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Abstract

We consider the following problem: Given a rational matrixA∈ Qm×n and
a rational polyhedronQ⊆ Rm+p, decide if for all vectorsb∈ Rm, for which
there exists an integralz∈ Zp such that(b,z) ∈ Q, the system of linear in-
equalitiesAx 6 b has an integral solution. We show that there exists an
algorithm that solves this problem in polynomial time ifp andn are fixed.
This extends a result of Kannan (1990) who established such an algorithm
for the case when, in addition top andn, the affine dimension ofQ is fixed.

As an application of this result, we describe an algorithm tofind the maxi-
mum difference between the optimum values of an integer program max{cx:
Ax6 b, x ∈ Zn} and its linear programming relaxation over all right-hand
sidesb, for which the integer program is feasible. The algorithm ispoly-
nomial if n is fixed. This is an extension of a recent result of Hoşten and
Sturmfels (2003) who presented such an algorithm for integer programs in
standard form.

1 Introduction

Central to this paper is the followingparametric integer linear programming
(PILP) problem:

Given a rational matrixA ∈ Qm×n and a rational polyhedronQ ⊆
Rm+p, decide if for all b ∈ Rm, for which there exists an integral
z∈ Zp such that(b,z) ∈ Q, the system of linear inequalitiesAx6 b
has an integral solution.
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In other words, we need to check that for all vectorsb in the set

Q/Zp := {b∈ Qm : (b,z) ∈ Q for somez∈ Zp}

the correspondinginteger linear programmingproblemAx6 b, x∈ Zn has a fea-
sible solution. The setQ/Zp is called theinteger projectionof Q. Using this
notation, we can reformulate PILP as the problem of testing the following∀∃-
sentence:

∀b∈ Q/Zp ∃x∈ Zn : Ax6 b. (1)

It is worth noticing that any polyhedronQ⊆ Rm as well as the set of integral vec-
tors inQ can be expressed by means of integer projections of polyhedra. Indeed,

Q = Q/Z0 and Q∩Zm = {(b,b) : b∈ Q}/Zm.

In its general form, PILP belongs to the second level of the polynomial hier-
archy and isΠp

2-complete; see (Stockmeyer, 1976) and (Wrathall, 1976). Kannan
(1990) presented a polynomial algorithm to decide the sentence (1) in the case
whenn, p and the affine dimension ofQ are fixed. This result was applied to de-
duce a polynomial algorithm that solves the Frobenius problem when the number
of input integers is fixed, see (Kannan, 1992).

Kannan’s algorithm proceeds in several steps. We informally describe it at this
point as a way to decide∀∃-statements (1) in the casep = 0. First Kannan pro-
vides an algorithm which partitions the set of right-hand sidesQ into polynomially
manyinteger projections of partially open polyhedra S1, . . . ,St , where eachSi is
obtained from a higher-dimensional polyhedron by projecting out a fixed number
of integer variables. EachSi is further equipped with a fixed number of mixed
integer programs such that for eachb ∈ Si the systemAx6 b is integer feasible,
if and only if one of the fixed number of “candidate solutions”obtained from
pluggingb in these associated mixed integer programs, is a feasible integer point.

To decide now whether (1) holds, one searches within the setsSi individually
for a vectorb for which Ax6 b hasno integral solution. In other words, each of
the candidate solutions associated tob must violate at least one of the inequalities
in Ax 6 b. Since the number of candidate solutions is fixed, we can enumerate
the choices to associate a violated inequality to each candidate solution. Each of
these polynomially many choices yields now a mixed-integerprogram with a fixed
number of integer variables. There exists ab∈ Si such thatAx6 b has no integral
solution if and only if one of these mixed-integer programs is feasible. The latter
can be checked with the algorithm of Lenstra (1983) in polynomial time.
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Contributions of this paper

We modify the algorithm of Kannan to run in polynomial time under the assump-
tion that onlyn and p are fixed. This is achieved via providing an algorithm
that computes for a matrixA ∈ Qm×n a setD ⊆ Zn of integral directions with
the following property: for eachb ∈ Rm, the lattice width (see Section 2) of the
polyhedronPb = {x : Ax6 b} is equal to the width of this polyhedron along one
of the directions inD. This algorithm is described in Section 3 and runs in poly-
nomial time if n is fixed. The strengthening of Kannan’s algorithm to decide
∀∃-statements of the form (1) ifn andp is fixed follows then by using this result
in the proof of Theorem 4.1 in (Kannan, 1992).

We then apply this result to find the maximuminteger programming gapfor a
family of integer programs. The integer programming gap of an integer program

max{cx : Ax6 b, x∈ Zn} (2)

is the difference

max{cx : Ax6 b}−max{cx : Ax6 b, x∈ Zn}.

Given a rational matrixA∈ Qm×n and a rational objective vectorc∈ Qn, g(A,c)
denotes the maximum integer programming gap of integer programs of the form
(2), where the maximum is taken over all vectorsb, for which the integer pro-
gram (2) is feasible. Our algorithm findsg(A,c) in polynomial time ifn is fixed.
This extends a recent result of Hoşten and Sturmfels (2003), who proposed an al-
gorithm to find the maximum integer programming gap for a family of integer
programs instandard formif n is fixed.

Related work

Kannan’s algorithm is an extension of the polynomial algorithm for integer lin-
ear programming in fixed dimension by Lenstra (1983). Barvinok and Woods
(2003) presented an algorithm for counting integral pointsin the integer projec-
tion Q/Zp of a polytopeQ ⊆ Rm+p. This algorithm runs in polynomial time if
p andm are fixed, and uses Kannan’s partitioning algorithm, which we extend
in this paper. In particular, their algorithm can be appliedto count the number
of elements of the minimal Hilbert basis of a pointed cone in polynomial time
if the dimension is fixed. We remark that a polynomial test forthe Hilbert basis
property in fixed dimension was first presented by Cook et al. (1984). Extensions
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of Barvinok’s algorithm to compute counting functions for parametric polyhedra
were presented in (Barvinok and Pommersheim, 1999; Verdoolaege et al., 2007)
and in (Köppe and Verdoolaege, 2007). These counting functions are piecewise
step-polynomials which involve roundup operations. With these functions at hand
one can very efficiently compute the number of integer pointsin Pb via evalua-
tion atb. It is however not known how to use such piecewise step-polynomials to
decide∀∃-statements efficiently in fixed dimension.

Hoşten and Sturmfels (2003) proposed an algorithm to find the maximum in-
teger programming gap for a family of integer programs instandard form, i.e.,
max{cx : Ax = b, x > 0, x ∈ Zn}. Their algorithm exploits short rational gen-
erating functions for certain lattice point problems, cf. Barvinok (1994) and
Barvinok and Woods (2003), and runs in polynomial time if thenumbern of
columns ofA is fixed. However, the latter implies also a fixed number of rows
in A, as we can always assumeA to have full row rank. We would like to point out
that our approach does not rely on rational generating functions at all.

Basic definitions and notation

For setsV andW in Rn and a numberα we denote

V +W := {v+w : v∈V, w∈W} and αW := {αw : w∈W}.

It is easy to see that ifW is a convex set containing the origin andα 6 1, then
αW ⊆W. If V consists of one vectorv only, we write

v+W := {v+w : w∈W}

and say thatv+W is thetranslateof W alongthe vectorv. The symbol⌈α⌉ de-
notes the smallest integer greater than or equal toα, i.e.,α rounded up. Similarly,
⌊α⌋ stands for the largest integer not exceedingα, henceα rounded down.

In this paper we establish a number ofpolynomial algorithms, i.e., algorithms
whose running time is bounded by a polynomial in the input size. Following the
standard agreements, we define thesizeof a rational numberα = p/q, where
p,q∈ Z are relatively prime andq > 0, as the number of bits needed to writeα in
binary encoding:

size(α) := 1+ ⌈log(|p|+1)⌉+ ⌈log(q+1)⌉.

The size of a rational vectora = [a1, . . . ,an] is the sum of the sizes of its compo-
nents:

size(a) := n+
n

∑
i=1

size(ai).
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At last, the size of a rational matrixA = [ai j ] ∈ Qm×n is

size(A) := mn+
m

∑
i=1

n

∑
j=1

size(ai j ).

An open half-spacein Rn is the set of the form{x : ax< β}, wherea∈ Rn is
a row-vector andβ is a number. Similarly, the set{x : ax6 β} is called aclosed
half-space. A partially open polyhedron Pis the intersection of finitely many
closed or open half-spaces. IfP can be defined by means of closed half-spaces
only, we say that it is aclosed polyhedron, or simply apolyhedron. We need
the notion of a partially open polyhedron to be able to partition the space (this is
definitely impossible by means of closed polyhedra only). Atlast, we say that a
partially open polyhedron isrational if it can be defined by the system of linear
inequalities with rational coefficients and rational right-hand sides.

Linear programmingis about optimizing a linear functioncx over a given
polyhedronP in Rn:

max{cx : x∈ P} = −min{−cx : x∈ P}.

If x is required to be integral, it is aninteger linear programmingproblem

max{cx : x∈ P∩Zn} = −min{−cx : x∈ P∩Zn}.

For details on linear and integer programming, we refer to (Schrijver, 1986). Here
we only mention that a linear programming problem can be solved in polynomial
time, cf. (Khachiyan, 1979), while integer linear programming is NP-complete.
However, if the number of variables is fixed, integer programming can also be
solved in polynomial time, as was shown by Lenstra (1983). Moreover, Lenstra
presented an algorithm to solvemixed-integer programmingwith a fixed number
of integer variables. We remark that both algorithms—of Khachiyan (1979) and
of Lenstra (1983)—can be used to solvedecision versionsof integer and linear
programming onpartially openpolyhedra.

An integral square matrixU is calledunimodularif |det(U)| = 1. Clearly, if
U is unimodular, thenU−1 is also unimodular. A matrix of full row rank is said
to be inHermite normal formif it has the form[H 0], whereH = [hi j ] is a square
non-singular non-negative upper-triangular matrix such thathii > hi j for all j > i.
Given a matrixA of full row rank, we can find in polynomial time a unimodu-
lar matrixU such thatAU is in Hermite normal form; see (Kannan and Bachem,
1979). We remark that the Hermite normal form of an integral vectorc is the
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vectorαe1, whereα is the greatest common divisor of the components ofc and
e1 is the first unit vector. The unimodular matrixU such thatcU = αe1 can be
obtained directly while executing the Euclidean algorithmto compute the greatest
common divisor.

2 Flatness theorem

We briefly review the algorithm to solve integer linear programming in fixed di-
mension, as its basic ideas will be used in the following sections. Intuitively, if a
polyhedron contains no integral point, then it must be “flat”along some integral
direction. In order to make this precise, we introduce the notion of “lattice width.”
Thewidth wc(K) of a closed convex setK along a directionc∈ Rn is defined as

wc(K) := max{cx : x∈ K}−min{cx : x∈ K}. (3)

The lattice width w(K) of K (with respect to thestandard latticeZn) is the mini-
mum of its widths along all non-zero integral directions:

w(K) := min{wc(K) : c∈ Zn\{0}}.

An integral row-vectorc attaining the above minimum is called awidth direction
of the setK. Clearly,w(v+αK) = αw(K) for any rational vectorv and any non-
negative rational numberα. Moreover, both setsK andv+ αK have the same
width direction.

Applications of the concept of lattice width in algorithmicnumber theory and
integer programming rely upon theflatness theorem, which goes back to Khinchin
(1948) who first proved it for ellipsoids inRn. Here we state it forconvex bodies,
i.e., bounded closed convex sets of non-zero volume.

Theorem 2.1(Flatness theorem). There is a constantω(n), depending only on n,
such that any convex body K⊆ Rn with w(K) > ω(n) contains an integral point.

The constantω(n) in Theorem 2.1 is referred to as theflatness constant. The best
knownupper boundon ω(n) is O(n3/2), cf. (Banaszczyk et al., 1999), although
a linear dependence onn was conjectured, e.g., by Kannan and Lovász (1988). A
linear lower boundon ω(n) was shown by Kantor (1999) and Sebő (1999).

Throughout this paper we will mostly deal with rational polyhedra rather than
general convex bodies. In this case, assumptions of non-zero volume and bound-
edness can safely be removed from the theorem’s statement. Indeed, ifP⊆Rn is a
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rational polyhedron of zero volume, then it has width 0 alongan integral direction
orthogonal to its (rational) affine hull. Further, letC be the characteristic cone of
P:

C := {y : x+y∈ P for all x∈ P}.

If C = {0}, thenP is already bounded. IfC is full-dimensional, then the setx+C
trivially contains an integral point, for anyx ∈ P (we can always allocate a unit
box inside a full-dimensional cone). At last, ifC is not full dimensional, then we
can choose a sufficiently large boxB ⊆ Rn such thatw(P) = w(P∩B) and both
P andP∩B have the same width direction, which is orthogonal to the (rational)
affine hull ofC. If w(P) > ω(n), thenP∩B, and henceP, contains an integral
point by Theorem 2.1.

How can we use this theorem to check whether a given rational polyhedron
contains an integral point? The answer is in the following lemma, which is almost
a direct consequence of the flatness theorem.

Lemma 2.2. Let P⊆ Rn be a rational polyhedron of finite lattice width and let c
be its width direction. Let

β := min{cx : x∈ P}. (4)

Then P contains an integral point if and only if the polyhedron

P∩{x : β 6 cx6 β +ω(n)}

contains an integral point.

Proof. If w(P) < ω(n), then there is nothing to prove, since

P⊆ {x : β 6 cx< β +ω(n)}.

Suppose thatw(P) > ω(n) and letP = y+Q, wherey is an optimum solution of
the linear program (4) andQ is the polyhedron containing the origin,

Q := {x−y : x∈ P}.

We denote
Q′ := ω(n)

w(P)Q and P′ := y+Q′.

In other words,Q is P translated to contain the origin,Q′ is obtained fromQ by
scaling it down, andP′ is Q′ translated back to the original position. It is easy to
see that

min{cx : x∈ P′} = cy= β .
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cx= β cx= β +ω(n)

P′ P

Figure 1: Illustration for the proof of Lemma 2.2

Since ω(n)
w(P) 6 1 andQ is convex, we haveQ′ ⊆ Q. This impliesP′ ⊆ P. Yet, we

havew(P) = w(Q), and therefore,w(P′) = w(Q′) = ω(n).
By Theorem 2.1,P′ contains an integral point, sayz. But thenz also belongs

to P and
cz6 max{cx : x∈ P′} = β +ω(n).

This completes the proof.

Suppose that we know a width directionc of a polyhedron

P = {x : Ax6 b} ⊆ Rn. (5)

Sincec is integral, the scalar productcx must be an integer for any integral point
x ∈ P. Together with Lemma 2.2, it allows us to split the original problem into
ω(n)+1 integer programming problems on lower-dimensional polyhedra

P∩{x : cx= ⌈β⌉+ j}, j = 0, . . . ,ω(n)

whereβ is defined by (4).
The components ofc must be relatively prime, as otherwise we could scale

c, obtaining a smaller width ofP. Therefore its Hermite normal form is a unit
row-vectore1. We can find a unimodular matrixU such thatcU = e1, introduce
new variablesy := U−1x and rewrite the original system of linear inequalities
Ax6 b in the formAUy6 b. SinceU is unimodular, the systemAx6 b has an
integral solution if and only if the systemAUy6 b has an integral solution. But
the equationcx = ⌈β⌉+ j turns intoe1y = ⌈β⌉+ j. Thus, the first component
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of y can be eliminated. All together, we can proceed with a constant number of
integer programming problems with a smaller number of variables. If n is fixed,
this yields a polynomial algorithm.

An attempt to generalize this approach for the case of varying b gives rise to
the following problems. First, the width directions of the polyhedron (5) depend
onb and therefore can also vary. Furthermore, even if a width directionc remains
the same, it is not a trivial task to proceed recursively. Thepoint is thatβ , as it
is defined in (4), also depends onb and the hyper-planes{x : cx= ⌈β⌉+ j} are
not easy to construct withβ being afunctionof b. In the following sections we
basically resolve these two problems and adapt the above algorithm for the case
of varyingb.

3 Lattice width of a parametric polyhedron

A rationalparametric polyhedron Pdefined by a matrixA ∈ Qm×n is the family
of polyhedra of the form

Pb := {x : Ax6 b},

where the right-hand sideb is allowed to vary overRm. We restrict our attention
only to thoseb, for which Pb is non-empty. For each suchb, there is a width
directionc of the polyhedronPb. We aim to find a small setC of non-zero integral
directions such that

w(Pb) = min{wc(Pb) : c∈C}

for all vectorsb for which Pb is non-empty. Further on, the elements of the setC
are referred to aswidth directionsof the parametric polyhedronP. It turns out that
such a set can be computed in polynomial time when the number of columns inA
is fixed.

Let A∈ Qm×n be a matrix of full column rank. Given a subset of indices

N = {i1, . . . , in} ⊆ {1, . . . ,m},

we denote byAN the matrix composed of the rowsi1, . . . , in of A. We say thatN
is abasisof A if AN is non-singular. Clearly, any matrix of full column rank has
at least one basis. Each basisN defines a linear transformation

FN : Rm → Rn, FNb = A−1
N bN, (6)

which maps right-hand sidesb to the correspondingbasic solutions. We can view
FN as ann×m-matrix of rational numbers. If the pointFNb satisfies the system
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Ax6 b, then it is a vertex of the polyhedron{x : Ax6 b}. From linear program-
ming duality we know that the optimum value of any feasible linear program

max{cx : Ax6 b}

is finite if and only if there is a basisN such thatc = yAN for some row-vector
y > 0. In other words,c must belong to the cone generated by the rows of matrix
AN. Moreover, if it is finite, there is a basisN such that the optimum value is
attained atFNb. It gives us the following simple lemma.

Lemma 3.1. Let P be a parametric polyhedron defined by a rational matrix A. If
there exists a vector b′ such that the polyhedron

Pb′ = {x : Ax6 b′}

has infinite lattice width, then w(Pb) is infinite for all b.

Proof. Suppose that the lattice width ofPb is finite for someb and letc be a width
direction. Then both linear programs

max{cx : Ax6 b} and min{cx : Ax6 b}

are bounded and therefore there are basesN1 andN2 of A such thatc belongs to
both cones

C1 := {yAN1 : y > 0} and C2 := {−yAN2 : y > 0} (7)

generated by the rows of matricesAN1 and−AN2, respectively. But then the linear
programs

max{cx : Ax6 b′} and min{cx : Ax6 b′}

are also bounded, whencewc(Pb′) is finite.

The above lemma shows that finite lattice width is a property of the matrixA. In
particularP0 has finite lattice width if and only ifPb has finite lattice width for all
b. Conversely, ifP0 has infinite lattice width, thenPb also has infinite lattice width
and therefore contains an integral point for allb. We can easily recognize whether
P0 has infinite lattice width. For instance, we can enumerate all possible pairs of
basesN1 andN2 and check if the cones (7) have a common integral vector. Further
we shall not deal with this “trivial” case and shall consideronly those parametric
polyhedra, for whichw(P0) is finite, and thereforew(Pb) is finite for anyb. We
say in this case that the parametric polyhedronP hasfinite lattice width.
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C1

c
C2

c

Pb

FN1b

FN2b

b

b

Figure 2: The width directionc and the two conesC1 andC2.

Now, suppose thatPb is non-empty and letc be its width direction. Then there
are two basesN1 andN2 such that

max{cx : Ax6 b} = cFN1b and min{cx : Ax6 b} = cFN2b (8)

andcbelongs to the conesC1 andC2 defined by (7), see Figure 2. In fact, equations
(8) hold for any vectorc in C1∩C2. Thus, the lattice width ofPb is equal to the
optimum value of the following optimization problem:

min{c(FN1 −FN2)b : c∈C1∩C2∩Zn\{0}}. (9)

The latter can be viewed as an integer programming problem. Indeed, the cones
C1 andC2 can be represented by some systems of linear inequalities, say cD1 6 0
andcD2 6 0, respectively, whereD1,D2 ∈ Zn×n. The minimum (9) is taken over
all integral vectorsc satisfyingcD1 6 0 andcD2 6 0, except the origin. Since both
conesC1 andC2 are simplicial, i.e., generated byn linearly independent vectors,
the origin is a vertex ofC1∩C2 and therefore can be cut off by a single inequality,
for example,cD11 6 −1, where1 denotes then-dimensional all-one vector. It
is important that all other integral vectorsc in C1∩C2 satisfy this inequality and
therefore remain feasible. Thus, the problem (9) can be rewritten as

min{c(FN1 −FN2)b : cD1 6 0, cD2 6 0, cD11 6 −1c∈ Zn}.

For a givenb, this is an integer programming problem. Therefore, the optimum
value of (9) is attained at some vertex of the integer hull of the underlying poly-
hedron

{c : cD1 6 0, cD2 6 0, cD11 6 −1} (10)
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Shevchenko (1981) and Hayes and Larman (1983) proved that the number of ver-
tices of the integer hull of a rational polyhedron is polynomial in fixed dimension.
Tight bounds for number were presented in (Cook et al., 1992)and (Bárány et al.,
1992). This gives rise to the next lemma.

Lemma 3.2.There is an algorithm that takes as input a rational matrix A∈Qm×n

of full column rank, which defines a parametric polyhedron P of finite lattice
width, and computes a set of triples(Fi,Gi ,ci) of rational linear transformations
Fi ,Gi : Rm→Rn and a non-zero integral row-vector ci ∈Zn (i = 1, . . . , t) satisfying
the following properties. For all b, for which Pb is non-empty,

(a) Fi and Gi provide, respectively, an upper and lower bound on the valueof the
linear function cix in Pb, i.e., for all i,

ciGib 6 min{cix : x∈ Pb} 6 max{cix : x∈ Pb} 6 ciFib,

(b) the lattice width of Pb is attained along the direction ci for some i∈ {1, . . . , t}
and can be expressed as

w(Pb) = min
i

ci(Fi −Gi)b.

(c) The number t of the triples satisfies the bound

t 6 2m2n(2n+1)n(24n5φ)n−1, (11)

whereφ is the maximum size of a column in A.

The algorithm runs in polynomial time if n is fixed.

Proof. In the first step of the algorithm we enumerate all possible bases ofA.
Observe that there is at least one basis, sinceA is of full column rank. On the
other hand, the total number of possible bases is at mostmn. Hence, the number
of possible pairs of bases is bounded bym2n. The algorithm iterates over all
unordered pairs of bases and for each such pair{N1,N2} does the following.

Let C1 andC2 be the corresponding simplicial cones, defined by (7). These
cones can be represented by systems of linear inequalities,cD1 6 0 andcD2 6 0
respectively, whereD1,D2 ∈ Zn×n and the size of each inequality is bounded by
4n2φ , see (Schrijver, 1986, Theorem 10.2). As the origin is a vertex of the cone
C1∩C2, it can be cut off by a single inequality; for example,cD11 6 −1, where
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1 stands for then-dimensional all-one vector. The size of the latter inequality is
bounded by 4n3φ .

Thus, there are exactly 2n+1 inequalities in (10) and the size of each inequal-
ity is bounded by 4n3φ . This implies that the number of vertices of the integer
hull of (10) is at most 2(2n+1)n(24n5φ)n−1, cf. (Cook et al., 1992), and they all
can be computed in polynomial time ifn is fixed, cf. (Hartmann, 1989). The al-
gorithm then outputs the triple(FN1,FN2,c) for each vertexc of the integer hull of
(10), whereFN1 andFN2 are the linear transformations defined by (6). Since there
are at mostm2n unordered pairs of bases and, for each pair, the algorithm returns
at most 2(2n+ 1)n(24n5φ)n−1 triples, the total number of triples satisfies (11),
as required. Parts (a) and (b) of the theorem follow directlyfrom our previous
explanation.

The bound (11) can be rewritten as

t = O(m2nφn−1)

for fixed n. Clearly, the greatest common divisor of the components of any direc-
tion ci obtained by the algorithm must be equal to 1, as otherwise it would not be
a vertex of the integer hull of (10). This implies, in particular, that the Hermite
normal form of any of these vectors is just the first unit vector e1 ∈ Rn.

It is also worth mentioning that if(Fi,Gi ,ci) is a triple attaining the minimum
in Part (b) of Lemma 3.2, then we have

w(Pb) 6 max{cix : x∈ Pb}−min{cix : x∈ Pb} 6 ciFib−ciGib = w(Pb).

Hence, Part (a), when applied to this triple, turns into

min{cix : x∈ Pb} = ciGib and max{cix : x∈ Pb} = ciFib.

For our further purposes, it is more suitable to have auniquewidth direction
for all polyhedraPb with varyingb. In fact, using Lemma 3.2, we can partition the
set of the right-hand sidesb into a number of partially open polyhedra such that
the width direction remains the same for allb belonging to the same region of the
partition.

Theorem 3.3. Let P be a parametric polyhedron of finite lattice width, defined
by a matrix A∈ Qm×n of full column rank. Let Q⊆ Rm be a rational partially
open polyhedron such that Pb is non-empty for all b∈ Q. We can compute—in
polynomial time, if n is fixed—a partition of Q into a number ofpartially open
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polyhedra Q1, . . . ,Qt and, for each i, find a triple(Fi,Gi ,ci) of linear transforma-
tions Fi ,Gi : Rm → Rn and a non-zero vector ci ∈ Zn, such that

min{cix : x∈ Pb} = ciGib, max{cix : x∈ Pb} = ciFib,

and
w(Pb) = wci (Pb) = ci(Fi −Gi)b for all b∈ Qi .

If φ denotes the maximum size of a column in A, then t= O(m2nφn−1).

Remark.The statement of Theorem 3.3 is very analogous to (Kannan, 1992,
Lemma 3.1). However, there are several crucial differences. First, the number
of regions in the partition obtained by Kannan’s algorithm is exponential inn and
the affine dimensionj0 of the polyhedronQ. Our algorithm yields a partition that
is exponential inn only, hence polynomial ifn is fixed. Also our algorithm runs
in polynomial time ifn is fixed but j0 may vary. At last, the width directionsci

obtained by the Kannan’s algorithm satisfy, for anyb∈ Qi ,

either wci (Pb) 6 1 or wci (Pb) 6 2w(Pb)

In contrast, we compute theexactwidth direction for each region in the partition.
While the exact computation of width directions does not help much from the
algorithmic point of view, removing the restriction on the dimension ofQ turns
out to be the main step towards the claimed generalization ofKannan’s algorithm.

Proof of Theorem 3.3.First, we exploit the algorithm of Lemma 3.2 to obtain the
triples (Fi ,Gi,ci), i = 1, . . . , t, with t = O(mnφn−1). These triples provide the
possible width directions of the parametric polyhedronP. For eachi = 1, . . . , t,
we define a partially open polyhedronQi by the inequalities

ci(Fi −Gi)b < c j(Fj −G j)b, j = 1, . . . , i −1,

ci(Fi −Gi)b 6 c j(Fj −G j)b, j = i +1, . . . , t.

Thus,
min

j
c j(Fj −G j)b = ci(Fi −Gi)b

for all b∈ Qi . We claim that the intersections of the partially open polyhedraQi

with Q give the required partition.
Indeed, letb∈ Q and letµ be the minimum value ofci(Fi −Gi)b, i = 1, . . . , t.

Let I denote the set of indicesi with ci(Fi −Gi)b = µ. Thenb ∈ Qi0, wherei0
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is the smallest index inI . Yet, suppose thatb ∈ Q belongs to two partially open
polyhedra, sayQi andQ j . Without loss of generality, we can assumei < j. But
then we have

ci(Fi −Gi)b 6 c j(Fj −G j)b < ci(Fi −Gi)b,

where the first inequality is due to the factb∈Qi and the second inequality follows
from b∈ Q j ; both together are a contradiction.

For the width directions, Lemma 3.2 implies that

w(Pb) = min
j

c j(Fj −G j)b = ci(Fi −Gi)b

for all b∈ Qi ∩Q. This completes the proof.

Theorem 3.3 provides a unique width direction for each region Qi of the parti-
tion. This resolves the first problem of adapting the algorithm for integer linear
programming in fixed dimension to the case of varyingb, which was addressed in
the introduction. However, we still need to deal with the hyper-planes{x : cix =
⌈β⌉+ j}, whereβ is the optimum value of the linear program min{cix : x∈ Pb}.
As mentioned above,β can be expressed as a linear transformation ofb, namely
β = ciGib. But ⌈β⌉ is no more alinear function ofb, which makes the recursion
complicated. Kannan (1992) showed how to tackle this problem. We discuss it in
the next section.

4 Partitioning theorem and parametric integer pro-
gramming

The proof of the following structural result follows from the proof of (Kannan,
1992, Theorem 4.1) if it is combined with Theorem 3.3.

Theorem 4.1.Let P be a parametric polyhedron of finite lattice width, defined by
a rational matrix A∈Qm×n of full column rank. Let Q⊆Rm be a rational partially
open polyhedron such that Pb is non-empty for all b∈ Q. We can compute—
in polynomial time, if n is fixed—a partition of Q into sets S1, . . . ,St , and for
each i, find a number of unimodular transformations Ui j : Rn → Rn and affine
transformations Ti j : Rm → Rn, j = 1, . . . ,ki such that

(a) each Si is the integer projection of a partially open polyhedron, Si = S′i/Zl i ;
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(b) for any b∈ Si, Pb∩Zn 6= /0 if and only if Pb contains Ui j ⌈Ti j b⌉ for some index
j;

(c) the following bounds hold:

t = O((m2nφn−1)nω(n)), l i = O(ω(n)), ki = O(2n2/2ω(n)), i = 1, . . . , t,

whereφ denotes the maximum size of a column in A andω(n) = ∏n
i=1 ω(n).

We do not repeat Kannan’s proof here but give an intuition of why it is true in
dimension 2. By Theorem 3.3 we can assume that the width-direction is invariant
for all b∈ Q and by applying a unimodular transformation we can further assume
that this width-direction is the first unit-vectore1, see Figure 3.

b

e1

Pb

Gb

x1 = ⌈e1Gb⌉ x1 = ⌈e1Gb⌉+ i

b

Figure 3: Illustration of Theorem 4.1 in dimension 2.

Lemma 2.2 tells thatPb contains an integral point if and only if there exists an
integral point on the linesx1 = ⌈e1Gb⌉+ j for j = 0, . . . ,ω(2). The intersections
of these lines with the polyhedronPb are 1-dimensional polyhedra. Some of the
constraintsax6 β of Ax6 b are “pointing upwards”, i.e.,ae2 < 0, wheree2 is
the second unit-vector. Leta1x1 + a2x2 6 β be a constraint pointing upwards
such that the intersection point(⌈e1Gb⌉+ j,y) of a1x1 + a2x2 = β with the line
x1 = ⌈e1Gb⌉+ j has the largest second component. The linex1 = ⌈e1Gb⌉+ j
contains an integral point inPb if and only if (⌈e1Gb⌉+ j,⌈y⌉) is contained inPb.
This point is illustrated in Figure 3. By choosing the highest constraint pointing
upwards for each linex1 = ⌈e1Gb⌉+ j, we partition the set of right-hand sides
into polynomially many integer projections of partially open polyhedra.
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In order to express the candidate solution(⌈e1Gb⌉+ j,⌈y⌉) in the form de-
scribed in the theorem, observe that

y = (β −a1x1)/a2.

Sincex1 is an integer and

x1 = ⌈e1Gb⌉+ j = e1Gb+ j + γ

for someγ ∈ [0,1), we can rewrite the equation⌈y⌉ = ⌈(β −a1x1)/a2⌉ as

⌊a1/a2⌋x1 + ⌈y⌉ = ⌈β/a2−{a1/a2}x1⌉

= ⌈β/a2−{a1/a2}(e1Gb+ j)−{a1/a2}γ⌉,

where{a1/a2} denotes the fractional part ofa1/a2. Since{a1/a2}γ lies between
0 and 1, it suffices to check independently two different possibilities, namely,

⌊a1/a2⌋x1 + ⌈y⌉ = ⌈β/a2−{a1/a2}(e1Gb+ j)⌉

and
⌊a1/a2⌋x1 + ⌈y⌉ = ⌈β/a2−{a1/a2}(e1Gb+ j)−1⌉.

Combined withx1 = ⌈e1Gb⌉+ j, each of the above equations yields a unimodular
system with respect to the variablesx1 and⌈y⌉, with the right-hand side being the
round-up of an affine transformation ofb. We refer the reader to (Kannan, 1992)
to see the complete proof for arbitrary dimension.

∀∃∀∃∀∃-statements

Theorem 4.1 gives rise to a polynomial algorithm for testingsentences of the form

∀b∈ Q/Zp ∃x∈ Zn : Ax6 b, (12)

whenp andn are fixed. This algorithm was first described by Kannan (1992)but
he required, in addition, the affine dimension ofQ to be fixed. Our improvement
follows basically from the improvement in the partitioningtheorem, while the
algorithm itself remains exactly the same. We describe it here for the sake of
completeness. First observe that we can assume thatA has full column rank.
Otherwise we can apply a unimodular transformation ofA from the right to obtain
a matrix[A′ | 0], whereA′ has full column rank.
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The idea is as follows: First we run the algorithm of Theorem 4.1 on input
A andQ′ ⊆ Rm, whereQ′ is the set of vectorsb, for which the systemAx 6 b
has a solution. Then we consider each setSi returned by the algorithm of The-
orem 4.1 independently. For eachb ∈ Si we have a fixed number of candidate
solutions for the systemAx 6 b, defined via unimodular and affine transforma-
tions asUi j ⌈Ti j b⌉. Each rounding operation can be expressed by introducing an
integral vector:z= ⌈Ti j b⌉ is equivalent toTi j b 6 z< Ti j b+ 1. We need only a
constant number of integer variables to express all candidate solutions plus a fixed
number of integer variables to represent the integer projectionsSi = S′i/Zl i . It re-
mains to solve a number of mixed-integer programs, to which we also include the
constraints(b,y) ∈ Q, y∈ Zp.

Theorem 4.2. There is an algorithm that, given a rational matrix A∈ Qm×n and
a rational polyhedron Q⊆ Rm+p, decides the sentence(12). The algorithm runs
in polynomial time if p and n are fixed.

Proof. Let P be a parametric polyhedron defined by the matrixA. First, we exploit
the Fourier–Motzkin elimination procedure to construct the polyhedronQ′ ⊆ Rm

of the right-hand sidesb, for which the systemAx 6 b has a (fractional) solu-
tion. For each inequalityab6 β , defining the polyhedronQ′, we can solve the
following mixed-integer program

ab> β , (b,y) ∈ Q, y∈ Zp,

and if any of these problems has a feasible solution(y,b), thenb is a vector in
Q/Zp, for which the systemAx 6 b has no integral solution. Hence, we can
terminate and output “no” (withb being a certificate).

We can assume now that for allb∈ Q/Zp the systemAx6 b has a fractional
solution. By applying the algorithm of Theorem 4.1, we construct a partition of
Q′ into the setsS1, . . . ,St, where eachSi is the integer projection of a partially
open polyhedron,Si = S′i/Zl i . Sincen is fixed, thel i are bounded by some con-
stant,i = 1, . . . , t. Furthermore, for eachi, the algorithm constructs unimodular
transformationsUi j and affine transformationsTi j , j = 1, . . . ,ki , such thatPb, with
b∈ Si, contains an integral point if and only ifUi j ⌈Ti j b⌉ ∈ Pb for some j. Again,
ki is fixed for a fixedn, i = 1, . . . , t.

The algorithm will consider each indexi independently. For a giveni, Si can
be described as the set of vectorsb such that

(b,z) ∈ S′i
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has a solution for some integerz∈ Zl i . This can be expressed in terms of linear
constraints, asS′i is a partially open polyhedron. Letx j = Ui j ⌈Ti j b⌉. The pointsx j

can be described by linear inequalities as

Ti j b 6 zj < Ti j b+1, x j = Ui j zj ,

where1 is the all-one vector. ThenPb does not contain an integral point if and only
if x j /∈Pb for all j = 1, . . . ,ki . In this case, eachx j violates at least one constraint in
the systemAx6 b. We consider all possible tuplesI of ki constraints fromAx6 b.
Obviously, there are onlymki such tuples, that is, polynomially many in the input
size. For each such tuple, we solve the mixed-integer program

(b,y) ∈ Q, (b,z) ∈ S′i ,

Ti j b 6 zj < Ti j b+1, j = 1, . . . ,ki ,

x j = Ui j zj , j = 1, . . . ,ki ,

ai j x j > bi j , j = 1, . . . ,ki ,

y∈ Zp, z∈ Zl i , zj ∈ Zn, j = 1, . . . ,ki ,

whereai j x6 bi j is the j-th constraint in the chosen tuple. Each such mixed-integer
program can be solved in polynomial time since the number of integer variables
is fixed (in fact, there are at most(ki +1)n+ l i integer variables).

If there is a feasible solutionb to one of these mixed-integer programs, then
the answer to the original problem is “no” (withb being a certificate). If all these
mixed-integer programs are infeasible, the answer is “yes”.

Remark.We would like to point out that Theorem 4.2 can also be proved differ-
ently. Bell (1977) and Scarf (1977) showed that if a system oflinear inequalities
Ax6 b has no integral solution, then there is already a subsystem of at most 2n

inequalities that is infeasible in integer variables; see also (Schrijver, 1986, The-
orem 16.5). Applied to (1) this means that there exists ab∈ Q/Zp such that the
systemAx6 b has no integral solution, if and only there exist ab∈ Q/Zp and a
subsystemA′x 6 b′ of Ax6 b with at most 2n inequalities, which is infeasible in
integer variables. Hereb′ is the projection ofb into the according space. Sincen
is a constant, we can try out all

(m
2n

)

different subsystems ofAx6 b and apply to
each of these parametric polyhedra Kannan’s algorithm to decide∀∃-statements.

However, a similar argument does not yield our extension (Theorem 4.1) of
Kannan’s partitioning theorem itself, which associates toeachb a fixed set of
candidate integer solutions, depending on the partially open polyhedron of the
partitioning, in whichb is contained.
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5 Integer programming gaps

Now, we describe how Theorem 4.2 can be applied to compute themaximum
integer programming gap for a family of integer programs. Let A ∈ Qm×n be a
rational matrix and letc ∈ Qn be a rational vector. Let us consider the integer
programs of the form

max{cx : Ax6 b, x∈ Zn}, (13)

whereb is varying overRm. The corresponding linear programming relaxations
are then

max{cx : Ax6 b}. (14)

Consider the following system of inequalities:

cx> β ,

Ax6 b.

Given a vectorb and a numberβ , there exists a feasible fractional solution of
the above system if and only if the linear program (14) is feasible and its value
is at leastβ . The set of pairs(β ,b) ∈ Rm+1, for which the above system has
a fractional solution, is a polyhedron inRm and can be computed by means of
Fourier–Motzkin elimination, in polynomial time ifn is fixed. LetQ denote this
polyhedron.

Suppose that we suspect the maximum integer programming gapto be smaller
than γ. This means that, wheneverβ is an optimum value of (14), the integer
program (13) must have a solution of value at leastβ −γ. Equivalently, the system

cx> β − γ, (15)

Ax6 b,

must have an integral solution. If there exists(b,β ) ∈ Q such that (15) has no
integral solution, the integer programming gap is bigger thanγ. We also need to
ensure that for a givenb, the integer program is feasible, i.e., the systemAx6 b
has a solution in integer variables.

Now, this is exactly the question for the algorithm of Theorem 4.2: Is there a
(β ,b) ∈ Q′ such that the system (15) has no integral solution, but thereexistsy∈
Zn such thatAy6 b? HereQ′ = Q−γ(1,0) is the appropriate translate of the setQ.
If the algorithm answers “no” with the certificateb, then the integer program (13),
with the right-hand sideb, has no solution of value greater thanβ − γ while being
feasible. On the other hand,(β ,b) ∈ Q, thus the corresponding linear solution
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has optimum value of at leastβ . We can conclude that the maximum integer
programming gap is greater thanγ. This gives us the following theorem.

Theorem 5.1. There is an algorithm that, given a rational matrix A∈ Rm×n, a
rational row-vector c∈ Qn and a numberγ, checks whether the maximum integer
programming gap for the integer programs(13)defined by A and c is bigger than
γ. The algorithm runs in polynomial time if the rank of A is fixed.

Using binary search, we can also find theminimumpossible value ofγ, hence the
maximum integer programming gap.
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