
IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, VOL. 15, NO. 5, MAY 2005 673

High-Abstraction Level Complexity Analysis
and Memory Architecture Simulations of

Multimedia Algorithms
Massimo Ravasi and Marco Mattavelli

Abstract—An appropriate complexity analysis stage is the first
and fundamental step for any methodology aiming at the im-
plementation of today’s (complex) multimedia algorithms. Such
a stage may have different final implementation goals such as
defining a new architecture dedicated to the specific multimedia
standard under study, or defining an optimal instruction set for a
selected processor architecture, or to guide the software optimiza-
tion process in terms of control-flow and data-flow optimization
targeting a specific architecture. The complexity of nowadays
multimedia standards, in terms of number of lines of codes and
cross-relations among processing algorithms that are activated
by specific input signals, goes far beyond what the designer can
reasonably grasp from the “pencil and paper” analysis of the (soft-
ware) specifications. Moreover, depending on the implementation
goal different measures and metrics are required at different steps
of the implementation methodology or design flow. The process
of extracting the desired measures needs to be supported by
appropriate automatic tools, since code rewriting, at each design
stage, may result resource consuming and error prone. This paper
reviews the state of the art of complexity analysis methodologies
oriented to the design of multimedia systems and presents an
integrated tool for automatic analysis capable of producing com-
plexity results based on rich and customizable metrics. The tool
is based on a C virtual machine that allows extracting from any
C program execution the operations and data-flow information,
according to the defined metrics. The tool capabilities include the
simulation of virtual memory architectures. This paper shows
some examples of complexity analysis results that can be yielded
with the tool and presents how the tools can be used at different
stages of implementation methodologies.

Index Terms—Complexity analysis, computational complexity,
data-exchange, virtual architecture simulation.

I. INTRODUCTION

THE continuous efforts of developing better performing
multimedia standards, in terms of compression efficiency,

quality of service and functionalities, yield large increases
of the algorithms complexity. Here the term complexity is
intended in a broader and more intuitive sense than its strict
mathematical definition only considering the size of the al-
gorithm minimal descriptions. More precisely, we are mainly
interested in the various aspects and results of the run-time
algorithm complexity metrics. Such metric results can be
hardly evaluated, from the algorithm code itself because of its

Manuscript received September 30, 2003; revised March 31, 2004.
The authors are with the Signal Processing Laboratory, École Polytechnique

Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland (e-mail: mas-
simo.ravasi@epfl.ch; marco.mattavelli@epfl.ch).

Digital Object Identifier 10.1109/TCSVT.2005.846414

size (i.e., complexity), and finally they are proportional to the
development costs of software, hardware, or heterogeneous
architectures aiming at minimizing specific implementation
cost functions.

In current multimedia systems, multiple tasks, of quite
different nature, coexist in the same application; more specif-
ically, an application may need, at the same time, low-level
computationally intensive tasks (e.g., signal processing) and
high-level user interaction tasks (e.g., graphic user interfaces,
touch screens). Depending on its type, each task can be more
efficiently implemented on a specific device or architecture,
yielding the need of heterogeneous systems, referred to as
heterogeneous hardware/software systems [1], which may in-
clude more devices of different types and in which the different
tasks can be implemented either in hardware [e.g., by means of
application specified integrated circuits (ASICs) or field-pro-
grammable gate arrays (FPGAs)] or in software [e.g., running
on general purpose processors or digital signal processors
(DSPs)]. Heterogeneous architectures may be built by means of
multiple independent devices [e.g., multiple integrated circuits
(ICs)] or may reside on a single chip [e.g., systems-on-chip
(SoC) and embedded systems].

The design of a system begins with an overall system speci-
fication and validation, firstly to clearly and completely define
the functionalities the new system is meant for and, secondly,
to provide a reference implementation in order both to verify
that the system does correctly present the expected behavior
and to test the system performance by the abstract algorithmic
point of view [e.g., quality of service (QoS), compression rate,
peak signal-to-noise ratio (PSNR), etc.] Besides, the always in-
creasing complexity of processing algorithms leads to the need
of more and more intensive specification and validation tasks,
and forces to perform these tasks at a high level of abstraction
in order to minimize the cost and time of such preliminary de-
sign phase. It is a commonly adopted practice to write such ab-
stract reference descriptions—often referred to as “verification
models”—by means of common programming languages such
as C and C++, as confirmed by well known examples from stan-
dards such as the reference software for MPEG 2 [2], or MPEG
4 [3], [4] and JPEG2000 [5], where the reference description is
provided by the standard definition itself.

Verification models written in common programming lan-
guages, thus become the main references for the design, at the
place of the old textual descriptions, and are the true starting
point for the design of new implementations. In a way, even
though conceived as abstract system descriptions, verification

1051-8215/$20.00 © 2005 IEEE

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Infoscience - École polytechnique fédérale de Lausanne

https://core.ac.uk/display/147941528?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

674 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, VOL. 15, NO. 5, MAY 2005

Fig. 1. Typical simplified design flow of a software/hardware heterogeneous
system.

models can be seen as real implementations over a generic vir-
tual architecture, such virtual architecture being the chosen pro-
gramming language. As for the successive system design over
a real, possibly heterogeneous, architecture, verification models
are thus the starting point from which deriving all the necessary
information for driving the first architectural design choices, as
shown in Fig. 1.

The investigations trying to define the lower complexity
bounds of the execution of standard multimedia algorithms on
different candidate architectures are indeed based on reference
software descriptions. Such approaches are typically limited to
the analysis of some specific coding modes [such as discrete co-
sine transform/inverse discrete cosine transform (DCT/IDCT)],
fractional-pel motion compensation, context adaptive binary
arithmetic coding, loop filtering, etc.) that case-by-case consti-
tutes the major processing load like, for instance, is reported
in [6]. The objective of such analysis is to obtain approximate
measures that can identify classes of candidate platforms for the
actual implementations. In other cases the objective is to define
appropriate tradeoffs between compression performance and
implementation complexity or better cost of the implementation
resources. The analysis and the comparisons are performed on
optimized implementations of the reference software [7]. An-
other implementation approach, based on defining an optimized
processor instruction-set for a specific multimedia algorithm,
starts as well with a statistical analysis of the different coding
modes. Such analysis is again performed on the reference
software description [8]. All these three examples from the
video multimedia field show that not only a specific complexity
analysis is the starting point of any implementation process,
but also that there is a lack of suitable tools assisting this
fundamental stage. The heuristics and methods used in most
of the work reported in literature present strong limitations,
in general present a very limited portability, are often time-
and resource-consuming or provide results with a low level of
accuracy. In all cases the analysis requires a relevant amount
of work that, besides being tedious and time consuming, is
certainly error-prone when very large source codes are handled.
In addition, for instance, the approach used in [6] neglects all

the overheads generated by the logic and functions outside the
core function-set under analysis and assumes heuristic factors
for the porting on different platforms ranging from factors of
2 up to 5 depending on the optimization level. Moreover, the
analysis of the data-flow, possibly evaluating different cache
hierarchies, is missing, while it may strongly affect the real
implementation cost and performance [9].

The paper is organized as follows. Section II reviews the state
of the art in complexity analysis and complexity metric mea-
surements oriented to the video/multimedia field, Section III in-
troduces an automatic integrated tool conceived for the com-
plexity analysis and virtual exploration of the design-space for
video/multimedia algorithms, the software instrumentation tool
(SIT). Section IV presents some examples of the results ob-
tainable in terms of both computational complexity, data-flow
and storage analysis, and presents some possible evolutions, de-
sirable improvements of the analysis capabilities and outlines
some interesting features that constitute the subject of further
work and research. Finally, Section V concludes the paper.

II. COMPLEXITY ANALYSIS AND DESIGN OF

COMPLEX SYSTEMS

The very first step in the design of complex system is
an exhaustive analysis of the system under study in order to
fully comprehend its basic structure, to measure its complexity
with the richest possible complexity metric, so as to discover
the bottlenecks and the most critical constitutive blocks and
to “explore” multidimensional design-spaces. The complexity
analysis can be straightforward in the case of simple systems
where a block diagram and some annotations can reveal all the
necessary information for the design. Conversely, in the case
of complex multimedia systems the preliminary complexity
analysis can result to be a very hard task; a block diagram
providing an overall view of the system may not be enough
for a complete comprehension of the whole system; detailed
information about all the constitutive blocks and about their
theoretical complexity may be available, yet the overall system
behavior and complexity may not be easy to be understood,
especially when they strictly depend on the input data as in the
case of multimedia systems [10]. Last but not least, most of the
times the only available reference for the system to be designed
is its software verification model, which may be composed by
several thousand source-code lines and a manual analysis or
partial code rewriting result to be very time-consuming tasks.

An important issue to take into account when the complexity
analysis is based on the verification models is that the target
architecture on which the system will be implemented will
typically be different from that used to compile and run the
verification models. For this reason, on one side the complexity
analysis must be as independent as possible from the underlying
simulation platform and from the compilation process (e.g.,
compiler optimizations) and, on the other side, it must provide
the most accurate information for the implementation on the
virtual target architecture.

Since the design of optimal solutions strictly depends on
the preliminary complexity analysis of the system, the more
complex the considered application is, the more crucial the

IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, VOL. 15, NO. 5, MAY 2005 675

complexity analysis task becomes. For all these reasons, it is
indeed obvious that automatic tools and integrated environments
for complexity analysis are nowadays a fundamental need in
the design of complex systems. Such tools not only have
to ease the analysis task by relieving the designer of long
annoying analyses by hand, but they also have to assure the
reliability of the results of the analysis phase and to provide
measures of candidate “virtual architectures” concerning both
the computational and the data-transfer complexity.

In literature several different ways have been proposed to
measure the complexity of the building blocks of an algorithm
and of their execution. Two main axes are typically recognized:
the computational complexity analysis and the data-transfers
and storage complexity analysis. The computational complexity
represents the computational load that has to be sustained to per-
form a given task; it can be measured according to different met-
rics, such as number of times a given task has to be performed,
number of operations or number of clock cycles. Similarly, the
data transfer and storage complexity analysis may aim to mea-
sure the simple counting of I/O operations, or to estimate a
cache’s performance, or to estimate the I/O bandwidth and pro-
cessing demands. Obviously, the choice of the complexity met-
rics depends both on the specific objectives of the evaluation and
on the results obtainable with the chosen complexity analysis
approach. In literature different complexity metrics have been
considered and compared for specific implementation problems
such as, for instance, motion estimation [11]. Complexity met-
rics can also be used in conjunction with quality metrics in order
to jointly evaluate the tradeoff between complexity and perfor-
mance. Several classes of state-of-the-art approaches to com-
plexity analysis are briefly overviewed in the next subsections.

A. Static Approaches

The methods based on a static analysis of the source code
range from the simple counting of the number of operations
appearing in a program up to sophisticated approaches deter-
mining lower and upper running time of a given program on a
given processor [12], [13]. While the simple counting technique
provides a very accurate evaluation of the operations, it cannot
handle loops, recursion, and conditional statements except for
some particular cases. Explicit or implicit enumeration of pro-
gram paths can handle loops and conditional statements and can
yield bounds on run-time best and worst case [12], [13]. The
main drawback of these techniques is that the typical real pro-
cessing complexity of many algorithms heavily depends on the
input data statistics while static analysis can only detect upper
and lower bounds. For video coding algorithms, for instance,
strict worst case analysis can lead to results one or two orders
of magnitude higher than the typical complexity values that can
be measured on typical video sequences [14], [15]. Moreover,
restricted programming styles such as absence of dynamic data
structures, recursion, and bounded loops are required so as to
correctly perform a static analysis [16].

B. Profilers and Complexity Analysis at Instruction-Level

Instruction level profiling provides the number and type of
processor instructions that a program executes at runtime. These

data give information on computational, control, and memory
access costs and can be used for complexity evaluation, as well
as for performance tuning of programs and algorithms. The con-
straints for an instrumentation tool are regarded as following: no
restrictions for the programmer, no source code modifications,
as well as high portability between different computer architec-
tures, operating systems and compilers. Profilers (e.g., [17]) can
provide two types of results: number of calls of a given section
of a program, and/or execution time of that section. The program
is first initialized with a series of calls to data collecting routines.
These data are then interpreted to provide the overall results in
terms of time spent in a function versus time spent during the
calls to other functions. The information provided by profilers
is only available at a relatively high level of abstraction, that is
at a function level. Since signal processing algorithms typically
spend the majority of the time in a few functions, more details
and reliable statistics about the processing operations executed
by those functions are necessary to assess and understand the
complexity of an algorithm. If only function-level information
is provided, a complete rewriting of the program code, for in-
stance to replace each elementary operation with a function call,
is necessary to obtain accurate statistics of the executed opera-
tions. Profilers are well suited for program optimization tasks on
a given specific architecture, as they measure, in fact, the time
spent by parts of a program. Furthermore, the number of calls of
a function can help the partial redesign of the program to reduce
the number of function calls to costly functions.

The information gathered with profilers strictly depends on
the underlying machine and on the compiler optimizations,
while a complexity evaluation depending only on the algorithm
itself is more appropriate for high-level system design. For
such reason, tools for profiling and optimization at very high
abstraction level—i.e., at programming language level—are
better suited for system design. An example of such tools is
the ATOMIUM [18], a toolbox for optimizing memory I/O
using geometrical model, which addresses memory related
aspects of system-design, by supporting the data transfer and
storage exploration methodology (DTSE) [19]. To take full
advantage of the methodology, both in depth analysis and
extensive transformations of the application’s program code are
automatically performed by ATOMIUM. ATOMIUM operates
at the behavioral level of an application, expressed in C. The
output is a transformed C description, functionally equivalent
to the original one, but typically leading to strongly reduced
execution times, memory size and power consumption.

ATOMIUM allows designers to quickly identify memory re-
lated hotspots in the applications they are working on, such as:

• which data structures and arrays are, characterized by
large data exchanges and with which functions;

• which functions, or function portions, require large
memory access bandwidths;

• what is the run-time peak memory usage and when it
occurs.

Other modules of the tool suite focus on the optimization of
the storage bandwidth, of the storage size and of the address
expression arithmetic. While ATOMIUM is a powerful tool for

676 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, VOL. 15, NO. 5, MAY 2005

data-transfer complexity analysis and optimization, it does not
provide any means to perform a computational complexity anal-
ysis. Furthermore, the provided data-transfer analysis is based
on a “flat” memory architecture model, which, for instance, does
not allow taking into account the effects of introducing one or
more cache memories in the memory hierarchy.

C. Hardware Description Languages and Hardware/Software
Codesign Tools

Through synthesis and simulation, hardware description lan-
guages (HDLs) [20], [21] allow gathering very reliable results
about the implementation complexity and performance of the
system, because they can simulate the real final architecture.
However, such results arrive too late in the design flow. The
algorithms have to be translated from the general-purpose
language specification of a verification model into an HDL
description, implicitly implementing an underlying architec-
ture. An almost complete rewriting of the HDL code might be
necessary if it is realized that the a priori architectural choices
are not appropriate for the algorithm at hand. In conclusion, a
high-level measure of algorithmic complexity cannot be easily
obtained by means of HDL descriptions.

Besides HDLs, there are tools which provide instruction-level
simulation of DSPs or other type of embedded cores [22]–[26]
allowing to estimate the performance of the implementation of
an algorithm on a given target architecture. Other tools allow the
designer to co-design and co-simulate heterogeneous embedded
systems. They provide a more versatile framework in which it
is possible to integrate hardware descriptions, software descrip-
tions and instruction-level simulators, at different abstraction
levels [27]–[37].

III. SIT FOR COMPLEXITY ANALYSIS

The approach, and associated tool called SIT, presented in
this paper is has been developed with the goal of measuring the
complexity of a specific implementation of an algorithm inde-
pendently from the hardware architecture on which the software
model is run. It is assumed that a software implementation of the
algorithm, typically a software verification model, is available
and that it can be run in realistic input data conditions. In other
words, the interest is not only about the measure of the algo-
rithmic complexity itself, but also about its dependencies under
specific input data. This approach is in line with methodolog-
ical approaches proposed for instance in [9] and [18], aiming at
optimizing data transfers, memory bandwidths and storage re-
quirements directly on algorithm specifications at high abstrac-
tion level.

Pure algorithmic complexity does not depend on any other
factor than the algorithm description itself and the input
data. Avoiding input data dependency would lead only to
worst-case/best-case estimations, and these estimations, even
though crucial for, e.g., real time control systems, in our opinion
are not useful in the video/multimedia context.

The new approach of SIT [38] is based on a breakthrough
in the instrumentation/overloading technology enabling a
complete detection of all C operators without any limitation

in the way pointers and data structures are used [39]. Such
technology enables, besides a complete operator analysis,
a full data-transfer analysis on any data structure providing
design-oriented algorithmic complexity evaluations at pure
source-code level, yet by means of simulations on real
input-data. The verification model is considered as a sequence
of abstract operations exactly as they can be seen while reading
the source-code or, by the abstraction point of view, exactly as
they were written when the application was being specified by
means of the development of the verification model. In a way,
SIT can be seen as a virtual-machine for running C source code;
the instruction set of this virtual-machine corresponds exactly
to the set of C language operators and control-statements. By
means of such virtual-machine, all the operations performed
during the execution of the instrumented verification model
are intercepted and counted, therefore providing an exhaustive
basis for computational complexity analysis. Besides, a cus-
tomizable virtual memory architecture can be “plugged” into
the virtual-machine extending the analysis capabilities to the
data-transfer and storage domain. The current version of SIT is
capable of instrumenting any C source code, independently of
the chosen C dialect, allowing to analyze a software program
as-is, without the need of tedious and error-prone work such
as massive code rewriting or manual code instrumentation.
The main innovations of SIT versus the state-of-the-art tool
technology can be summarized as follows.

1) Pure algorithmic complexity analysis at the highest
possible abstraction level, that is at software programs’
source-code level. The analysis does not depend on the
underlying platform or on the compilation but only on
the source-code. This allows: 1) to provide complexity
analysis results at the very beginning of the design cycle
by performing the analysis directly on the verification
models; and 2) to profile software programs at pure
algorithmic level providing a reliable analysis basis for
algorithmic optimizations.

2) Input-data dependent analysis. Nowadays applications
cannot be studied statically: their behavior, hence their
complexity, strictly depends on the processed input-data.
Furthermore, the implementation of most applica-
tions is now based, rather than on the worst-case, on
the Cost/QoS tradeoff, which implies the need of an
input-data dependent analysis.

3) Completely automatic instrumentation process with no
limitations on the ANSI C and K&R compliant C source
code. SIT has been conceived to be an “easy-to-use” tool:
the instrumentation of the source code appears to the user
as a normal compilation process, without the need of
modifying source files and makefiles or of having to type
specific commands.

4) Fully customizable memory simulation, for a versatile
data-transfer and storage analysis apt to explore different
design-spaces in the memory architecture domain.

5) The SIT “virtual-machine” is also a validated reliable
framework for building on top of it other simulators and
analysis tools, for different metrics and architectural
explorations.

IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, VOL. 15, NO. 5, MAY 2005 677

Fig. 2. SIT complexity analysis framework.

The schematic diagram of the main functional blocks consti-
tuting the SIT analysis framework and the blocks of the instru-
mentation and simulation process is shown in Fig. 2.

1) The Main Instrumentation Core and the Memory Simu-
lation Core are the heart of SIT; they provide the nec-
essary features for a correct instrumentation and simula-
tion of the source code. The main instrumentation core is
in charge of instrumenting all the data-types, operators,
and statements of standard C code; since the C language
is a constant, the main instrumentation core is constant
as well and does not depend on any configuration set-
tings. Conversely, the memory simulation core is based
on a fixed set of interfaces, but it can be customized by
defining different memory architectures; during simula-
tion, the memory simulation core is driven by the main
instrumentation Core.

2) The first step of the analysis is the instrumentation of
the C source code. The whole instrumentation process,
from the source files to the instrumented executable, is
completely automatic: it appears to the end user as a
normal compilation; it can be tuned by configuring spe-
cific instrumentation features, in several different ways
(by means of environment variables, configuration files
or command line options). The C++ instrumented code
is generated by means of the classes defined in the main
instrumentation core and in the memory simulation core,
and according to the instrumentation settings. The instru-
mented code is then compiled and linked with the instru-
mentation libraries, by means of GNU g++ compiler, gen-
erating eventually the instrumented executable.

3) The instrumented executable can be run on real input
data, exactly as its native executable counterpart, to
produce the complexity analysis results, which can be
browsed and manipulated by means of Result Explo-
ration Tools.

A. Computational Complexity Analysis

During the execution of the instrumented version of the
program, every executed operation is intercepted and a cor-
responding counter is incremented. The results are collected
along two main axes: operations and data-types (e.g., operation
“ ” performed on “int” type). The set of intercepted operations
is an extension of the C operator set: it comprises both explicit

C operations (e.g., , etc.) and implicit operations (e.g.,
implicit type castings in expressions, variable constructions).
Similarly, the data-type basis is an extension of the C data-types
set, comprising C simple types (int, float, etc.), C derived types
(pointers, vectors, structures, and pointers to functions) and the
extra BOOL type, which does not belong to ANSI C standard;
the BOOL type was introduced to explicitly differentiate the
results for integer and logical expressions, since in C the int
type is typically used in logical expressions. By counting all
the operations performed during execution according to the
bidimensional operations/data-types basis, SIT provides the
finest grain information about the performed operations, which
results in an exhaustive input basis for the computational
complexity analysis. Furthermore, results are collected along a
third axis, the execution-tree; the user can choose if the nodes
in the execution-tree correspond to the function calls (low
execution-tree resolution, faster simulation) or if they include
compound statements and basic-block traversing too (high
execution-tree resolution).

Fig. 3 shows an example of computational complexity
analysis results (the picture is a screenshot of SITView, the
graphical result exploration tool of SIT). On the left side, there
is the execution tree, where the “print mem usage” function is
selected; since in this example the execution tree was traced at
high resolution, two homonymous “main” nodes are presented:
the first is “main-F” (two nodes above “print mem usage”)
and corresponds to the actual “main” function; the second
is “main-CS” (immediately below “print mem usage”) and
corresponds to an inner compound statement of the ‘main’
function. On the right side, the numerical results of the com-
putational complexity analysis are presented; the labels for
the horizontal axis contain both C data types (ulng = unsigned
long, pntr = generic pointer) and the extra BOOL type (bool
label); the vertical axis presents the operation basis, where both
explicit operations, i.e., pn (pointer dereferencing
operator) and & un (unary and operator, returning the address
of a variable), and implicit operations, i.e., CSTR (variable
“construction”) and CCPY (copy initialization in variable
construction) can be identified.

The main instrumentation core is in charge of providing
the functionalities for the computational complexity analysis
as well as the basic functionalities for the simulation, such as
simulation initialization, execution tree tracing, result database
management, and result file generation.

B. Data-Transfer and Storage Complexity Analysis

The data transfers and storage requirements, as discussed in
the introductory and review sections of this paper, play a funda-
mental role in the evaluation of the algorithmic complexity of
a system. In multimedia applications, for instance, most of the
power consumption and bus load is due to data transfers and the
optimization of these dominant costs is one of the most critical
steps in the development of efficient and low-power implemen-
tations [9]. By intercepting memory accesses by means of read
and write functions in instrumented types’ C++ classes and by
associating to the algorithm an underlying memory model, SIT
enables the simulation of memory operations and the extrac-
tion of relevant information and measurements about memory

678 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, VOL. 15, NO. 5, MAY 2005

Fig. 3. Example of computational complexity analysis results.

performance, such as number of data-transfers, memory usage,
cache hits and misses, etc.

The underlying memory architecture for which measure-
ments are required, can be easily specified aside without having
to rewrite the algorithm source code. The memory simula-
tion core is the basic framework for memory simulation for
data-transfer and storage complexity analysis. It is an open
framework, in the sense that it enables the simulation of freely
customizable memory architectures, whose simulation results
can be freely customized as well. The simulated memory
architecture is composed of several memory models, each of
them composed by different simulation modules (allocation
managers, cache memories, storage memories—Fig. 4 shows as
example of virtual memory architecture that can be simulated
with SIT). A set of fixed interfaces is defined to specify the
simulation modules, to “plug” them into each other, and to
eventually specify a memory model; each single simulation
module’s behavior and the number and type of results it pro-
duces at the end of the simulation, i.e., what is implemented
“behind” the fixed interfaces, can be defined by the user with
the highest possible degree of freedom.

Fig. 5 shows an example of memory simulation results.
On the vertical axis, the different simulated modules can be
identified, which in this case correspond to the simulation of
three memory models (i.e., Stack, VctStack, and Heap). It can
be clearly seen that the results generated through the simulation
vary according to the nature of a simulation module: the four
labels RHist, RMisses, WHits, and WMisses (read/write hits
and misses) are specific for caches, the label Alloc is specific
for allocation managers and the labels PushSP and (push stack

Fig. 4. Example of virtual memory architecture.

pointer) are specific for stack-like allocation managers. The
results of the data-transfer and storage complexity analysis
are collected along the same execution-tree basis as with the
computational complexity analysis results.

The memory simulation core of SIT is based on the con-
cept of memory model. A memory model is an entity in charge
of the run-time simulation of the different functionalities of a
memory hierarchy (Fig. 6), from the handling of the I/O and al-
location requests to the final storage tasks, and of generating
the corresponding data-transfer and storage complexity anal-
ysis results. The simulation of the virtual memory architectures
relies on assigning variables and allocated memory segments
to the memory models (“variable to memory” assignments, or
var-to-mem assignments for short). A variable (or a dynamically
allocated block) is assigned to a memory model so that during
simulation all the I/O operations on that variable (or on that

IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, VOL. 15, NO. 5, MAY 2005 679

Fig. 5. Example of data-transfers and storage complexity analysis results.

Fig. 6. Three basic interfaces for the specification of a memory model.

dynamically allocated block) drive the simulation of the corre-
sponding memory model. Full support for any type of pointers,
arrays, and complex data structures is provided, so that I/O op-
erations are always correctly mapped onto the corresponding
memory model, no matter through which combination of the
aforementioned data-types the data-transfers are originated.

The virtual memory architectures are specified as sets of
several memory models, as shown in Figs. 4 and 7. The sim-
plest approach is to use independent memory models, whose
behavior depends only on the commands coming from the main
instrumentation core (Fig. 7). Nevertheless, nothing prevents
from designing more complex memory architectures where
the memory models communicate with each other (Fig. 4),
or even full-custom memory simulation cores that are not
built over the predefined structure based on memory models
[Fig. 8(a)], therefore, further increasing the freedom in imple-
menting custom data-transfer and storage complexity analysis
cores. The variables can be assigned to memory models either
automatically, by means of default var-to-mem assignments, or
by specifying explicit var-to-mem assignments; in both cases,
the var-to-mem assignments are taken care of during the instru-
mentation phase. Thanks to explicit var-to-mem assignments
and to the possibility of using any number of memory models
(Fig. 7, extended set), it is possible to focus the data-transfer
analysis down on each single variable or allocated segment,
e.g., to gather specific and detailed results for critical data.

The simulation and analysis capabilities of the custom
memory simulation cores can be further improved by fully
interfacing directly with the main instrumentation core—i.e.,
by bypassing the default interface between the main instrumen-

Fig. 7. Default structure of a simulated memory architecture is composed of
the compulsory default set of memory models and of the optional extended set.

tation core and the memory simulation core [Fig. 8(b)]. More
specifically, the memory simulation core can be driven not
only by the data-transfer and storage events, as in the default
case, but also by the operation interception events. By this way,
it is possible to design custom simulation and analysis cores,
which may be targeted for other analyses than the data-transfer
and storage complexity analysis or the computational com-
plexity analysis only. That is, SIT can be easily reused as a
validated and robust instrumentation and analysis framework
for developing new simulation and analysis tools, as shown
in Fig. 9. Possible solutions for developing new custom tools
comprise modifying the instrumentation process (e.g., to add

680 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, VOL. 15, NO. 5, MAY 2005

Fig. 8. Custom memory simulation cores and custom simulation and analysis cores. (a) Custom memory simulation core (without memory models). (b) Custom
simulation and analysis core.

Fig. 9. SIT as a framework for building custom simulation and analysis tools.

extra instrumentation code), or inserting specific commands in
the source code of instrumented types’ classes (e.g., to drive the
custom simulator whenever a given operation is intercepted by
SIT), or developing specialized memory models (e.g., to make
the custom simulation depend on I/O events). Obviously, any
combination of the previous solutions is possible as well, en-
abling the development of complex run-time simulation tools,
for complexity evaluations according to specific metrics. Two
examples of custom simulation and analysis tools currently
under development, built over SIT framework, are presented in
next subsections.

Another interesting feature of the tool is the possibility of
weighting all computational and memory based operators ac-
cording to some specific target platforms. Accurate evaluations
of the performance on the target platform are possible without
the need of the actual porting of all or of some parts of the code
[40].

C. Dynamic Critical Path Evaluation for Potential Operation
Parallelism Estimation

The goal of the proposed critical path [41] evaluation method-
ology is providing an estimate of the potential operation paral-
lelism at the early stage of the design, in order to be able to take

meaningful and efficient partitioning decisions and bring them
to actual parallel implementations. A preliminary study on the
evaluation of the critical path on the data flow execution graph
(DFEG) of a C program has been carried out to validate an ef-
ficient dynamic critical path evaluation methodology [42]. This
methodology is conceived for being implemented by means of
SIT, as the dynamic critical path evaluation is based on run time
operation and data transfer interception.

The critical path profiling is a metrics explicitly developed for
parallel programs [43]. The critical path profile is a list of pro-
cedures and of the time each procedure contributed to the length
of the critical path. Critical path profiling is a way to identify the
component in a parallel program that limits its performance. It
is an effective metric for tuning parallel programs and is espe-
cially useful during the early stages of tuning a parallel program
when load imbalance is a significant bottleneck. It also helps
to find out which components should be prioritized to complete
the program execution in time. When a task has to be completed
in a given time, the critical path analysis helps to focus on the
essential activities to which attention and resources should be
devoted.

The majority of already developed tools aim at the critical
path profiling for tuning existing parallel programs executed

IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, VOL. 15, NO. 5, MAY 2005 681

Fig. 10. Critical path profiling (a) of parallel code on event graphs versus
critical path evaluation and (b) of sequential code on data dependences graphs.

on existing architectures [Fig. 10(a)]. The proposed new critical
path model metrics allows finding out at which degree the dif-
ferent parts of a given algorithm can be potentially parallelized
[Fig. 10(b)]. The critical path length and the complexity are
computed by means of the same set of complexity weights.
The maximum value of the critical path length equals the total
complexity in the worst case, i.e., when a pure sequential data
dependence exists among all operations. The ratio between
the C code complexity and the critical path length is an index
of the parallelization potential of the algorithm; actually this
index is an estimate of the (weighted) number of operations
that can be potentially executed in parallel, as it corresponds
to ratio between the total (weighted) number of operations and
the maximum (weighted) number of operations that have to be
performed sequentially. The principles constituting the basis
for the critical path model metric definition on a sequential
C code are the following.

1) The critical path is defined on the C code’s execution
data-flow.

2) The critical path length and the system parallelization po-
tential are defined in terms of C language basic opera-
tions and I/O operations complexity. The parameters of
the machine executing the instrumented C code during
evaluating the critical path are not taken into account.

3) In the definition of the critical path, the DFEG [42] is
generated dynamically while running an algorithm on a
real input-data set. The DFEG is used for the critical path
definition instead of the traditional data flow graph.

This approach presents several advantages with respect to
other methods.

1) It can be applied to large and complex software programs
for which a static generation of the DFEG would not be
feasible, since the number of nodes in the DFEG is equal
to the number of operation performed during the execu-
tion.

2) It evaluates the critical path at run-time in real working
conditions. Conversely, this is not possible with static
methods based on DFG.

3) It allows critical path evaluations at operation level even
in the case in which data-flows are obfuscated by the use
of pointers and “anonymous” data (e.g., elements in an
array).

Fig. 11. Function-call tree (a) does not help detecting the actual data-transfer
dependences functions the functions and grouping the functions in functional
modules (b). (a) Function-call tree. (b) Functions, functional modules, and
data-transfer dependences.

D. Automatic Measurement of Interfunction Data-Transfers
for Explicit Assessment of Data-Transfer Dependences Among
Functions and for Functional Modules Identification

A static analysis of a software program allows identifying the
dependences among the various functions in terms of function
call dependences. A dynamic analysis in real working condi-
tions allows evaluating the “real” dependences among functions
by explicitly detecting the actual function-call tree, with a no-
ticeable improvement with respect to static analysis (e.g., by
dead-branch detection, by faithful evaluation of recursive func-
tion-call branches and by explicitly taking into account dynamic
dependences). Indeed, this analysis results to be of limited use
for the system designer, as the data-transfer dependences among
the functions cannot be derived from the study of the func-
tion-call tree; it is not uncommon that two or more functions
exchange a great amount of data through a common buffer and
yet they are “far” from each other in the function-call tree, pos-
sibly belonging to completely different branches. Furthermore,
the functions in a verification model are often loosely related
with the actual functional modules of the corresponding appli-
cation, as several functions may contribute to provide the func-
tionalities of a functional module. Conversely, for the system
designer it is very important to have an overall vision of an al-
gorithm, of how it is composed by different modules and on how
they interact with each other.

As shown in Fig. 11, explicit measurements of the interfunc-
tion data-transfers are a meaningful basis for high-level archi-
tectural optimizations. For programs composed by many nodes
in the function-call tree, a bottom-up analysis of the function-
call tree and of the interfunction data-transfer graph can easily
help identifying the different functional modules by grouping
the nodes in the call tree into groups with limited data-transfers
toward the other modules.

A custom simulation core is currently being developed for au-
tomatically generating the interfunction data-transfer graph by
means of the memory simulation and execution tracing capabil-
ities of SIT. In the next phase, a module for automatic analysis
of the interfunction data-transfer graphs will be developed for
automatic detection of the functional modules.

682 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, VOL. 15, NO. 5, MAY 2005

TABLE I
CHARACTERISTICS OF THE TEST SEQUENCES

TABLE II
MPEG-4 VM—PERFORMANCE

IV. EXAMPLES OF COMPLEXITY MEASURES PROVIDED BY THE

SIT TOOL

This section presents some examples of the type, accuracy,
and metrics of results produced by the computational com-
plexity analysis with SIT. The examples are obtained using
as reference model the generically optimized MPEG-4 codec
(simple profile) constituting Part 7 of the standard currently
under finalization [3], [44] and of the H.264 AVC codec, [45]
constituting the Part 10 of MPEG-4 standard. The analysis
reports the number of operations performed during program
execution in real working conditions.

A. Testbench Definition

The reference software’s used for this example of com-
plexity analysis are the MPEG-4 Verification Model gener-
ically optimized for simple profile (OptSimple) version
FPDAM1-020 414 [44] and the JVT Joint Model JM 2.1 [45].

The used testbench consists of three reference se-
quences (Table I): Mother & Daughter is a low complexity
head-and-shoulders sequence. Foreman has a medium com-
plexity and Calendar & Mobile is a high complexity sequence,
with different movements including rotations.

JVT JM has been tested with two different encoding settings:

1) “simple” settings: in this configuration JM performance
is similar, in terms of PSNR and bit-rate, to that of
MPEG-4 simple profile VM. This configuration is meant
to compare the algorithmic complexity of the two codecs
in similar working conditions.

2) “complex” settings: this configuration activates all JMs
coding tools. The analysis shows how the improvement of
JMs compression performance, due to the “complex” set-
tings, increases the algorithmic complexity of the overall
coding and decoding processes.

The tests were run on sequences of 100 frames. Tables II–IV
show the coding results for MPEG-4 VM, JVT JM in “simple”
configuration and JVT JM in “complex” configuration.

TABLE III
JVT JM, “SIMPLE” SETTINGS—PERFORMANCE

TABLE IV
JVT JM, “COMPLEX” SETTINGS—PERFORMANCE

TABLE V
ENCODERS—COMPUTATIONAL COMPLEXITY

B. Computational Complexity Analysis

This subsection presents an example of the results obtained
by the tool that can be used for an in depth computational
complexity analysis of the encoding and decoding of the three
reference sequences. The results are collected separately for
each operation and data-type (corresponding to C language’s
operators and data-types). For the sake of conciseness, in the
following tables the results are presented independently of
the data-types and are grouped in the following four sets of
operations.

1) Comparison operations: they correspond to C opera-
tors “ ”, “ ”, “ ”, “ ”, “ ”, and “ ”.

2) Logical operations: they correspond to C operators “!”,
“&&”, “ ”.

3) Memory operations: they correspond to C operators
“ ”, “ ”, “ ” and the pointer dereferencing oper-
ator “ ”.

4) Arithmetic operations: all the other operations.

C. Encoders

Considering the results for encoding the three reference se-
quences, each of them in the three testbench cases, an example
of a preliminary coarse-grain comparison of the three encoders
is shown in Table V and Fig. 12. The computational complexity

IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, VOL. 15, NO. 5, MAY 2005 683

Fig. 12. Encoders—computational complexity.

TABLE VI
DECODERS—COMPUTATIONAL COMPLEXITY

Fig. 13. Decoders—computational complexity.

of MPEG-4 VM is about half of that of JVT JM in “simple”
configuration, while the cost of the performance gain of the JM
in “complex” configuration (more specifically a reduction of the
bit-rate of more than 50% and a PSNR gain of almost 2 dB) is
an increase of more than one order of magnitude of the compu-
tational complexity.

D. Decoders

Similarly to the comparison described at previous paragraph
for the encoders, Table VI and Fig. 13 and show the computa-
tional complexity analysis results for the decoders in the three
cases. The computational complexity of the JM in “simple” con-
figuration is about the double of that of the VM, as in the case
of the encoder. Conversely, the computational complexity of the
JM in “complex” configuration is about three times higher than
that of the VM, while in the case of the encoder the increase is of

more than one order magnitude. Furthermore, the results clearly
show that the computational complexity of decoding process, in
all the three cases, is more sensitive to the visual complexity of
the sequences than that of the encoding process. Finally, “arith-
metic” and “memory” operations are the most frequent ones, as
in the case of the encoders.

The results provided here constitute the overall summary of
all codec executions, in reality the tools provides a full detailed
analysis of both computational complexuty and data-flow ex-
changes at all levels of the execution tree, thus enabling specific
analysis based on “coding modes” comparisons, in order to ex-
plore implementation complexity/coding efficiency tradeoffs or
other optimization goals.

V. CONCLUSION

This paper, after a brief review of the motivations and
state-of-the-art approaches to complexity analysis for multi-
media system design, has introduced a tool for the complexity
analysis of C reference descriptions. The tool is based on
a breakthrough in instrumentation technology enabling the
implementation of a C virtual simulator capable of measuring
operators and data transfers during the execution of algorithms.
Besides being completely automatic in the sense that no code
rewriting is needed, the simulator can be configured to provide
measurements and performances of the algorithm under study
on user configured memory architectures. Some examples of
the richness of the run-time complexity metrics obtainable has
also been provided as well as a description of the functionality,
measures, and metrics extensions which will be possible with a
further development of the SIT virtual simulator framework.

REFERENCES

[1] P. V. Knudsen and J. Madsen, “Aspects of system modeling in hard-
ware/software partitioning,” in Proc. 7th IEEE Int. Workshop on Rapid
Systems Prototyping, Thessaloniki, Greece, Jun. 1996, pp. 18–23.

[2] “Information Technology—Generic Coding of Moving Pictures and As-
sociated Audio Information—Part 2: Video,” International Organization
for Standardization, Tech. Rep. 13 818-2, 1994. ISO/IEC.

[3] Information Technology—Coding of Audio Visual Objects—Part 2 Vi-
sual, ISO/IEC 14496-2 (MPEG-4).

[4] Information Technology—Coding of Audio Visual Objects—Part 10
Advanced Video Coding, ISO/IEC, ISO/IEC International Standard
14 496-10 and ITU-T Recommendation H.264.

[5] JPEG 2000 Part 1 Final Publication Draft, ISO/IEC JTC1/SC29/WG1
N2678, C. Boliek, C. Christopoulos, and E. Majani, Eds., Jul. 2002.

[6] M. Horowitz, A. J. F. Kossentini, and A. Hallapuro, “H.264/AVC base-
line profile decoder complexity analysis,” IEEE Trans. Circuits Syst.
Video Technol., vol. 13, no. 7, pp. 704–716, Jul. 2003.

[7] V. Lappalainen, A. Hallapuro, and T. Hamalainen, “Complexity of op-
timized H.26L video decoder implementation,” in IEEE Trans. Circuits
Syst. Video Technol., vol. 13, Jul. 2003, pp. 717–725.

[8] M. Berekovic, H. J. Stolberg, and P. Pirsch, “Multicore system—On-
chip-architecture for MPEG-4 streaming video,” IEEE Trans. Circuits
Syst. Video Technol., vol. 12, no. 8, pp. 688–699, Aug. 2002.

[9] L. Nachtergaele, D. Moolenaar, B. Vanhoof, F. Catthoor, and H. De Man,
“System level power optimization of video codecs on embedded cores:
A systematic approach,” J. VLSI Signal Process., vol. 18, pp. 89–109,
1998.

[10] M. Mattavelli and S. Brunetton, “Implementing real time video decoding
on multimedia processors by complexity prediction techniques,” IEEE
Trans. Consumer Electron., vol. 44, no. 8, pp. 760–767, Aug. 1998.

[11] P. Kuhn, Algorithms, Complexity Analysis, and VLSI-Architectures for
MPEG-4 Motion Estimation. Norwell, MA: Kluwer, 1999, ch. 3.

[12] Y. S. Li and S. Malik, “Performance analysis of embedded software
using implicit path enumeration,” IEEE Trans. Computer-Aided Design
Integr. Circuits Syst., vol. 16, no. 12, pp. 1477–1487, Dec. 1997.

684 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, VOL. 15, NO. 5, MAY 2005

[13] P. Pushner and C. Koza, “Calculating the maximum execution time of
real time programs,” J. Real Time Syst., vol. 1, pp. 160–176, Sep. 1989.

[14] S. Mallat and F. Falzon, “Analysis of low bit rate image transform
coding,” IEEE Trans. Signal Process., vol. 46, no. 4, pp. 1027–1042,
Apr. 1998.

[15] M. Mattavelli and S. Brunetton, “A Statistical Study of MPEG 4 VM
Texture Decoding Complexity,”, Tampere, XQXQXQ, Finland, Tech.
Rep. M924, ISO IEC/JTC1/SC29/WG11, MPEG 4, Jul. 1996.

[16] E. Kligerman and D. Stoyenko, “Real-time euclid: A language for reli-
able real time systems,” IEEE Trans. Softw. Eng., vol. SE–12, no. 9, pp.
941–949, Sep. 1986.

[17] S. Graham, P. Kessler, and M. McKusick, “Gprof: A call graph execution
profiler,” in Proce. Symp. Compiler Construction (SIGPLAN), vol. 17,
Jun. 1982, pp. 120–126.

[18] What is ATOMIUM?. [Online]. Available: http://www.imec.be/de-
sign/multimedia/atomium/

[19] F. Catthoor, F. Balasa, K. Danckaert, E. De Greef, M. Eyckmans,
F. Franssen, M. Janssen, S. Janssen, M. Miranda, L. Nachtergaele,
H. Samsom, P. Slock, and S. Wuytack, “Optimization of global data
transfer and storage organization for decreased area and power in data
dominated real time processing systems,”, IMEC Internal Overview
Report of Data Transfer and Storage Exploration Research, Nov. 1998.

[20] IEEE Standard for Verilog Hardware Description Language 2001, IEEE
Standard 1364 2001, Product SH94921 TBR, 2001.

[21] IEEE Standard VHDL Language Reference Manual 2002, IEEE Stan-
dard 1076 2002, Product SH94983 TBR, 2002.

[22] T. Ball and J. Larus, “Optimally profiling and tracing programs,” ACM
Trans. Programming Languages Syst., vol. 16, no. 4, pp. 1319–1360,
Jul. 1994.

[23] R. Cmelik and D. Keppel, “SHADE: A fast instruction set simulator for
execution profiling,” in Proc. 1994 ACM Conf. Measurement Modeling
of Computer Systems, 1994, pp. 128–137.

[24] S. S. Mukherjee, S. K Reinhardt, B. Falsafi, M. Litzkow, M. D. Hill, D.
A. Wood, S. Huss-Lederman, and J. R. Larus, “Wisconsin wind tunnel II:
A fast and portable parallel architecture simulator,” IEEE Concurrency,
vol. 8, no. 4, pp. 12–20, Oct.-Dec. 2000.

[25] A. D. Pimentel and L. O. Hertzberger, “Abstract workload modelling in
computer architecture simulation,” in Proc. 24th ACM/IEEE Int. Symp.
Computer Architecture, Denver, CO, Jun. 1997, pp. 6–14.

[26] E. Witchel and M. Rosenblum, “Embra: Fast and flexible machine sim-
ulation,” in Proc. 1996 ACM SIGMETRICS Conf. Measurements and
Modeling of Computer Systems, May 1994, pp. 128–137.

[27] P. Alexander, R. Kamath, and D. Barton, “System specification in
rosetta,” in Proc. IEEE 7th Int. Conf. Workshop Engineering of Com-
puter Based Systems Symp., Edinburgh, U.K., Apr. 2000, pp. 299–307.

[28] G. Berry, “The foundations of esterel,” in Proof, Language, and Interac-
tion: Essays in Honor of Robin Milner, G. Plotkin, C. Stirling, and M.
Tofte, Eds. Cambridge, MA, 1998.

[29] CoWare N2C Design System [Online]. Available: www.CoWare.com
[30] J. Davis II et al., “Overview of the Ptolemy Project,” Dept. EECS, Uni-

versity of California, Berkeley, CA 94720, Tech. Rep. UCB/ERL n.
M99/37, Jun. 1999.

[31] M. Eisenring, J. Teich, and L. Thiele, “Rapid prototyping of dataflow
programs on hardware/software architectures,” in Proc. Hawaii Int.
Conf. Systems Science, Kona, HI, Jan. 1998, pp. 187–196.

[32] R. Esser, “CodeSign—Concepts and tutorial,” Computer Engineering
and Networks Laboratory, Swiss Federal Institute of Technology Zurich,
Lausanne, Switzerland, 1996.

[33] T. Grandpierre and Y. Sorel, “From algorithm and architecture speci-
fications to automatic generation of distributed real time executives: A
seamless flow of graphs transformations,” in Proc. Formal Methods and
Models for Codesign Conf., Mont Saint Michel, France, Jun. 2003, p.
123.

[34] S. Gupta, N. D. Dutt, R. K. Gupta, and A. Nicolau, “SPARK: A high
level synthesis framework for applying parallelizing compiler transfor-
mations,” in Proc. 16th Int. Conf. VLSI Design, Jan. 2003, p. 461.

[35] RASSP Methodology—Version 2.0 (1995, Oct.). [Online]. Available:
http://www.eda.org/rassp/

[36] “SystemC v2.0.1 White Paper, Open SystemC Initiative,”,
http://www.systemc.org, May 2001.

[37] B. Tabbara, L. Lavagno, and A. S. Vincentelli, “Fast hardware soft-
ware Co simulation using software synthesis and estimation,” in Proc.
IEEE Int. High Level Design Validation and Test Workshop, 1997, pp.
149–156.

[38] M. Ravasi and M. Mattavelli, “High-level algorithmic complexity
evaluation for system design,” J. Syst. Architecture, vol. 48/13–15, pp.
403–427, May 2003.

[39] P. Kuhn, Algorithms, Complexity Analysis, and VLSI-Architactures for
MPEG-4 Motion Estimation. Norwell, MA: Kluwer, 1999, ch. 4.

[40] M. Ravasi, M. Mattavelli, P. Schumacher, and R. Turney, “High-level
algorithmic complexity analysis for the implementation of a motion-
JPEG2000 encoder,” in Proc. Integrated Circuit and System Design,
2003, pp. 440–450.

[41] L. Liu, D. Du, and H. C. Chen, “An efficient parallel critical path algo-
rithm,” IEEE Trans. Computer-Aided Design Integr. Circuits Syst., vol.
13, no. 7, pp. 909–919, Jul. 1994.

[42] A. Prihozhy, M. Mattavelli, and D. Mlynek, “Data dependences critical
path evaluation at C/C++ system level description,” in Proc. 13th Int.
Workshop Power and Timing Modeling Optimization and Simulation,
Sep. 2003, pp. 569–579.

[43] J. K. Hollingsworth, “Critical path profiling of message passing and
shared memory programs,” IEEE Trans. Parallel Distributed Syst., vol.
9, no. 10, pp. 1029–1040, Oct. 1998.

[44] Generically optimized MPEG 4 reference software (simple profile),
Dept. of Electronics Engineering, National Chiao Tung University,
Taiwan, R.O.C. [Online]. Available: http://megaera.ee.nctu.edu.tw/
mpeg/Optimized_Ref_Software/MoMuSys FPDAM1 1.0 020 414_
nctu.zip

[45] Reference Software JM 2.1 [Online]. Available: http://bs.hhi.de/
~suehring/tml/download/jm21.zip

Massimo Ravasi received the degree in electrical en-
gineering from Politecnico di Milano, Milano, Italy,
and the Ph.D. degree for his work in the software
instrumentation tool (SIT) project, focusing on the
development of an automatic tool for high-level al-
gorithmic complexity analysis for system design, in
September 2003.

From October 1997 to March 1998, he was with
the Laboratorio S.I.A. , Politecnico di Milano, as a
part-time collaborator in the field of teleteaching sys-
tems. In April 1998, he joined the Signal Processing

Laboratory (LTS) of the École Polytechnique Fédérale de Lausanne (EPFL),
Lausanne, Switzerland, as a Research Assistant working on the development of
a hardware JPEG 2000 codec in the Mitocoma project.

Marco Mattavelli was born in Milano, Italy, on July
18, 1961. He received his Diploma of electrical en-
gineering degree from the Politecnico di Milano, Mi-
lano, Italy, in March 1987.

In 1988, he joined the Philips Research Laborato-
ries, Eindhoven, The Netherlands, in the framework
of EUREKA-95 (HDMAC) project. Main research
activities regarded channel and source coding for
optical recording and electronic photography. In
1990, he joined the CSA Philips Research Division
of Monza, Italy, working on signal processing of

TV and HDTV signals. In October 1991, he joined the Signal Processing
Laboratory (LTS) of the École Polytechnique Fédérale de Lausanne (EPFL),
Lausanne, Switzerland, where he received the Ph.D. degree in 1996 with the
thesis: “Motion analysis and estimation: From ill-posed discrete inverse linear
problems to MPEG-2 coding.” At EPFL, he has been involved in various
European projects of 4th and 5th framework (VADIS, COUGAR), research and
didactic activities. In 1995, he was Visiting Researcher at the Center of Oper-
ational Research and Applied Mathematics, Cornell University, Ithaca, NY. In
July 1996, he joined the Integrated System Laboratory (LSI) of EPFL where
he has been involved in ATLANTIC, EMPHASIS, OCCAMM, CARROUSO,
MOSES, and ENTHRONE European projects of 5th and 6th Framework, all
projects dealing with specification and implementation of multimedia systems.
He has been involved in several collaboration with industries and in the ISO/IEC
JTC1/SC29/WG11 standardization activities (better known as MPEG), for
which he is currently Chairman of the Implementation Study Group (ISG). For
his work and contributions on the standardization of MPEG-4, he received the
ISO/IEC Award in 1998 and in 2001. His major research activities and interests
include architectures and systems for video coding, real-time multimedia
systems, high-speed image acquisition and video processing, motion analysis
and estimation, neural networks for image and signal processing, applications
of combinatorial optimization to signal processing. He holds patents in the
multimedia and video processing fields. He is the author or coauthor of more
than 80 research papers and one book.

	toc
	High-Abstraction Level Complexity Analysis and Memory Architectu
	Massimo Ravasi and Marco Mattavelli
	I. I NTRODUCTION

	Fig.€1. Typical simplified design flow of a software/hardware he
	II. C OMPLEXITY A NALYSIS AND D ESIGN OF C OMPLEX S YSTEMS
	A. Static Approaches
	B. Profilers and Complexity Analysis at Instruction-Level
	C. Hardware Description Languages and Hardware/Software Codesign

	III. SIT FOR C OMPLEXITY A NALYSIS
	Fig.€2. SIT complexity analysis framework.
	A. Computational Complexity Analysis
	B. Data-Transfer and Storage Complexity Analysis

	Fig.€3. Example of computational complexity analysis results.
	Fig.€4. Example of virtual memory architecture.
	Fig.€5. Example of data-transfers and storage complexity analysi
	Fig.€6. Three basic interfaces for the specification of a memory
	Fig.€7. Default structure of a simulated memory architecture is
	Fig.€8. Custom memory simulation cores and custom simulation and
	Fig.€9. SIT as a framework for building custom simulation and an
	C. Dynamic Critical Path Evaluation for Potential Operation Para
	Fig.€10. Critical path profiling (a) of parallel code on event g

	Fig.€11. Function-call tree (a) does not help detecting the actu
	D. Automatic Measurement of Interfunction Data-Transfers for Exp
	TABLE I C HARACTERISTICS OF THE T EST S EQUENCES
	TABLE II MPEG-4 VM P ERFORMANCE

	IV. E XAMPLES OF C OMPLEXITY M EASURES P ROVIDED BY THE SIT T OO
	A. Testbench Definition

	TABLE III JVT JM, S IMPLE S ETTINGS P ERFORMANCE
	TABLE IV JVT JM, C OMPLEX S ETTINGS P ERFORMANCE
	TABLE V E NCODERS C OMPUTATIONAL C OMPLEXITY
	B. Computational Complexity Analysis
	C. Encoders

	Fig.€12. Encoders computational complexity.
	TABLE VI D ECODERS C OMPUTATIONAL C OMPLEXITY
	Fig.€13. Decoders computational complexity.
	D. Decoders
	V. C ONCLUSION
	P. V. Knudsen and J. Madsen, Aspects of system modeling in hardw

	Information Technology Generic Coding of Moving Pictures and Ass
	Information Technology Coding of Audio Visual Objects Part 2 Vis
	Information Technology Coding of Audio Visual Objects Part 10 Ad
	JPEG 2000 Part 1 Final Publication Draft, ISO/IEC JTC1/SC29/WG1
	M. Horowitz, A. J. F. Kossentini, and A. Hallapuro, H.264/AVC ba
	V. Lappalainen, A. Hallapuro, and T. Hamalainen, Complexity of o
	M. Berekovic, H. J. Stolberg, and P. Pirsch, Multicore system On
	L. Nachtergaele, D. Moolenaar, B. Vanhoof, F. Catthoor, and H. D
	M. Mattavelli and S. Brunetton, Implementing real time video dec
	P. Kuhn, Algorithms, Complexity Analysis, and VLSI-Architectures
	Y. S. Li and S. Malik, Performance analysis of embedded software
	P. Pushner and C. Koza, Calculating the maximum execution time o
	S. Mallat and F. Falzon, Analysis of low bit rate image transfor
	M. Mattavelli and S. Brunetton, A Statistical Study of MPEG 4 VM
	E. Kligerman and D. Stoyenko, Real-time euclid: A language for r
	S. Graham, P. Kessler, and M. McKusick, Gprof: A call graph exec

	What is ATOMIUM? . [Online] . Available: http://www.imec.be/desi
	F. Catthoor, F. Balasa, K. Danckaert, E. De Greef, M. Eyckmans,

	IEEE Standard for Verilog Hardware Description Language 2001, I
	IEEE Standard VHDL Language Reference Manual 2002, IEEE Standar
	T. Ball and J. Larus, Optimally profiling and tracing programs,
	R. Cmelik and D. Keppel, SHADE: A fast instruction set simulator
	S. S. Mukherjee, S. K Reinhardt, B. Falsafi, M. Litzkow, M. D. H
	A. D. Pimentel and L. O. Hertzberger, Abstract workload modellin
	E. Witchel and M. Rosenblum, Embra: Fast and flexible machine si
	P. Alexander, R. Kamath, and D. Barton, System specification in
	G. Berry, The foundations of esterel, in Proof, Language, and In

	CoWare N2C Design System [Online] . Available: www.CoWare.com
	J. Davis II et al., Overview of the Ptolemy Project, Dept. EECS,
	M. Eisenring, J. Teich, and L. Thiele, Rapid prototyping of data
	R. Esser, CodeSign Concepts and tutorial, Computer Engineering a
	T. Grandpierre and Y. Sorel, From algorithm and architecture spe
	S. Gupta, N. D. Dutt, R. K. Gupta, and A. Nicolau, SPARK: A high

	RASSP Methodology Version 2.0 (1995, Oct.). [Online] . Available
	SystemC v2.0.1 White Paper, Open SystemC Initiative,, http://www
	B. Tabbara, L. Lavagno, and A. S. Vincentelli, Fast hardware sof
	M. Ravasi and M. Mattavelli, High-level algorithmic complexity e
	P. Kuhn, Algorithms, Complexity Analysis, and VLSI-Architactures
	M. Ravasi, M. Mattavelli, P. Schumacher, and R. Turney, High-lev
	L. Liu, D. Du, and H. C. Chen, An efficient parallel critical pa
	A. Prihozhy, M. Mattavelli, and D. Mlynek, Data dependences crit
	J. K. Hollingsworth, Critical path profiling of message passing
	Generically optimized MPEG 4 reference software (simple profile)

	Reference Software JM 2.1 [Online] . Available: http://bs.hhi.de

