
AN INTERPRETED APPROACH TO MULTIMEDIA STREAMS PROTECTION

C. Alberti, A. Romeo, M. Mattavelli, D. Mlynek
Swiss Federal Institute of Technology.
Integrated Systems Laboratory, ISL/LSI

CH-10151 Lausanne, Switzerland
E-mail: claudio.alberti@epfl.ch

ABSTRACT

Exploiting experiences accumulated during MPEG-4
Structured Audio [1] [5] process of standardization and
OCCAMM [2] European project related to multimedia
content protection, this paper proposes a new approach to
Intellectual Property Management and Protection (IPMP)
of multimedia content streams.

The definition of a sort of C-like language for IPMP
tools description is proposed. The core of such language
shall be a set of IPMP-primitives able to be combined and
provide all the range of functionality required during
content consumption. The suggested approach will also
allow an implementation independent method of
complexity evaluation. Moreover, a sort of IPMP Scene
Description Language is here suggested as a suitable
solution for the formalization of interactions between
different IPMP tools cooperating during the process of
content consumption.

The potential effectiveness of the above-mentioned
structured approach has been recognized by the MPEG
working group through the addition in the current IPMP
Extensions Committee Draft of the opportunity for a
structured description of IPMP tools.

1. INTRODUCTION

With the deployment of digital technology to deliver
digital multimedia material to users a host of issues have
surfaced, arising from the fact that audio-visual
information have always carried intrinsic value but
because of the poor performance of analogue media and
their rapid deterioration in subsequent processing/copying,
the protection of this value has in general not been an
issue. With digital broadcasting (via satellite, Internet or
terrestrial carriers) the traditional paradigm no longer
holds because audio-visual content in its digital form has
the ability to allow infinite replication without loss of
quality. Content protection has therefore become a major
issue. On the one hand content has to be protected so that
access to it is enabled only to those who have acquired the

right to do so, on the other hand content is to be protected
so as to prevent its dissemination.
 Further, the flexibility of digital technologies allows a
major overhaul of the way content is accessed today.
While today the economic models that can be used still
suffer from the rigidity of analogue technologies and the
reference to physical support media, the Internet provides
almost limitless business models. This is reflected in the
objective of many IPMP initiatives to provide value-chain
participants with the ability to acquire, supply, process and
consume multi-media services on a worldwide basis in
accordance with the rights associated with these services.
In other words content protection is to be extended to
encompass "content management".

In this scenario interoperability among different
manufacturers’ products is of crucial importance to
provide consumers the easiest accessibility to content.

Two kinds of interoperability can be defined and in
this paper will be shown that the proposed solution can
provide both:
1. Allow the same protected content to be consumed on
different vendors’ devices.
2. Allow the same content to be protected by different
vendors’ IPMP tools.

2. TOOLS DESCRIPTION

Following the success of MPEG-4 Structured Audio
Orchestra Language (SAOL) [1] [4] [7] [8], conceived and
currently used to describe instruments as a network of
primitives producing the desired sound synthesis or
processing, we propose to define a set of IPMP-primitives
able to be combined and provide all the range of functions
required during content consumption. For instance such
primitives shall be able to provide functionality needed
when performing cryptographic algorithms. In case of
symmetric encryption/decryption, a DES algorithm would
be described in terms of a sequence of primitives
constituting the analog of a SA instrument (that henceforth
will be called either IPMP instrument) receiving the
ciphertext as input and providing the plaintext as output.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Infoscience - École polytechnique fédérale de Lausanne

https://core.ac.uk/display/147941537?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

TOOL_1
Description

(text)

Parser/
Compiler

(exe)

T ERMINAL

IPMP
Virtual

Machine

TOOL_1
instance

bytecode

Figure 1. Tool description parsing, compiling and download
into the terminal.

Every IPMP tool would be described through this
language either as a single IPMP instrument or as a set of
instruments composing an IPMP orchestra. The
description would be parsed and compiled by suitable
parsers and compilers whose output shall be a bytecode to
be downloaded into the recipient terminal where an IPMP
virtual machine will be able to instantiate and use the tool
(see figure 1). We use here the term virtual machine since
it is a platform-dependent executable able to execute a
platform-independent (byte)code.

An exact specification of primitives’ implementation
is not necessary. Only their input-output relation is
required to be standardized in order to allow different
developers to exchange IPMP tools without risk of
incompatibility. This implies that a given description of an
IPMP instrument shall correspond to a unique bytecode.

The ability to describe IPMP tools in terms of sets of
basic primitives to be executed a certain number of times
during tool use will provide an implementation
independent method of complexity evaluation. In order to
achieve meaningful measurements a complexity vector
(i.e. a set of basic primitives or classes of primitives) shall
be defined. Every element of this vector will be a counter
of the number of times a primitive (or primitives belonging
to a class of primitives) is used during the IPMP tool
execution. The final complexity will be quantified through
the values of the different vector dimensions.

3. TOOLS INTERACTION

In case the multimedia content consumption requires the
use and interaction of different IPMP tools coming from
different vendors, they are likely to be described by
different IPMP orchestras. The authors propose that the
way in which every tool has to cooperate with the others
has to be specified by means of an IPMP Scene
Description Language similar to MPEG-4 Binary Format
for Scene (BIFS) [3]. The scene description shall be coded
independently from streams related to primitive media
objects so that it will not be necessary to decode the
objects in order to access and if necessary modify
parameters describing the scene.

TOOL_1
Description

(text)

TERMINAL

IPMP
Virtual Machine

Parser/
Compiler

(exe)

bytecode

IPMP Scene
Description

(text)

TOOL_2
Description

(text)

TOOL_n
Description

(text)

Parser/
Compiler

(exe)

Parser/
Compiler

(exe)
Parser/

Compiler
(exe)

TOOL_n
instance TOOL_2

instance TOOL_1
instance

bytecode

 Figure 2 A process of content consumption may require several
interoperating IPMP tools.

Here the different IPMP tools will play the role of
BIFS nodes and their relationship will be described in
terms of a hierarchical structure. Each node is linked to
one or several other nodes in a non-static way. This means
that node attributes can be changed while nodes can be
added, replaced, or removed. This scenario introduces the
need for a normative entity able to coordinate the different
IPMP tool instances running inside the virtual machine.
OPIMA architecture approach investigated in the
framework of OCCAMM European project seems to be
suitable to offer a platform to conceive this normative
entity. Actually this architecture appears as the best
candidate to interpret and execute languages oriented to
secure multimedia content handling. Some modifications
are likely to result unavoidable in order to best fit the set
of primitives that will be defined and thus provide the
maximum degree of effectiveness.

As for tools description, scene description has to be
parsed and compiled in order to produce the bytecode to
be downloaded into the terminal and allowing a correct
synergy among the several IPMP tools instances. The
exact specification of this parser and compiler shall be
given only in terms of input-output relation (a given
description corresponds to a given bytecode). Such a
description shall be downloaded into the terminal with the
content since the content vendor will have to specify (in
terms of IPMP scene description language) the exact
IPMP environment in which its material has to be
consumed. A schematic of this scenario is proposed in
figure 2.

4. TOOLS CONFIGURATION

Once an IPMP instrument has been described in its
functionality and placed at its own place inside the scene,
it has to be configured and used in the right way. This goal

can be achieved by means of score language providing
information concerning basically:
• exact time in which a particular IPMP instrument has

to be instantiated,
• duration of its performance (or exact time in which it

has to be terminated),
• parameters for initialization.

For instance, if a process of content consumption
requires the interaction with a remote IPMP tool, we can
imagine that through a score event an IPMP instrument is
properly instantiated and configured. Then it produces the
appropriate message to be sent and stops. The remote tool,
once the message is received, produces the answer and a
score event aimed at activating the IPMP instrument
instance recipient of the message. This provides an
asynchronous mechanism of IPMP tool interaction.

By means of this score language it will also be
possible to access some control variables inside the
different IPMP instruments if they have been declared as
exposed (i.e. accessible for modification) in the
description. This feature will provide a powerful run-time
tuning mechanism.

A score is a list of commands. A command performs a
single action at a moment in time, such as changing the
value of an exposed field or creating a new instance of an
IPMP instrument (providing the set-up settings). The
instantiation of new IPMP tools only requires that the
bytecode related to the new tool description has already
been downloaded into the terminal.

5. AN EXAMPLE OF TOOL DESCRIPTION

A very simple example is here provided in order to better
illustrate the idea of IPMP tools description.
 The described tool performs a classic digital signature
generation and verification algorithm. In bold are
functions that could belong to the primitive instructions set
to be defined.

It is the Digital Signature Algorithm taken from [6]
where the necessary keys are generated and then used to
sign the document and verify its signature.

The example shows that typical primitives that are
likely to be inserted into the core set of functions are
operations modulo a generic integer n (exp_mod,
invert_mod, mult_mod), operations on great numbers
(long_modulus), basic cryptographic functions
(SecureHashAlgorithm) and complex mathematical
operations (select_from_multiplicative_group). The study
and analysis of the widest range of currently used
algorithms will assure the core primitives set to cover the
largest variety of usage scenarios.

// SUMMARY: entity A signs a binary message m of arbitrary length. Any entity B can
verify this
// signature by using A’s public key.

DSAKeyGeneration(){

bit(160) q, a;
bit(1024) p, g, alpha, y;
uint t, k, h;

// Key generation for the DSA

 alpha = 1;

// Select a prime number q such that 2159 < q < 2160 .

while(!is_prime(q))
 q = select_random_pow2(159, 160);

// Choose t so that 0 = t = 8, and select a prime number p where 2511+64*t < p <
2512+64*t ,
// with the property that q divides (p-1).
while(long_modulus((p-1), q)){

 t = select_random(0,8);
 k = 64 * t;
 p = select_random_pow2(511 + k, 512 + k);
}

// Select a generator α of the unique cyclic group of order q in Zq

*
// Select an element g?Zq

* and compute α = g(p-1)/q mod p.
while(alpha == 1){

g = select_from_multiplicative_group(p);
h = long_divide((p-1), q);
alpha = exp_mod(g, h, p);
}

 // Select a random integer a such that 1 = a = (q – 1)

a = select_random(1, (q - 1));

 // Compute y = αa mod p

y = exp_mod(alpha, a, p);

// A’s public key is (p, q, alpha, y); A’s private key is a.
 output(p, q, alpha, y, a);

DSASignatureGeneration(p, q, alpha, y, m, a){

// Entity A should do the following:

bit(160) k, invk, s, r;
bit(1024) h;

// Select a random secret integer k, 0 < k < q

while((k == 0) OR (k == q))

k = select_random(0, q);

// Compute r = (αk mod p) mod q

h = exp_mod(alpha, k, p);
r = long_modulus(h, q);

// Compute k-1mod q.

invk = invert_mod(k, q);

// Compute s = (k-1 mod q) * {h(m) + a * r} mod q.

hash_code = SecureHashAlgorithm(m);
s = long_modulus(invk * (hash_code + a *r), q);

// A’s signature for m is the pair (r, s).

output(r, s);
}

DSASignatureVerification(p, q, alpha, y, r, s, m){

bit(160) w, u1, u2, v, hash_code;
bit(1024) k, j;

// To verify A’s signature (r, s) on m, B should do the following:

// Obtain A’s authentic public key (p, q, alpha, y).
// Verify that 0 < r < q and 0 < s < q; if not then reject the signature.

if (!((0 < r < q) AND (0 < s < q)) output (FALSE);

else{
 // Compute w = (s-1 mod q) and h(m)
 w = invert_mod(s, q);
 hash_code = SecureHashAlgorithm(m);

 // Compute u1 = w * h(m)mod q and u2 = (r * w) mod q
 u1 = long_modulus(w * hash_code, q);
 u2 = long_modulus(r * w, q);

 // Compute v = (αu1 * yu2 mod p) mod q.
 k = exp_mod(alpha, u1, p);
 j = exp_mod(y, u2, p);
 v = mult_mod(k, j, q);

 // Accept signature if and only if v=r.
 if(v == r) ouput(TRUE);
 else output(FALSE);
}

Figure 3 Example of Digital Signature Algorithm described
through the proposed approach.

6. CONCLUSIONS

According to past experience in SA [4] [7] [8], the
proposed approach provides a consistent number of
advantages that we try here to summarize.

The tool description in terms of network of primitives

1. allows a range of possible tools creation as wide as
the definition of the base primitives set is appropriate;

2. provides a simple way to redesign IPMP tools when
they should become no more trustworthy for
implementation bugs or algorithm intrinsic
weaknesses;

3. does not need the sensible content to exit the terminal
since the only data transfer involved is that
concerning the bytecode download (on the other hand
this shall be encrypted, but the amount of data is
likely to be quite small);

4. allows a precise complexity evaluation in terms of
number of basic instruction to be performed per time-
frame and thus implementation independent. These
complexity measurements could lead to a precise
definition of levels and profiles.

The scene description in terms of dedicated language

1. provides a simple way to reconfigure the interaction
between different IPMP tools even during the content
consumption;

2. if coded in textual format and downloaded as
bytecode, requires a low bit-rate data exchange with
the terminal, keeping any sensible information inside
it;

3. implies the definition of a normative scheduler
supervising the overall execution, allowing the
exploitation of efforts already produced in the
framework of successful past projects [2].

The tool configuration by means of a dedicated score

language

1. allows the run-time instantiation of new IPMP tools
through events generation;

2. is suitable for a fine and direct control on IPMP tools
performances thanks to the exposed fields mechanism.

7. REFERENCES

[1] ISO/IEC JTC 1/SC 29/WG11 - ISO/IEC FDIS 14496-3 sec5

[2] Project OCCAMM – IST-1999-11443 Deliverable D1 -
Project description

[3] ISO/IEC JTC 1/SC 29/WG11 - ISO/IEC FDIS 14496-1
2000(E)

[4] G. Zoia, "A method for Complexity Measurements in
Structured Audio". ISO/IEC JTC1/SC29/WG11 (MPEG98)
document M3602, Dublin - July 1998.

[5] E. Scheirer, "SAOL: the MPEG-4 Structured Audio
Orchestra Language". In Proceedings of the International
Computer Music Conference. Ann Arbor, MI, October 1998.

[6] Menezes A.J., van Oorschot P.C., van Stone S. A. ,
Handbook of Applied Cryptography – CRC Press.

[7] G. Zoia, C. Alberti, “A virtual ALU for MPEG-4 Structured
Audio on parallel architectures”. ISO/IEC JTC1/SC29/WG11
(MPEG99) document m4706, Vancouver – July 1999.

[8] G. Zoia, C. Alberti, “A virtual DSP architecture for MPEG-4
Structured Audio”. In Proceedings of the COST G-6 Conference
on Digital Audio Effects (DAFX-00), Verona, Italy, December 7-
9, 2000

	AN INTERPRETED APPROACH TO MULTIMEDIA STREAMS PROTECTION
	ABSTRACT

