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Abstract

We consider the following problem: Given a rational matix Q™" and

a rational polyhedro® C R™"P, decide if for all vectord € R™, for which
there exists an integrale ZP such that(b,z) € Q, the system of linear in-
equalitiesAx < b has an integral solution. We show that there exists an
algorithm that solves this problem in polynomial timepiand n are fixed.
This extends a result of Kannan (1990) who established socligarithm

for the case when, in addition fwandn, the affine dimension d is fixed.

As an application of this result, we describe an algorithrfirid the maxi-
mum difference between the optimum values of an integerprognax cx:
Ax< b, x € Z"} and its linear programming relaxation over all right-hand
sidesb, for which the integer program is feasible. The algorithnpaty-
nomial if n is fixed. This is an extension of a recent result of Hosten and
Sturmfels (2003) who presented such an algorithm for imtegegrams in
standard form.
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1 Introduction

Central to this paper is the followingarametric integer linear programming
(PILP) problem:

Given a rational matrixA € Q™" and a rational polyhedro® C
R™P, decide if for allb € R™, for which there exists an integral
z € ZP such that(b,z) € Q, the system of linear inequalitigsx < b
has an integral solution.
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In other words, we need to check that for all vectoin the set
Q/ZP:={beQ™: (b,z) € Qfor somez € ZP}

the correspondingteger linear programmingroblemAx < b, x € Z" has a fea-
sible solution. The se®/ZP is called theinteger projectionof Q. Using this
notation, we can reformulate PILP as the problem of testmegfollowing Vv 3-
sentence:

vbe Q/ZP IxeZ": Ax<h (1)

It is worth noticing that any polyhedrd@ C R™ as well as the set of integral vec-
tors inQ can be expressed by means of integer projections of polghé&uiteed,

Q=0Q/Z° and QNZ™={(b,b):be Q}/Z™

In its general form, PILP belongs to the second level of thgmmmial hier-
archy and ist‘lg-complete; see (Stockmeyer, 1976) and (Wrathall, 1976hnika
(1990) presented a polynomial algorithm to decide the seet€l) in the case
whenn, p and the affine dimension @) are fixed. This result was applied to de-
duce a polynomial algorithm that solves the Frobenius gmobivhen the number
of input integers is fixed, see (Kannan, 1992).

Kannan’s algorithm proceeds in several steps. We infognai@scribe it at this
point as a way to decidé3-statementd (1) in the cage= 0. First Kannan pro-
vides an algorithm which partitions the set of right-hartesQ into polynomially
manyinteger projections of partially open polyhedra,S ., S, where eacl§ is
obtained from a higher-dimensional polyhedron by profegbut a fixed number
of integer variables. Eac§ is further equipped with a fixed number of mixed
integer programs such that for edole S the systemAx < b is integer feasible,
if and only if one of the fixed number of “candidate solutiormitained from
pluggingb in these associated mixed integer programs, is a feasiteiganpoint.

To decide now whethel (1) holds, one searches within theSseatdividually
for a vectorb for which Ax < b hasno integral solution. In other words, each of
the candidate solutions associateth toust violate at least one of the inequalities
in AX< b. Since the number of candidate solutions is fixed, we can erate
the choices to associate a violated inequality to each datelsolution. Each of
these polynomially many choices yields now a mixed-int@gegram with a fixed
number of integer variables. There exists@ S such thatAx < b has no integral
solution if and only if one of these mixed-integer programfeiasible. The latter
can be checked with the algorithmiof Lenstra (1983) in polgradtime.



Contributions of this paper

We modify the algorithm of Kannan to run in polynomial timedan the assump-
tion that onlyn and p are fixed. This is achieved via providing an algorithm
that computes for a matriA € Q™" a setD C Z" of integral directions with
the following property: for each € R™, the lattice width (see Sectian 2) of the
polyhedronR, = {x: Ax< b} is equal to the width of this polyhedron along one
of the directions irD. This algorithm is described in Sectibh 3 and runs in poly-
nomial time ifn is fixed. The strengthening of Kannan’s algorithm to decide
v 3-statements of the formal(1) if andp is fixed follows then by using this result
in the proof of Theorem 4.1 in (Kannean, 1992).

We then apply this result to find the maximumteger programming gafor a
family of integer programs. The integer programming gaproiireger program

max{cx: Ax< b, x e Z"} (2)
is the difference
max{cx: Ax< b} —max{cx: Ax< b, xe Z"}.

Given a rational matriA € Q™" and a rational objective vectare Q", g(A,c)
denotes the maximum integer programming gap of integerrarog of the form
@), where the maximum is taken over all vectbrsfor which the integer pro-
gram [2) is feasible. Our algorithm findgA, c) in polynomial time ifn is fixed.
This extends a recent resultlof Hosten and Sturmfels (20@8) proposed an al-
gorithm to find the maximum integer programming gap for a farof integer
programs irstandard formf nis fixed.

Related work

Kannan’s algorithm is an extension of the polynomial altjon for integer lin-
ear programming in fixed dimension by Lenstra (1983). Bakiand Woods
(2003) presented an algorithm for counting integral pointthe integer projec-
tion Q/ZP of a polytopeQ C R™P. This algorithm runs in polynomial time if
p andm are fixed, and uses Kannan’s partitioning algorithm, whiehextend
in this paper. In particular, their algorithm can be appliectount the number
of elements of the minimal Hilbert basis of a pointed cone afypomial time
if the dimension is fixed. We remark that a polynomial testtfa Hilbert basis
property in fixed dimension was first presented by Cook ell&8i84). Extensions
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of Barvinok’s algorithm to compute counting functions farpmetric polyhedra
were presented in (Barvinok and Pommersheim, 1999; Veaggel et all, 2007)
and in (K6ppe and Verdoolaege, 2007). These counting fonstare piecewise
step-polynomials which involve roundup operations. Witkge functions at hand
one can very efficiently compute the number of integer pamtg, via evalua-
tion atb. It is however not known how to use such piecewise step-puiyals to
decideV J-statements efficiently in fixed dimension.

Hosten and Sturmfels (2003) proposed an algorithm to fiedbximum in-
teger programming gap for a family of integer programstandard formi.e.,
max{cx: Ax=b,x > 0,x € Z"}. Their algorithm exploits short rational gen-
erating functions for certain lattice point problems, cf.arinok (1994) and
Barvinok and Woods (2003), and runs in polynomial time if thenbern of
columns ofA is fixed. However, the latter implies also a fixed number ofgow
in A, as we can always assura&o have full row rank. We would like to point out
that our approach does not rely on rational generating iomstat all.

Basic definitions and notation

For setd/ andW in R" and a numbea we denote
V4+W:={v+w:veV,weW} and aW:={aw:weW}.

It is easy to see that W is a convex set containing the origin and< 1, then
aW CW. If V consists of one vectaronly, we write

V+W = {v+w:weW}

and say thav+W is thetranslateof W alongthe vector. The symbol[a| de-
notes the smallest integer greater than or equal ice.,a rounded up Similarly,
| a | stands for the largest integer not exceedindiencea rounded down

In this paper we establish a numbempailynomial algorithmsgi.e., algorithms
whose running time is bounded by a polynomial in the inpug.skZollowing the
standard agreements, we define #liee of a rational numben = p/q, where
p,q € Z are relatively prime and > 0, as the number of bits needed to wiatén
binary encoding:

sizga) :=1+[log(|p|+1)] + [log(g+1)].

The size of a rational vect@r= [ay,...,an| is the sum of the sizes of its compo-
nents:

sizga) := n+isize(ai).
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At last, the size of a rational matr= [g;] € Q™" is
m n
sizgA) ;== mn+ Z Z sizgajj).
i=1]=1

An open half-spacen R" is the set of the forr{x: ax< B}, wherea € R" is
a row-vector angB is a number. Similarly, the sk : ax < 3} is called aclosed
half-space A partially open polyhedron Rs the intersection of finitely many
closed or open half-spaces. Rfcan be defined by means of closed half-spaces
only, we say that it is a&losed polyhedronor simply apolyhedron We need
the notion of a partially open polyhedron to be able to partithe space (this is
definitely impossible by means of closed polyhedra only)la&t, we say that a
partially open polyhedron igtional if it can be defined by the system of linear
inequalities with rational coefficients and rational rigiteind sides.

Linear programmings about optimizing a linear functioox over a given
polyhedronP in R":

max{cx: x € P} = —min{—cx: x € P}.
If xis required to be integral, it is anteger linear programming@roblem
max{cx:x € PNZ"} = —min{—cx: xe PNZ"}.

For details on linear and integer programming, we refer ti(i$ser, 1986). Here
we only mention that a linear programming problem can beegbim polynomial
time, cf. (Khachiyan, 1979), while integer linear programgis NP-complete.
However, if the number of variables is fixed, integer prograng can also be
solved in polynomial time, as was shown by Lenstra (1983)rddweer, Lenstra
presented an algorithm to solw@xed-integer programmingith a fixed number
of integer variables. We remark that both algorithms-—of étigan (1979) and
of Lenstra [(1983)—can be used to sobkecision versionsf integer and linear
programming orpartially openpolyhedra.

An integral square matrii is calledunimodularif |detU )| = 1. Clearly, if
U is unimodular, thet) ~ is also unimodular. A matrix of full row rank is said
to be inHermite normal formif it has the form[H O], whereH = [h;;] is a square
non-singular non-negative upper-triangular matrix sinettft; > hjj for all j > i.
Given a matrixA of full row rank, we can find in polynomial time a unimodu-
lar matrixU such thatAU is in Hermite normal form; see (Kannan and Bachem,
1979). We remark that the Hermite normal form of an integedtorc is the
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vectorae;, wherea is the greatest common divisor of the components ahd
e, is the first unit vector. The unimodular mattik such thattU = ae; can be
obtained directly while executing the Euclidean algorittonaompute the greatest
common divisor.

2 Flatness theorem

We briefly review the algorithm to solve integer linear pramgming in fixed di-
mension, as its basic ideas will be used in the followingieast Intuitively, if a
polyhedron contains no integral point, then it must be “flting some integral
direction. In order to make this precise, we introduce theonaf “lattice width.”
Thewidth w(K) of a closed convex sé&t along a directiort € R" is defined as

We(K) :=max{cx: x € K} —min{cx: x € K}. (3)

Thelattice width w(K) of K (with respect to thetandard latticeZ") is the mini-
mum of its widths along all non-zero integral directions:

w(K) := min{we(K) : c € Z"\ {0} 1.

An integral row-vectoc attaining the above minimum is calledrédth direction
of the setK. Clearly,w(v+ aK) = aw(K) for any rational vectov and any non-
negative rational numbeaxr. Moreover, both setk andv+ aK have the same
width direction.

Applications of the concept of lattice width in algorithrmamber theory and
integer programming rely upon tiflatness theorepwhich goes back to Khinchin
(1948) who first proved it for ellipsoids iR". Here we state it foconvex bodigs
i.e., bounded closed convex sets of non-zero volume.

Theorem 2.1(Flatness theorem)lhere is a constanb(n), depending only on n,
such that any convex body®R" with w(K) > w(n) contains an integral point.

The constanto(n) in Theorem 211 is referred to as tfiatness constanfhe best
known upper boundon w(n) is O(n%?), cf. (Banaszczyk et al., 1999), although
a linear dependence enwas conjectured, e.g., by Kannan and Lovasz (1988). A
linearlower boundon w(n) was shown by Kantor (1999) and $2(1999).
Throughout this paper we will mostly deal with rational podglra rather than
general convex bodies. In this case, assumptions of nanveénme and bound-
edness can safely be removed from the theorem'’s statemeeed, ifP CR"is a
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rational polyhedron of zero volume, then it has width O alangntegral direction
orthogonal to its (rational) affine hull. Further, [@tbe the characteristic cone of
P:
C:={y:x+yePforall xe P}.

If C = {0}, thenP is already bounded. & is full-dimensional, then the s&t}-C
trivially contains an integral point, for any< P (we can always allocate a unit
box inside a full-dimensional cone). At lastGfis not full dimensional, then we
can choose a sufficiently large b&C R" such thaw(P) = w(PNB) and both
P andP N B have the same width direction, which is orthogonal to theqnal)
affine hull ofC. If w(P) > w(n), thenPN B, and hence’, contains an integral
point by Theoreni 211.

How can we use this theorem to check whether a given ratiasighpdron
contains an integral point? The answer is in the followingnea, which is almost
a direct consequence of the flatness theorem.

Lemma 2.2. Let PC R" be a rational polyhedron of finite lattice width and let ¢
be its width direction. Let

B := min{cx: x € P}. (4)
Then P contains an integral point if and only if the polyhedro
Pn{x:B<cx<B+w(n)}

contains an integral point.

Proof. If w(P) < w(n), then there is nothing to prove, since
PC{x:B<cx<B+w(n}.

Suppose that(P) > w(n) and letP = y+ Q, wherey is an optimum solution of
the linear prograni{4) an@ is the polyhedron containing the origin,

Q:={x—y:xeP}.
We denote
Q= %Q and P :=y+Q.
In other wordsQ is P translated to contain the origi is obtained fromQ by
scaling it down, andP’ is Q' translated back to the original position. It is easy to

see that
min{cx:x € P’} =cy= .
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cx=p cx= B+ w(n)

Figure 1: lllustration for the proof of Lemnia2.2

Since% < 1 andQ is convex, we hav€) C Q. This impliesP’ C P. Yet, we
havew(P) = w(Q), and thereforew(P") = w(Q') = w(n).
By Theoren{ Z1LP’ contains an integral point, say But thenz also belongs
toP and
cz< max{cx:xe P’} = B+ w(n).

This completes the proof. O

Suppose that we know a width directiof a polyhedron
P={x:Ax< b} CR" (5)

Sincec is integral, the scalar produck must be an integer for any integral point
x € P. Together with Lemm&a 2.2, it allows us to split the originablplem into
w(n) + 1 integer programming problems on lower-dimensional petira

Pn{x:cx=[B]+j}, j=0,...,0(n)

wheref is defined byl[(¥).

The components of must be relatively prime, as otherwise we could scale
c, obtaining a smaller width dP. Therefore its Hermite normal form is a unit
row-vectore;. We can find a unimodular matrbt such thattU = ey, introduce
new variablesy := U ~1x and rewrite the original system of linear inequalities
Ax < b in the form AUy < b. SinceU is unimodular, the systerix < b has an
integral solution if and only if the syste®Jy < b has an integral solution. But
the equatiorcx= [B] + j turns intoery = [B] + j. Thus, the first component
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of y can be eliminated. All together, we can proceed with a coistamber of
integer programming problems with a smaller number of \deis Ifn is fixed,
this yields a polynomial algorithm.

An attempt to generalize this approach for the case of vgryigives rise to
the following problems. First, the width directions of thelyhedron [(5) depend
onb and therefore can also vary. Furthermore, even if a widgctionc remains
the same, it is not a trivial task to proceed recursively. pbmt is thatf, as it
is defined in[(#), also depends brand the hyper-planes<: cx= [B]+ j} are
not easy to construct witf being afunctionof b. In the following sections we
basically resolve these two problems and adapt the aboweithlign for the case
of varyingb.

3 Lattice width of a parametric polyhedron

A rational parametric polyhedron Rlefined by a matrixA € Q™" is the family
of polyhedra of the form
P = {x: Ax< b},

where the right-hand sideis allowed to vary oveR™. We restrict our attention
only to thoseb, for which R, is non-empty. For each sudh there is a width
directionc of the polyhedror,. We aim to find a small s& of non-zero integral
directions such that
w(Ry) = min{w¢(R,) : c€ C}

for all vectorsb for which R, is non-empty. Further on, the elements of theGet
are referred to awidth directionsof the parametric polyhedrd® It turns out that
such a set can be computed in polynomial time when the nuniloefunns inA
is fixed.

Let A€ Q™" be a matrix of full column rank. Given a subset of indices

N = {i1,...,in} € {1,....m},

we denote byAy the matrix composed of the rows ..., i, of A. We say thaiN
is abasisof A if Ay is non-singular. Clearly, any matrix of full column rank has
at least one basis. Each baNislefines a linear transformation

Fv:RT =R Fyb= Agton, (6)

which maps right-hand sidésto the correspondingasic solutionsWe can view
Fv as ann x mrmatrix of rational numbers. If the poifiyb satisfies the system
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Ax< b, then it is a vertex of the polyhedrdmx : Ax< b}. From linear program-
ming duality we know that the optimum value of any feasibhe&r program

max{cx: Ax< b}

is finite if and only if there is a basid such thatc = yAy for some row-vector

y > 0. In other words¢ must belong to the cone generated by the rows of matrix
An. Moreover, if it is finite, there is a basl$ such that the optimum value is
attained afyb. It gives us the following simple lemma.

Lemma 3.1. Let P be a parametric polyhedron defined by a rational matrixfA
there exists a vector Isuch that the polyhedron

Py = {x: Ax< b’}
has infinite lattice width, then (&) is infinite for all b.

Proof. Suppose that the lattice width Bf is finite for someb and letc be a width
direction. Then both linear programs

max{cx: AXx< b} and mircx: Ax< b}

are bounded and therefore there are b&sesndN, of A such thatc belongs to
both cones

Cii={yAy,:y>0} and Cy:={-yAy,:y=>0} (7)

generated by the rows of matriceg, and—Ay,, respectively. But then the linear
programs
max{cx: Ax< b’} and mincx: Ax< b’}

are also bounded, whenag(Ry) is finite. O

The above lemma shows that finite lattice width is a propefrth® matrixA. In
particularPy has finite lattice width if and only iR, has finite lattice width for all
b. Conversely, iy has infinite lattice width, theR, also has infinite lattice width
and therefore contains an integral point forkalWe can easily recognize whether
Po has infinite lattice width. For instance, we can enumerdtpaasible pairs of
based\; andN, and check if the coneBI(7) have a common integral vectorhBurt
we shall not deal with this “trivial” case and shall considaty those parametric
polyhedra, for whichw(Ry) is finite, and thereforev(R,) is finite for anyb. We
say in this case that the parametric polyhedpdrasfinite lattice width
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Fa,b

Figure 2: The width directior and the two cone§; andCs.

Now, suppose thdg, is non-empty and let be its width direction. Then there
are two basebl; andN, such that

max{cx: Ax< b} =chyb and mifcx: Ax< b} =chyb (8)

andc belongs to the coné&3 andC, defined by[(¥7), see Figulé 2. In fact, equations
(@) hold for any vectoc in C; N C,. Thus, the lattice width oR, is equal to the
optimum value of the following optimization problem:

min{c(Fy, — Fy,)b:ce CiNCoNZ"\ {0}}. (9)

The latter can be viewed as an integer programming problenedd, the cones
C1 andC; can be represented by some systems of linear inequaliéigsDs < 0
andcD; < 0, respectively, wherB,,D, € Z™", The minimum((®) is taken over
all integral vectorg satisfyingcD; < 0 andcD, < 0, except the origin. Since both
conesC; andC; are simplicial, i.e., generated InMinearly independent vectors,
the origin is a vertex o€, NC; and therefore can be cut off by a single inequality,
for example,cD11 < —1, wherel denotes the-dimensional all-one vector. It
is important that all other integral vectorsn C; NC, satisfy this inequality and
therefore remain feasible. Thus, the probléin (9) can beittewras

min{c(Fy, — Fn,)b:cD; <0,¢cD2 < 0,¢cD11 < —1ce Z"}.

For a givenb, this is an integer programming problem. Therefore, théenoyon
value of [9) is attained at some vertex of the integer hulhef ainderlying poly-
hedron

{c:cD1<0,cD, <0,cD11 < -1} (20)
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Shevchenko (1981) and Hayes and Larman (1983) proved #nattmber of ver-
tices of the integer hull of a rational polyhedron is polynahm fixed dimension.
Tight bounds for number were presented.in (Cook et al.,|1888)Barany et al.,
1992). This gives rise to the next lemma.

Lemma 3.2. There is an algorithm that takes as input a rational matrix ™"
of full column rank, which defines a parametric polyhedron fHimite lattice
width, and computes a set of tripl€§, G;, ¢;) of rational linear transformations
F,Gi:R™— R"and a non-zero integral row-vectore Z" (i = 1, . .., t) satisfying
the following properties. For all b, for whichy,Rs non-empty,

(&) K and G provide, respectively, an upper and lower bound on the vafube
linear function ¢x in R, i.e., for all i,

GiGib < min{cix: x € By} < max{cix: x e R} < cFb,

(b) the lattice width of pis attained along the direction éor some i€ {1,...,t}
and can be expressed as

w(R) = miin Gi(F —Gj)b.

(c) The numbert of the triples satisfies the bound
t <2m?"(2n+1)"(24n°)" 1, (11)

whereg is the maximum size of a column in A.

The algorithm runs in polynomial time if n is fixed.

Proof. In the first step of the algorithm we enumerate all possibkebafA.
Observe that there is at least one basis, sieg of full column rank. On the
other hand, the total number of possible bases is at mhsHence, the number
of possible pairs of bases is bounded ib§". The algorithm iterates over all
unordered pairs of bases and for each such{dirN,} does the following.

Let C; andC;, be the corresponding simplicial cones, defined[By (7). These
cones can be represented by systems of linear inequatibess 0 andcD, < 0
respectively, wher®, D, € Z™" and the size of each inequality is bounded by
4n@, see (Schrijver, 1986, Theorem 10.2). As the origin is aevedf the cone
C1NCy, it can be cut off by a single inequality; for exampt®11 < —1, where
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1 stands for thex-dimensional all-one vector. The size of the latter inety
bounded by #°¢.

Thus, there are exacthyn2- 1 inequalities in[(10) and the size of each inequal-
ity is bounded by #3¢. This implies that the number of vertices of the integer
hull of (10) is at most 22n+1)"(24n°p)"1, cf. (Cook et al., 1992), and they all
can be computed in polynomial timenfis fixed, cf. (Hartmann, 1989). The al-
gorithm then outputs the tripldw, , Fv,, €) for each vertex of the integer hull of
(10), wherery, andFy, are the linear transformations defined bl (6). Since there
are at mostr®" unordered pairs of bases and, for each pair, the algorittums
at most 22n4 1)"(24n°p)"~* triples, the total number of triples satisfi€s](11),
as required. Partsi(a) and (b) of the theorem follow direftthyn our previous
explanation. O

The bound[(I[1) can be rewritten as
t = O(mP"g" 1)

for fixed n. Clearly, the greatest common divisor of the componentspitirec-
tion ¢; obtained by the algorithm must be equal to 1, as otherwiseui@not be
a vertex of the integer hull of (10). This implies, in parfau that the Hermite
normal form of any of these vectors is just the first unit veejoc R".

It is also worth mentioning that ifF, Gj, ¢;) is a triple attaining the minimum
in Part [B) of Lemm&312, then we have

w(R,) < max{cix: x € R} —min{cx:xe R} < cFb—cGb=w(R,).
Hence, Part{a), when applied to this triple, turns into
min{cix:x€ R} =cGib and max{cx:xe R} =chFb.

For our further purposes, it is more suitable to hawasegjuewidth direction
for all polyhedraR, with varyingb. In fact, using Lemm@a_3l2, we can partition the
set of the right-hand siddsinto a number of partially open polyhedra such that
the width direction remains the same forlalbelonging to the same region of the
partition.

Theorem 3.3. Let P be a parametric polyhedron of finite lattice width, defin
by a matrix Ac Q™" of full column rank. Let GC R™ be a rational partially
open polyhedron such that, 5 non-empty for all ke Q. We can compute—in
polynomial time, if n is fixed—a partition of Q into a numberpairtially open
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polyhedra Q,...,Q; and, for each i, find a tripléF, G;, ¢;) of linear transforma-
tions i, G; : R™ — R" and a non-zero vector & Z", such that

min{cix: X € R} =c¢Gb, maxqcx:xe R} =cHRb,

and
W(P,) = wg (R) = G(F—Gi)b forallbe Q.

If @ denotes the maximum size of a column in A, therQ(nm?g"1).

Remark.The statement of Theorem B.3 is very analogous to (Kanna®Z,19
Lemma 3.1). However, there are several crucial differenéesst, the number
of regions in the partition obtained by Kannan’s algoritlnexponential im and
the affine dimensiorg of the polyhedror@Q. Our algorithm yields a partition that
is exponential im only, hence polynomial if is fixed. Also our algorithm runs
in polynomial time ifn is fixed butjo may vary. At last, the width directions
obtained by the Kannan’s algorithm satisfy, for dng Q;,

either wg (P) <1 or wg(Py) <2w(Rp)

In contrast, we compute thexactwidth direction for each region in the partition.
While the exact computation of width directions does nophaluch from the
algorithmic point of view, removing the restriction on thiengnsion ofQ turns
out to be the main step towards the claimed generalizati@ohan’s algorithm.

Proof of Theorerh 3]13First, we exploit the algorithm of Lemnia 3.2 to obtain the
triples (F,Gi,c), i = 1,....t, with t = O(m"@"~1). These triples provide the
possible width directions of the parametric polyhedRnFor each =1,...,t,
we define a partially open polyhedr@h by the inequalities

Ci(F—Gi)b<cj(Fj—Gj)b, j=i+1,...,t

Thus,
mjin Cj(Fj—Gj)b=ci(F—-Gj)b
for all b € Q;. We claim that the intersections of the partially open petfaQ;
with Q give the required patrtition.
Indeed, leb € Q and letu be the minimum value ofj(F — Gj)b,i=1,....t.
Let | denote the set of indicaswith ¢;(F — Gj)b = u. Thenb € Qj,, whereig
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is the smallest index ih. Yet, suppose thdi € Q belongs to two partially open
polyhedra, say); andQ;. Without loss of generality, we can assume j. But
then we have

Ci(F—Gi)b< Cj(Fj — Gj)b < ¢(FR—Gj)b,

where the first inequality is due to the fdct Q; and the second inequality follows
fromb € Q;; both together are a contradiction.
For the width directions, Lemnia 3.2 implies that

w(R,) = mjin Cj(Fj—Gj)b=ci(F—-Gj)b

for all b € Q;N Q. This completes the proof. O

Theorem 3.8 provides a unique width direction for each me@d of the parti-
tion. This resolves the first problem of adapting the algonitfor integer linear
programming in fixed dimension to the case of varylimgvhich was addressed in
the introduction. However, we still need to deal with the éryplanes{x: cix =
[B]+ j}, wheref is the optimum value of the linear program rfigrx : x € By}
As mentioned above can be expressed as a linear transformation, oamely
B = ¢iGjb. But [ 3] is no more dinear function ofb, which makes the recursion
complicated. Kannan (1992) showed how to tackle this prabM/e discuss it in
the next section.

4 Partitioning theorem and parametric integer pro-
gramming

The proof of the following structural result follows frometproof of (Kannan,
1992, Theorem 4.1) if it is combined with Theorem]3.3.

Theorem 4.1. Let P be a parametric polyhedron of finite lattice width, defirby
arational matrix Ac Q™" of full columnrank. Let @ R™be arational partially
open polyhedron such that s non-empty for all ke Q. We can compute—
in polynomial time, if n is fixed—a partition of Q into setg S., S, and for
each i, find a number of unimodular transformationg UR" — R" and affine
transformationsif : R™ — R", j=1,...,k such that

(a) each $is the integer projection of a partially open polyhedron=s§ /Z";
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(b) forany be S, R,NZ" # 0if and only if B contains U; [ Tijb] for some index
J;

(c) the following bounds hold:
t=O((mg" 1)) |, = Oo(@(n), k=0(2"2@(n), i=1,...t,
whereg denotes the maximum size of a column in Aaid) = [1; w(n).

We do not repeat Kannan’s proof here but give an intuition lo§ W is true in
dimension 2. By Theorefn 3.3 we can assume that the widtletareis invariant
for all b € Q and by applying a unimodular transformation we can furtissuane
that this width-direction is the first unit-vecter, see Figurél3.

wdl
S

x1 = [e1Gb] x; = [e1Gb] +1i

R

Figure 3: lllustration of Theorem 4.1 in dimension 2.

Lemmd2.2 tells tha®, contains an integral point if and only if there exists an
integral point on the lines; = [e1Gb] + j for j =0,...,w(2). The intersections
of these lines with the polyhedrdfy are 1-dimensional polyhedra. Some of the
constraintsax < 3 of Ax < b are “pointing upwards”, i.eae < 0, whereey is
the second unit-vector. Letix; + axXo < 3 be a constraint pointing upwards
such that the intersection poifite;Gb| + j,y) of a;x1 + axxe = B with the line
x1 = [e1Gb] + j has the largest second component. The kne- [e;Gb] + j
contains an integral point iR, if and only if ([e1Gb] + |, [y]) is contained irR,.
This point is illustrated in Figurel 3. By choosing the highesnstraint pointing
upwards for each ling; = [e;Gb] + j, we partition the set of right-hand sides
into polynomially many integer projections of partiallyeppolyhedra.

16



In order to express the candidate solutige;Gb| + j, [y]) in the form de-
scribed in the theorem, observe that

y=(B—aixi)/a.
Sincex; is an integer and
X1 = [e1Gb| + ] =eGb+j+y
for somey € [0,1), we can rewrite the equatidy| = [(B —aix1)/az] as

lar/az|x1+ Y] = [B/az — {a1/az}xq ]
= [B/az—{ar/ax}(e1Gb+ j) — {a1/az}y],

where{a; /ay} denotes the fractional part af /ay. Since{a;/ay}y lies between
0 and 1, it suffices to check independently two different fmksses, namely,

lar/ax|x1+ [y] = [B/az — {a1/ax} (e1Gb+ j)]

and
lag/ag)x1+ [y] = [B/ax — {a1/ax} (e1Gb+ j) — 1].

Combined withx; = [e;Gb] + j, each of the above equations yields a unimodular
system with respect to the variabbgsand[y], with the right-hand side being the
round-up of an affine transformation bf We refer the reader to (Kannan, 1992)
to see the complete proof for arbitrary dimension.

VY 3-statements

Theoreni 411 gives rise to a polynomial algorithm for testegtences of the form
Vbe Q/ZP 3IxeZ": Ax<bh, (12)

whenp andn are fixed. This algorithm was first described by Kannan (1 9@2)
he required, in addition, the affine dimension®fo be fixed. Our improvement
follows basically from the improvement in the partitionitlgeorem, while the
algorithm itself remains exactly the same. We describe 1i¢ tier the sake of
completeness. First observe that we can assumeAthets full column rank.
Otherwise we can apply a unimodular transformatioA &bm the right to obtain
a matrix[A’ | 0], whereA’ has full column rank.
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The idea is as follows: First we run the algorithm of Theofed @n input
A and@Q C R™ whereQ is the set of vectord, for which the systenAx < b
has a solution. Then we consider eachS$etturned by the algorithm of The-
orem[4.1 independently. For eabhe § we have a fixed number of candidate
solutions for the systemAx < b, defined via unimodular and affine transforma-
tions asUj; [ Tjjb]. Each rounding operation can be expressed by introducing an
integral vector:z= [Tjjb] is equivalent toljjb < z < Tjjb+ 1. We need only a
constant number of integer variables to express all catelgdutions plus a fixed
number of integer variables to represent the integer ptiojexS = S/Z'i. It re-
mains to solve a number of mixed-integer programs, to whiefalso include the
constraintgb,y) € Q, y € ZP.

Theorem 4.2. There is an algorithm that, given a rational matrixaQ™ " and
a rational polyhedron QC R™"P, decides the senten¢&2). The algorithm runs
in polynomial time if p and n are fixed.

Proof. Let P be a parametric polyhedron defined by the matikirst, we exploit
the Fourier—Motzkin elimination procedure to construe golyhedror@ C R™
of the right-hand sideb, for which the systenAx < b has a (fractional) solu-
tion. For each inequalitgb < 3, defining the polyhedro®’, we can solve the
following mixed-integer program

ab>pB, (byecQ, yeZP,

and if any of these problems has a feasible solutoh), thenb is a vector in
Q/ZP, for which the systemAx < b has no integral solution. Hence, we can
terminate and output “no” (with being a certificate).

We can assume now that for élie Q/ZP the systemAx < b has a fractional
solution. By applying the algorithm of Theorém #.1, we comst a partition of
Q into the setsS,,...,S, where eacl§ is the integer projection of a partially
open polyhedron§ = S/Z'i. Sincen is fixed, thel; are bounded by some con-
stant,i = 1,...,t. Furthermore, for each the algorithm constructs unimodular
transformationsljj and affine transformation;, j = 1,...,k;, such thaf,, with
b € S, contains an integral point if and onlylif;j [Tijb] € R, for somej. Again,
ki is fixed for a fixedn,i =1,...,t.

The algorithm will consider each indéxndependently. For a givein§ can
be described as the set of vectbrsuch that

(b2 €8
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has a solution for some integee Z'i. This can be expressed in terms of linear
constraints, a§ is a partially open polyhedron. L&t = U;; [Tijb]. The points;
can be described by linear inequalities as

Tijb <z <Tjb+1, x;=Ujjz,

wherel is the all-one vector. Thel, does not contain an integral point if and only
if x; ¢ Ryforall j=1,... k. Inthis case, eack violates at least one constraintin
the systenAx < b. We consider all possible tuplé®sf k; constraints fronAx < b.
Obviously, there are onlg such tuples, that is, polynomially many in the input
size. For each such tuple, we solve the mixed-integer pnogra

(b,y)€Q,(b,2) €8,

Tijb <z < Tijb+1, j=1...k,
xj = Uijz;, j=1..k,
ainj>bi]-, j:]-v"'akh

yevazEZh?ZJ GZn7 j:17'~->ki7

wherea;; x < bj; is thej-th constraint in the chosen tuple. Each such mixed-integer
program can be solved in polynomial time since the numbentefier variables
is fixed (in fact, there are at modt + 1)n+|; integer variables).

If there is a feasible solutiob to one of these mixed-integer programs, then
the answer to the original problem is “no” (withbeing a certificate). If all these
mixed-integer programs are infeasible, the answer is “yes” 0J

Remark.We would like to point out that Theorem 4.2 can also be provédre
ently. Bell (1977) and Scarf (1977) showed that if a systeninefar inequalities
Ax < b has no integral solution, then there is already a subsysfeahroost 2
inequalities that is infeasible in integer variables; sse &Schrijver; 1986, The-
orem 16.5). Applied td{1) this means that there exidts=aQ/ZP such that the
systemAx < b has no integral solution, if and only there exidt & Q/ZP and a
subsysten®'x < b’ of Ax< b with at most 2 inequalities, which is infeasible in
integer variables. Her is the projection ob into the according space. Sinoe
is a constant, we can try out dlff) different subsystems @fx < b and apply to
each of these parametric polyhedra Kannan'’s algorithm ¢ald& 3-statements.

However, a similar argument does not yield our extensiore¢fén{4.11) of
Kannan’s partitioning theorem itself, which associategagchb a fixed set of
candidate integer solutions, depending on the partialgnopolyhedron of the
partitioning, in whichb is contained.
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5 Integer programming gaps

Now, we describe how Theorem #.2 can be applied to computentbémum
integer programming gap for a family of integer programst Ae Q™" be a
rational matrix and let € Q" be a rational vector. Let us consider the integer
programs of the form

max{cx: Ax< b, x € Z"}, (13)

whereb is varying overR™. The corresponding linear programming relaxations
are then
max{cx: Ax< b}. (14)

Consider the following system of inequalities:

cx> B,
Ax< b.

Given a vectob and a numbef3, there exists a feasible fractional solution of
the above system if and only if the linear programl (14) isifdasand its value
is at leastB. The set of pairg3,b) € R™?, for which the above system has
a fractional solution, is a polyhedron ™ and can be computed by means of
Fourier—Motzkin elimination, in polynomial time if is fixed. LetQ denote this
polyhedron.

Suppose that we suspect the maximum integer programmingpdpgpsmaller
thany. This means that, whenevgris an optimum value of.(14), the integer
program[(1B) must have a solution of value at Igasty. Equivalently, the system

cxX= B -y, (15)
Ax< b,

must have an integral solution. If there existsf3) € Q such that[(15) has no
integral solution, the integer programming gap is bigganth We also need to
ensure that for a giveb, the integer program is feasible, i.e., the sys&&xn b
has a solution in integer variables.

Now, this is exactly the question for the algorithm of Thenf€.2: Is there a
(B,b) € Q@ such that the systern (I15) has no integral solution, but testsy €
Z" such thafly < b? HereQ' = Q— y(1,0) is the appropriate translate of the et
If the algorithm answers “no” with the certificalbethen the integer prograrn (13),
with the right-hand sidé, has no solution of value greater th@r- y while being
feasible. On the other hand,b) € Q, thus the corresponding linear solution
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has optimum value of at lea&. We can conclude that the maximum integer
programming gap is greater th@nThis gives us the following theorem.

Theorem 5.1. There is an algorithm that, given a rational matrixcdAR™", a
rational row-vector c= Q" and a numbey, checks whether the maximum integer
programming gap for the integer progran&) defined by A and c is bigger than
y. The algorithm runs in polynomial time if the rank of A is fixed

Using binary search, we can also find thenimumpossible value of, hence the
maximum integer programming gap.
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