
Tolerating Corrupted Communication
∗

Martin Biely
TU Wien, Vienna

biely@ecs.tuwien.ac.at

Bernadette Charron-Bost
Ecole Polytechnique, Paris
charron@polytechnique.fr

Antoine Gaillard
Ecole Polytechnique, Paris
gaillard@lix.polytechnique.fr

Martin Hutle
EPFL, Lausanne

martin.hutle@epfl.ch

André Schiper
EPFL, Lausanne

andre.schiper@epfl.ch

Josef Widder
TU Wien, Vienna

widder@ecs.tuwien.ac.at

ABSTRACT

Consensus encalpsulates the inherent problems of building
fault tolerant distributed systems. In this context, the clas-
sic model of Byzantine faulty processes can be restated such
that messages from a subset of processes can be arbitrarily
corrupted (including addition and omission of messages).

We consider the case of dynamic and transient faults,
that may affect all processes and that are not permanent,
and we model them via corrupted communication. For cor-
rupted communication it is natural to distinguish between
the safety of communication, which is concerned with the
number of altered messages, and the liveness of communica-
tion, which restricts message loss.

We present two consensus algorithms, together with suf-
ficient conditions on the system to ensure correctness. Our
first algorithm needs strong conditions on safety but requires
weak conditions on liveness in order to terminate. Our sec-
ond algorithm tolerates a lower degree of communication
safety at the price of stronger liveness conditions.

Our algorithms allow us to circumvent the resilience lower
bounds from Santoro/Widmayer and Martin/Alvisi.

Categories and Subject Descriptors: C.2.4 [Computer-
Communication Networks]: Distributed Systems; F.1.1
[Computation by Abstract Devices]: Models of Computa-
tion F.2.m [Analysis of Algorithms and Problem Complex-
ity]: Miscellaneous.

General Terms: Algorithms, Theory.

Keywords: Byzantine Fault Tolerance, Consensus, Dy-
namic Faults, Transient Faults.

∗Rearch funded by the Swiss National Science Foundation
under grant number 200021-111701, by the Austrian BM:vit
FIT-IT project TRAFT (proj. no. 812205), and by the Aus-
trian FWF project Theta (proj. no. P17757).

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
PODC’07, August 12–15, 2007, Portland, Oregon, USA.
Copyright 2007 ACM 978-1-59593-616-5/07/0008 ...$5.00.

1. INTRODUCTION
When looking at distributed systems with (non-benign)

corruption faults, we can distinguish between (i) state faults,
that hit the state of the processes, and (ii) transmission
faults, that affect the information that is exchanged among
processes. The first class received more attention in lit-
erature, one noteworthy exception is the seminal work of
Santoro and Widmayer [18]. Moreover, due to quite dis-
couraging impossibility results regarding agreement tasks
(like consensus) in the presence of unreliable communica-
tion [9, 18, 21], communication faults were often mapped to
process faults in order to be able to define and solve rep-
resentative problems. In case the erroneous message stems
from a corrupted state, this modelling of transmission faults
as faulty processes is somehow natural.

In contrast to this classical approach, in this paper we
explicitly look at the second type of faults, i.e., we consider
only transmission faults, and no state corruptions. In this
context the notion of a “faulty process” becomes much more
problematic: In fact, the scenario, where a process p should
send a message m to a process q, but q receives a message
m′ different from m may have the following causes:

• p has sent m′ instead of m (send value fault),

• m was correctly transmitted, but q erroneously delivers
m′ (receive value fault),

• p and q behaved correctly, but the channel from p to
q has corrupted m to m′ (faulty channel).

A benign fault is the special case of the former example
with m′ being just not received. Here, Charron-Bost and
Schiper [6] have shown that it is not only unnecessary to dis-
tinguish these three types of faults, but also may be harmful.

In this paper, we extend the round-based approach of [6]
to value faults.1 In this approach, we reason about faults
only as being transmission faults, without looking for a “cul-
prit” for the fault. As in [6], we are thus able — in the classi-
cal terminology —to deal with both dynamic and transient
faults. A transient fault is a non-permanent fault; a dy-
namic fault is a fault that can affect any process/channel in
the system— as opposed to static faults that affect at most
f out of n processes per run.

Transmission faults are addressed in this paper in the con-
text of the HO model (which stands for Heard-Of) defined

1We use here the term value fault for non-benign transmis-
sion faults, since the term Byzantine makes only sense in
the context of process faults. Nevertheless, in general, value
faults can be arbitrarily malicious.

244

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Infoscience - École polytechnique fédérale de Lausanne

https://core.ac.uk/display/147941461?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

for the benign case in [6]. The HO model is a communication-
closed round model inspired by [7], [8], and [18]. Note that
the round structure of our model does not imply limits on
the asynchrony of the system. An algorithm A is specified
by sending functions Sr

p and transition functions T r
p for each

round r and process p. Then, for each round the discrepancy
between what should be sent (with respect to Sr

p) and what is
actually received is characterized by two sets HO(p, r) and
SHO(p, r). The former —which is already defined in the
benign case —gives the set of processes from which p re-
ceives a message. Additionally, the latter, the safe heard-of
set SHO(p, r) denotes the set of processes from which p re-
ceives an uncorrupted message at round r. Together with A,
by specifying a communication predicate P over the collec-
tion of all HO and SHO sets, we get an HO machine 〈A,P〉.
The communication predicate P hereby characterizes all as-
sumptions on the system, like synchrony and failures in a
unified way.

Informally, predicates on the SHO and HO collections
specify the safety of the communication, whereas those on
the HO collections alone characterize liveness of the commu-
nication. For the benign case, we always have SHO(p, r) =
HO(p, r).

Above all, this paper is related to theoretical aspects of
consensus in the presence of non-benign and dynamic faults,
following the spirit of Santoro and Widmayer’s approach
[18, 19]. We are aware that some causes of value faults can
be reduced with error correcting codes or signed messages.
They can be used to transform some value faults into benign
faults, i.e., omissions. Despite the theoretical problem that
such techniques are hard to formalize properly [15], their
use is based on the widespread assumption that undetected
corruptions have a “neglectable probability”. Our approach
consists of weakening this assumption by allowing a certain
number of undetected corruptions (value faults) per round.

Contribution. We define a novel computational model
for dynamic and transient value faults that leads to new
algorithmic solutions for consensus.

We present two algorithms that solve consensus in the
presence of transient and dynamic faults, the AT,E and the
UT,E,α algorithms. The first algorithm requires a weaker
condition for safety of communication than the second one,
while the second algorithm requires a weaker condition for
liveness of communication than the first one.

We show that these two algorithms require a predicate
Pα for safety of consensus that is weaker than some clas-
sical assumptions about faulty processes. Moreover, these
algorithms allow us to “circumvent” the lower bounds by
Santoro and Widmayer [18] (⌊n/2⌋ value transmission faults
per round) and by Martin and Alvisi [16] (less than n/5
Byzantine processes for fast consensus). Note that our al-
gorithms do not contradict these bounds as we distinguish
between liveness and safety predicates. Our algorithms need
a stronger condition for liveness, a condition that makes
sense in the context of transient faults. This shows that the
lower bounds for permanent faults do not hold with transient
faults. For suitable choices of parameters our algorithms at-
tain the lower bound on Byzantine consensus claimed by
Lamport [11].

Organization of the paper. In Section 2 we introduce the
HO model for value faults. In Sections 3 and 4 we present
two consensus algorithms for this new fault model. We also

give expressions on the number of faults that can be tol-
erated in order to ensure safety as well as communication
predicates which ensure liveness. In Section 5 we compare
our results to related work.

2. MODEL
Computations in our model are structured in rounds, that

are communication-closed layers in the sense that any mes-
sage sent in a round can be received only at that round. We
give a definition of our round-based model, and introduce
the notions of the heard-of sets (HO), which handles omis-
sions, i.e., captures communication liveness properties, and
of the safe heard-of sets (SHO), which handles corruptions,
i.e., captures communication safety properties. These col-
lections of sets allow us to specify sufficient conditions for
solving consensus with our algorithms in Sections 3 and 4.

2.1 Heard-Of Sets
Let Π be a finite non-empty set of cardinality n, and let M

be a set of messages (optionally including a null placeholder
indicating the empty message). To each p in Π, we asso-
ciate a process, which consists of the following components:
a set of states denoted by statesp, a subset initp of initial
states, and for each positive integer r called round number ,
a message-sending function Sr

p mapping statesp × Π to a
unique message from M , and a state-transition function T r

p

mapping statesp and partial vectors (indexed by Π) of ele-
ments of M to statesp. The collection of processes is called
an algorithm on Π. In each round r, a process p:

1. applies Sr
p to the current state, and emits the “mes-

sages” to be sent (according to its sending function Sr
p)

to each process;

2. determines the partial vector ~µ r
p , formed by the mes-

sages that p receives at round r;

3. applies T r
p to its current state and ~µ r

p .

The partial vector ~µ r
p is called the reception vector of p at

round r.
Computation evolves in an infinite sequence of rounds.

Each run is entirely determined by the initial configuration
(i.e., the collection of process initial states), and the collec-
tion of the reception vectors

`

~µ r
p

´

p∈Π, r>0
.

For each process p and each round r, we introduce two
subsets of Π:

• The heard-of set, denoted HO(p, r), which is the sup-
port of ~µ r

p , i.e.,

HO(p, r) = {q ∈ Π : ~µ r
p [q] is defined}.

• The safe heard-of set, denoted SHO(p, r), and defined
by

SHO(p, r) = {q ∈ Π : ~µ r
p [q] = Sr

q (sq, p)},

where sq is q’s state at the beginning of round r.

Both sets specify the discrepancy between what should be
sent and what is actually received . As for the benign case [6],
we make no assumption on the reason why ~µ r

p [q] 6= Sr
q (sq, p):

it may be due to an incorrect sending by q, an incorrect

245

receipt by p, or due to the corruption by the link. Obviously,
we have

SHO(p, r) ⊆ HO(p, r).

In contrast to HO(p, r), process p is not able to determine
SHO(p, r).

From the sets HO(p, r) and SHO(p, r), we form the altered
heard-of set denoted AHO(p, r) as follows:

AHO(p, r) = HO(p, r) \ SHO(p, r).

For any round r, we further define the kernel , resp. safe
kernel , of a round:

K (r) =
\

p∈Π

HO(p, r) SK (r) =
\

p∈Π

SHO(p, r)

The kernel of round r consists of all processes which are
heard by all at round r, whereas the safe kernel consists of
all processes whose messages were received correctly by all
processes. We can generalize this definition to the whole
computation:

K =
\

r>0

K (r) SK =
\

r>0

SK (r)

Similarly, the altered span (of round r) denotes the set
of processes from which at least one process received a cor-
rupted message (at round r):

AS(r) =
[

p∈Π

AHO(p, r) AS =
[

r>0

AS(r)

2.2 HO Machines
A heard-of machine for a set of processes Π is a pair

〈A,P〉, where A is an algorithm on Π, and P is a commu-
nication predicate, i.e., a predicate over (HO(p, r))

p∈Π, r>0

and (SHO(p, r))
p∈Π, r>0. Predicates over (HO(p, r))

p∈Π, r>0

characterize the liveness properties of communication, where-
as predicates over (SHO(p, r))

p∈Π, r>0 characterize the safety
properties of communication.

As an example, we can model the classical assumption,
that no more than α processes may send a corrupted infor-
mation in a computation:2

Pperm
α :: |AS | ≤ α (1)

For our algorithms we will consider the weaker predicate
Pα that restricts the number of corrupted messages only per
round and per process:

Pα :: ∀r > 0, ∀p ∈ Π : |AHO(p, r)| ≤ α (2)

with α ∈ R such that 0 ≤ α ≤ n, and we say that a compu-
tation has α-safe communication when Pα holds. Note that
Pperm

α implies Pα.
We will consider only communication predicates, that are

time-invariant: A communication predicate P is time-invar-
iant if it has the same truth value for all heard-of collections
(HO(p, r + i))p∈Π,r>0 and (SHO(p, r + i))p∈Π,r>0 for any
i ∈ N. This allows processes to start in their execution in
any round r, while preserving the truth value of P . The
predicates Pperm

α and Pα are trivially time-invariant, since

2Note that in the classical Byzantine setting, also the state
of a “faulty” process can be corrupted, which is not the case
in our model (see Section 5.2 for a discussion).

they are permanent predicates. Time-invariant predicates
that characterize eventual properties have typically the form

∀r > 0 ∃r0 > r : Pr0
,

where Pr0
is a communication predicate over the collection

(HO(p, r0); SHO(p, r0))p∈Π.
HO machines for the benign case [6] can be seen as a

special case of the above definition, with AS = ∅, which is
equivalent to assuming the predicate

Pbenign :: ∀p ∈ Π ∀r > 0 : SHO(p, r) = HO(p, r).

2.3 Consensus
In this paper, we concentrate on the consensus problem

in V , where V is a (non-empty) totally ordered set. For
this problem, every process has an initial value vp ∈ V and
decides irrevocably on a decision value, fulfilling:

Integrity: If all processes have the same initial value this
is the only possible decision value.

Agreement: No two processes may decide differently.

Termination: All processes eventually decide.

Since, contrary to classical approaches, there is no devi-
ation according to T r

p , and thus we do not have the notion
of a faulty process, the upper specification makes no ex-
emption: all processes should decide the initial value in the
Integrity clause, and all processes must make a decision by
the Termination clause.

Formally, an HO machine 〈A,P〉 solves consensus, if any
run for which P holds, satisfies Integrity, Agreement, and
Termination. To make this definition non-trivial, we assume
that the set of HO and SHO collections for which P holds
is non-empty.

The implementation of predicates is not discussed in this
paper; it can be done in the spirit of [10].

3. WHENCOMMUNICATION IS SAFEBUT

NOT SO LIVE
In this section we present the first of our two algorithms,

that we call the AT,E algorithm. The code of AT,E is given
as Algorithm 1 and is designed to work under the predicates
Pα and PA,live , given in (2) and (3) in Figure 1.

Basically, it consists in a parametrization of the two re-
ceive thresholds T and E of the OneThirdRule algorithm
given in [6] for solving consensus in the presence of benign
failures (there both are equal to 2n

3
). The main features of

OneThirdRule are: (i) the algorithm is always safe, what-
ever the number of benign transmission faults is, and (ii)
the algorithm is fast in the sense that it requires two rounds
to terminate in every fault free run, and ensures termina-
tion at the end of the first round if, in fault free runs, all
initial values are equal. In the sequel, we show that, for
appropriate choices of T and E, the AT,E algorithm both
tolerates a large number of benign faults (omission) and non-
benign faults (corruption), while retaining the main features
of OneThirdRule.

3.1 The AT ,E algorithm
In AT,E , each process p maintains a variable xp initially

equal to p’s initial value. At each round, process p broad-
casts xp, and then updates xp if it receives more than T

246

Algorithm 1 The AT,E algorithm

1: Initialization:

2: xp ∈ V , initially vp /* vp is the initial value of p */

3: Round r :

4: Sr
p:

5: send 〈xp 〉 to all processes
6: T r

p :

7: if |HO(p, r)| > T then

8: xp := the smallest most often received value in this round
9: if more than E values received are equal to v then

10: decide(v)

(“Threshold”) messages: p sets xp to the smallest value that
it has received most frequently. If p has received more than
E (“Enough”) times the same value v, then it decides on v.

3.2 Correctness of the AT ,E algorithm
First we introduce some piece of notation. For any vari-

able x local to process p, we denote x
(r)
p the value of xp at

the end of round r. For any value v ∈ V and any process p,
at any round r > 0, we define the sets Rr

p(v) and Qr
p(v) as

follows:

Rr
p(v) := {q ∈ Π : ~µ r

p [q] = v}

Qr
p(v) := {q ∈ Π : Sr

q (p, sq) = v}.

where sq denotes q’s state at the beginning of round r. The
set Rr

p(v) (resp. Qr
p(v)) represents the set of processes from

which p receives v (resp. which ought to send v to p) at
round r. Since at each round of the AT,E algorithm, every
process sends the same message to all, the sets Qr

p(v) do not
depend on p, and so can be just denoted by Qr(v) without
any ambiguity.

We start our correctness proof with a general basic lemma

Lemma 1. For any process p and any value v, at any
round r, we have:

|Rr
p(v)| ≤ |Qr(v)| + |AHO(p, r)|

Proof. Suppose that process p receives a message with
value v at round r > 0 from process q. Then, either the
code of q prescribes it to send v to p at round r, i.e., q
belongs to Qr(v) and thus q is also in SHO(p, r), or the
message has been corrupted and q is in AHO(p, r). It follows
that Rr

p(v) ⊆ Qr(v) ∪ AHO(p, r), which implies |Rr
p(v)| ≤

|Qr(v)| + |AHO(p, r)|.

Lemma 1 naturally leads to consider the communication
predicate Pα from (2): Pα bounds the size of AHO(p, r),
i.e., it limits the discrepancy between the sets Rr

p and Qr.
Our second lemma shows that choosing E ≥ n

2
renders

the decision rule in the AT,E algorithm “deterministic”.

Lemma 2. If E ≥ n

2
, then the guard in line 9 of the AT,E

algorithm is true for at most one value v.

Proof. Assume by contradiction that there exist a pro-
cess p and a round r, so that the guard in line 9 is true for two
distinct values v and v′. The code implies that |Rr

p(v)| > E
and |Rr

p(v′)| > E. Since v and v′ are different, Rr
p(v) and

Rr
p(v′) are disjoint sets, and so

|Rr
p(v) ∪ Rr

p(v′)| = |Rr
p(v)| + |Rr

p(v′)|.

From E ≥ n

2
we have |Rr0

p (v) ∪ Rr0
p (v′)| > n, a contradic-

tion.

As an intermediate step to argue agreement, our next
lemma shows that a stronger condition on E ensures no two
processes can decide differently at the same round:

Lemma 3. If E ≥ n

2
+ α then in any run of the HO ma-

chine 〈AT,E ,Pα〉 there is at most one possible decision value
per round.

Proof. Assume by contradiction that there exist two
processes p and q that decide on different values v and v′ in
some round r > 0. From the code of AT,E , we deduce that
|Rr

p(v)| > E and |Rr
q(v

′)| > E. Then Lemma 1 ensures that
|Qr(v)| > E − α and |Qr(v′)| > E − α when Pα holds.

Since each process sends the same value to all at each
round r, the sets Qr(v) and Qr(v′) are disjoint if v and v′

are distinct values . Hence |Qr(v) ∪ Qr(v′)| = |Qr(v)| +
|Qr(v′)|. Consequently, since E ≥ n

2
+ α, we derive that

|Qr(v) ∪ Qr(v′)| > n, a contradiction.

The next lemma ensures that for sufficiently large T , once
a process has decided, other processes may learn only the
decision value in that round:

Lemma 4. If T ≥ 2(n + 2α − E), then in any run of the
HO machine 〈AT,E ,Pα〉 such that process p decides value v
at round r0, every process q that updates its variable xq at
round r0 sets it to v.

Proof. Suppose that process p decides value v at round
r0 > 0. Let q be any process such that |HO(q, r0)| > T , i.e.,
q modifies xq at round r0. Let Qr0(v̄) denote the set of pro-
cesses that, according to their sending functions, ought to
send messages different from v at round r0, and let Rr0

q (v̄)
denote the set of processes from which q receives values
different from v at round r0. Since each process sends a
message to all at each round, Qr0(v̄) = Π \ Qr0(v), and
thus |Qr0(v̄)| = n − |Qr0(v)|. Similarly, we have Rr0

q (v̄) =
HO(q, r0) \Rr0

q (v), and since Rr0
q (v) ⊆ HO(q, r0), it follows

that |Rr0
q (v̄)| < T − Rr0

q (v).
Since p makes a decision at round r0, by line 7, |Rr0

p (v)| >
E. Then Lemma 1 implies |Qr0(v)| > E − α, from which
|Qr0(v̄)| < n − (E − α) follows. With an argument similar
to the one used in the proof of Lemma 1, we derive that
|Rr0

q (v̄)| ≤ |Qr0(v̄)| + |AHO(q, r0)|. When Pα holds, we
obtain |Rr0

q (v̄)| < n + 2α − E.
It follows that because of T ≥ 2(n + 2α − E), |Rr0

q (v)| >
|Rr0

q (v̄)|. This implies that v is the most frequent value
received by q at round r0. Then the code entails q to set xq

to v.

We now extend the statement of Lemma 4 to hold also for
any round after the decision:

Lemma 5. If T ≥ 2(n + 2α − E), then in any run of the
HO machine 〈AT,E ,Pα〉 such that process p decides some
value v at some round r0 > 0, every process q that updates
its variable xq at some round r ≥ r0 necessarily sets it to v.

Proof. Assume process p decides value v at round r0 >
0. First we prove by induction on r that:

∀r ≥ r0, |{p′ ∈ Π : x
(r−1)
p′ = v}| > E − α.

Basic case: r = r0. Since p decides v at round r0, then
|Rr0

p (v)| > E. By Lemma 1, we have |Qr0(v)| > E−α when
Pα holds. From the code of AT,E , we have Qr0(v) = {p′ ∈

Π : x
(r0−1)
p′ = v}, and so the basic case follows.

247

∀r0 > 0, ∃r ≥ r0, ∃Π1
r, Π

2
r ⊆ Π s.t.(|Π1

r| > E − α) ∧ (|Π2
r| > T) ∧ (∀p ∈ Π1

r, HO(p, r) = SHO(p, r) = Π2
r)

∧

∀r > 0, ∀p ∈ Π, ∃rp > r : |HO(p, rp)| > T (3)

∧

∀r > 0, ∀p ∈ Π, ∃rp > r : |SHO(p, rp)| > E

Figure 1: Predicate P
A,live

Inductive step: r > r0. From the inductive assumption,

we know that |{p′ ∈ Π : x
(r−1)
p′ = v}| > E − α. The same

argument as in Lemma 4, because we have T ≥ 2(n+2α−E),

yields |{p′ ∈ Π : x
(r)
p′ = v}| > E − α.

Let q be some process that updates xq at some round

r ≥ r0. Since |Qr(v)| = |{p′ : x
(r−1)
p′ = v}| > E − α,

the same argument as in Lemma 4 applies, and so the code
entails q to set xq to v at round r.

From the above lemmas, we derive a sufficient condition
on E and T which ensures that the HO machine 〈AT,E ,Pα〉
satisfies the Agreement clause of consensus.

Proposition 1 (Agreement). If E ≥ n
2

+α and T ≥
2(n + 2α − E), then there is at most one possible decision
value in any run of the HO machine 〈AT,E ,Pα〉.

Proof. Let r0 > 0 be the first round at which some
process p makes a decision, and let v be p’s decision value.
Assume that process q decides v′ at round r. By definition
of r0, we have r ≥ r0.

We proceed by contradiction, and assume that v 6= v′.
By Lemma 3, we derive that r > r0. Since p decides v at
round r0 and q decides v′ at round r, Lemma 1 ensures that
|Qr0(v)| > E−α and |Qr(v′)| > E−α when Pα holds. Since
T ≥ 2(n+2α−E), Lemma 5 implies that Qr0(v) and Qr(v′)
are disjoint sets. Therefore, |Qr0(v) ∪ Qr(v′)| = |Qr0(v)| +
|Qr(v′)|. Because of E ≥ n

2
+α, we have |Qr0(v)∪Qr(v′)| >

n, a contradiction.

Similarly, we derive sufficient conditions on E and T which
ensures that the HO machine 〈AT,E ,Pα〉 satisfies the In-
tegrity clause of consensus.

Proposition 2 (Integrity). If E ≥ α and T ≥ 2α,
then in any run of the HO machine 〈AT,E ,Pα〉 where all the
initial values are equal to some value v0, the only possible
decision value is v0.

Proof. Consider a run of the HO machine 〈AT,E ,Pα〉
such that all the initial values are equal to v0.

First, by induction on r, we show that:

∀r > 0 : Qr(v0) = Π

Note that according to the code of AT,E , p belongs to

Qr(v0) if and only if x
(r−1)
p = v0, and so Qr(v0) = {p ∈ Π :

x
(r−1)
p = v0}.
Basic case: r = 1. All the initial values are equal to v0.

Therefore, every process sends a message with value v0 at
round 1.

Inductive step: Let r > 1, and suppose that Qr−1(v0) =
Π. Let p be a process that updates its variable xp at round
r − 1. Since AHO(p, r − 1) ≤ α, each process p receives at
most α values distinct from v0 at round r − 1. Therefore,

either p does not modify xp at the end of round r which
remains equal to v0, or p receives strictly more than T mes-
sages at round r, and thus strictly more than T −α messages
with value v0 and at most α values different from v0. In the
latter case, p sets xp to v0 since T ≥ 2α. This shows that

definitely, x
(r−1)
p = v0. Therefore, Qr(v0) = Π.

Let p be a process that makes a decision at some round
r0 > 0. We have just shown that Qr0(v0) = Π. When
|AHO(p, r0)| ≤ α holds, p receives at most α messages with
value different to v0. Since E ≥ α, the code entails p to
decide v0 at round r.

For liveness, we introduce the time-invariant communica-
tion predicate PA,live , given in Figure 1, which (i) ensures all
xq to eventually be identical, and (ii) guarantees that each
process then hears of sufficiently many processes to make a
decision.

Proposition 3 (Termination). If n > E ≥ n

2
+ α

and n > T ≥ 2(n + 2α − E), then any run of the HO ma-
chine 〈AT,E ,Pα ∧ PA,live〉 satisfies the Termination clause
of consensus.

Proof. Since we have n > E and n > T , the set of
all heard-of collections (HO(p, r);SHO(p, r))p∈Π, r>0 that
fulfill Pα ∧ PA,live is non-empty, i.e., there exist runs that
fulfill Pα ∧ PA,live .

Let r be a round in a run of the HO machine (AT,E ,Pα ∧
PA,live) such that:

∃Π1
r, Π

2
r ⊆ Π s.t. (|Π1

r| > E − α) ∧ (|Π2
r| > T) :

(∀p ∈ Π1
r, HO(p, r) = SHO(p, r) = Π2

r)

Because of E ≥ n

2
+ α, the code implies that all xp for

p in Π1
r are equal to some common value v ∈ V . Since

|Π1
r| > E − α, it follows that |Qr+1(v)| > E − α. Because

of T ≥ 2(n + 2α − E), a similar argument as the one used
in Lemma 5 shows that every process q that updates xq at
round r′ > r definitely sets it to v. Moreover, from PA,live

we have ∀r > 0, ∀q ∈ Π, ∃rq > r : |HO(q, rq)| > T .
Therefore, there exist a round r′ > r such that every process
q in Π\Π1

r updates xq after round r and by the end of round
r′. Then we deduce that for each process q ∈ Π, we have

x
(r′)
q = v. Finally, since

∀r > 0, ∀p ∈ Π, ∃rp > r : |SHO(p, rp)| > E,

we know that every process p ∈ Π eventually receives strictly
more than E messages with value v at some round rp > r′,
and so decides v.

Combining Propositions 1, 2, and 3, we spin-off the fol-
lowing theorem:

Theorem 1. If n > E and n > T ≥ 2(n + 2α−E), then
the HO machine 〈AT,E ,Pα ∧ PA,live〉 solves consensus.

248

Proof. Obviously, n > T ≥ 2(n + 2α − E) implies E ≥
n

2
+ α. The Agreement clause is a straightforward conse-

quence of Proposition 1. For Integrity, we just check that
E ≥ α and T ≥ 2α are both ensured by n ≥ E ≥ n

2
+α and

T ≥ 2(n + 2α − E), respectively. Indeed for all α ≥ 0, we
have:

E ≥
n

2
+ α ⇒ E ≥ α.

Moreover

E ≤ n ∧ T ≥ 2(n + 2α − E) ⇒ T ≥ 2α.

Termination directly follows from Proposition 3.

3.3 Consensus with AT ,E solutions
At this point, we have to examine whether for any integer

α, 0 ≤ α ≤ n, there exist T and E such that 〈AT,E ,Pα ∧
PA,live〉 solves consensus. In order to answer this question,
Theorem 1 shows that it is sufficient to solve the following
inequations:

n > E (4)

n > T ≥ 2(n + 2α − E) (5)

Obviously, (4) and (5) imply α < n

4
. Conversely, assume

0 ≤ α < n

4
. We let α = n

4
− ǫ with n

4
≥ ǫ > 0.

If we choose E = n−ǫ, then we have 2(n+2α−E) = n−2ǫ,
and so 2(n + 2α − E) < n. It follows that if α < n

4
, then

there exist T and E that satisfy (4) and (5), and so such
that 〈AT,E ,Pα ∧ PA,live〉 solves consensus.

This naturally leads us to question what are the “best
choices” for T and E, for any given integer α, 0 ≤ α < n

4
.

Regarding the predicate PA,live , the best choices for T and
E is taking them as small as possible. However, T and E
are not independent of each other because of the require-
ment T ≥ 2(n + 2α − E). The ”best choices” for T and
E are paradoxical under the latter constraint, and so there
is no best choice for T and E without specifying additional
prerequisites on T and E. Note that roughly speaking, in
PA,live , T plays the role of a minimal “liveness communica-
tion threshold” whereas E plays the role of a minimal “safety
communication threshold” guaranteeing AT,E ’s correctness.

Without specific assumptions on communication, we look
for T and E such that E = T . This yields the following
inequality with α = n

4
− ǫ:

n > E ≥ 3n − 4ǫ − 2E (6)

Obviously, inequality (6) can be replaced by E ≥ n − 4
3
ǫ.

We easily check that E = n − 4
3
ǫ is a solution of the above

system, since ǫ ≤ n

4
. In this case, we have E = T = 2

3
(n +

2α). The above discussion can be summarized as follows:

Proposition 4. For any integer 0 ≤ α < n

4
, the HO

machine 〈AE,E,Pα ∧ PA,live〉 with E = 2
3
(n + 2α) solves

consensus.

Note that in the benign case (i.e., α = 0), we get E =
T = 2n

3
, and that A 2n

3
, 2n

3

exactly coincides with the One-

ThirdRule algorithm in [6].
Interestingly, Theorem 1 shows that with AT,E , we do

not lose any of the basic properties of the OneThirdRule
algorithm even in the presence of corrupted communication.
Indeed, like OneThirdRule, AT,E is quite resilient since, to
be safe, it just requires Pα. Furthermore, from each initial

Algorithm 2 The UT,E,α algorithm

1: Initialization:

2: xp ∈ V ; initially xp = vp /* vp is the initial value of p */
3: votep ∈ V ; initially votep =?

4: Round r = 2φ − 1 :

5: Sr
p:

6: send 〈xp 〉 to all processes
7: T r

p :
8: if received > T values equal to v with v ∈ V then

9: votep := v

10: Round r = 2φ :

11: Sr
p:

12: send 〈 votep 〉 to all processes
13: T r

p :
14: if received at least α + 1 messages with value v 6= ? then

15: xp := v

16: else

17: xp := v0 /* default value */
18: if received > E messages with value v then

19: decide(v)
20: votep := ?

configuration, there is at least one run of AT,E that achieves
consensus in two rounds, and in the case all the initial values
are equal, there is a run that achieves consensus just in one
round. As the OneThirdRule algorithm, AT,E is thus fast
in the sense of [12].

4. WHENCOMMUNICATION IS LIVE BUT

NOT SO SAFE
We now describe a second consensus algorithm tolerating

more corruptions, denoted UT,E,α and given as Algorithm 2,
that is designed to work under the predicates Pα, PU,safe ,
and PU,live , given in (2), (7), and (8) in Figure 2. We use the
same approach as for AT,E , namely we parametrize the var-
ious thresholds that occur in the UniformVoting algorithm
given in [6].

4.1 The UT ,E,α algorithm
Informally, the algorithm works as follows. The UT,E,α

algorithm is organized into phases, each composed of two
rounds. Each process p maintains a variable xp, initialized
to p’s initial value. At the first round of each phase φ, every
process p sends xp to all. Then, provided that p receives
sufficiently many messages with some proper value v ∈ V ,
it votes for v (if so, we shall say that p casts a true vote);
otherwise, p votes for “?”. At the second round of φ, each
process p sends its vote (in V ∪{?}). Then it updates xp by
setting it to some value v ∈ V if p can be sure that at least
one process has voted for v. Otherwise, p adopts a default
value v0 ∈ V as new estimate xp. When messages may be
corrupted, being sure that at least one process voted for v, is
no more guaranteed by the reception of just one vote for v as
in the UniformVoting algorithm. This leads us to consider
the communication predicate Pα, and then to parametrize
the threshold for updating the xp (line 14), substituting α+1
for 1. Indeed, when Pα holds, if p receives at least α + 1
messages with value v ∈ V , then at least one process has
definitely voted for v. At the end of phase φ, a process that
has received sufficiently votes for some value v decides v.

4.2 Correctness of the UT ,E,α algorithm
As for arguing the correctness of AT,E , we use Qr(v) and

Rr
p(v), representing the set of processes that ought to send

249

v, resp. from which p receives v at round r. First we give
an obvious but useful technical lemma:

Lemma 6. Let A and B be two subsets of Π. Then from
|A| + |B| > n + α follows |A ∩ B| > α.

Proof. Because of |A ∩ B| = |A| + |B| − |A ∪ B| and
|A ∪B| ≤ n we have |A ∩B| ≥ |A|+ |B| − n. Further, since
|A| + |B| > n + α, we have |A ∩ B| > n + α − n = α, as
needed.

Like for AT,E , choosing E ≥ n
2

renders the decision rule
“deterministic”, as expressed in the following lemma.

Lemma 7. If E ≥ n

2
, then at most one value can be de-

cided per process per round.

Now we are going to prove that if T ≥ n

2
+ α, then the

basic argument that ensures the safety of UniformVoting —
namely, there is at most one true vote per round —still holds
for UT,E,α.

Lemma 8. Suppose that T ≥ n

2
+ α. Under the predicate

Pα, if a process votes for v 6= ? at round r, then every process
votes for v or ? at round r. Moreover, the only possible
values for any xq at the end of round r + 1 is v or v0, i.e.,

x
(r+1)
q ∈ {v, v0}.

Proof. Suppose that at some round r, two processes p
and q cast true votes with values v and v′, respectively. The
code implies that |Rr

p(v)| > T and |Rr
q(v

′)| > T . Under the
communication predicate Pα, Lemma 1 implies |Qr(v)| >
T − α and |Qr(v′)| > T −α. Suppose by contradiction that
v 6= v′. Then Qr(v) and Qr(v′) are disjoints sets, and so
|Qr(v) ∪ Qr(v′)| = |Qr(v)| + |Qr(v′)|. Since T ≥ n

2
+ α it

follows |Qr(v) ∪ Qr(v′)| > n. Thereby, there is at most one
possible true vote value per round.

Now assume that process p votes for v at round r. The
code enforces any process q to update xq at the end of
round r + 1. Suppose q updates xq by setting it to v′ with
v′ 6∈ {v, ?}. This implies |Rr+1

q (v′)| ≥ α+1. Under the com-
munication predicate Pα, we derive that at least one process
hast voted for v′ at round r, which contradicts that v is the
only true vote at round r.

Contrary to AT,E , the predicate Pα is not sufficient to
guarantee the Agreement clause for UT,E,α. Indeed, the fol-
lowing lemma leads us to introduce the additional commu-
nication predicate PU,safe :

∀p ∈ Π, ∀r > 0 :

|SHO(p, r)| > max(n + 2α − E − 1, T, α) (7)

Note that PU,safe involves both safety and liveness require-
ments for communication.

Lemma 9. Suppose that T ≥ n

2
+ α. Under the predicate

Pα ∧ PU,safe , if a process p decides v at round r, then each
process q necessarily sets xq to v at the end of round r.

Proof. Consider an arbitrary run of 〈UT,E,α,Pα∧P
U,safe〉

in which some process p decides value v at round r. The
code implies that |Rr

p(v)| > E. By Lemma 1, it follows

|Qr(v)| > E − α. Hence, under the predicate PU,safe , we
have:

∀q ∈ Π : |Qr(v)| + |SHO(q, r)| > n + α.

Lemma 6 ensures that |Qr(v) ∩ SHO(q, r)| > α. Therefore,
q receives at least α + 1 messages with value v at round r.
Since T ≥ n

2
+ α, the second part of Lemma 8 shows that q

definitely sets xq to v.

From the above lemmas, we derive a sufficient condition
on E, T and communication which ensures that the HO
machine 〈UT,E,α,Pα〉 satisfies the Agreement clause of con-
sensus.

Proposition 5 (Agreement). If E ≥ n

2
+α and T ≥

n

2
+α, then any run of the HO machine 〈UT,E,α,Pα∧P

U,safe〉
satisfies the Agreement clause of consensus.

Proof. Let φ0 > 0 be the first phase at which a process
p makes a decision, and let v be the value that p decides at
round 2φ0. We first show, by induction on φ, that under the
predicate Pα ∧ PU,safe , we have:

∀φ ≥ φ0 : |Q2φ(v)| > E − α.

φ = φ0: Since p decides v at round 2φ0, the code implies
that |R2φ0

p (v)| > E. Hence, under Pα, Lemma 1 ensures

that |Q2φ0(v)| > E − α, as needed.

Inductive step: Let φ > φ0, and assume |Q2(φ−1)(v)| >
E − α. Since T ≥ n

2
+ α, under Pα ∧ PU,safe the same

argument as the one in Lemma 9 ensures that each process
q sets xq to v at round 2(φ − 1). Moreover, PU,safe then
guarantees that every process votes for v at round 2φ − 1.
Hence, |Q2φ(v)| = n > E − α.

Let p′ be a process that decides v′ at round 2φ. We pro-
ceed by contradiction and assume v 6= v′. On the one hand,
the code implies that |R2φ

p′ (v′)| > E. Under Pα, Lemma 1

implies |Q2φ(v′)| > E −α. On the other hand, we have just
shown that |Q2φ(v)| > E − α. Since v 6= v′, Q2φ(v) and
Q2φ(v′) are disjoint sets. It follows from E ≥ n

2
+ α that

|Q2φ(v) ∪ Q2φ(v′)| > n, a contradiction.

Similarly, we derive a sufficient condition on communi-
cation which ensures that the HO machine 〈UT,E,α,Pα ∧
PU,safe〉 to satisfies the Integrity clause of consensus.

Proposition 6 (Integrity). If E ≥ n

2
+ α, then in

any run of the HO machine 〈UT,E,α,Pα ∧PU,safe〉 such that
all the initial values are equal to some value v, v is the only
possible decision value.

Proof. Consider a run of the HO machine 〈UT,E,α,Pα ∧
PU,safe〉 such that all the initial values are equal to v.

Let p be a process that decides value v′ at phase φ0.
Suppose for contradiction that v 6= v′. The code gives
|R2φ0

p (v′)| > E. By Lemma 1, it follows that under Pα,

|Q2φ0(v′)| > E − α. Besides, using the same inductive ar-
gument as above, we show that under Pα ∧PU,safe , at every
phase φ > 0, |Q2φ(v)| > E − α. In particular, we have
|Q2φ0(v)| > E − α. Since v 6= v′, Q2φ0(v) and Q2φ0(v′)
are disjoint sets. It follows that because of E ≥ n

2
+ α,

|Q2φ0(v) ∪ Q2φ0(v′)| > n, a contradiction.

For liveness, we exhibit the communication predicate given
in Figure 2. The first part forces all processes to hear of the
same subset of processes at round 2φ0, and precludes any
corruption at this round. It ensures all xp to be identical
(all equal to some value v ∈ V) at the end of phase φ0. The
second part in PU,live limits the number of corruption at the

250

∀φ, ∃φ0 ≥ φ, ∃Π0 ⊆ Π,∀p ∈ Π :

HO(p, 2φ0) = SHO(p, 2φ0) = Π0 ∧ |SHO(p, 2φ0 + 1)| > T ∧ |SHO(p, 2φ0 + 2)| > max(E,α) (8)

Figure 2: Predicate P
U ,live

next phase, and thus guarantees that at phase φ0 + 1, all
processes vote for v. The last part of the predicate ensures
that every process definitely hears of vote v sufficiently often
to make a decision at the end of phase φ0 + 1.

Thus, combining this remark with Propositions 5 and 6,
we spin-off the following theorem:

Theorem 2. If n > E ≥ n

2
+ α and n > T ≥ n

2
+ α and

n > α , then the HO machine 〈UT,E,α,Pα∧PU,safe ∧PU,live〉
solves consensus.

Proof. Since n > E, n > T and n > α, then the set of
all heard-of collections (HO(p, r);SHO(p, r))p∈Π, r>0 that
fulfill Pα ∧ PU,safe ∧ PU,live is non-empty when E ≥ n

2
+ α.

By Proposition 5 and 6, the Agreement and Integrity
clauses are guaranteed when PU,safe holds.

Now, we show that any run ρ of the HO machine 〈UT,E,α,
Pα ∧ PU,safe ∧ PU,live〉 satisfies the Termination clause of
consensus. Let φ0 be a phase for which there exists a subset
Π0 ⊆ Π such that:

∀p ∈ Π, HO(p, 2φ0) = SHO(p, 2φ0) = Π0,
∧

|SHO(p, 2φ0 + 1)| > T and |SHO(p, 2φ0 + 2)| > max(E,α).

The code implies that at the end of phase φ0, all the xp

are equal to some unique value v ∈ V . Because of T ≥
n

2
+ α, every process casts a true vote at round 2φ0 + 1,

and by Lemma 8, each vote is for v. Hence every process
receives strictly more than E messages with value v at round
2(φ0+1). Since E ≥ n

2
, Lemma 7 implies that every process

decides v at this round.

4.3 Consensus with UT ,E,α solutions
At this point, we have to examine whether for any given

integer α, 0 ≤ α ≤ n, there exist T and E such that
〈UT,E,α,Pα ∧ PU,safe ∧ PU,live〉 solves consensus. From the
expression of PU,live , we deduce that this is equivalent to
solve the following inequations:

n > T ≥
n

2
+ α (9)

n > n + 2α − E − 1 (10)

n > E ≥
n

2
+ α (11)

Obviously, (11) implies α < n

2
, and so (11) implies (10).

Therefore, the latter three inequalities are equivalent to only
(9) and (11).

As mentioned above, (11) implies α < n

2
. Conversely,

assume 0 ≤ α < n

2
. Trivially, E = T = n

2
+ α satisfy (9)

and (11). It follows that if α < n

2
, then there exist T and E

such that 〈UT,E,α,Pα ∧ PU,safe ∧ PU,live〉 solves consensus.
Note that in the case E = T = n

2
+ α, the predicate

PU,safe guarantees that all the safe heard-of sets SHO(p, r),
and so all the HO(p, r), are of cardinality greater than n

2
+α.

Hence contrary to AT,E , the safety of UT,E,α is guaranteed
by some permanent “liveness” properties of communication.
Besides, UT,E,α tolerates more corruptions than AT,E (“α <
n

2
” instead of “α < n

4
”).

5. RELATED WORK
Most previous work on consensus algorithms in the pres-

ence of non-benign faults relies on the paradigm of Byzan-
tine processes, i.e., on permanent and static value faults. For
the synchronous case the seminal papers are [13,17] (which
also include lower bounds). The partial synchronous case is
considered in [2,7].

Byzantine variants for the famous Paxos algorithm include
[1,4,14,22]. An algorithm for Fast Byzantine Paxos has been
proposed in [16]. The Byzantine Paxos definition is in fact
closer related to Byzantine agreement than to consensus,
and thus it is related to the notion of faulty processes as
Integrity only restricts delivery of messages in the case of a
correct broadcaster.

There exists only little work on dynamic and transient
value faults: Santoro and Widmayer [18,19] as well as Schmid
et al. [20] provide lower bounds on agreement problems in
the presence of dynamic value faults. We will discuss the
relation to the literature on lower bounds before we present
some general discussion of the modelling of non-benign faults.

5.1 Correspondence to Lower Bounds
Santoro and Widmayer [18, 19] show that agreement is

already impossible to solve given a quite strong predicate,
with as few as ⌊n/2⌋ faulty transmissions per round. The
problematic case is when these ⌊n/2⌋ value faults occur in
blocks, i.e., in every round the outgoing links of one process
are affected. In every round this may happen to a different
process. On the other hand, our algorithms allow up to n2/4
(for AT,E), resp. n2/2 (for UT,E,α), transmission faults per
round in general. However, our result is not contradicting
the lower bound: It comes from the fact that we distinguish
between the safety and liveness of the consensus algorithm,
and assume transient failures. So, e.g. for AT,E , for safety
it is sufficient that less than n/4 corruptions per process and
round occur. But in order to ensure termination, two rounds
are necessary where the assumptions are much higher than
those given by the lower bound of Santoro and Widmayer
(cf. to predicate PA,live).

Another way to circumvent the impossibility of Santoro
and Widmayer is given for synchronous systems by Schmid et
al. [20]. They restrict the number of the transmission faults
for each round that correct processes may experience (both
for outgoing and incoming messages), which prevents the
blocks of faults of [18]. The synchronous system considered
in [20] translates into a strong predicate, i.e., a large number
of messages must be transmitted correctly in every round.
This contrasts our work that separates predicates for safety
and liveness, which leads our algorithms to require quite
weak safety predicates but stronger ones for termination.
They also provide lower bounds in a failure model which
restricts both benign and non-benign transmission failures
both on sender and receiver side. One special instance of
their results where only value faults are considered yields
that at most n/4 faults may occur in each round per sender
and receiver. The predicates of UT,E,α reveal a trade-off.

251

UT,E,α allows that in most rounds more than n/4 (up to
nearly n/2) received messages may be corrupted given that
there exist rounds where processes experience much less cor-
ruptions.

The AT,E algorithm is fast in the sense that for each initial
configuration there is a run where all processes decide in two
rounds [5, 12]. For this, Martin and Alvisi [16] have estab-
lished (4n+1)/5 as a lower bound for the number of correct
processes. For a similar reason as for the Santoro/Widmayer
lower bound, here we have also no contradiction: Our model
is more fine grained in two dimensions than theirs: First in
the spacial dimension, where we reason in a per-link basis
instead of a per-process basis. And, more important for this
comparison, it is finer in the temporal dimension, since the
quorums are measured in a per-round basis instead of as-
suming permanent faults. Thus, although we have a fast
algorithm, we can have in each round, up to (n − 1)/4 pro-
cesses that may emit corrupted information (cf. Section 3.3).
On the other hand, for deciding we need at least one round
where no process emits corrupted information. Further, we
do not rely on separate recovery protocol and signatures,
where the latter is not only computationally expensive but
also questionable from a theoretical point of view: To the
best of our knowledge, there exists no satisfactory rigorous
definition of signatures in the context of Byzantine-tolerant
distributed algorithms.

Lamport [11] has conjectured the lower bound N > 2Q +
F +2M for Byzantine consensus, where N is the number of
acceptors, F is the maximum number of Byzantine acceptors
despite which liveness is ensured, M is the maximum num-
ber of Byzantine acceptors despite which consensus safety is
ensured, and Q is the number of Byzantine acceptors despite
which the protocol is fast. We attain this bound with both
of our algorithms: In the case the algorithm should just be
safe (that is, it is not necessarily fast and does not satisfy the
liveness conditions; corresponding to F = Q = 0), UT,E,α

achieves safety with α = (n − 1)/2. If the algorithm should
be safe and fast (but does not necessarily satisfy the liveness
conditions, i.e., F = 0), we present such an algorithm via
AT,E with α = (n − 1)/4. For both algorithms, F = 0 as
we have stronger conditions for liveness, i.e., our algorithms
cannot tolerate classic Byzantine (process) failures. Note,
however, that we assume dynamic faults while Lamport’s
lower bound consider static Byzantine faults.

5.2 Relation to other non-benign fault models
Figure 3 shows, how an HO machine, in general, can suffer

from corruption. The model at the top of the figure, where
no value faults occur, is the benign case.

The model at the bottom, where in an execution transi-
tions might deviate from what is prescribed by transition
functions and transmissions might deviate from what is pre-
scribed by sending functions, corresponds to the classical
Byzantine model assumption [13,17].

Naturally, there are two models that lie in between these
two extreme cases. Based on the left, where transmissions
always follow sending functions, but state transitions might
not follow transition functions (thus also state corruptions
may occur), one could design (broadcast based) algorithms
that send the same message to all other processes. Given
that transmissions follow the sending function, it is not pos-
sible that two different values from the same sender are re-
ceived. Consequently, faulty behavior is restricted to “sym-

our case“symmetrical” case

benign case

transition according to T r
p

transm. according to Sr
p

trans. deviates from T r
p

transm. according to Sr
p transm. deviates from Sr

p

transm. deviates from Sr
p

trans. deviates from T r
p

Byzantine case

trans. according to T r
p

Figure 3: Possible types of corruption

metrical failures” [20] (also termed ”identical Byzantine”
in [3]). Similar behavior can be implemented (if not a pri-
ori present) e.g. with signed messages. Thus, signatures
are an important implementation concept in order to en-
sure such behavior. Given the lack of a formal definition
of signatures, we believe that they should be studied in the
context of predicate implementations but not as part of con-
sensus algorithms. This also allows to separate between the
mechanisms of consensus algorithms on the one hand and
signatures on the other hand.

Finally, the right side case is the one considered in this pa-
per, which is also the one of Santoro and Widmayer [18,19].
One could argue that this approach is only of theoretical,
but not of practical interest, given that techniques like sig-
natures or error correcting codes could be used to transform
value into benign failures, and consequently the right side
model to the benign case. Since there are applications where
this is not feasible due to the involved coverage (error cor-
recting codes cannot correct all errors) or due to extensive
computational cost, we provide solutions for the cases where
such techniques cannot be used to eliminate all value faults.
However, such techniques can be used to increase the cover-
age of our predicates.

Although we assume that T r
p is always followed, the clas-

sical Byzantine assumptions can be expressed in our model.
This stems from the fact that Byzantine processes are static
and permanent faults. Thus, from the perspective of an out-
side observer it is indistinguishable whether such a process
has a corrupted state or not.3 Consequently, we can give,
e.g., a predicate for a synchronous system with reliable links
and at most f Byzantine processes:

|SK| ≥ n − f

and a predicate for an asynchronous system with reliable
links and at most f Byzantine processes:

∀p ∈ Π : ∀r > 0 : |HO(p, r)| ≥ n − f ∧ |AS| ≤ f.

6. CONCLUSION
In this paper we investigated consensus in the presence of

transient and dynamic value faults. To this end we general-
ized the round based HO model of [5,6] which only consid-

3This was also observed in [14].

252

Alg. Predicate for Safety Predicate for Liveness Conditions

∀r0 > 0, ∃r ≥ r0, ∃Π1

r, Π2

r ⊆ Π s.t.(|Π1

r| > E − α) ∧ (|Π2

r | > T)
AT,E ∀r > 0, ∀p ∈ Π : ∧(∀p ∈ Π1

r , HO(p, r) = SHO(p, r) = Π2

r) n > E

|AHO(p, r)| ≤ α ∀r > 0, ∀p ∈ Π, ∃rp > r : |HO(p, rp)| > T T ≥ 2(n + 2α − E)
∀r > 0, ∀p ∈ Π, ∃rp > r : |SHO(p, rp)| > E

∀r > 0, ∀p ∈ Π : ∀φ, ∃φ0 ≥ φ, ∃Π0 ⊆ Π, ∀p ∈ Π : n > E ≥ n
2

+ α

UT,E,α |AHO(p, r)| ≤ α HO(p, 2φ0) = SHO(p, 2φ0) = Π0 ∧ n > T ≥ n
2

+ α

|SHO(p, r)| > max(n + 2α − E − 1, T, α) |SHO(p, 2φ0 + 1)| > T ∧ |SHO(p, 2φ0 + 2)| > max(E, α)

Table 1: Summary of results

ered benign faults. Our novel framework includes predicates
that allow also to express value faults like the classic Byzan-
tine assumption [13, 17] as well as the dynamic fault model
found in [18].

In [18], Santoro and Widmayer prove an impossibility re-
sult for agreement problems in the dynamic setting. In con-
trast, we were interested in exploring system properties that
would allow positive results: We introduced two consensus
algorithms (derived from the benign case) that are suitable
for systems in which the communication predicates given in
Table 1 can be guaranteed. These predicates can be sep-
arated into safety and liveness conditions. Informally, the
liveness conditions allow us to circumvent the impossibility
of [18]. In contrast to classic literature, liveness of our al-
gorithms does not rely on conditions that hold from some
stabilization on, but only sporadically.

7. REFERENCES

[1] I. Abraham, G. Chockler, I. Keidar, and D. Malkhi.
Byzantine disk paxos: optimal resilience with
Byzantine shared memory. Distributed Computing,
18(5):387–408, 2006.

[2] M. K. Aguilera, C. Delporte-Gallet, H. Fauconnier,
and S. Toueg. Consensus with Byzantine failures and
little system synchrony. In Dependable Systems and
Networks (DSN 2006), pages 147–155, 2006.

[3] H. Attiya and J. Welch. Distributed Computing. John
Wiley & Sons, 2nd edition, 2004.

[4] M. Castro and B. Liskov. Practical Byzantine fault
tolerance and proactive recovery. ACM Transactions
on Computer Systems, 20(4):398–461, 2002.

[5] B. Charron-Bost and A. Schiper. Improving fast
paxos: being optimistic with no overhead. In Pacific
Rim Dependable Computing, Proceedings, pages
287–295, 2006.

[6] B. Charron-Bost and A. Schiper. The Heard-Of
model: Computing in distributed systens with benign
failures. Technical report, EPFL, 2007.

[7] C. Dwork, N. Lynch, and L. Stockmeyer. Consensus in
the presence of partial synchrony. Journal of the
ACM, 35(2):288–323, Apr. 1988.

[8] E. Gafni. Round-by-round fault detectors (extended
abstract): unifying synchrony and asynchrony. In
Proc. 16th Annual ACM Symposium on Principles of
Distributed Computing (PODC’98), pages 143–152,
Puerto Vallarta, Mexico, 1998. ACM Press.

[9] J. N. Gray. Notes on data base operating systems. In
G. S. R. Bayer, R.M. Graham, editor, Operating

Systems: An Advanced Course, volume 60 of Lecture
Notes in Computer Science, chapter 3.F, page 465.
Springer, New York, 1978.

[10] M. Hutle and A. Schiper. Communication predicates:
A high-level abstraction for coping with transient and
dynamic faults. In Dependable Systems and Networks
(DSN 2007), 2007.

[11] L. Lamport. Lower bounds for asynchronous
consensus. In Future Directions in Distributed
Computing, number 2584 in Lecture Notes in
Computer Science, pages 22–23. Springer-Verlag, 2003.

[12] L. Lamport. Fast paxos. Technical Report
MSR-TR-2005-12, Microsoft Research, 2005.

[13] L. Lamport, R. Shostak, and M. Pease. The Byzantine
generals problem. ACM Trans. Program. Lang. Syst.,
4(3):382–401, 1982.

[14] B. Lampson. The ABCD’s of paxos. In Proc. 19th
Annual ACM Symposium on Principles of Distributed
Computing (PODC’01), page 13, New York, NY,
USA, 2001. ACM Press.

[15] N. Lynch. Distributed Algorithms. Morgan Kaufman,
1996.

[16] J.-P. Martin and L. Alvisi. Fast Byzantine consensus.
Transactions on Dependable and Secure Computing,
3(3):202–214, 2006.

[17] M. Pease, R. Shostak, and L. Lamport. Reaching
agreement in the presence of faults. Journal of the
ACM, 27(2):228–234, 1980.

[18] N. Santoro and P. Widmayer. Time is not a healer. In
Proc. 6th Annual Symposium on Theor. Aspects of
Computer Science (STACS’89), volume 349 of LNCS,
pages 304–313, Paderborn, Germany, Feb. 1989.
Springer-Verlag.

[19] N. Santoro and P. Widmayer. Distributed function
evaluation in the presence of transmission faults. In
SIGAL International Symposium on Algorithms, pages
358–367, 1990.

[20] U. Schmid, B. Weiss, and J. Rushby. Formally verified
Byzantine agreement in presence of link faults. In
22nd International Conference on Distributed
Computing Systems (ICDCS’02), pages 608–616,
Vienna, Austria, July 2–5, 2002.

[21] G. Varghese and N. A. Lynch. A tradeoff between
safety and liveness for randomized coordinated attack.
Inf. Comput., 128(1):57–71, 1996.

[22] P. Zieliński. Paxos at war. Technical Report
UCAM-CL-TR-593, University of Cambridge, 2004.

253

