Computing (PODC), pages 92–101, 2003.

[19] M. Herlihy, V. Luchango, and M. Moir. Obstruction-
free synchronization: Double-ended queues as an
example. In Proceedings of the 23rd IEEE Interna-
tional Conference on Distributed Computing Systems
(ICDCS), pages 522–529, 2003.

[20] M. Herlihy and J. E. B. Moss. Transactional memory:
Architectural support for lock-free data structures.
In Proceedings of the 20th Annual International Sympo-
sium on Computer Architecture, pages 289–300. May
1993.

[21] M. Herlihy and J. M. Wing. Linearizability: a cor-
rectness condition for concurrent objects. ACM
Transactions on Programming Languages and Systems,
12(3):463–492, June 1990.

[22] A. Israeli and L. Rappoport. Disjoint-access-parallel
implementations of strong shared memory primi-
tives. In Proceedings of the 13th Annual ACM Sympo-
sium on Principles of Distributed Computing (PODC),
1994.

[23] P. Jayanti. Robust wait-free hierarchies. Journal of the
ACM, 44(4):592–614, 1997.

[24] J. R. Larus and R. Rajwar. Transactional Memory. Mor-
gan&Claypool, 2007.

[25] V. J. Maranthe, W. N. Scherer III, and M. L. Scott.
Adaptive software transactional memory. In Proceed-
ings of the 19th International Symposium on Distributed
Computing (DISC), pages 354–368, 2005.

[26] C. H. Papadimitriou. The serializability of concur-
rent database updates. Journal of the ACM, 26(4):631–
653, 1979.

[27] E. Ruppert. Consensus numbers of multi-objects.
In Proceedings of the 17th Annual ACM Symposium on
Principles of Distributed Computing (PODC), 1998.

[28] N. Shavit and D. Touitou. Software transactional
memory. In Proceedings of the 14th Annual ACM Sym-
posium on Principles of Distributed Computing (PODC),
pages 204–213. August 1995.

[29] F. Tabba, C. Wang, J. R. Goodman, and M. Moir.
NZTM: nonblocking zero-indirection transactional
memory. In Proceedings of the 2nd ACM SIGPLAN
Workshop on Transactional Computing (TRANSACT),
2007.

13

Appendix

A Proof of Theorem 6

Theorem 6 Every eventual ic-OFTM can implement an
OFTM. Every OFTM is an eventual ic-OFTM.

We prove the theorem by implementing fo-consensus
using an eventual ic-OFTM, as shown in Algorithm 3.
The algorithm uses t-variable V to solve consensus, in a
similar way to Algorithm 1. However, Algorithm 3 keeps
invoking transactions in a single propose operation until
one of them commits (and thus a value can be decided),
or a step of a concurrent propose is detected using array
R of registers (in which case the operation aborts without
violating fo-obstruction-freedom). If we show that Algo-
rithm 3 is correct, Theorem 6 is proved because an OFTM
can be implemented from fo-consensus (by Lemma 8).

Algorithm 3: Implementation of fo-consensus from
an eventual ic-OFTM (code for process pi)

uses: R[1, . . . , n] – array of shared registers, V –
t-variable

initially: R[1, . . . , n] = 0, V = ⊥, k = 0

upon propose(vi) do1

r[1, . . . , n]← R[1, . . . , n] (not atomic);2

while true do3

d← vi, k← k + 1;4

R[i]← R[i] + 1;5

within transaction Ti,k do6

if V = ⊥ then V ← vi;7

else d← V;8

on event Ck do return d;9

if ∃m 6=i : r[m] 6= R[m] then return ⊥;10

Lemma 14 Algorithm 3 implements a fo-consensus object.

Proof. We prove correctness of Algorithm 3 by prov-
ing that the respective properties of fo-consensus are en-
sured.

Fo-validity. Assume a process pi decides value v. This
means that pi must have read V = v in some transac-
tion Ti,k and commit Ti,k. But then, either Ti,k observed
that V = ⊥, or some other process pj observed V = ⊥
and written its proposed value v to V within a commit-
ted transaction Tj,m. In both cases, by serializability, as
both Ti,k and Tj,m commit, fo-validity is ensured.

Agreement. Assume a process pi proposes value vi and
decides vi. This means that pi must have read V = ⊥
in some transaction Ti,k and commit Ti,k. Any process pj
other than pi can decide value vj only if pj reads V = ⊥ or
V = vj within a transaction Tj,m and commits Tj,m. How-
ever, by serializability, only one transaction can observe

V = ⊥, write to V and commit. Hence, Tj,m observes
V 6= ⊥. But then, by serializability, Tj,m must observe
V = vi, and so vj = vi.

Fo-obstruction-freedom. Assume that a propose opera-
tion at a process pi aborts. This can happen only if pi ob-
serves that r[m] 6= R[m] for some m 6= i. But then, some
process pm must have changed R[m] since pi invoked its
propose operation. Hence, the propose operation of pi is
not step contention-free.

Wait-freedom. Assume, by contradiction, that a correct
process pi invokes operation propose and never returns
from this operation. This means that (1) every transac-
tion Ti,k executed by pi aborts, and (2) no process pm other
than pi increments register R[m]. Therefore, after some
time t no process pm can execute more than one trans-
action (otherwise, pm would increment R[m]). Then, if
pm crashes within its transaction Tm,s, pm cannot obstruct
pi infinitely long. If pm does not crash within its trans-
action Tm,s, however, pm has to eventually complete Tm,s
(by wait-freedom of an eventual ic-OFTM object). Hence,
eventually there can be no transaction that can obstruct
Ti,k and so Ti,k must commit. But if Ti,k commits, then pi
returns from propose—a contradiction. �

B Proof of Correctness of
Algorithm 2

In this section, we prove correctness of the OFTM imple-
mentation given in Algorithm 2. We do so by employ-
ing the graph representation of opacity [15]. Basically,
we show that every low-level history E of Algorithm 2
ensures opacity (and thus serializability), by proving that
(1) E is consistent, and that (2) the opacity graph of E is well-
formed and acyclic (for the definitions of the highlighted
terms, refer to [15]). Then, we prove that Algorithm 2
ensures obstruction-freedom (i.e., is an OFTM), and wait-
freedom (i.e., that every TM operation invoked by a cor-
rect process on Algorithm 2 eventually returns).

Lemma 15 Algorithm 2 implements an OFTM that ensures
opacity.

Proof. Consider any execution of Algorithm 2 and let E
be the corresponding low-level history. Let H be the his-
tory corresponding to E, i.e., H = E|H, and let H′ be
the non-local subhistory of H. We will show that (1) H
is consistent, and (2) graph G = OPG(H′,�, V) is well-
formed and acyclic, for some total order� on the set of
transactions in H and some subset V of the set of commit-
pending transactions in H. Then, we will prove that Al-
gorithm 2 is an implementation of a wait-free shared ob-
ject O, i.e., that if a correct process pi invokes an operation
on O, then pi eventually returns from the operation.

We will say that a transaction Ti acquires a t-variable x,
when Ti is returned value Ti in line 14. We will say that
Ti commits, when Ti executes line 31 and receives value

14

committed. We will say that a transaction Ti opens a t-
variable x, if Ti returns from acquire(Ti, x) a value differ-
ent than Ai.

Auxiliary results. Before we proceed with proving the
properties of history H and the opacity graph of H, we
prove several helper claims.

Claim 16 A transaction Ti reads base register TVar[x, Tk] in
line 19 only if transaction Tk has already committed.

Proof. It is straightforward to see that a transaction Ti can
read base register TVar[x, Tk] only if base fo-consensus
object State[Tk] decides value committed. But only
transaction Tk can propose value committed to State[Tk]
(line 31). Thus, State[Tk] can decide value committed at Ti
only if Tk has already committed. �

Claim 17 A transaction Ti can read a t-variable x from a
transaction Tk only if Tk commits before Ti reads register
TVar[x, Tk].

Proof. Clearly, Ti reads x from Tk when Ti reads register
TVar[x, Tk], because in no other base object a value writ-
ten by Tk to x can be stored. Thus, by Claim 16, Ti cannot
read from Tk until Tk commits. �

Claim 18 If a transaction Ti acquires a t-variable x having
version = versioni and then a transaction Tk acquires x having
version = versionk, then versioni < versionk.

Proof. Assume, by contradiction, that Ti acquires x
having version = versioni before Tk acquires x hav-
ing version = versionk < versioni. When Ti ac-
quires x, Ti must have proposed value Ti to, and re-
turned a non-⊥ value from, all fo-consensus objects
Owner[x, 1], . . . , Owner[x, versioni]. Thus, Tk can acquire
x having version = versionk < versioni only if Tk is the
first to execute propose on Owner[x, versionk]. But then Tk
must acquire x before Ti—a contradiction. �

Claim 19 If a transaction Ti acquires some t-variable x and
commits, then no other transaction acquires x after Ti acquires
x and before Ti commits.

Proof. Assume, by contradiction, that some transaction
Ti acquires a t-variable x having version = versioni, then
some other transaction Tk acquires x having version =
versionk, and then Ti commits. By Claim 18, it must be
that versioni < versionk. But then Tk must decide value
Ti in fo-consensus Owner[x, versioni] (otherwise, Ti could
not have acquired x having version = versioni) and can-
not abort before acquiring x. Thus, Tk must propose value
aborted to fo-consensus State[Ti] in line 17, and so Ti can-
not commit unless Ti commits (i.e., proposes and com-
mits value committed to State[Ti]) before Tk acquires x—a
contradiction. �

Consistency. It is easy to see that H is locally-consistent:
if a read of a t-variable x by a transaction Tk is local, then
set wset already contains x. Hence, value of base object

TVar[x, Tk] is returned (line 27), which is the last value
previously written by Tk to x.

Assume that Tk reads value v from a t-variable x, and
that the read is non-local. Hence, Tk executes the code in
lines 10–25 and returns the last value of variable state = v.
The returned value of state can be either (1) the initial
value of x assigned in line 11 (or, in other words, the
value written by the assumed initializing transaction T0),
or (2) value of TVar[x, owner] for some value of owner =
Ti /∈ {Tk,⊥}. Case (1) cannot violate consistency of H.
Assume then case (2). Then, by Claim 16, transaction Ti
must have committed before Tk reads TVar[x, Ti]. Hence,
Ti must have written TVar[x, Ti] in line 25 before Tk exe-
cutes line 19 for x. But Ti can write to TVar[x, Ti] either
(1) the value written by Ti to x, or (2) the value read by Ti
from x. Case (1) cannot violate consistency. In case (2) we
can proceed recursively by reasoning about Ti in the same
way as for Tk. Eventually we reach a transaction Tm that
wrote to TVar[x, Tm] the initial value of x and committed.

Opacity graph of H. Let R be the relation on the set of
transactions in H, such that R(Ti, Tk) if, and only if:

1. Ti acquires some t-variable x before Tk acquires x and
both Ti and Tk open x, or

2. Ti precedes Tk in H (i.e., Ti ≺H Tk).

Claim 20 R is a partial order.

Proof. Assume, by contradiction that there exist two
transactions Ti and Tk, such that R(Ti, Tk) and R(Tk, Ti).
Clearly, Ti cannot precede Tk; otherwise Tk could not pre-
cede Tk and Tk could not acquire any t-variable before
Ti, and so it could not be that R(Tk, Ti). Analogously, Tk
cannot precede Ti. Hence, Ti acquires some t-variable x
before Tk acquires x, and Tk acquires some t-variable y
before Ti acquires y. Moreover, both Ti and Tk open t-
variables x and y. Clearly, x and y are different t-variables
because no transaction can acquire the same t-variable
twice (after the first acquire of a t-variable z, z is added
to the transaction’s set wset).

Therefore, one of the two transactions, say Ti, and one
of the two t-variables, say x, are such that Ti acquires
x, then Tk acquires x, and finally Ti acquires y (other
cases are symmetrical). By Claim 18, if Ti acquires x
having version = versionx

i , then Tk acquires x having
version = versionx

k > versionx
i . Hence, Tk decides value Ti

from fo-consensus Owner[x, versionx
i] in line 14, and so Tk

proposes value aborted to fo-consensus State[Ti] before
Tk acquires x. As Ti acquires y after Tk acquires x, Ti can-
not commit before Tk acquires x. Hence, Tk decides value
aborted in State[Ti] and writes true to register Aborted[Ti]
in line 20 before Tk acquires x. But then, when Ti acquires
y, Ti observes in line 28 that Aborted[Ti] = true, and so Ti
does not open y—a contradiction. �

Let � be any total order that contains partial order
R. Let V′ be the set of all transactions in E that have
already committed (i.e., committed value committed in

15

fo-consensus State[. . .]), and V be the subset of V′ con-
taining all commit-pending transactions in V′. Let G be
the opacity graph OPG(H′,�, V). We will show that G
is well-formed and acyclic, which will prove that H (and
thus E|H) ensures opacity.

Claim 21 Graph G is well-formed.

Proof. Let (Ti, Tk) be an edge labelled Lrf in G. This
means that transaction Tk reads a t-variable x from trans-
action Ti. Hence, by Claim 17, Ti commits before Tk reads
TVar[x, Ti]. Therefore, Ti ∈ V′, and so vertex Tk is labelled
Lvis. Hence, G is well-formed. �

Claim 22 G is acyclic.

Proof. Assume, by contradiction, that there is a cycle C
in graph G. Let Ti be the transaction that is maximal in
C according to total order �. Let Tk be the transaction
following Ti in cycle C. Thus, there is an edge (Ti, Tk) in
G, but Tk � Ti. We will show that this is not possible by
considering the following three cases:

Case 1. Edge (Ti, Tk) is labelled Lrt, i.e., Ti ≺H Tk. But
then Ti � Tk—a contradiction.

Case 2. Edge (Ti, Tk) is labelled Lrf, i.e., Tk reads some
t-variable x from Ti. Clearly, Tk has to open x. But then Tk
reads base register TVar[x, Ti], and so, by Claim 17, Ti is
in set V′. This means that, by Claim 19, Tk cannot acquire
x until Ti acquires x, opens x and commits. Hence, Ti �
Tk—a contradiction.

Case 3. Edge (Ti, Tk) is labelled Lrw. Thus, transaction Ti
is in V or Ti is committed (i.e., Ti ∈ V′), and there exists
a transaction Tm and a t-variable x, such that Ti � Tm, Ti
writes to x and Tm reads x from Tk.

As G is well-formed, and Tm reads from Tk, Tk must be
in V′. Hence, by Claim 19, neither Ti nor Tm can acquire
x after Tk acquires x and before Tk commits. Thus, by
Claim 17, Tm acquires x after Tk commits. Analogously,
neither Tk nor Tm can acquire x after Ti acquires x and
before Ti commits, because Ti ∈ V′.

If Ti commits before Tk acquires x, then Ti � Tk, be-
cause both Ti and Tk open x. Thus, we reach a con-
tradiction with the assumption that Tk � Ti. If Ti ac-
quires x after Tm acquires x, then Tm � Ti, because
Tm opens x. Thus, we reach a contradiction with the
assumption that Ti � Tm. Hence, Ti must acquire x
after Tk commits, and Ti must commit before Tm ac-
quires x. But then, by Claim 18, Ti acquires x having
version = versioni and Tm acquires x having version =
versionm > versioni. Hence, Ti acquires x, writes to
x (i.e., to TVar[x, Ti]) and commits before Tm proposes
value aborted to State[Ti]; otherwise, Ti could not com-
mit. But Tm proposes aborted to State[Ti] before reading
TVar[x, Ti], and Tm reads TVar[x, Ti] when it decides value
committed from State[Ti]. But, by Claim 18, the value
TVar[x, Tk] is read before the value TVar[x, Ti]. Hence,
Tm cannot return value written to x by Tk from its read

operation—a contradiction with the assumption that Tm
reads x from Tk.

Obstruction-freedom. Suppose a transaction Tk executed
by a process pi is forcefully aborted in H. This can
happen only if (1) one of fo-consensus objects returns
⊥ from operation propose, or (2) value of V[x] changes
while pi is in procedure acquire, or (3) Aborted[Tk] is true.
In cases (1) and (2) Tk is clearly not step contention-
free (propose of fo-consensus aborts only on step con-
tention). Assume then that Aborted[Tk] is true. Initially,
Aborted[Tk] = false. Register Aborted[Tk] can be set to
true only by a transaction that decides value Tk from
fo-consensus Owner[x, version] (for some values of x and
version). However, only transaction Tk can propose value
Tk to Owner[x, version], and, by fo-validity, no transaction
can decide Tk from Owner[x, version] unless some trans-
action proposed Tk to Owner[x, version]. Hence, no trans-
action can set Aborted[Tk] to true until Tk invokes its first
event. This means that if Tk observes Aborted[Tk] = true,
Tk is not step contention-free.

Wait-freedom. Clearly, processes can be block by the
OFTM implementation only inside procedure acquire. As-
sume then, by contradiction, that some correct process
pi invokes acquire(Tk, x) and never returns from the pro-
cedure. This means that pi always observers in line 23
that owner 6= Tk. Hence, pi always fails to commit value
Tk to fo-consensus object Owner[x, version] for version =
1, 2, However, no propose operation invoked by pi
aborts; otherwise, pi would immediately return from ac-
quire. By fo-validity, Owner[x, version] can decide value
Ti 6= Tk only if value Ti has been committed (by a process
executing Ti), i.e., if Ti previously acquired x. But each
time a transaction Ti acquires x, Ti sets V[x] to Ti. Hence,
pi either has to eventually acquire x or observe a change
in V[x] (each transaction can modify V[x] at most once).
In either case, pi returns from acquire—a contradiction. �
�

16

