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ABSTRACT
The increasing number of mobile applications fuels the de-
mand for affordable and ubiquitous wireless access. The
traditional wireless network technologies such as EV-DO or
WiMAX provide this service but require a huge upfront in-
vestment in infrastructure and spectrum. On the contrary,
as they do not have to face such an investment, social com-
munity operators rely on subscribers who constitute a com-
munity of users. The pricing strategy of the provided wire-
less access is an open problem for this new generation of
wireless access providers. In this paper, using both ana-
lytical and simulation approaches, we study the problem
comprised of modeling user subscription and mobility be-
havior and of coverage evolution with the objective of find-
ing optimal subscription fees. We compute optimal prices
for wireless social community networks with both static and
semi-dynamic pricing. Coping with an incomplete knowl-
edge about users, we calculate the best static price and prove
that optimal fair pricing is the optimal semi-dynamic pric-
ing for social community operators in monopoly situations.
Moreover, we have developed a simulator to verify optimal
prices of social community operators with complete and in-
complete knowledge. Our simulation results show that the
optimal fair pricing strategy significantly improves the cu-
mulative payoff of social community operators.

1. INTRODUCTION
With the growth of mobile applications, ubiquitous wire-

less access in urban areas has become an essential demand.
Traditional licensed band operators provide full coverage
with high initial costs to construct the service infrastruc-
ture. The infrastructure is mainly comprised of base sta-
tions and licensed spectrums. Wireless access providers that
use WiMAX, EV-DO (Evolution-Data Optimized [1]), or

This is an extended version of the paper that is to appear under same name
in ACM NetEcon 2008. It includes proofs that were skipped in the original
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3G technologies are instances of this type. On the contrary,
wireless social community operators are set up at much lower
costs and provide wireless coverage by the unlicensed band
access points activated by subscribers who constitute a com-
munity of users. Presently, FON [3] is the largest wireless
social community operator. In February 2006, FON an-
nounced that it had received $21.7 million in equity financ-
ing from the Internet giants Google and Skype, and from
the venture capital firms Index Venture and Sequoia Cap-
ital. They also made strategic agreements with the most
popular ISPs, such as Cegetel in France with more than half
million subscribers and BT in England with three millions
users. This should enable them to increase their service cov-
erage [2].

Relying on access points activated by users provides a vi-
able alternative to the deployment of costly base stations
and to the use of licensed spectrums for wireless communi-
cation. However, as the willingness of users to join such a
community determines its evolution, there is no guarantee
that the wireless social community network will reach full
coverage in the whole service area. This willingness typi-
cally depends on various factors, such as the subscription
fee, the network and service preference and the mobility of
users. In this paper, we model user subscription and mo-
bility behaviors in different scenarios to assess the evolution
of the wireless social community network. Users subscribe
to wireless operators according to the observed wireless cov-
erage and subscription fees. In our model, we characterize
different users by their time and space probability distribu-
tions in a graph based mobility model. We compute optimal
prices for a social community operator with static and semi-
dynamic pricing. Assuming an incomplete knowledge about
users, we show that fair pricing (when prices are propor-
tional to the provided coverage) is an optimal strategy when
the operator has to determine all its prices at the first instant
(i.e., semi-dynamic pricing). Furthermore, we have devel-
oped a simulator, called community simulator [4], to verify
optimal prices of social community operators with complete
and incomplete knowledge, and optimality of the fair pricing
strategies. At the beginning of each simulation, operators of
the simulator are capable of predicting the best static prices
based on their knowledge about the mobile users and the
city map. The simulator is described with the obtained nu-
merical results and is publicly available [4]. To the best of
our knowledge, this paper is the first to provide a detailed
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analysis (modeling and simulation-based study) of pricing
strategies for this new type of wireless access providers.

In [5], Manshaei et al. investigate the competition be-
tween wireless social community and traditional licensed
band operators with a game-theoretic approach. However,
no mobility model is considered for users and the quality of
service of wireless social community operator is proportional
with the fraction of subscribed users with same value for
all users. Whereas in our model, users choose destinations
with different probability distributions and they explicitly
assess the usefulness of the service by observing the wire-
less coverage provided by the social community and decide
to subscribe based on their observations of coverage, e.g., a
user with an access point near his home observes different
wireless coverage from the user with no access points around
his home. In our model, wireless social community opera-
tors may set lower prices for the users whose homes are near
public places. Therefore, different prices may be adjusted
for subscribers.

The paper is organized as follows. In Section 2, we ex-
plain our system model. In Sections 3 and 4, we discuss
the pricing problem with static and fair pricing strategies.
In Section 5, we present the community simulator in detail.
In Section 6, we analyze numerical results and finally we
conclude in Section 7.

2. SYSTEM MODEL
Our system model represents a service area in which a so-

cial community operator provides wireless access for a set of
mobile users N who intend to subscribe to the service. In
our model decision times are instants of time at which the
operator decides on prices of its service and users subscribe
to or unsubscribe from the operator. We assume decision
times are at the end of each month. Index m designates
the sequential order of decision times, i.e., m ∈ {0, 1, 2, . . .}.
Observation times are instants of time at which each user
observes if he is provided with wireless access by the opera-
tor between decision times. There are To observation times
between each two decision time, i.e., t ∈ {1, 2, . . . , To}.
2.1 System Graph

We introduce a graph to model a city consisting of build-
ings, roads and access points. Buildings and road junctions
are represented by graph vertices and road segments are
represented by graph edges. Our definition of system graph
should be rich enough to model the mobility of users and the
topology of cities. The System graph, M = (V, E), is a finite,
planar, connected, weighted graph, where V is the finite set
of vertices (nodes) and E is the finite set of bi-directional
weighted edges. Nodes of the system graph are either road
nodes or building nodes, as shown in Figure 1. A node is a
building node if its degree is equal to one. B denotes the set
of building nodes B = {v ∈ V | degree(v) = 1}. A node is
a road node if it is not a building node. R denotes the set
of road nodes R = V \B. Building nodes are divided into
three disjoint subsets: residential nodes H, workplaces W
and public places J . A residential node is a building node
to which a user is assigned as its owner. The building node
assigned to a user represents his home. nh denotes the home
of user n. Workplace nodes W represent workplaces of mo-
bile users. There is a one-to-many mapping from the set of
workplace nodes W to the set of all mobile users N . nw

denotes the workplace of user n. Places such as shopping

Figure 1: A System graph is a planar connected
graph. The degree of building nodes is equal to one.
The weights of edges are not shown in this figure.

centers, restaurants and parks are represented by the set of
public place nodes J . In order to simplify wireless cover-
age formulation, we introduce a binary function on pairs of
nodes:

Definition 1. Let de be the effective range of access points.
The range function d : V × V 7→ {0, 1} is defined as:

d(v, v′) =

8
<
:

1 if |v − v′| < de

0 otherwise

2.2 Social Community Operator
Each user activates an access point in his house when

he joins the community by subscribing to the operator. In
our model, the social community operator S is represented
by S = (NS , P, AP [0]), where AP [0] is the initial set of
nodes on which an access point belonging to S is active; NS

is the set of its subscribed users at decision times NS =
{NS [1], NS [2], . . .}, and P is the set of its price sets for
users at decision times P = {P [1], P [2], . . .}, where P [m] =S

n∈NS [m] Pn[m] and Pn[m] is the price of operator S for
user n at decision time m. To specify our definition of social
community operator we use the coverage function with the
following definition:

Definition 2. Coverage function C[m] for an operator
at decision time m is defined as:

C(v, m) =

8
<
:

1 if it provides service on v at decision time m

0 otherwise

In our model, we assume all initial access points of social
community operator S have been placed on public place
nodes J and workplace nodes W . Because these operators
negotiate with owners and managers of public places and
workplaces to make their service observable for potential
mobile users. As the negotiation is not a part of our discus-
sion, we assume that the initial access point locations AP [0]
of social community S are given at time 0, and the operator
never activates any other access point on public places or
workplace nodes. In other words, AP [0] ⊆ (J ∪W ). We also
assume that if all mobile users activate access points in their
home nodes for the social community, there would be full
coverage for all nodes of the system graph, i.e., C(v, m) = 1.
Note that, in some cities the community operators cannot



provide full coverage even when all users subscribe to the ser-
vice. Considering the above assumptions, the access point
locations of any social community operator S are the resi-
dential nodes of subscribed mobile users or AP [0]. Hence,
by using Definition 1, we can rewrite the coverage function
presented in Definition 2 for operator S as:

C(v, m) =

8
<
:

1 ∃x ∈ (AP [0] ∪NS [m])|d(x, v) = 1

0 otherwise

The pricing strategy of an operator is static if it does not
change its price set at decision times, i.e., P [m] = P [1].
The pricing strategy of an operator is semi-dynamic [6] if
it determines its price set of all decision times at decision
time m = 0. The payoff of social community operator S for
month m is then:

u[m] =
X

n∈NS [m]

Pn[m]. (1)

We can also calculate the cumulative payoff U [m] of the
operator at decision time m by:

U [m] =

mX
i=1

u[i]. (2)

In our model, we say that the price sets P and P ′ are equiv-
alent, if and only if:

lim
m→∞

U [m]

U ′[m]
= 1, (3)

where U [m] and U ′[m] are the cumulative payoffs of the
operator with price sets P and P ′, respectively.

2.3 User Model
Mobile users observe coverage provided by the operator

at each observation time and at the following decision times
they may subscribe or unsubscribe from the operator. In
this section we explain different parameters of mobile users
that determine their mobility and subscription behaviors.

2.3.1 Mobility
In our model, the mobile users move between nodes with

a modified version of graph-based random waypoint algo-
rithm [8], i.e., instead of choosing a random destination,
mobile users choose their destination node with distribution
Dch. For any user n, destination choice distribution Dch

n

indicates the probability that he chooses any building node
v ∈ B as his next destination. In other words, if he chooses
destination at any observation time t, then Dch

n (v, t) is the
probability that n chooses v. We also assume that if mobile
user n chooses a public place node as his destination, his
choice is uniform among the set of public place nodes J :

Dch
n (j, t) =

1

|J |
X

j′∈J

Dch
n (j′, t) ∀j ∈ J (4)

Similarly, if mobile user n chooses a destination from other
users’ houses, his choice is uniform among the set of other
users’ houses:

Dch
n (h−n, t) =

1

|H| − 1

X

h∈H−n

Dch
n (h, t) ∀h−n ∈ H−n (5)

where H−n = H − {nh}. A shortest path algorithm (e.g.
Dijkstra or Floyd-Warshal shortest path algorithms [10]) is

used to find a path to the chosen destination. Before moving
on the selected route, mobile users randomly choose a speed
between (speedmin, speedmax). Upon arrival, users stay at
their destinations for an upper bounded random interval.

In our model, the mobility estimation of users is desirable
for operators. For any user n, presence distribution Dx

n in-
dicates the probability that his location is node v ∈ V at
any observation time t, i.e.,

Dx
n(v, t) = Pr{location of n = v, at observation time t}.

The expected value of the number of observation times that
the location of user n is node v would be:

EDx
n
(v) =

ToX
t=0

Dx
n(v, t), (6)

and the expected value of the number of observation times
that his location is one of the nodes of set L would be:

EDx
n
(L) =

X
v∈L

EDx
n
(v) =

X
v∈L

ToX
t=0

Dx
n(v, t). (7)

Given Dch
n , computing Dx

n is not trivial. But, we can com-
pute the expected value of the number of time steps a user
spends in his home, workplace, public places and other users’
houses, by simulation. Using Equation (4) and (5), we
can derive the expected value of the number of observation
times that any user spends at public places and other users’
houses.

EDx
n
(j) =

1

|J |
X

j′∈J

EDx
n
(j′) ∀j ∈ J (8)

EDx
n
(h−n) =

1

|H| − 1

X

h∈H−n

EDx
n
(h) ∀h−n ∈ H−n (9)

2.3.2 Coverage Observation
Mobile users observe the coverage provided by the opera-

tor expressed in Definition 2, at observation times with the
frequency fn. For instance, fn could be:

fn(v) =

8
>><
>>:

5 for v = nh

2 for (v ∈ H ∧ v 6= nh)
20 for v = nw

8 for v ∈ J

(10)

where user n has his highest frequency of observations when
he is at his workplace. Because, the service is more im-
portant for him at his workplace node nw. The observed
coverage Qn for user n at decision time m is defined as:

Qn[m] =

P
∀nx

(fn(nx)× C(nx, m))P
∀nx

fn(nx)
, (11)

where nx is a traversed node between decision times m and
m− 1. A node may be traversed and counted several times.

2.3.3 Subscription and payoff function
Any mobile user n subscribes to the operator if his payoff

is positive. In our model, the Payoff un[m] of user n at
decision time m is defined as:

un[m] = an ×Qn[m− 1]− Pn[m],

where parameter an indicates the importance of provided
coverage Qn for user n. an has distribution Dan over all
users. At each decision time, any mobile user subscribes or
stays subscribed to the operator if his payoff is positive. If



a subscribed mobile user’s payoff becomes negative, he will
unsubscribe from the operator with no penalty. A complete
list of system model variables and their definitions are pre-
sented in Appendix A.

2.4 Shared Knowledge
We assume operators know system graph M , probability

distribution of parameter an and the expected number of ob-
servation times users spend in their workplaces, other users’
houses, road nodes, public place nodes and at home. More-
over, operators know the frequency of observations fn, and
subscriptions/unsubscriptions of users at previous decision
times.

3. STATIC PRICING STRATEGY
Having defined the system model, we can now find an op-

timal price set for the operators with complete knowledge in
different scenarios. The aim of a social community operator
with static pricing strategy is to find the optimal price set
that maximizes its cumulative payoff. In order to achieve
this goal, the operator predicts its cumulative payoff for dif-
ferent price sets and chooses the optimal one.

3.1 Pricing with Complete Knowledge
A social community operator with complete knowledge

not only knows the distribution of parameter an over all
users but also knows the exact value of parameter an of
each user. We explain how the operator computes its cu-
mulative payoff for a price set P . The operator calculates
its coverage at decision time 0 from its initial access point
locations AP [0]. With complete knowledge, it determines
whether or not each user subscribes to or unsubscribes from
it. Therefore, it finds locations of its access points AP [1] at
decision time 1. By repeating this procedure, the operator
can calculate its cumulative payoff at any decision time.

Here we describe the computation of coverage Qn for any
user n based on access point locations at decision time m.
By knowing system graph M and locations of access points
AP [m], operator S calculates coverage function C from which
it finds the observed coverage of each user:

Qn[m] =
EDx

n
(fn × C)

EDx
n
(fn)

=

P
v∈V

PTo
t=0

�
Dx

n(v, t)× fn(v)× C(v, m)
�

P
v∈V

PTo
t=0

�
Dx

n(v, t)× fn(v)
�

=

P
v∈V

�
fn(v)× C(v, m)× EDx

n
(v)
�

P
v∈V

�
fn(v)× EDx

n
(v)
� (12)

Using Equations (8) and (9), we can rewrite (12) as:

Qn[m] =
fn(nh)× C(nh, m)× EDx

n
(nh)

P
v∈V

�
fn(v)× EDx

n
(v)
�

+
fn(nw)× C(nw, m)× EDx

n
(nw)

P
v∈V

�
fn(v)× EDx

n
(v)
�

+
EDx

n
(J)×Pv∈J

�
fn(v)× C(v, m)

�

|J | ×Pv∈V

�
fn(v)× EDx

n
(v)
�

+
EDx

n
(H−n)×Pv∈H−n

�
fn(v)× C(v, m)

�

(|H| − 1)×Pv∈V

�
fn(v)× EDx

n
(v)
�

+
EDx

n
(v)×Pv∈R

�
fn(v)× C(v, m)

�

P
v∈V

�
fn(v)× EDx

n
(v)
� (13)

The computation of all terms of Equation (13) is trivial,
except the last term. The point is that the social community
operator cannot simply assume that mobile users uniformly
spend their time on road nodes:

EDx
n
(r) 6' EDn

v
(R)

|R| ∀r ∈ R.

As we are using a shortest path algorithm, we give more
weight to those nodes that appear more often on shortest
paths between building nodes. Let T (v) be the set of all
shortest paths between building nodes that go through node
v. Each shortest path goes through each node at most once
(There is no cycle in a shortest path). With this approxi-
mation we obtain:

EDx
n
(r) ' EDx

n
(R)× | T (r) |P

v∈R T (v)
.

Having calculated the observed coverage by users Qn, the
operator can compute its payoff at all decision times for a
given price set. By changing the initial price set, it can find
the optimal price set that maximizes its cumulative payoff.

3.2 Pricing with Incomplete Knowledge
A social community operator with incomplete knowledge

does not know the exact value of the preference parameter
an. The operator can predict the future of the system based
on the distribution of the parameter Dan . Instead of using
coverage function C to calculate observed coverage Qn, the
operator uses the expected value of coverage function E(C):

E
�
C(v, m)

�
= Pr

n
C(v, m) = 1

o

= Pr
n [

v′|d(v′,v)=1

(v′ ∈ AP [m])
o

= 1− Pr
n \

v′|d(v′,v)=1

(v′ 6∈ AP [m])
o

= 1−
Y

v′|d(v′,v)=1

Pr
n

v′ 6∈ AP [m]
o

(14)

There are two different cases for the probability that an
access point is not located on node v′. Any access point
node in AP [m] is a public place or workplace node or a
mobile user’s home node. If it is a public place node or a
workplace node, it is initially defined 0 or 1 in the initial



coverage of the operator, but if it is a residential node and
user n is its owner at decision time m > 0:

Pr
n

v′ 6∈ AP [m]
o

= Pr
n

n 6∈ NS [m]
o

= Pr
n

an ×Qn[m− 1]− Pn ≤ 0
o

= Pr
n

an ≤ Pn

Qn[m− 1]

o

=

Z Pn
Qn[m−1]

0

Dan(x)dx

and the cumulative payoff at decision time m would be:

U [m] =
mX

k=1

u[k]

=
mX

k=1

X

n∈NS [k]

Pn × Pr{n ∈ NS [k]}

=
mX

k=1

X

n∈NS [k]

Pn × Pr{an >
Pn

Qn[k − 1]
}

=
mX

k=1

X

n∈NS [k]

Pn ×
Z ∞

Pn
Qn[k−1]

Dan (x)dx

The operator evaluates different price sets to find the price
set that maximizes its cumulative payoff. We have com-
pared predicted payoffs by simulation results for different
prices when the operator sets the same price for all users, in
Section 6.

4. FAIR PRICING STRATEGY
In this section, we assess semi-dynamic pricing strategies

of operators. First, we define fair pricing:

Definition 3. A pricing strategy of an operator is fair if
for any user n, its price at decision time m−1 is a constant
factor cn of its predicted coverage for the user at month m−
1:

Pn[m] = cn ×Qn[m− 1],

where fairness constant cn is defined at decision time 0, and
Qn[m − 1] is the predicted value of provided coverage for
decision time m− 1, computed at decision time 0.

As the price set is determined at decision time m = 0, fair
pricing strategies are semi-dynamic [6]. We prove that for
each semi-dynamic pricing of an operator, there exists an
equivalent fair pricing if there exists a decision time after
which its user set and price set do not change. Note that
there are cases where even if the operator does not change its
price set, its set of subscribed users changes forever. Hence,
the assumption about the existence of such a decision time is
necessary. First, we find membership probabilities of mobile
users.

Lemma 1. The probability that any mobile user n sub-
scribes or stays subscribed to a social community operator
(with fair pricing) at decision time m > 0 with fairness con-
stant cn is

R∞
cn

Dan(x)dx.

Proof. The proof of is provided in appendix B.

Theorem 1. For each semi-dynamic pricing of a social
community operator, there exists an equivalent fair pricing
if there exists a decision time after which its user set and
price set do not change.

Proof. The proof is provided in appendix C.

4.1 Optimal Fair Prices
The goal of any operator with fair pricing is to find the

best fairness constants cn that maximizes its payoff. The
expected value of coverage on any node v is calculated in
Equation (14). If node v is a public place node or a work-
place node, Pr{v′ 6∈ AP i[m]} is initially defined 0 or 1 in
initial coverage of the operator. Otherwise for any residen-
tial node v′ with owner n, we can use Lemma 1 to calculate
the probability:

Pr
n

v′ 6∈ AP [m]
o

= 1− Pr
n

n ∈ NS [m]
o

=

Z cn

0

Dan(x)dx

Then the payoff of the operator at month m is:

u[m] =
X
n∈N

�
Pn × Pr{n ∈ NS [m]}

�

=
X
n∈N

�
cnQnPr{n ∈ NS [m]}

�

=
X
n∈N

�
cnQn

Z ∞

cn

Dan(x)dx
�
,

where the provided coverage for any mobile user n can be
computed as a linear function of these membership proba-
bilities:

Qn[m] =

P
v∈V EDx

n
(v)× fn(v)× E

�
C(v, m)

�

EDx
n
(fn)

.

Notice that all parameters of payoff u[m] do not change after
decision time 1. Therefore, the maximum payoff is:

uopt[m] = uopt[2] = max
{c1,...,c|N|}

(u[2]).

With the payoff function and its derivative with all fairness
constants, the optimization can be done with any non-linear
optimization method such as Levenberg-Marquardt [7] or
gradient descent. It is worth mentioning that the above cal-
culated optimal fair pricing strategy assigns different prices
according to the locations of mobile users’ home nodes and
provided coverage.

5. COMMUNITY SIMULATOR
Our developed community simulator, with high flexibility

and good performance, simulates all possible scenarios of
our model with high precision [4]. The simulator supports
any number of operators with any pricing strategy. Before
beginning a simulation, community simulator generates a
city map with an open source random map generator [9].
The following parameters can be modified in the community
simulator : the size of the city, road density, adjacency dis-
tances of road nodes, map uniformity, road smoothness and
building density. The parameters of the map generator are
set to generate a 4km × 4km map. Community simulator
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Figure 2: Predicted payoff with complete and in-
complete knowledge and the occurred cumulative
payoff of a social community operator in 12 months.

works with real time format yy/mm/dd.hh : mm : ss. The
format was preferred to the cycle based timer, because mo-
bile users choose their destination according to the time of
day. Every 15 simulated seconds, all mobile users observe
coverage. Mobile users reset all their observations at the end
of each month.

Choice-destination distribution is defined in a way that
results in the expected value of the number of observation
times that any user n is present at a set of nodes L as:

EDx
n
(L) =

8
>>><
>>>:

48− 50% for L = {nh}
0− 1% for L = H − {nh}
9− 12% for L = R
29− 31% for L = {nw}
9− 11% for L = J

Before the simulator timer starts, we calculate all-pair short-
est paths with the Floyd-Warshal algorithm [10]. Therefore,
there is no need to run a shortest path routing during sim-
ulation. Mobile users choose their speed for each destina-
tion randomly between 10km/h and 30km/h. After reaching
their destinations, they stay from 1 to 3 hours at their desti-
nation nodes and then they choose the next destination and
repeat the steps again.

6. NUMERICAL RESULTS
In our simulation, we generate the downtown of a densely

populated city with 1104 buildings, 884 residential nodes
and 2048 road nodes. A social community operator with an
initial coverage of 10% of public place and workplace nodes
(with an equal number of initially covered workplace and
public place nodes) provides coverage in the simulated city.
The distribution of parameter an is defined to be uniform
between 1000 and 4000, over all users. The implemented so-
cial community operator can predict its payoff for different
static prices with complete or incomplete knowledge at the
first instance of simulation. In Figure 2, we compared pre-
dicted cumulative payoff of the operator of 12 months with
its occurred payoff. The results show that with complete
and incomplete knowledge, the optimal static price 1000 is
predicted and is equal to the optimal occurred payoff. As
we have proved in Section 4, optimal fair pricing is the op-

timal semi-dynamic pricing of a social community opera-
tor. In our simulations, we found optimal fairness constants
of users by applying gradient descent. We also considered
another semi-dynamic pricing with prices 0 and 1000 for
the first and second months and 2000 for all the following
months. With price 0 (free service), all users subscribe and
the provided coverage would highly increase. The improved
coverage helps to keep more users, even with the high prices
of the following months. Figure 3 shows the monthly payoff,
the cumulative payoff, and the number of subscribed users
with these two pricing strategies during 4 years. We observe
that the proposed optimal fair pricing strategy outperforms
the considered semi-dynamic pricing strategy and improves
the cumulative payoff about 10%. Moreover, the number
of subscribed users and the monthly payoff are more stable
using the proposed optimal fair pricing strategy.

7. CONCLUSIONS
We have computed optimal strategies in different scenar-

ios of wireless social community operators with complete
and incomplete knowledge. The required information of the
proposed model can be gathered from traditional statisti-
cal studies (e.g. subscription forms) and/or data mining.
To gain complete knowledge, operators need to distinguish
personal subscription preferences.

We have shown that social community operators should
set different subscription fees for users to maximize their
payoffs. The reason is that mobile users observe different
wireless coverage based on their preferred locations. Fur-
thermore, lower subscription fees should be adjusted for
owners of houses (potential AP locations) near public places
or workplaces. In terms of future work, contract-based sub-
scriptions and throughput of the network could also be con-
sidered. Moreover, simulations can be done on maps of real
cities with statistical data as input.
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Figure 3: Performance analysis of wireless social community operator with our developed community simula-
tor. Fair pricing and a semi-dynamic pricing (P [0] = 0, P [1] = 1000, P [2+] = 2000) have been used for four years
(48 months): (a) Number of subscribed users per month, (b) Monthly payoff of social community operator,
(c) Cumulative payoff of operator.

APPENDIX
A. TABLE OF SYMBOLS

Symbol Definition

AP [m] Set of access points at decision time m
B Set of building nodes

C(v, m) Coverage function on node v at decision time m
Dch

n (v, t) Destination-choice distribution for user n
on node v at observation time t

Dx
n(v) Presence distribution for user n on node v

d(v, v′) Distance function for node v and v′
de Effective range of access points

fn(v) frequency of observations of user n on node v
H Set of residential nodes
J Set of public place nodes
M System map
N Set of all users

NS [m] Set of subscribed users at decision time m
P Set of all price sets

P [m] Set of all prices at decision time m
Pn[m] Price for user n at decision time m
Qn[m] Provided coverage in month m

R Set of road nodes
T (v) Set of shortest paths that go through node v
To Number of observation times in one month

U [m] Cumulative payoff of the operator at decision time m
u[m] Payoff of the operator at month m
un[m] Payoff of user n at decision time m

V Set of all nodes
W Set of workplace nodes

B. PROOF OF LEMMA 1
Proof. According to Definition 3, the probability that

mobile user n subscribes or stays subscribed to the fair op-
erator at decision time m > 0 is:

Pr
n

n ∈ N
S
[m]
o

= Pr
n

an ×Qn[m− 1]− Pn[m] > 0
o

= Pr
n

an ×Qn[m− 1] > cn ×Qn[m− 1]
o

= Pr
n

an ×Qn[m− 1] > cn ×Qn[m− 1]
o

= Pr
n

an > cn

o

=

Z ∞

cn

D
an (x)dx

C. PROOF OF THEOREM 1
Proof. According to Equation (11), the observed cover-

age Qn[m] for any user n at decision time m is a function
of the coverage C provided by the operator at the decision
time and the frequency of observations fn. We also know
that coverage function C at decision time m is a function of
its initial access point locations AP [0] and the set of sub-
scribed users NS [m] at the decision time. Therefore, the
observed coverage Qn[m] is a function of its initial access
point locations AP [0], the set of subscribed users NS [m] at
the decision time and the frequency of observations fn. Let
τ be the decision time after which its user set and price set
do not change. Hence, After decision time τ :

m > τ : Qn[m] = Qn[τ ],

and the probability that any user n subscribe or stay sub-
scribed to the operator would be:

Pr
n

n ∈ NS [m]
o

= Pr
n

an ×Qn[m− 1] > Pn[m]
o

= Pr
n

an >
Qn[m− 1]

Pn[m]

o

=

Z ∞

Pn[m]
Qn[m−1]

Dan(x)dx

=

Z ∞

Pn[τ]
Qn[τ]

Dan(x)dx (15)

Assume Nf , Qf ,Pf ,uf and Uf denote the set of subscribed

Semi−dynamic Pricing

Optimal 
Semi−dynamic

Pricing

Fair
Pricing

Figure 4: The set of fair pricing strategies contains a
non-empty subset of optimal semi-dynamic pricing
strategies.

users, provided quality of service, price, payoff and cumu-
lative payoff of the operator with fair pricing, respectively.



If the operator uses fair pricing and assigns its fairness con-
stant cn for user n with:

cn =
Pn[τ ]

Qn[τ ]
,

by using Lemma 1 and Equation (15), we have:

m > τ : Pr
n

n ∈ Nf [m]
o

=

Z ∞

cn

Dan(x)dx

=

Z ∞

Pn[τ]
Qn[τ]

Dan(x)dx

=

Z ∞

Pn[τ]
Qn[τ]

Dan(x)dx

= Pr
n

n ∈ NS [m]
o

Therefore, the expected value of the user sets with the two
pricing strategies are the same:

m > τ : E
�
Nf [m]

�
= E

�
NS [m]

�

Because of the same expected value of user sets we also ob-
tain:

m > τ : Qn[m] = Qf
n[m].

Therefore, the payoff of the operator at decision time m > τ
when it uses fair pricing would be:

uf [m] =
X
n∈N

�
P f

n [m]× Pr
n

n ∈ Nf [m]
o�

=
X
n∈N

� Pn[τ ]

Qn[τ ]
×Qf

n ×
Z ∞

Pn[τ]
Qn[τ]

Dan(x)dx
�

=
X
n∈N

�
Pn[τ ]×

Z ∞

Pn[τ]
Qn[τ]

Dan(x)dx
�

= u[m]

Now we check the equivalence condition :

lim
m→∞

Uf [m]

U [m]
= lim

m→∞

Pm
k=1 uf [k]Pm
k=1 u[k]

= lim
m→∞

Pτ
k=1 uf [k] +

Pm
k=τ+1 uf [k]Pτ

k=1 u[k] +
Pm

k=τ+1 u[k]

= lim
m→∞

Pm
k=τ+1 uf [k]Pm
k=τ+1 u[k]

= lim
m→∞

Pm
k=τ+1 u[k]Pm
k=τ+1 u[k]

= 1

This theorem is illustrated with the Venn diagram in Fig-
ure 4. In summary, the set of fair pricing strategies contains
at least an optimal pricing strategy among semi-dynamic
pricing strategies.


