
Int J Comput Vis (2009) 84: 146–162
DOI 10.1007/s11263-008-0146-4

Cooperative Object Segmentation and Behavior Inference
in Image Sequences

Laura Gui · Jean-Philippe Thiran · Nikos Paragios

Received: 4 October 2007 / Accepted: 27 May 2008 / Published online: 17 June 2008
© Springer Science+Business Media, LLC 2008

Abstract In this paper, we propose a general framework
for fusing bottom-up segmentation with top-down object be-
havior inference over an image sequence. This approach is
beneficial for both tasks, since it enables them to cooperate
so that knowledge relevant to each can aid in the resolution
of the other, thus enhancing the final result. In particular,
the behavior inference process offers dynamic probabilistic
priors to guide segmentation. At the same time, segmenta-
tion supplies its results to the inference process, ensuring
that they are consistent both with prior knowledge and with
new image information. The prior models are learned from
training data and they adapt dynamically, based on newly
analyzed images. We demonstrate the effectiveness of our
framework via particular implementations that we have em-
ployed in the resolution of two hand gesture recognition
applications. Our experimental results illustrate the robust-
ness of our joint approach to segmentation and behavior in-
ference in challenging conditions involving complex back-
grounds and occlusions of the target object.

Keywords Image segmentation · Behavior inference ·
Gesture recognition

L. Gui (�) · J.-P. Thiran
Signal Processing Institute, Ecole Polytechnique Fédérale
de Lausanne, Lausanne, Switzerland
e-mail: laura.gui@epfl.ch

J.-P. Thiran
e-mail: jp.thiran@epfl.ch

N. Paragios
Laboratoire MAS, Ecole Centrale de Paris, Chatenay-Malabry,
France
e-mail: nikos.paragios@ecp.fr

1 Introduction

In the classical computer vision paradigm, image segmen-
tation and object behavior inference lie at different levels
of abstraction. At a basic level, segmentation aims at ex-
tracting relevant objects from the target image(s). A higher
level image understanding task is to infer the behavior of
the extracted object(s), based on prior knowledge about typ-
ical object behavior. By “behavior”, we mean the temporal
evolution of the object, as observed in the image sequence.
The inference of object behavior from an image sequence
requires the determination of the appropriate behavior class
for each object evolution instance throughout the sequence.
For instance, one may want to make an inference about a se-
quence of object motions (e.g., car turn directions at an in-
tersection), motions and deformations (e.g., hand gestures,
body motions), or about a sequence of intensity changes in
a brain activation map for diagnostic purposes. Generally,
such an inference is formulated in terms of a set of relevant
attributes (e.g., color histogram, object position, orientation,
shape, size, etc.), which have been extracted from the im-
age sequence in a preceding phase. Thus, attribute extrac-
tion is conventionally performed separately from behavior
inference.

This paper pursues a joint solution to the problems of im-
age segmentation and object behavior inference. Clearly, a
precise segmentation of the target object would greatly fa-
cilitate behavior inference by offering access to object at-
tributes relevant to the inference task. Moreover, image seg-
mentation could be drastically improved by exploiting the
knowledge which is available to the behavior inference task.
This knowledge is typically represented in the form of prob-
abilistic attribute models corresponding to behavior classes.
Such models can be used to guide the segmentation of the
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target object(s) in challenging conditions (e.g., images af-
fected by noise, occlusions or cluttered background).

These considerations motivate us to introduce a general
framework for cooperative object segmentation and behav-
ior inference in image sequences. We formulate the segmen-
tation in a variational setting, which enables the smooth in-
tegration of both prior knowledge (in the form of behavior
class models) and specific segmentation criteria for the tar-
get images. This paper reviews our general framework for-
mulation (Gui et al. 2007a, 2007b), and further develops it
in order to deal with more complex behavior scenarios, as
demonstrated in a new application pertaining to sign lan-
guage recognition.

Variational methods offer a solid mathematical basis for
the formulation and solution of many computer vision prob-
lems. In particular, the image segmentation problem has
been formulated in terms of energy minimization, allow-
ing the seamless blending of various criteria describing the
desired solution, such as smoothness, region homogeneity,
edge correspondence, etc. Starting with the original active
contour model (Kass et al. 1987), variational segmentation
has been steadily advancing through the introduction of the
Mumford-Shah model (Mumford and Shah 1989), the level
set approach (Osher and Sethian 1988), geodesic active con-
tours (Caselles et al. 1995; Kichenassamy et al. 1995; Mal-
ladi et al. 1995) and, more recently, versatile segmentation
approaches such as Vese and Chan (2002), Paragios and
Deriche (2002). The segmentation of familiarly shaped ob-
jects in difficult cases was facilitated by the introduction of
statistical shape priors into active contours (Cootes et al.
1999), into level set active contours (Leventon et al. 2000;
Chen et al. 2002; Rousson and Paragios 2002) and in the
Mumford-Shah model (Cremers et al. 2006c; Bresson et
al. 2006). Variational methods have also been adapted to
object tracking (e.g., Kass et al. 1987; Paragios and De-
riche 2005; Cremers et al. 2006b). The coherence between
frames has been exploited by approaches based on Kalman
filtering (Terzopoulos and Szeliski 1992), particle filtering
(Rathi et al. 2007), and autoregressive models (Cremers
2006).

Our framework fuses segmentation and behavior infer-
ence over image sequences. To our knowledge, this idea is
novel in the context of variational image sequence analy-
sis, and it capitalizes on existing developments in the use
of shape priors. In previous works, segmentation has been
combined with object recognition, yielding good results in
the case of single, static images, both in variational (Cre-
mers et al. 2006c) and non-variational (Tu et al. 2003; Leibe
et al. 2004; Ferrari et al. 2004; Kokkinos and Maragos 2005)
settings. For tracking, (Cremers 2006) demonstrates the use
of single-class dynamic models of motion and deformation,
based on auto-regressive modeling. For image registration,
(Cremers et al. 2006a) dynamically chooses the relevant

modes of an a-priori joint intensity distribution of registered
image pairs, according to their proximity to the current es-
timated distribution. The novelty of our work is that we ad-
dress the segmentation problem over image sequences, in
a multi-class scenario, i.e., where the behavior class of the
tracked object changes over time. Via a parallel classifica-
tion strategy, we guide the segmentation dynamically to-
wards the most likely behavior class at the given time. This
guidance is based on learning (via Hidden Markov Mod-
els) and on accumulated evidence throughout the image se-
quence. Moreover, these dynamical probabilistic priors of-
fered by classification evolve during the segmentation of
each image, adapting to new image content.

Our general framework for the cooperative resolution of
the two tasks, segmentation and behavior inference, can be
employed to resolve a wide range of applications by adapt-
ing its components and parameters according to the spe-
cific need. In particular, we illustrate the potential of our
approach in two gesture recognition applications, where the
cooperation of segmentation and behavior inference dramat-
ically increases the tolerance to occlusion and background
complexity present in the input image sequences.

The remainder of the paper is organized as follows. Sec-
tion 2 details the collaborating halves of our general frame-
work: behavior inference and segmentation. In Sects. 3 and
4 we propose particular implementations of our framework,
for the resolution of two gesture recognition applications.
Experimental results are presented at the end of Sects. 3 and
4, respectively. Section 5 concludes the paper.

2 Formulation of the General Framework

Our general framework for fusing segmentation and behav-
ior inference is based on the idea of cooperation between
the two processes along the target image sequence (Fig. 1).
During an initial training phase, the inference process learns
the dynamic probability models of typical behaviors from
training data. Then, segmentation and behavior inference

Fig. 1 Our approach: cooperation of segmentation and behavior infer-
ence along the image sequence I (1..T )
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are run cooperatively throughout a new test image sequence.
For each image, an inference step is performed, generating
probabilistic prior attribute models for each behavior class.
These are used by the ensuing segmentation to identify the
most likely objects in the current image and subsequently
provide their attributes to the next inference step. The pri-
ors offered by the inference process are based on learning
from training data and are updated dynamically according to
newly processed images. The most likely behavior class of
each object evolution instance can be extracted at any point
within the sequence from the inference process.

By the generic term “attribute” we designate a visual
property of an object, definable as a functional A(C, I)

of the image I and of the object’s segmenting contour
C (A is assumed to be differentiable with respect to C).
This definition includes many properties computable with
boundary- and region-based functionals (e.g. position, ori-
entation, average intensity/color, higher order statistics de-
scribing texture). This makes our framework adaptable to
the needs of other behavior recognition applications.

2.1 Behavior Inference and Its Cooperation with Image
Segmentation

Given a sequence of object attribute values extracted from an
image sequence, behavior inference translates to finding the
best matching sequence of behavior classes. We address this
task using Hidden Markov Models (HMMs) (Rabiner 1989).
Having estimated HMM parameters from training attribute
sequences, we use them to infer the behavior reflected in
new image sequences. Jointly, we segment these sequences,
according to the intended collaboration.

An HMM (Rabiner 1989) is a doubly embedded stochas-
tic process. It consists of an underlying hidden process, ob-
servable via a set of stochastic processes (the HMM states)
that produce a sequence of observations. In our case, the
observations are the attribute values extracted from the im-
age sequence, while the states correspond to the behavior
classes. In our framework, HMMs model the dynamics of
behavior by encapsulating the most likely successions of ba-
sic actions (corresponding to behavior classes) which com-
pose the behaviors under study. Depending on the complex-
ity of the application and on the available prior knowledge
regarding typical behavior, we can employ either one or sev-
eral HMMs to capture behavior dynamics. We describe both
cases in the following and illustrate their use in two different
application scenarios in Sects. 3 and 4.

We briefly introduce HMMs and their notation (for de-
tails see Rabiner 1989). We denote the HMM states by
S = {S1, S2, . . . , SM}, the state at time t by qt and the at-
tribute value at time t by A(t). The HMM parameters are:

1. the initial state distribution π = {πi}, with πi =
P(q1 = Si), i = 1..M ,

2. the state transition probability distribution T = {tij }, with
tij = P(qt+1 = Sj |qt = Si), i, j = 1..M , and

3. the state observation probability distributions (behavior
class likelihoods):

P(A(t) | qt = Si) = Pi(A(t)), i = 1..M. (1)

The class likelihoods Pi(A(t)) are another free parameter
of our framework. They can be adapted to the application at
hand, subject only to the condition that they be differentiable
with respect to A(t).

2.1.1 Behavior Modeling with One HMM

In simple application cases with few and relatively well
differentiated behavior classes, the use of a single HMM
is sufficient to model behavior dynamics and perform in-
ference about object behavior. During the training phase,
the ensemble of HMM parameters are estimated from typ-
ical behavior-class-labeled attribute sequences (see Rabiner
1989 for details). In this way, the HMM encodes constraints
regarding preferred successions of behavior classes, as well
as typical values of object attributes corresponding to the
different behavior classes.

Having estimated the HMM parameters from training
data, we can perform behavior inference on new attribute
sequences using the Viterbi algorithm (Rabiner 1989). For a
new observation sequence A1..T = {A(1),A(2), . . . ,A(T )},
the algorithm estimates the most likely state (behavior class)
sequence q

opt
1..T = {q1, q2, . . . , qT }opt that generated it, as fol-

lows:

q
opt
1..T = arg max

q1..T

P (q1..T |A1..T ) = arg max
q1..T

P (q1..T ,A1..T ).

(2)

This estimation is equivalent to the evaluation—for each
time step t and for each state Si—of the quantity

δt (i) = max
q1,q2,...,qt−1

P(q1..t−1, qt = Si,A1..t ). (3)

It represents the highest probability at time t , along a state
sequence which accounts for the first t observations and
ends in state Si . After initialization

δ1(i) = πiPi(A(1)), i = 1..M, (4)

the following recursion is used to compute the δ-s at each
time step t :

δt (i) =
(

max
j=1..M

δt−1(j)tji

)
Pi(A(t)), i = 1..M. (5)

For each δt (i), the state which maximizes (5) is stored in a
variable ψt(i)

ψt (i) = arg max
j=1..M

δt−1(j)tji , i = 1..M, (6)
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initialized by

ψ1(i) = 0, i = 1..M. (7)

The ensemble of δ and ψ variables can be used at any time
instance T to retrieve the (currently) optimal state sequence
by backtracking:

q
opt
T = arg maxi=1..M δT (i),

q
opt
t = ψt+1(q

opt
t+1), t = T − 1, T − 2, . . . ,1.

(8)

The probability of this optimal state sequence is given by

P opt = max
i=1..M

δT (i). (9)

We couple behavior inference and segmentation by us-
ing the probability estimates of the Viterbi algorithm at each
step to guide the segmentation of the corresponding im-
age. To this end, we run the algorithm and segmentation
in an interleaved manner along the image sequence, using
as observations the attributes of newly segmented images
as soon as they become available. Suppose that we have
completed step t − 1 of our framework, so that A1..t−1 and
δt−1(j), j = 1..M are available. To guide the segmentation
of I (t), we use the maximum amount of a priori knowledge
offered by the inference process:

1. the predictions of each class i for the next attribute A(t);
i.e., the likelihood functions Pi(A(t)), i = 1..M (1), and

2. our relative confidence in the prediction of each class i,
given by the Viterbi algorithm, i.e., the maximum prob-
ability of reaching state Si at time step t , after having
observed attributes A1..t−1:

wt(i) = max
j=1..M

δt−1(j)tji

= max
q1,q2,...,qt−1

P(q1..t−1, qt = Si,A1..t−1). (10)

We define the prior information offered by class i about
the next attribute A(t) as the product of the two quantities
above. According to (5), this is

δt (A(t), i) = wt(i)Pi(A(t)), i = 1..M; (11)

i.e., δt as a function of the unknown attribute A(t). In
Sect. 2.2 we explain how we introduce these class contri-
butions into the segmentation framework.

2.1.2 Behavior Modeling with Multiple HMMs

Many practical applications require analysis of complex be-
havior scenarios, involving numerous classes, often poorly
discriminated in terms of the available attributes. In such
cases, the behavior inference process can be greatly aided

by imposing coherence conditions on the resulting succes-
sion of behavior classes, stemming from prior knowledge
about possible behaviors. Common scenarios in human-
to-computer interaction applications require discrimination
among a number of behavior types. In this context, each be-
havior is made up of a different succession of basic actions,
belonging to different behavior classes, which are shared
among the behavior types (e.g. letter classes shared among
words). We model such cases via multiple HMMs. Each
HMM accounts for a different behavior type and they all
share the same state models, corresponding to the basic be-
havior classes. To perform behavior inference, we estimate
the probability of an attribute sequence on the most likely
state path in each HMM. Then, we choose the winner HMM
(thus, behavior type) as the one with the highest probabil-
ity for the given attribute sequence. Its most likely state path
yields the most likely succession of behavior classes for the
given attribute sequence.

Our framework can be easily adapted to incorporate mul-
tiple HMMs. To distinguish among K behavior types, we
employ K HMMs. These models share their states and
state models Pi(A(t)), i = 1..M , while having different
initial πk = {πk

i } and state transition probabilities T k =
{tkij }, k = 1..K . Running the Viterbi algorithm in parallel for
all HMMs requires the use of K sets of variables δ and ψ ,
denoted by δk and ψk, k = 1..K , respectively. Similarly to
the single HMM case, the analysis of a sequence A1..T starts
with variable initialization:

δk
1(i) = πk

i Pi(A(1)),

ψk
1 (i) = 0, i = 1..M, k = 1..K.

(12)

For each time step t = 2..T , a recursion step is performed:

δk
t (i) =

(
max

j=1..M
δk
t−1(j)tkji

)
Pi(A(t)),

ψk
t (i) = arg max

j=1..M
δk
t−1(j)tkji , i = 1..M, k = 1..K.

(13)

Finally, the probability of the attribute sequence given the
most likely path in each HMM k is given by:

P
opt
k = max

i=1..M
δk
T (i). (14)

The winner HMM (thus, behavior type) maximizes the prob-
ability P

opt
k :

kopt = arg max
k=1..K

P
opt
k . (15)

The most likely state (behavior class) sequence, correspond-
ing to the given attribute sequence, can be retrieved by back-
tracking from the δ-s and ψ -s of the winner HMM:

q
opt
T = arg max

i=1..M
δkopt

T (i),

q
opt
t = ψkopt

t+1(q
opt
t+1), t = T − 1, T − 2, . . . ,1.

(16)
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Similarly to the single HMM case, we run segmentation
and behavior inference cooperatively. After step t − 1, at-
tributes A1..t−1 and variables δk

t−1(j), j = 1..M, k = 1..K

are available. Thus, we can guide the segmentation of the
next image I (t) (and thus the extraction of the next attribute
A(t)) by using the two information sources available:

1. the class predictions Pi(A(t)), i = 1..M (1), and
2. our relative confidence in the class predictions, given by

the maximum probability of reaching state Si at time
step t , after having observed attributes A1..t−1. In the
multiple HMM case, this probability can be estimated as:

wt(i) = max
k=1..K

(
max

q1,q2,...,qt−1
P(q1..t−1, qt = Si,A1..t−1|k)

)

= max
j=1..M
k=1..K

δk
t−1(j)tkji . (17)

For notation correspondence with the single HMM case, we
denote by δt (A(t), i) the prior information offered by class i

about the next attribute A(t) and we define it as the product
of the two quantities above:

δt (A(t), i) = wt(i)Pi(A(t)) i = 1..M

= max
k=1..K

δk
t (A(t), i). (18)

2.2 Image Segmentation and Its Cooperation with
Behavior Inference

Motivated by successful prior knowledge-based segmenta-
tion approaches (Rousson and Paragios 2002; Cremers et al.
2006c), we introduce a variational framework for segmenta-
tion which incorporates the probabilistic behavior class pri-
ors δt (A(t), i) via a competition approach. In this way, the
segmented object belongs to the class which best accounts
for its generation, given the image evidence. Given the out-
come of the joint segmentation/behavior inference for the
first t − 1 frames of an image sequence, we segment I (t) by
minimizing the following energy functional:

E(C, L, I (t)) = Edata(C, I (t)) + αEprior(C, L, I (t)), (19)

where C is the segmenting contour, L = (L1, . . .LM) is the
set of labels (defined below) and α is a positive weighing
constant. Energy Edata(C, I (t)) encodes image-related con-
straints on the contour C. It can include any boundary- or
region-based segmentation terms suitable for the application
at hand (e.g. Chan and Vese 2001). Energy Eprior(C, L, I (t))

is:

Eprior(C, L, I (t)) = −
M∑
i=1

log
(
δt (A(C, I (t)), i)

)
L2

i

+ β

(
1 −

M∑
i=1

L2
i

)2

. (20)

The δ function has been defined in (11) for the single HMM
case and in (18) for the multiple HMM case. This energy
adds up the negative logarithms of the prior probabilities δ,
which through energy minimization will lead to the maxi-
mization of the respective probabilities. Each prior carries a
label factor L2

i , which controls its contribution to segmenta-
tion according to its relative probability with respect to the
other priors. The label Li is a scalar variable that varies con-
tinuously between 0 and 1 during energy minimization and
converges either to 1 (for the winning prior, whose prob-
ability has thus been maximized through segmentation) or
to 0 (for the other priors, which have thus been annulled).
Competition among priors is enforced by the constraint that
the label factors should sum to 1, introduced by the term
β(1 −∑M

i=1 L2
i )

2 in energy (20). Here β is a Lagrange mul-
tiplier, updated at each energy minimization step to ensure
that (1 − ∑M

i=1 L2
i )

2 ≈ 0. A similar technique has been ap-
plied to a different problem in Zhao et al. (1996).

We minimize (19) simultaneously with respect to the seg-
menting contour C and the labels L using the calculus of
variations and gradient descent. The contour C is driven by
image forces (intensity, gradients, etc.) due to Edata(C) and
by the M attribute priors due to Eprior(C, L):

∂C

∂τ
= −∂Edata(C, I (t))

∂C
− α

∂Eprior(C, L, I (t))

∂C
. (21)

Here τ is the artificial time of variable evolution and
∂Edata(C, I (t))/∂C can be derived through the calculus of
variations for the particular chosen form of Edata(C, I (t)).
The second term can be written as:

∂Eprior(C, L, I (t))

∂C

= −
M∑
i=1

L2
i

δt (A(C, I (t)), i)

∂δt (A(C, I (t)), i)

∂A

∂A(C, I (t))

∂C
,

(22)

where

∂δt (A(C, I (t)), i)

∂A
= wt(i)

∂Pi(A(C, I (t)))

∂A
. (23)

The derivatives ∂Pi/∂A and ∂A(C, I (t))/∂C are computed
according to the particular likelihood function and attribute
employed.

The evolution equations for the labels Li are:

∂Li

∂τ
= Li

(
log δt (A(C, I (t)), i) + 2β

(
1 −

M∑
i=1

L2
i

))
,

i = 1..M. (24)

The labels are initialized with equal values, so that
(1 − ∑M

i=1 L2
i )

2 ≈ 0. The update equation for the Lagrange
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multiplier β is deduced by imposing constancy of the con-
straint over time: d(1 − ∑M

i=1 L2
i )

2/dτ = 0. This yields the
following update equation:

β =
∑M

i=1 L2
i log δt (A(C, I (t)), i)

2
∑M

i=1 L2
i

(∑M
i=1 L2

i − 1
) . (25)

From a probabilistic perspective, the minimization of our
proposed energy using competing priors can be interpreted
as the maximization of the probability δt (A(C, I (t)), i) with
respect to both the attribute A(C, I (t)) and the class i, sub-
ject to image-based constraints imposed through the energy
Edata(C, I (t)). Then the segmentation of image I (t) can be
viewed as the joint estimation of the attribute value A∗(t)
and the class i∗ as:

(A∗(t), i∗) = arg max
A(C,I (t)),i

δt (A(C, I (t)), i),

subject to image constraints via Edata(C, I (t)).
(26)

Thus, segmentation works concurrently towards the same
goal as behavior inference. It maximizes the joint proba-
bility of the behavior class and the observation at time t ,
while remaining consistent with previous observations (due
to prior knowledge from the HMM(s)) and integrating new
information from image I (t).

2.3 Summary

To sum up, our framework for joint segmentation and be-
havior inference consists of the following:

– Training phase: estimate parameters of the HMM(s) from
training attribute sequences, according to Rabiner (1989).

– Testing phase: perform joint segmentation and behavior
inference on new attribute sequences A1..T :

1. Segment first image in the sequence I (1) (manually or
using only the data term Edata(C, I (1)) in (19).

2. Extract attribute A(1) = A(C, I (1)).
3. Initialize δ and ψ functions according to (4), (7) for

the single HMM case and (12) for the multiple HMM
case.

4. For t = 2..T

• Compute wt(i), i = 1..M according to (10) (single
HMM) and (17) (multiple HMM).

• Segment image I (t) using energy (19), where the
priors δt (A(C, I (t)), i) are given by (11) (single
HMM) and (18) (multiple HMM).

• Extract attribute A(t) = A(C, I (t)).
• Compute δt (i) and ψt(i), i = 1..M from (5) and

(6) (single HMM) or compute δk
t (i) and ψk

t (i), i =
1..M, k = 1..K from (13) (multiple HMM).

5. For the multiple HMM case, estimate winner HMM
and thus infer behavior type using (15).

6. Backtrack to infer the behavior class of each attribute
instance in A1..T using (8) for the single HMM and
(16) for the multiple HMM.

3 Application to Finger-Counting Recognition

In the following, we demonstrate the potential of our general
framework by implementing it for a finger-counting recogni-
tion application. First we describe the problem that we wish
to address. Then, we detail a particular implementation of
our general framework, including specific segmentation and
probability models. We explain the estimation of HMM pa-
rameters from training data and finally we present test re-
sults of our implementation on new image sequences.

In our finger-counting application, we identify four ges-
ture classes consisting of a right hand (facing the camera)
going through four finger configurations: fist (Class 0),
thumb extended (Class 1), thumb and index finger extended
(Class 2) and thumb, index, and middle finger extended
(Class 3). An example image of each gesture class is shown
in Fig. 2.

Our typical gesture image sequences depict finger-
counting from 1 to 3 (starting from the fist position) and
from 3 to 1 (ending with the fist position), which is, in terms
of gesture class successions, 0, 1, 2, 3 and 3, 2, 1, 0. Our
aim is to perform joint segmentation and behavior inference
of image sequences containing such successions; i.e., for
each image, extract the segmenting contour of the hand and
determine the gesture/behavior class to which it belongs.

3.1 Solution Using the Proposed Framework

For this application, the object attribute that we employ is
the contour segmenting the hand A(C, I) = C. We repre-
sent the contour using a level set function (LSF) φ : 
 → R,

Fig. 2 Samples from the four
gesture classes that we use in
our finger-counting application
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where 
 is the image domain (Osher and Sethian 1988).
Function φ is chosen to be the signed distance function to
the contour, so that C ≡ {(x, y) : φ(x, y) = 0}.

Given the reduced number of behavior classes (four) and
their relatively good discrimination in terms of the used at-
tribute (the hand contour), we model behavior using a single
HMM, as described in Sect. 2.1.1.

As data term in the segmentation energy (19), we use the
piecewise constant Mumford-Shah model (Chan and Vese
2001):

Edata(φ) = EMS(φ),

EMS(φ) =
∫ ∫




(I − μ+)2H(φ)dxdy

+
∫ ∫




(I − μ−)2(1 − H(φ))dxdy

+ ν

∫ ∫



|∇H(φ)|dxdy.

(27)

Here H is the Heaviside function

H(x) =
{

1 if x ≥ 0,

0 if x < 0

and μ+, μ− are the mean image intensities corresponding
to the positive, respectively negative regions of φ. This term
aims to separate the two regions (background/hand) by max-
imizing the distance between their observed mean intensi-
ties.

To describe each class i, we use a local Gaussian model
of the LSF (Rousson and Paragios 2002):

p
(x,y)
i (φ) = 1√

2πσi((x, y))
e
− (φ(x,y)−φi (x,y))2

2σ2
i

(x,y) . (28)

Here (x, y) ∈ 
 is an image location, φi is the average LSF
of class i and the variance σi(x, y) models the local variabil-
ity of the level set at (x, y). Assuming densities independent
across pixels, the likelihood function Pi(φ) is given by the
density product over the image domain:

Pi(φ) =
∏

(x,y)∈


p
(x,y)
i (φ). (29)

Substituting likelihoods Pi(φ) and augmenting by sim-
ilarity transformations hτ i (including translation, rotation,
and scale) that align each prior i with contour φ, the prior

energy (20) becomes:

Eprior(φ, L,τ i=1..M)

=
M∑
i=1

(
− logwt(i)

+
∫ ∫




(
(φ(x, y) − φi(hτ i (x, y))/si)2

2σ 2
i (hτ i (x, y))

+ logσi(hτ i (x, y))

)
dxdy

)
L2

i + β

(
1 −

M∑
i=1

L2
i

)2

.

(30)

Here τ = {s, θ, Tx, Ty} are the parameters of a similarity
transformation

hτ

(
[x y]T

)
= s

(
cos θ sin θ

− sin θ cos θ

)[
x

y

]
+

[
Tx

Ty

]
, (31)

and the index i in hτ i designates the prior which is being
aligned.

The total energy (19), combining (27) and (30), is min-
imized via the calculus of variations and gradient descent,
resulting in evolution equations for the contour φ, the labels
L and the alignment parameters τ i=1..M (see Appendix).

3.2 Training the Model

In the training phase, we start by segmenting and class-
labeling sequences of gestures (0, 1, 2, 3 and 3, 2, 1, 0)
performed on a simple contrasting background, as in Fig. 2.
Then, we align the resulted contours for each class with re-
spect to similarity transformations (scale, rotation and trans-
lation) using genetic algorithms (Davis 1991). Next, we use
aligned contours for each class to estimate the parameters of
the HMM. Namely, for the Gaussian likelihoods, we use the
method described in Rousson and Paragios (2002) to ob-
tain smooth estimates of the mean φi and variance σi for
each class i. We learn the state initial and transition proba-
bilities by counting the occurrences of starting classes and
of transitions between classes from the training sequences.
Alternatively, one can estimate the HMM parameters using
an expectation-maximization (EM) approach, via the Baum-
Welch algorithm (see Rabiner 1989).

3.3 Results

We tested this implementation of our framework on new im-
age sequences of a hand performing the succession of ges-
tures 0, 1, 2, 3, 2, 1, 0, in front of a complex background
and degraded by occlusions. The segmentation contour for
the first image of each sequence has been determined by a
manual initialization in the proximity of the hand, followed
by segmentation using only the data term (27). The para-
meters for the variational segmentation were α = 5000 and
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Fig. 3 (a)–(d), (i)–(l) Segmen-
tation with the proposed
framework (Gaussian likelihood
implementation) of two image
sequence in the presence
of occlusion, background
complexity and noise
(second sequence).
(e)–(h), (m)–(p) Conventional
segmentation of the same image
sequences

ν = 4000. The average execution time using un-optimized
code (Matlab and C) was 3–4 minutes per frame.

Our framework brings considerable improvements to the
segmentation/behavior inference task, even in the case of
employing the unsophisticated Gaussian likelihood model.
By virtue of the prior information supplied by the infer-
ence process, segmentation is able to cope with severe occlu-
sions, as can be seen in Fig. 3(a)–(d), (i)–(l). Figure 3(e)–(h),
(m)–(p) shows that the results obtained on the same se-
quence with conventional segmentation are clearly inferior,
since the desired shape of the object cannot be recovered
because of the occlusions.

Figure 4 shows the inference results for the first test se-
quence, which correctly follow the test gesture sequence and
our understanding of it in terms of the executed gestures.
Moreover, the frame classification obtained by backtracking
from the inference process corresponds to the partial clas-
sification results obtained throughout the sequence, which

have been used to guide segmentation. This concordance
can be seen in Fig. 4, which exhibits, as functions of time
(frame), (a) the final classification, (b) the delta functions of
each class, and (c) the prior confidence of each class (the w

function) used as input to the segmentation. The w values
have been scaled with respect to their maximum value for
every frame.

4 Application to Finger-Spelling Recognition

In sign languages, information is mostly conveyed through
a word-level sign vocabulary. Finger-spelling is the part of
sign language which connects it with the surrounding (spo-
ken) languages. It consists of manual representations of al-
phabet letters (Padden and Gunsauls 2003), used to spell
words without sign equivalent (e.g. proper nouns or foreign
words).
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Fig. 4 Behavior inference
results plotted per frame.
(a) Final frame classification.
(b) Delta functions of each
class. (c) Prior confidence of
each class used as input to the
segmentation

Fig. 5 Manual alphabet of the
French-speaking part of
Switzerland. Reproduced from
FSS (2007)

Table 1 Vocabulary of our finger-spelling application

ALBANIA ALGERIA ARMENIA AUSTRIA BELARUS BELGIUM

BURUNDI CROATIA DENMARK ECUADOR ERITREA ESTONIA

FINLAND GEORGIA GERMANY HUNGARY ICELAND LEBANON

LESOTHO LIBERIA MOLDOVA NAMIBIA NIGERIA ROMANIA

SENEGAL SOMALIA TUNISIA UKRAINE URUGUAY VIETNAM

The second application that we used to test our frame-
work focuses on finger-spelling recognition. It is more chal-
lenging than our first application, since it involves a larger
number of classes and poorer discrimination among them.
We use the manual alphabet of the French-speaking part
of Switzerland (FSS 2007), depicted in Fig. 5. Our goal
is to perform finger-spelling recognition on a 30 word-
vocabulary containing country names, as presented in Ta-
ble 1.

With the support of the Swiss Federation for the Hearing-
Impaired (FSS 2007), we have acquired a data base contain-
ing image sequences of a hearing-impaired person finger-
spelling the above mentioned words. Acquisition has been
performed both in ideal conditions (contrasting background,

low speed gesturing), for training purposes, and realistic
ones (cluttered background, normal speed gesturing), for
testing purposes.

4.1 Implementation Using the Proposed Framework

For this application, we maintain the same object attribute as
for our finger-counting application. Namely, we use the hand
contour A(C, I) = C, represented via the LSF φ : 
 → R,
which is the signed distance function to the contour.

As can be seen in Fig. 5, the gestures corresponding to
different letters are not easy to differentiate, with letters
pairs such as (A, S), (G, H), (M, N) or (R, U) easily con-
foundable. In these conditions, we make use of the multiple
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HMM variant of our framework (Sect. 2.1.2), allowing us
to introduce prior knowledge regarding the allowed words
(belonging to the vocabulary in Table 1).

The words in our vocabulary constitute our behavior
types and each of them is modeled by an individual HMM.
Letters are the common basic components of all words
and are modeled as shared states (behavior classes) of our
HMMs.

Regarding the state probability models, a limitation of the
Gaussian likelihood model that we used in our first applica-
tion is the fact that the mean and variance of the prior cor-
responding to each class are fixed throughout the image se-
quence, and thus cannot adapt to varying shapes of the same
class. This makes it difficult to obtain accurate segmenta-
tions for images where the winning class prior doesn’t offer
a close match to the image, even after the similarity trans-
formation. For this application, we obtain an improvement
with respect to this limitation by using PCA-based likeli-
hood models, which adapt dynamically to the content of new
images, as we describe in the following.

The likelihood model Pi(φ) for each class i relies on a
shape distance function between the segmenting contour and
a prior contour corresponding to that class (Bresson et al.
2006). The prior contours are computed via principal com-
ponents analysis (PCA) from specific training data for each
class. They evolve during segmentation so as best to match
image information, within class constraints imposed by the
PCA. We improve the distance function proposed in Bres-
son et al. (2006) by making it symmetric, resulting into like-
lihood models which are suitable for classification. Symme-
try in the construction of shape priors for level set functions
is advocated in Cremers and Soatto (2003).

The purpose of PCA is to reduce redundant information
and summarize the main variations of a training set. Based
on the training LSFs for a class, we approximate a new LSF
φ̂ from that class via PCA as:

φ̂ = φ + Ec. (32)

Here φ is the mean of the training LSFs, E is a matrix whose
columns are the reduced set of p PCA eigenvectors, ob-
tained from the covariance matrix of the training data and
corresponding to the p largest eigenvalues, and c is the p-
dimensional vector of eigencoefficients.

Our shape distance function between the current seg-
menting contour φ and the prior contour φ̂ is given by:

d(φ, c,τ ) =
∫ ∫




(
φ̂2|∇φ|δ(φ) + φ2|∇φ̂|δ(φ̂)

)
dxdy. (33)

Here, δ is the Dirac function and φ̂ is the continuously inter-
polated LSF of the prior contour, obtained from (32):

φ̂(c,τ ) |(x,y)= 1

s

(
φ(hτ (x, y) + E(hτ (x, y))c

)
. (34)

Here τ = {s, θ, Tx, Ty} are the parameters of a similarity
transformation hτ (31) which aligns the prior with contour
φ. Since

∫∫



|∇φ|δ(φ)dxdy represents the length of the zero
level set of φ and the LSFs are represented as signed dis-
tance functions, we readily observe that the first term of (33)
approximates the minimal Euclidean distance to the prior
contour, integrated along the segmenting contour. The sec-
ond term of (33) exchanges the roles of φ and φ̂ relative to
the first term, making the distance function symmetric and
thus suitable for use in classification. Based on this distance
function, we define the likelihood of the segmenting contour
represented by φ, for time t (image I (t)) and class i as

Pi(φ(t)) = e−d(φ(t),ci (t),τ i (t)). (35)

We use the piecewise constant Mumford-Shah model
(Chan and Vese 2001) to guide the evolution of the main
contour φ and prior contours φ̂i (ci ,τ i ), in terms of their pa-
rameters ci and τ i :

Edata(φ, ci=1..M,τ i=1..M)

= EMS(φ) +
M∑
i=1

EMS(φ̂i )

=
∫ ∫




(I − μφ+)2H(φ) + (I − μφ−)2H(−φ)dxdy

+
M∑
i=1

∫ ∫



(I − μ
φ̂i+)2H(φ̂i)

+ (I − μ
φ̂i−)2(H(−φ̂i ))dxdy

+ ν

∫ ∫



|∇H(φ)|dxdy. (36)

Here H is the Heaviside function, μφ+,μ
φ̂i+ and μφ−,μ

φ̂i−
are the mean image intensities over the positive, respec-
tively negative, regions of the LSFs φ and φ̂i . Function
φ̂i = φ̂i (ci ,τ i ) is the continuously interpolated LSF of the
prior contour (34), and the last term of (36) imposes smooth-
ness of contour φ.

The prior term of the energy, based on models δt (φ, i) in
the multiple HMM framework (18), is obtained from (20)
by substituting likelihoods Pi(φ) (35):

Eprior(φ, L, ci=1..M,τ i=1..M)

=
M∑
i=1

(
− logwt(i) + d(φ(t), ci (t),τ i (t))

)
L2

i

+ β

(
1 −

M∑
i=1

L2
i

)2

. (37)
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Fig. 6 Sample images (and
corresponding letter/behavior
classes) from training sequences
used in our application

Towards computational efficiency, we adopt a pruning strat-
egy, using only the top 4 most probable priors (out of the
20 available priors) to guide the segmentation of each im-
age. These top 4 prior letters are chosen using the maximum
prior letter probabilities, computed with (17). This prun-
ing strategy does not affect recognition performance, while
diminishing segmentation time and improving convergence
towards the optimal prior.

The total energy (19), summing (36) and (37), is mini-
mized via the calculus of variations and gradient descent.
The evolution equations for the LSF φ, the labels L, the
PCA and alignment parameters ci and τ i are presented in
Appendix.

4.2 Training the Model

We have trained our model using image sequences of each
vocabulary word from the acquired database. For training,
the gesturing person was filmed on a dark, contrasting back-
ground and the gestures were performed at slow speed. Fig-
ure 6 presents images from the training sequences.

First, the gesturing hand has been segmented in each
training sequence and the resulted contours have been as-
signed to their respective letter classes and aligned with
respect to similarity transformations (scale, rotation and
translation) using genetic algorithms (Davis 1991). Subse-
quently, a separate HMM was trained for each vocabulary
word (Rabiner 1989), as follows. The observation proba-
bilities for the shared HMM states have been learned by
PCA (p = 20) separately from the training contours of
each letter class. This resulted in a corresponding mean φi

and eigenvectors Ei for each letter/behavior class i. The
state initial and transition probabilities have been learned
by counting the occurrences of starting classes and of tran-
sitions between classes from the training sequences. As
mentioned in Sect. 3.2, one could alternatively estimate
the HMM parameters through an expectation-maximization
(EM) approach, via the Baum-Welch algorithm (see Rabiner
1989).

4.3 Results

We tested the resulting implementation of our framework on
image sequences of the same person finger-spelling words

from the vocabulary. For testing, we have considered real-
istic conditions, involving a cluttered background, normal
gesturing speed and changed lighting conditions with re-
spect to the training image sequences. Despite the complex-
ity of the task, the results are accurate in terms of the recog-
nized words, due to the infusion of knowledge about the
dynamics of vocabulary words via our collaborative frame-
work.

Figure 7 presents examples of cooperative segmentation
and behavior inference on three image sequences, which
have been correctly classified as the words “ALBANIA”,
“BELARUS” and “BURUNDI” respectively. The classifica-
tion framework has helped orient segmentation towards the
correct behavior classes at each time instance. Moreover, the
dynamical PCA-based class prior models have adapted to
significant shape variations within behavior classes, allow-
ing the segmentation of the hand in difficult cases of clut-
tered background. The frame-wise behavior inference re-
sults for these sequences, yielded by the winner HMMs, are
presented in rows 2, 4 and 6 of Fig. 7 and correspond to our
understanding of the sequences in terms of the executed ges-
tures. In contrast, using the traditional (sequential) approach
for recognition, i.e. first segmenting the image sequences
(with the same variational approach, without prior models)
and then performing inference (with the same HMMs), pro-
duces completely erroneous results. Figure 8 shows such a
result for the “ALBANIA” sequence, where the segmenta-
tion has been side-tracked by the cluttered background, and
as a result the sequence has been miss-classified as “ICE-
LAND”.

The variational segmentation parameters for the pre-
sented test sequences were α = 4000 and ν = 4000. The
average execution time using un-optimized code (Matlab
and C) was 6–7 minutes per frame. The segmenting contour
of the first image of each sequence has been automatically
determined by the succession of the following steps:

1. initialization with regularly distributed small circles,
2. variational segmentation with the piecewise-constant

Mumford-Shah model (27),
3. elimination of small regions by morphological opera-

tions,
4. alignment of the mean LSFs φi for each letter prior i with

respect to the current contour, with genetic algorithms
(Davis 1991),
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Fig. 7 Correct segmentation and behavior inference using our framework, demonstrated on three test sequences representing the words “Albania”
(rows 1–2), “Belarus” (rows 3–4) and “Burundi” (rows 5–6)
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Fig. 8 Erroneous results using sequential segmentation and behavior inference on the “Albania” sequence, miss-classified as “Iceland”

Fig. 9 Initialization process for the first frame of the “Belarus” se-
quence. (a) Initialization with small circles (step 1), (b) variational seg-
mentation with the piecewise-constant Mumford-Shah model (step 2),
(c) elimination of small regions by morphological operations (step 3):
resulting binary mask, (d) alignment of the mean LSFs for the 4 top

fitting priors (steps 4 and 5): image of the current LSF and its zero
level set in black, together with the aligned means of the best fitting 4
priors (B, R, U, A) in color, (e) variational segmentation result using
the piecewise-constant Mumford-Shah model and the top 4 best fitting
priors in a competition approach (step 6)

5. choice of the best fitting priors in terms of the distance
d(φ,φi) = ∫∫



φ2|∇φi |δ(φi)dxdy/

∫∫



|∇φi |δ(φi)dxdy,
6. variational segmentation using data term (36) and the top

4 best fitting priors obtained at step 5, in a competition
approach (prior term (20) with δt (φ, i) = Pi(φ), given
by (35)). This process is illustrated in Fig. 9 for the first
image of the “BELARUS” sequence.

One of the advantages of performing behavior inference
(via the Viterbi algorithm) in parallel with image segmen-
tation is the fact that it offers us, at each instance t , the
optimal classification of the sequence up to time t , which
is used to guide further segmentation. This allows the cor-
rection of potential cases of miss-classification of previous
frames, thus adding robustness to our approach. An exam-
ple of miss-classification which is corrected in later frames
is presented in Fig. 10, which shows partial classification
results for the “Belarus” sequence. The partial classification
result at frame 19 yields erroneous results (letter U instead of
either B or E) for frames 17–19, which are transition frames

between two letters (see Fig. 10, first row). This result is cor-
rected at frame 20, where letter E is clearly perceived and the
Viterbi algorithm corrects the classification of the previous
frames (Fig. 10, second row).

As can be seen from our experimental results, this imple-
mentation of our general framework can cope with difficult
cluttered background. In this respect, it was shown to per-
form better than sequential segmentation and classification.
However, its performance is still bounded due to the simplic-
ity of the segmentation model. For instance, a challenging
case for our method would be one where the average inten-
sity level of the background is similar to that of the hand.
In this case, our method would be incapable of discriminat-
ing the hand from the background, despite prior knowledge
regarding the most likely behavior classes, offered by the
inference process. The solution lies in choosing more com-
plicated segmentation models, which would augment the
computational costs of the method. Other challenges for our
method would be poor resolution images (since it would in-
crease class ambiguity in terms of hand contour), very noisy
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Fig. 10 Partial classification results for the “Belarus” sequence: at frame 19 (first row) and at frame 20 (second row). Mislabeling of 3 frames
starting at frame 17 (first row), corrected in subsequent frames starting with 20 (second row)

images (leading segmentation into unwanted local minima
that match the wrong class prior information) or an impor-
tant number of missing frames from the video sequences
(misleading for the inference process).

5 Conclusion

We have introduced and developed a novel and general
framework that enables cooperative segmentation and ob-
ject behavior inference in image sequences. The proposed
collaboration between the segmentation and inference pro-
cesses facilitates a mutual exchange of information, which is
beneficial to their joint success. In particular, we employed
an inference strategy based on generative models that pro-
vides dynamic probabilistic attribute priors to guide image
segmentation. These priors enable the segmentation process
to work towards the same goal as the inference process, by
outlining the object that best accounts both for the image
data and for the prior knowledge encapsulated in the gener-
ative model.

Appendix A: Image Segmentation Using the Gaussian
Prior Model

A.1 Evolution Equations

Let us denote φ̂i (hτ i (x, y)) = φi(hτ i (x, y))/si . The evolu-
tion equation for the segmenting contour φ is:

∂φ(x, y)

∂t
= δε(φ(x, y))

(
(I (x, y) − μ−)2

− (I (x, y) − μ+)2 + νdiv

( ∇φ(x, y)

|∇φ(x, y)|
))

+ α

M∑
i=1

φ̂i (hτ i (x, y)) − φ(x, y)

σi(hτ i (x, y))
L2

i , (38)

where δε is a regularized version of the Dirac function:
δε(x) = ε

π(x2+ε2)
. The similarity transformation parameters

of each prior evolve according to:

∂τ i

∂t
= −

∫ ∫



1

σi(hτ i (x, y))

×
(
∇σi(hτ i (x, y)) · ∂

∂τ i
(hτ i (x, y))

)
dxdy

+
∫ ∫




φ(x, y) − φ̂i (hτ i (x, y))

σ 2
i (hτ i (x, y))

× ∂

∂τ i
(φ̂i(hτ i (x, y)))dxdy

+
∫ ∫




(φ(x, y) − φ̂i (hτ i (x, y)))2

σ 3
i (hτ i (x, y))

×
(
∇σi(hτ i (x, y)) · ∂

∂τ i
(hτ i (x, y))

)
dxdy. (39)

where τ i stands for each of si , θi , and T i and

∂

∂τi

(φ̂i(hτ i (x, y)))

= ∇φ̂i (hτ i (x, y)) · ∂

∂τi

(hτ i (x, y)), (40)
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if τ i = θi, T i and

∂

∂τi

(φ̂i (hτ i (x, y)))

= ∇φ̂i (hτ i (x, y)) · ∂

∂τi

(hτ i (x, y)) − 1

si
φ̂i (hτ i (x, y)),

(41)

if τ i = si . The derivatives ∂(hτ i (x, y))/∂τ i are computed as
follows:

∂

∂s
(hτ (x, y)) =

(
cos θ sin θ

− sin θ cos θ

)[
x

y

]
, (42)

∂

∂θ
(hτ (x, y)) = s

( − sin θ cos θ

− cos θ − sin θ

)[
x

y

]
, (43)

∂

∂Tx

(hτ (x, y)) =
[

1
0

]
,

(44)
∂

∂Ty

(hτ (x, y)) =
[

0
1

]
.

The labels Li, i = 1..M evolve according to:

∂Li

∂t
= Li

(
logwt(i) −

∫ ∫



(
(φ(x, y) − φ̂i (hτ i (x, y)))2

2σ 2
i (hτ i (x, y))

+ logσi(hτ i (x, y))

)
dxdy + 2β

(
1 −

M∑
i=1

L2
i

))
.

(45)

The update equation for the Lagrange multiplier β is as
follows:

β =
∑M

i=1 L2
i log δt (φ, i)

2
∑M

i=1 L2
i

(∑M
i=1 L2

i − 1
) , (46)

with δt (φ, i) = wt(i)Pi(φ) and Pi(φ) given by (29).

A.2 Numerical Approach

To minimize energy (19), with Edata given by (27) and Eprior

given by (30), we use the evolution equations (38), (39) and
(45). We solve these equations numerically by iterating the
following steps until convergence is reached:

1. Computation of the mean intensities μ+ and μ− over im-
age I regions corresponding to the positive, respectively
negative regions of the LSF φ.

2. Computation of the class prior information φ̂i (hτ i (x, y)))

and σi(hτ i (x, y)) from the average LSF φi(x, y) and
the variance σi(x, y), by applying the similarity transfor-
mations hτ i (31) via the B-splines interpolation method
(Unser 1999).

3. Computation of the curvature div(∇φ(x, y)/|∇φ(x, y)|)
and of the gradients ∇σi(hτ i (x, y)) and ∇φ̂i (hτ i (x, y))

using a central difference scheme.
4. Calculation of the temporal derivatives in (38), (39) and

(45) using a forward difference approximation.
5. Re-distancing of the LSF φ with the fast marching

method of Adalsteinsson and Sethian (1995).
6. Update of the Lagrange multiplier β according to (46).

Appendix B: Image Segmentation Using
the PCA-Based Prior Model

B.1 Evolution Equations

Main contour evolution is governed by the equation:

∂φ(x, y)

∂t

= δε(φ(x, y))

(
(I (x, y) − μ−)2 − (I (x, y) − μ+)2

)

+ νdiv

( ∇φ(x, y)

|∇φ(x, y)|
)

+ α

M∑
i=1

(
φ̂2

i (hτ i (x, y))div

( ∇φ(x, y)

|∇φ(x, y)|
)

δε(φ(x, y))

+
(

∇φ̂2
i (hτ i (x, y)) ·

( ∇φ(x, y)

|∇φ(x, y)|
))

δε(φ(x, y))

− 2φ(x, y)|∇φ̂i (hτ i (x, y))|δε(φ̂i(hτ i (x, y)))

)
L2

i .

(47)

The similarity transformation parameters of each prior
evolve according to:

∂τ i

∂t
=

∫ ∫



(I (x, y) − μ
φ̂i−)2δε(φ̂i(hτ i (x, y)))

× ∂

∂τi

(φ̂i (hτ i (x, y)))dxdy

−
∫ ∫




(I (x, y) − μ
φ̂i+)2δε(φ̂i(hτ i (x, y)))

× ∂

∂τi

(φ̂i (hτ i (x, y)))dxdy

− 2
∫ ∫




φ̂i(hτ i (x, y))
∂

∂τi

(φ̂i(hτ i (x, y))|∇φ(x, y)|
× δε(φ(x, y)))dxdy

−
∫ ∫




φ2(x, y)

(
|∇φ̂i (hτ i (x, y)|δ′

ε(φ̂i (hτ i (x, y)))
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× ∂

∂τi

(φ̂i(hτ i (x, y))

+ δε(φ̂i(hτ i (x, y)))
1

|∇φ̂i (hτ i (x, y)|

×
(

ˆ(φi)x(hτ i (x, y))
∂

∂τi

( ˆ(φi)x(hτ i (x, y))))

+ ˆ(φi)y(hτ i (x, y)
∂

∂τi

( ˆ(φi)y(hτ i (x, y))

))
dxdy,

(48)

where τ i stands for each of si , θi , and T i , and ˆ(φi)x ,
ˆ(φi)y are the x and y derivatives of φ̂i . The deriva-

tives ∂φ̂i(hτ i (x, y))/∂τi , ∂(φ̂i)x(hτ i (x, y))/∂τi and
∂(φ̂i)y(hτ i (x, y))/∂τi are computed as in (40), (41). The
evolution equation for the j th PCA coefficient of prior class
i is:

∂ci
j

∂t
= 1

si

∫ ∫



(I (x, y) − μ
φ̂i−)2

× δε(φ̂i(hτ i (x, y)))Eij (hτ i (x, y))dxdy

− 1

si

∫ ∫



(I (x, y) − μ
φ̂i+)2

× δε(φ̂i(hτ i (x, y)))Eij (hτ i (x, y))dxdy

− 2

si

∫ ∫



φ̂i(hτ i (x, y))Eij (hτ i (x, y))

× |∇φ(x, y)|δε(φ(x, y))dxdy

− 1

si

∫ ∫



φ2(x, y)

×
(

|∇φ̂i (hτ i (x, y))|δ′
ε(φ̂i(hτ i (x, y)))Eij (hτ i (x, y))

+ δε(φ̂i(hτ i (x, y)))
1

|∇φ̂i (hτ i (x, y))|

×
(

ˆ(φi)x(hτ i (x, y))(Eij )x(hτ i (x, y))

+ ˆ(φi)y(hτ i (x, y))(Eij )y(hτ i (x, y))

))
dxdy, (49)

where Eij is the j th eigenvector of class i, arranged as the
columns of an image-sized matrix (continuously interpo-
lated) and (Eij )x and (Eij )y are its x and y derivatives,
respectively. The labels Li, i = 1..M , evolve according to:

∂Li

∂t
= Li

(
logwt(i) −

∫ ∫



φ̂i
2
(hτ i (x, y))

× |∇φ(x, y)|δε(φ(x, y))dxdy

−
∫ ∫




φ2((x, y))|∇φ̂i (hτ i (x, y))|

× δε(φ̂i(hτ i (x, y)))dxdy + 2β

(
1 −

M∑
i=1

L2
i

))
.

(50)

The update equation for the Lagrange multiplier β is as
follows:

β =
∑M

i=1 L2
i log δt (φ, i)

2
∑M

i=1 L2
i

(∑M
i=1 L2

i − 1
) , (51)

with δt (φ, i) = wt(i)Pi(φ) and Pi(φ) given by (35).

B.2 Numerical Approach

To minimize energy (19), with Edata given by (36) and Eprior

given by (37), we use the evolution equations (47), (48), (49)
and (50). We solve these equations numerically by iterating
the following steps until convergence is reached:

1. Computation of the mean intensities μ+ and μ− over im-
age I regions corresponding to the positive, respectively
negative regions of the LSF φ.

2. Computation of the mean intensities μ
φ̂i+ and μ

φ̂i− over
image I regions corresponding to the positive, respec-
tively negative regions of the LSFs φ̂i .

3. Computation of the class prior information φ̂i (hτ i (x, y)))

and Eij (hτ i (x, y)) from the average LSF φi(x, y) and
the eigenvectors Eij (x, y), by using (34) and applying
the similarity transformations hτ i (31) via the B-splines
interpolation method (Unser 1999).

4. Computation of the curvature div(∇φ(x, y)/|∇φ(x, y)|),
derivatives ˆ(φi)x , ˆ(φi)y , (Eij )x and (Eij )y and gradients

∇φ(x, y) and ∇φ̂i(hτ i (x, y)) using a central difference
scheme.

5. Calculation of the temporal derivatives in (47), (48), (49)
and (50) using a forward difference approximation.

6. Re-distancing of the LSF φ with the fast marching
method of Adalsteinsson and Sethian (1995).

7. Update of the Lagrange multiplier β according to (51).

References

Adalsteinsson, D., & Sethian, J. (1995). A fast level set method for
propagating interfaces. Journal of Computational Physics, 118,
269–277.

Bresson, X., Vandergheynst, P., & Thiran, J.-P. (2006). A variational
model for object segmentation using boundary information and
shape prior driven by the Mumford-Shah functional. International
Journal of Computer Vision, 28(2), 145–162.

Caselles, V., Kimmel, R., & Sapiro, G. (1995). Geodesic active con-
tours. In Proc. IEEE intl. conf. on comp. vis. (pp. 694–699).
Boston, USA.



162 Int J Comput Vis (2009) 84: 146–162

Chan, T., & Vese, L. (2001). Active contours without edges. IEEE
Transactions on Image Processing, 10(2), 266–277.

Chen, Y., Tagare, H., Thiruvenkadam, S., Huang, F., Wilson, D.,
Gopinath, K., Briggs, R., & Geiser, E. (2002). Using prior shapes
in geometric active contours in a variational framework. Interna-
tional Journal of Computer Vision, 50(3), 315–328.

Cootes, T., Beeston, C., Edwards, G., & Taylor, C. (1999). Unified
framework for atlas matching using active appearance models. In
Int’l conf. inf. proc. in med. imaging (pp. 322–333).

Cremers, D. (2006). Dynamical statistical shape priors for level set
based tracking. IEEE Transactions on Pattern Analysis and Ma-
chine Intelligence, 28(8), 1262–1273.

Cremers, D., & Soatto, S. (2003). A pseudo-distance for shape priors in
level set segmentation. In N. Paragios (Ed.), IEEE 2nd int. work-
shop on variational, geometric and level set methods. (pp. 169–
176). Nice.

Cremers, D., Guetter, C., & Xu, C. (2006a). Nonparametric priors on
the space of joint intensity distributions for non-rigid multi-modal
image registration. In IEEE conference on computer vision and
pattern recognition (CVPR) (Vol. 2, pp. 1777–1783).

Cremers, D., Osher, S. J., & Soatto, S. (2006b). Kernel density estima-
tion and intrinsic alignment for shape priors in level set segmenta-
tion. International Journal of Computer Vision, 69(3), 335–351.

Cremers, D., Sochen, N., & Schnörr, C. (2006c). A multiphase dy-
namic labeling model for variational recognition-driven image
segmentation. International Journal of Computer Vision, 66(1),
67–81.

Davis, L. (1991). Handbook of genetic algorithms. New York: Van
Nostrand Reinhold.

Ferrari, V., Tuytelaars, T., & Gool, L. V. (2004). Simultaneous object
recognition and segmentation by image exploration. In ECCV.

FSS (2007). Fédération Suisse des Sourds. http://www.sgb-fss.ch/.
Gui, L., Thiran, J.-P., & Paragios, N. (2007a). Joint object segmenta-

tion and behavior classification in image sequences. In Proc. IEEE
conference on computer vision and pattern recognition (CVPR
2007). Minneapolis, MN, USA.

Gui, L., Thiran, J.-P., & Paragios, N. (2007b). A variational framework
for the simultaneous segmentation and object behavior classifi-
cation of image sequences. In Proc. scale space and variational
methods in computer vision. Lecture notes in computer science
(pp. 652–664). Berlin: Springer.

Kass, M., Witkin, A., & Terzopoulos, D. (1987). Snakes: active contour
models. International Journal of Computer Vision, 1, 321–331.

Kichenassamy, S., Kumar, A., Olver, P., Tannenbaum, A., & Yezzi, A.
(1995). Gradient flows and geometric active contour models. In
Proc. IEEE intl. conf. on comp. vis. (pp. 810–815).

Kokkinos, I., & Maragos, P. (2005). An expectation maximization ap-
proach to the synergy between image segmentation and object cat-
egorization. In ICCV (pp. 617–624).

Leibe, B., Leonardis, A., & Schiele, B. (2004). Combined object cat-
egorization and segmentation with an implicit shape model. In
ECCV Workshop on SLCV.

Leventon, M., Grimson, W., & Faugeras, O. (2000). Statistical shape
influence in geodesic active approach. In IEEE int. conf. on com-
puter vision and pattern recognition (pp. 316–323).

Malladi, R., Sethian, J., & Vemuri, B. (1995). Shape modeling with
front propagation: a level set approach. IEEE PAMI, 17, 158–175.

Mumford, D., & Shah, J. (1989). Optimal approximations by piecewise
smooth functions and associated variational problems. Communi-
cations in Pure and Applied Mathematics, 42, 577–685.

Osher, S., & Sethian, J. (1988). Fronts propagating with curvature-
dependent speed: algorithms based on the Hamilton-Jacobi for-
mulation. Journal of Computational Physics, 79, 12–49.

Padden, C., & Gunsauls, D. C. (2003). How the alphabet came to be
used in a sign language. Sign Language Studies, 4(1), 10–33.

Paragios, N., & Deriche, R. (2002). Geodesic active regions and level
set methods for supervised texture segmentation. International
Journal of Computer Vision, 46(3), 223–247.

Paragios, N., & Deriche, R. (2005). Geodesic active regions and level
set methods for motion estimation and tracking. Computer Vision
and Image Understanding, 97, 259–282.

Rabiner, L. R. (1989). A tutorial on hidden Markov models and se-
lected applications in speech recognition. Proceedings of the
IEEE, 77(2).

Rathi, Y., Vaswani, N., Tannenbaum, A., & Yezzi, A. (2007). Track-
ing deforming objects using particle filtering for geometric active
contours. IEEE Transactions on Pattern Analysis and Machine In-
telligence, 29(8), 1470–1475.

Rousson, M., & Paragios, N. (2002). Shape priors for level set rep-
resentations. In European conference in computer vision (Vol. 2,
pp. 78–92).

Terzopoulos, D., & Szeliski, R. (1992). In Tracking with Kalman
snakes (pp. 3–20). Cambridge: MIT Press.

Tu, Z., Chen, X., Yuille, A., & Zhu, S. (2003). Image parsing: segmen-
tation, detection, and recognition. In ICCV (pp. 18–25).

Unser, M. (1999). Splines: a perfect fit for signal and image processing.
IEEE Signal Processing Magazine, 16(6), 22–38.

Vese, L., & Chan, T. (2002). A multiphase level set framework for
image segmentation using the Mumford and Shah model. Inter-
national Journal of Computer Vision, 50(3), 271–293.

Zhao, H.-K., Chan, T., Merriman, B., & Osher, S. (1996). A varia-
tional level set approach to multiphase motion. Journal of Com-
putational Physics, 127, 179–195.

http://www.sgb-fss.ch/

	Cooperative Object Segmentation and Behavior Inference in Image Sequences
	Abstract
	Introduction
	Formulation of the General Framework
	Behavior Inference and Its Cooperation with Image Segmentation
	Behavior Modeling with One HMM
	Behavior Modeling with Multiple HMMs

	Image Segmentation and Its Cooperation with Behavior Inference
	Summary

	Application to Finger-Counting Recognition
	Solution Using the Proposed Framework
	Training the Model
	Results

	Application to Finger-Spelling Recognition
	Implementation Using the Proposed Framework
	Training the Model
	Results

	Conclusion
	Appendix A: Image Segmentation Using the Gaussian Prior Model
	Evolution Equations
	Numerical Approach

	Appendix B: Image Segmentation Using the PCA-Based Prior Model
	Evolution Equations
	Numerical Approach

	References



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Perceptual
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /Warning
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 150
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /Warning
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 150
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 600
  /MonoImageMinResolutionPolicy /Warning
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
    /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
    /FRA <>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
    /JPN <>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <>
    /SUO <>
    /SVE <>
    /ENU <>
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [595.276 841.890]
>> setpagedevice


