
DRIFT: Efficient Message Ordering in Ad Hoc Networks Using Virtual Flooding

Stefan Pleisch1 Thomas Clouser2 Mikhail Nesterenko2∗ André Schiper1

1EPFL, Faculté IC, 1015 Lausanne, Switzerland

2The Department of Computer Science,
Kent State University, Kent, OH 44242, USA

stefan.pleisch@epfl.ch tclouser@kent.edu mikhail@cs.kent.edu andre.schiper@epfl.ch

Abstract

We present DRIFT — a total order multicast algorithm
for ad hoc networks with mobile or static nodes. Due to the
ad hoc nature of the network, DRIFT uses flooding for mes-
sage propagation. The key idea of DRIFT is virtual flooding
— a way of using unrelated message streams to propagate
message causality information in order to accelerate mes-
sage delivery. We describe DRIFT in detail. We evaluate
its performance in a simulator and in a wireless sensor net-
work. In both cases our results demonstrate that the per-
formance of DRIFT exceeds that of the simple total order
multicast algorithm designed for wired networks, on which
it is based. In simulation at scale, for certain experiment
settings, DRIFT achieved speedup of several orders of mag-
nitude.

1 Introduction
Recent advances in PDA and wireless networked sen-

sor technology enable the ad hoc networks of these devices
to handle increasingly sophisticated tasks. As the reliance
on these devices grows, so does the need to bring well-
established communication primitives to such networks.
One such primitive is total order multicast. As a motivating
example, consider that a temporary military sensor network
is deployed to protect an extended valuable asset. The sen-
sor network does not have any routing infrastructure: the
communication is multi-hop and ad hoc. Several operators
move through the field and periodically issue directives for
all sensor nodes to change the mode of surveillance or focus
on particular targets of observation. It is mission-critical
that the directives are delivered in the same order at each
sensor node. Otherwise, different parts of the network may

∗This research was supported in part by NSF CAREER Award
0347485.

start performing conflicting tasks. Thus, the directives need
to be sent using total order multicast.

Total order multicast has been studied extensively, pre-
dominantly in wired networks. An order is imposed on the
multicast messages and all nodes are expected to deliver
them in this order. One ordering approach is to arrange mes-
sages according to causal precedence. Concurrent messages
are arranged in some deterministic order, e.g., according to
the sender’s identifier. The nodes buffer the received mes-
sages and then deliver them to the application in this or-
der. Traditionally, total order multicast algorithms do not
consider the routing aspect of message transmission and as-
sume that the network is completely connected (each node
participating in the multicast has a channel to every other
node). However, maintaining such routing infrastructure
may not be feasible in ad hoc networks, especially if nodes
are mobile, as in the above scenario. Thus, due to node
mobility and large scale of the network either proactive or
reactive route maintenance may not be efficient. Hence, tra-
ditional total order multicast algorithms may not be applica-
ble to such networks.

In such networks, flooding is an effective mechanism of
reaching all nodes in the network without underlying rout-
ing infrastructure. In its simple form, a flooding source
broadcasts a message to its neighbors and all other nodes
rebroadcast the flooded message exactly once. Note that we
distinguish between a network-wide flooding and a (local)
radio broadcast, which is a transmission that is received
by all nodes within transmission range of the broadcasting
node. The use of flooding requires nodes to forward mes-
sages sent to other nodes. Thus, there is an opportunity to
piggyback information on the rebroadcast messages. We
call this technique virtual flooding. We apply it to a to-
tal order multicast algorithm inspired by Lamport’s algo-
rithm [20]. The resulting total order multicast algorithm,
which we call DRIFT, is optimized for ad hoc networks

25th IEEE Symposium on Reliable Distributed Systems (SRDS'06)
0-7695-2677-2/06 $20.00 © 2006

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Infoscience - École polytechnique fédérale de Lausanne

https://core.ac.uk/display/147941446?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

and enables the recipients to deliver the received messages
faster. We present simulation and implementation results
that demonstrate significant performance gains due to vir-
tual flooding.

The remainder of the paper is structured as follows. In
Section 2 we introduce the total order multicast problem
and survey existing work. In Section 3 we present virtual
flooding. We give a detailed description of DRIFT in Sec-
tion 4. In Section 5 we present the simulation results of
DRIFT’s operation. In Section 6 we describe the implemen-
tation of DRIFT in a wireless sensor network and present
the obtained results. We address the extensions of DRIFT
to accomodate failures and changes in network membership
in Section 7. We conclude the paper in Section 8.

2 Total Order Multicast and Ad Hoc Net-
works

Total order multicast (or TO-multicast)1 is a fundamen-
tal communication mechanism utilized by a variety of ap-
plications. It has two communication primitives: TO-
multicast and TO-deliver. An application program invokes
TO-multicast to send a message to all the nodes of the mul-
ticast group. To ensure that the recipients agree on the de-
livery order, they may buffer and reorder the received mes-
sages. Once the message order is established, a node exe-
cutes TO-deliver to convey the message to the application.

2.1 Ad Hoc Network Specifics
The network consists of a set of radio-communication

capable nodes. A subset of these nodes are sources — Σ and
may invoke TO-multicast, while another subset are destina-
tions — ∆ invoking TO-deliver. The two sets, in general,
are not related as a source may not have to TO-deliver mes-
sages. Some nodes in the network may be in neither set:
they act only as message forwarders.

Certain properties of ad hoc networks differentiate them
from conventional wired networks. Communication be-
tween two nodes is immediate if the two nodes are within
transmission range of each other. Otherwise, intermediate
nodes may have to forward the message along multiple hops
from the source to the destination. The nodes may poten-
tially be mobile which further complicates communication.
Network and individual node resources such as available
bandwidth, battery power, memory size, etc. may be lim-
ited.

In such setting, it may not be feasible to maintain routing
infrastructure. Instead, message flooding may be used as a
predominant communication primitive. Hence the need to
develop a TO-multicast algorithm specifically optimized to
use flooding. Before we describe the algorithm, we survey
TO-multicast algorithms published in the literature.

1Total order multicast is sometimes also called atomic multicast.

2.2 TO-Multicast Algorithms Overview
TO-multicast algorithms typically assume the existence

of a reliable message delivery mechanism which guaran-
tees that all nodes receive the multicast message. A va-
riety of TO-multicast algorithms are described in the lit-
erature. Défago et al in their survey paper [13] clas-
sify the algorithms according to their ordering techniques:
sequencer-based, privilege-based, destination, and commu-
nication history. For brevity, our overview of TO-multicasts
in wired networks is deliberately incomplete: we cite one
or two typical examples per technique. For detailed discus-
sion and comparison of TO-multicast algorithms we refer
the reader to the original paper [13]. Few TO-multicast al-
gorithms have been proposed for ad hoc networks. This
overview motivates communication history ordering as a
TO-multicast technique of choice for DRIFT.

Sequencer-based ordering. In this approach one node is
selected as the sequencer. Every node that wishes to TO-
multicast a message contacts the sequencer and obtains a
sequence number which is then used to determine the de-
livery order. To balance the load, the sequencer function
can be successively performed by multiple nodes. An ex-
ample of this approach for fixed networks is described by
Navaratnam et al. [23]. Anastati et al. [4] and Bartoli
[6] describe a sequencer-based TO-multicast for single-hop
mobile networks. They consider an infrastructure-based
network where a set of wired gateways order the multicast
messages and ensure their transmission to the mobile nodes.
In contrast, we do not make use of a stationary wired in-
frastructure in our algorithm. Moreover, wireless commu-
nication in our setting is multihop rather than single hop.

While sequencer-based algorithms may perform well in
fixed networks, they may not be applicable to ad hoc net-
works. In particular, the sequencer and a routing path to it
needs to be known to all the sources. The necessity of a sin-
gle sequencer limits the scalability of this approach. Notice
also that before a message is TO-multicast to the destina-
tions, an additional point-to-point message communication
from the source to the sequencer is usually required. In an
ad hoc network this may increase message delivery latency
and add message overhead.

Privilege-based ordering. In this type of algorithms, the
source TO-multicasts a message when the source is granted
an exclusive privilege to do so. One way to ensure exclusiv-
ity is to circulate a single token among sources. A source
can TO-multicast a message only when it holds the token.
An example of such algorithms in wired networks is Train
[12]. A token-based algorithm in mobile ad hoc networks is
described by Malpani et al. [22]. Token-based algorithms
require maintenance of routing information. They also re-

25th IEEE Symposium on Reliable Distributed Systems (SRDS'06)
0-7695-2677-2/06 $20.00 © 2006

quire token maintenance and recovery. Thus, such algo-
rithms may not always be practical in ad hoc networks.

Destination ordering. In this approach, the destinations
(possibly an agreement subset of these nodes) agree on the
message delivery order. An example of this class is the TO-
multicast algorithm by Chandra and Toueg [10]. This ap-
proach requires extensive communication within the agree-
ment set and between this set and the other destinations.
Thus, destination ordering may not be appropriate for ad
hoc networks.

Communication history ordering. The algorithms of
this class deliver messages based on the causal order of mul-
ticasts. Causal relation [20] establishes a partial order of
messages. This partial order is expanded to total order by
delivering concurrent messages in some deterministic way.
There is a number of communication history-based algo-
rithms for wired networks [8, 20, 26]. Prakash et al. [25]
describe a communication history-based TO-multicast algo-
rithm for mobile networks. Unlike DRIFT, their algorithm
uses wired infrastructure. Communication history-based or-
dering is rather promising for ad hoc networks as it is en-
tirely distributed and it scales well as there is no need for
extra ordering messages. DRIFT belongs to this class.

Probabilistic multicast. Luo et al. [21] explore a proba-
bilistic approach to total order multicast in ad hoc networks.
Their algorithm guarantees delivery with a certain probabil-
ity. In contrast, in this paper we focus on TO-multicast with
deterministic guarantees.

2.3 The Problem of Communication His-
tory Ordering in Ad Hoc Networks

As we discussed the advantages of communication-
history ordering approach to TO-multicasting for ad hoc
networks, we shall now focus on the specifics of this type of
design by presenting Lamport’s algorithm [20, 13] (which is
the basis of DRIFT). This algorithm assumes FIFO commu-
nication channels and reliable message delivery. It is based
on scalar logical clocks. Before TO-multicasting a message,
the source increments its logical clock and timestamps the
message with this new clock value. Each destination TO-
delivers the messages in the increasing order of timestamps.
Messages with identical clock values (these messages have
been sent concurrently) are delivered in some deterministic
order, e.g., in the order of their senders’ identifiers. Since
message receipt is reliable, every node TO-delivers the mes-
sages in the same order.

The main difficulty in Lamport’s approach is to delay the
message delivery long enough to ensure that messages with
smaller timestamps are not received in the future. This is

handled as follows. Note that every source monotonically
increases the timestamps it assigns to the multicast mes-
sages. Since messages from the same source are received
in FIFO order, once a destination receives a message with a
certain timestamp, all successive messages from this source
will bear greater timestamps. Every destination n stores the
latest received timestamp for each source. The messages
are delivered according to the following rule. Node n can
TO-deliver a particular message m only after it receives a
message with a higher timestamp from every source. Due
to the FIFO message delivery, this guarantees that in the fu-
ture n will not receive messages with timestamps smaller
than that of m.

Hence, the delivery rate of all destinations depends on
the sending rate of the source that multicasts least fre-
quently. Moreover, as described, Lamport’s algorithm is
not terminating: to ensure delivery at all destinations, each
source has to continuously multicast messages. The deliv-
ery can be implemented by requiring that each node period-
ically multicasts a dummy message. The only purpose for
such dummy message is to notify the other destinations of
the source’s most recent logical clock value. However, as
this approach introduces extra message overhead it may be
impractical. We propose an alternative technique to prop-
agate recent logical clock values of the sources. Our ap-
proach exploits the properties of ad hoc networks. We call
this technique virtual flooding.

3 Virtual Flooding
Virtual flooding distributes data to every node in the net-

work by attaching it to unrelated messages propagated in the
network. Virtual flooding is different from physical flooding
(or just flooding) as it does not require any extra messages
to be sent. Specifically, to propagate virtually flooded data,
a node attaches the data to physically flooded message it has
to locally broadcast. Consider the example in Fig. 1. The
network consists of five nodes a through e in a line. The
message transmission range for each node only covers its
immediate neighbors. Node a physically floods message m
(represented by a black box in the figure). Node c virtually
floods message m′ (white box). When m reaches c (see
Fig. 1(3)), c attaches m′ to m and resends m||m′. Nodes b
and d receive the joint message (see (4)). Node d resends
the joint message again. Thus, with a single physical flood,
the virtually flooded message m′ reaches all nodes in the
network except a. Another physical flood from any node in
the network results in a receiving m′.

The number of physical floods required to propagate a
virtually flooded message varies. In the worst case this
number is proportional to the diameter of the network. Con-
sider the example in Fig 2. In the best case node a contains
messages for both virtual and physical flooding. In this case
only one physical flood is required. However, in case the

25th IEEE Symposium on Reliable Distributed Systems (SRDS'06)
0-7695-2677-2/06 $20.00 © 2006

Figure 1. Virtual flooding example.

virtually and physically flooded messages are located at the
opposite ends of the network, it takes two floods to propa-
gate them.

1

2

Figure 2. Efficiency of virtual flooding.

Provided that sufficiently many physical floods occur,
virtually flooded messages eventually reach all nodes in the
network. While it increases the size of physically flooded
messages, it results in better bandwidth utilization as the
virtually flooded data does not require separate messages.
Thus, there is no overhead incurred in acquiring the radio
channel and no extra message headers are required. This
advantage is particularly important if the virtually flooded
data is relatively small in size like the causality informa-
tion virtually flooded by DRIFT as we describe in the next
section.

4 DRIFT Description
The key idea of DRIFT is to use virtual flooding to prop-

agate information about the last logical clock values of the
other sources seen by some source. This approach lowers
delivery latency. In this section, we describe how virtual
flooding is utilized in DRIFT. We then describe the algo-

rithm, and demonstrate its operation with an example. We
conclude the section with the discussion of how DRIFT is
to be efficiently implemented in practical ad hoc networks.

Initially, we assume that destinations are static. Each
flooded message is reliably received by every node. Mul-
tiple messages from an individual source are received by
each node in FIFO order. Nodes do not crash. The sources
do not join or leave the network (i.e. we consider static
group membership). Furthermore, we assume that at least
one source sends an infinite number of messages. Later we
discuss how these assumptions may be relaxed or imple-
mented.

4.1 Virtual Flooding in DRIFT

DRIFT extends Lamport’s TO-multicast. It uses virtual
flooding to propagate timestamp information and alleviate
the need for periodic dummy message transmission. The
idea is as follows. Suppose node p receives message m from
source q with timestamp ts. Observe that to safely deliver
m, p does not necessarily need to receive a message with
timestamp ts′ > ts from another source r. It is sufficient
that p learns that it will not receive a message from r with a
timestamp less than or equal to ts. When a source selects a
new timestamp for the message to multicast, the timestamp
is chosen such that it exceeds the timestamps of the mes-
sages that the source has received. Thus, if p learns that r
received a message with a timestamp ts or greater, it can
safely deliver m. In DRIFT, each source virtually floods its
current logical clock value.

Recall that as presented in Section 3, all virtually flooded
data reaches every node. Yet, in our case, only the freshest
logical clock values are of significance. Hence, in DRIFT,
this information is updated at every node and only the most
recent logical clock information per source is resent with
each physical message. This causes the virtually flooded
information to be constantly updated along the way.

Although we assume that the messages multicast by a
single source are received by each node in FIFO order, the
virtual flooding information is attached to arbitrary mes-
sages. Thus, the timestamps carried by virtual flooding may
overtake the ones carried by physical messages. For exam-
ple, suppose node p multicasts a message with timestamp
t1 and later virtually floods t2 > t1. It may happen that
some node q receives a message carrying t2 in its virtual
flooding part earlier than the message with t1. If q uses t2
to deliver some message with timestamp t3 (from another
source r) such that t1 < t3 < t2 the total order is violated.
Thus, care must be taken when delivering a message based
on timestamp information received via virtual flooding. In
DRIFT we use sequence numbers to relate physically and
virtually flooded timestamps.

25th IEEE Symposium on Reliable Distributed Systems (SRDS'06)
0-7695-2677-2/06 $20.00 © 2006

node p
variables

if p ∈ Σ — p is a source
lc — local logical clock, initially 0
sn — sequence number of last message multicast, initially 0

RCVD — received message info, initially ∅
Seen — virtual flooding info set, initially ∅
if p ∈ ∆ — p is a destination

READY , DLVD — ready for delivery and delivered messages,
initially ∅

RcvdSN — sequence number of the last received message
for each i, initially all 0-s

actions
TO-multicast(m)

lc := lc + 1
sn := sn + 1
Seen := Seen ∪ {〈p, sn, lc〉}
broadcast(m, p, sn, lc, getHighestTimestamp(Seen))

when receive(qm, q, qsn, qts, qSeen)
vf update:

Seen := Seen ∪ qSeen
rcpt processing:

if 〈qm, q, qsn, qts〉 6∈ RCVD then /* first time received */
RCVD := RCVD ∪ {〈qm, q, qsn, qts〉}
if p ∈ Σ then

lc := max(lc, qts) + 1
Seen := Seen ∪ {〈p, sn, lc〉}

if p ∈ ∆ then
RcvdSN[q] := qsn

broadcast(qm, q, qsn, qts, getHighestTimestamp(Seen))
delivery:

if p ∈ ∆ then
READY := {〈um, u, usn, uts〉 ∈ RCVD \ DLVD |

∀i ∈ Σ,∃〈i, isn, its〉 ∈ Seen :
RcvdSN[i] = isn ∧ uts ≤ its}

DLVD := DLVD ∪ READY
while READY 6= ∅ do

let 〈vm, v, vsn, vts〉 ∈ READY be such that
∀〈um, u, usn, uts〉 ∈ READY :

vts < uts ∨ (vts = uts ∧ v ≤ u)
TO-deliver vm
READY := READY \ {〈vm, v, vsn, vts〉}

function getHighestTimestamp(Seen)
highestSeen = ∅
foreach i ∈ Σ do

let 〈i, isn, its〉 ∈ Seen be such that
∀〈i, isn′, its′〉 ∈ Seen : its′ ≤ its

highestSeen := highestSeen ∪ {〈i, isn, its〉}
return(highestSeen)

Figure 3. DRIFT pseudocode

4.2 Algorithm Description

The pseudocode of DRIFT for each node p is shown in
Fig. 3. Every source (p ∈ Σ) maintains its logical clock lc
as well as sequence number sn of the last message that it
multicasts. Every node maintains a set of received message
information as well as a set Seen to keep track of virtual
flooding information. Each destination (p ∈ ∆) also main-
tains the sets of ready for delivery — READY and delivered
— DLVD message information. In addition, each destina-
tion has an array RcvdSN to store the last sequence number
of a message received from each respective source. This ar-
ray is used to ensure that the virtually flooded timestamp of
source q is received after all causally preceeding messages
physically flooded by q. DRIFT contains two actions. The
first action — TO-multicast(m) is invoked when the appli-
cation requires to multicast a message m. The second action
— message receipt, is executed when p receives a message.
Function getHighestTimestamp is used as a shorthand for
repeated operation of selecting highest-timestamped entries
out of Seen in both actions.

If a source p has a message m to multicast, it executes
TO-multicast. By executing this action p obtains a new
timestamp (lc) and a new sequence number for the mes-
sage. This information is entered in Seen. Node p then
broadcasts the message to its neighbors. The freshest virtual
flooding information is attached to the message. Specifi-
cally, TO-multicast invokes getHighestTimestamp which
selects from Seen the highest timestamped entry for each
source.

When p receives a message, it performs the following
three operations (see Fig. 3): virtual flooding update (vf up-
date), received message processing (rcpt processing), and
message delivery (delivery). Notice that sources that are at
the same time also destinations process their own messages
similar to the messages received from other sources. In vir-
tual flooding update p merges its own virtual flooding data
in Seen with that carried by the received message qSeen.
In the second operation p checks if the received message
is new. If so, p adds the message information to RCVD.
If p is a source, it updates it local clock and virtual flood-
ing information about itself in Seen. If p is a destination,
it updates the sequence number of the last received mes-
sage from the source in RcvdSN. Then p rebroadcasts the
message. Note that the message is forwarded with the most
up-to-date virtual flooding data. In case p is a destination,
after received message processing, p evaluates if any of the
buffered messages are ready for delivery. The procedure
is as follows. Destination p forms a set of candidates for
delivery READY . A candidate 〈um, u, usn, uts〉 is an unde-
livered message with the following characteristics: for each
source i there is an entry 〈i, isn, its〉 in virtual flooding set
Seen such that this entry corresponds to a message already
received by p: RcvdSN[i] = isn and the timestamp of the

25th IEEE Symposium on Reliable Distributed Systems (SRDS'06)
0-7695-2677-2/06 $20.00 © 2006

candidate message is less than or equal to the timestamp
of the source uts ≤ its. After forming the candidate set
READY , p repeatedly examines the set and selects the mes-
sage with the smallest timestamp, or, in case the timestamps
are equal (uts = its), the source identifiers are used to break
a tie (u ≤ i). The selected message is TO-delivered.

4.3 Example operation.
We demonstrate the operation of DRIFT with an exam-

ple (see Fig. 4). The example network has four nodes:
{a, b, c, d} out of which two — a and b are sources and the
other two are destinations. Node a multicasts messages m1

and m3, while b multicasts m2. In our example we focus on
the delivery of the messages at destinations c and d and skip
unrelated events. The depicted events happen in sequence.
The sequence is from top to bottom.

a sends: 〈m1, a, 1, 1, {〈a, 1, 1〉}〉
b sends: 〈m2, b, 1, 1, {〈b, 1, 1〉}〉
a sends: 〈m3, a, 2, 2, {〈a, 2, 2〉}〉
a forwards: 〈m2, b, 1, 1, {〈a, 2, 3〉〈b, 1, 1〉}〉
b forwards: 〈m3, a, 2, 2, {〈a, 2, 2〉〈b, 1, 2〉}〉
c receives m1 : RcvdSN = [1, 0], Seen = {〈a, 1, 1〉}

Cannot deliver m1 since Seen does not have an entry for b
c receives m2 via a:

RcvdSN = [1, 1], Seen = {〈a, 1, 1〉, 〈a, 2, 3〉, 〈b, 1, 1〉}
Delivers m1 since its timestamp is mts = 1 and Seen has
an entry for each source that allows addition of m1 to READY;
specifically 〈a, asn = 1, ats = 1〉 ∈ Seen, for this entry
RcvdSN[a] = asn, mts = ats and a ≤ a, notice that
〈a, 2, 3〉 ∈ Seen cannot be used since the message with
sequence number 2 is not received yet,
〈b, bsn = 1, bts = 1〉 ∈ Seen, for this entry
RcvdSN[b] = bsn, mts = bts and a < b

c receives m3 via b:
RcvdSN = [2, 1],
Seen = {〈a, 1, 1〉, 〈a, 2, 2〉, 〈a, 2, 3〉, 〈b, 1, 1〉, 〈b, 1, 2〉}
forwards: 〈m3, a, 2, 2, {〈a, 2, 3〉〈b, 1, 2〉}〉
note updated entry for a in qSeen, delivers m2 and m3

d receives m2:
RcvdSN = [0, 1], Seen = {〈b, 1, 1〉}, cannot deliver messages

d receives m1:
RcvdSN = [1, 1], Seen = {〈a, 1, 1〉, 〈b, 1, 1〉}, delivers m1

and m2

d receives m3 via b and c:
RcvdSN = [2, 1], Seen = {〈a, 1, 1〉, 〈a, 2, 3〉〈b, 1, 1〉, 〈b, 1, 2〉},
delivers m3

Figure 4. DRIFT: example operation.

4.4 Implementation Considerations
Optimizing data structures. Some of the wireless ad hoc
platforms have limited memory resources (e.g. Crossbow’s
MICA2 motes [16]). The data structures used in DRIFT

can be optimized to reduce memory consumption at each
individual node. We now discuss some of these optimiza-
tions. Observe that there is no need to keep track of mes-
sages after they are TO-delivered. Thus, the function of sets
RCVD and DLVD can be modified. Set DLVD can be dis-
posed of altogether. Set RCVD can only keep the messages
that are not yet delivered. With this modification, the candi-
date message selection proceeds as before. However, in the
original version of DRIFT, RCVD is used to recognize du-
plicate messages in rcpt processing operation. Yet, since we
assume single source FIFO message delivery, array RcvdSN
can be used for this purpose. Specifically, if a node receives
a message qm from source q with sequence number qsn and
RcvdSN[q] = qsn then the newly received message is a du-
plicate and should be discarded.

Set Seen can also be optimized. Notice that Seen only
needs to contain the elements pertaining to undelivered
messages. Once the message is delivered, all virtual flood-
ing information about it can be removed. Moreover, accord-
ing to the way the entries in Seen are used, for each node and
each sequence number it is sufficient to store only the entry
with the highest timestamp.

The size of Seen can be further decreased at the expense
of message delivery latency. The modification is as follows.
Set Seen keeps at most two entries per each source q. One
entry has the highest timestamp for the sequence number
of the last received message RcvdSN[q]. This is the en-
try that is used in case the node gets virtual flooding data
that there is an outstanding message from q. The other en-
try in Seen has the highest timestamp seen (either through
message receipt or virtual flooding) from q. This entry is
used if there are no outstanding messages. Notice that there
is a potential delivery delay if there are multiple outstand-
ing messages from the same source. Suppose messages m1

and m2 from q are in transit and are not received by node
p. The messages’ sequence numbers are 1 and 2 respec-
tively. Node p learns through virtual flooding, that q had a
timestamp ts1 and sequence number 1. Later, p also learns
that q had timestamp ts2 and sequence number 2. Due to the
limitations that are imposed on modified Seen, 〈q, 2, ts2〉
has to replace 〈q, 1, ts1〉. However, when p receives m1, p
cannot use ts2 if messages are eligible for delivery as m2

is still in transit and p no longer has access to ts1. No-
tice that set READY is not necessary for implementation.
Each node p can just maintain RCVD sorted in timestamp
order. For delivery evaluation, p can examine if the mes-
sage with the smallest timestamp in RDVD passes delivery
conditions. If so, the message is delivered and the next one
is examined. As presented, DRIFT uses unbounded inte-
gers to sequence numbers and timestamps. However, they
can be easily bounded by reusing them after some time in a
round-robin fashion.

25th IEEE Symposium on Reliable Distributed Systems (SRDS'06)
0-7695-2677-2/06 $20.00 © 2006

Termination. Observe that for message delivery DRIFT
assumes that at least one source continues to multicast mes-
sages indefinitely. This assumption can be lifted as follows.
If a destination has undelivered messages and has not re-
ceived a message for a certain time, it floods a dummy mes-
sage. The delivery of this dummy message is not necessary.
The other nodes can use this physical flood to transmit the
virtual flooding information required for delivery. Several
dummy floods may be required for termination.

Bounding message size. As described, the amount of vir-
tual flooding data appended to each message is proportional
to the number of sources in the network. However, the mes-
sage size or bandwidth limitations may not allow to acco-
modate all this information in a single message. Observe,
however, that the correctness of the algorithm does not de-
pend on the amount of virtual flooding data put into each
individual message. Less virtual flooding data per mes-
sage results in less bandwidth overhead, while potentially
larger delivery latency. Note that eliminating the virtual in-
formation altogether reduces DRIFT to classic Lamport’s
TO-multicast [20]. We explore these trade-offs in our sim-
ulation.

FIFO and reliable transmission. DRIFT assumes FIFO
delivery of messages from single source. This assumption
is not difficult to implement as the sequence numbers for
each message are available. DRIFT may buffer messages
received out-of-order and process them in sequence number
order. Notice that while the out-of-order messages them-
selves have to be buffered, the virtual flooding informa-
tion they carry can be processed without delay. Reliable
multicasting is studied extensively in the literature (e.g.,
[17, 24]). A scheme that detects missed messages and re-
quest a retransmission from neighbors or from the source
can be easily incorporated into DRIFT.

5 Simulation
For our simulation we use JiST/SWANS v1.0.4 — a sim-

ulation environment for ad hoc networks [1, 5]. A distin-
guishing feature of JiST/SWANS is that it intercepts the
calls to the communication layer and dynamically trans-
forms them into calls to the simulator’s communication
package. Thus, Java applications written for real deploy-
ment can be ported to this simulation environment and then
placed under a variety of simulation scenarios.

5.1 Setup
Communication between nodes is by broadcast as de-

fined in the 802.11b standard [18]. The communication is
subject to interference and message loss. Messages can be

lost because of the hidden terminal effect [3] or node dis-
connects due to mobility. The message loss is modeled
using JiST/SWANS’ RadioNoiseIndep package, which em-
ploys a radio model identical to the one used in the popular
ns-2 simulator [2]. We simulate a wireless ad hoc network
of 100 nodes deployed in a square field of 400 × 400 me-
ters. We used the tranmission range of 88 meters which is
default in JiST/SWANS. The nodes are stationary except for
the cases in which we measure the impact of mobility (see
Section 5.5). Similarly to the transmission range, we also
use the default values of other parameters (such as band-
width 1Mb/s) in JiST/SWANS.

The positions of the nodes in the field are uniformly ran-
domly selected. Sources start TO-multicasting at random
times uniformly distributed between 0 seconds and the rate
of TO-multicasting. Measurement data is collected only af-
ter all nodes have started invoking TO-multicasts. Every
source TO-multicasts at least 15 messages with an inter-
val of 100 seconds between messages. The payload size is
128 bytes. Unless otherwise specified, each node is both a
source and a destination.

DRIFT uses reliable flooding. To simulate reliable flood-
ing in JiST/SWANS, we set the link packet loss to zero.
However, messages are still lost due to hidden terminal ef-
fect and node disconnects. To minimize these losses we
choose a relatively low flooding rate. Notice that even with
this flooding rate and 100 sources, on average, one message
per second is TO-multicast. All results are averaged over at
least 20 runs in different uniform node distributions. Where
significant we indicate the 95%-confidence intervals.

To evaluate the performance of DRIFT, we measure the
impact of virtual flooding by comparing the performance
of total order multicast flooding with virtual flooding (To-
tal Order with Virtual Flooding (TOVF)) and without vir-
tual flooding (Total Order with Flooding only (TOF)). In
what follows, we measure the delivery latency of TOF and
TOVF. That is, the time needed to TO-deliver a message
after it is TO-multicast by its source. In our calculations,
speedup is the latency of TOF divided by the latency of
TOVF: speedup = latencyTOF /latencyTOV F . The com-
pared measurements for TOVF and TOF are taken in the
same simulation run: for any received message we store the
time needed to TO-deliver with and without virtual flood-
ing — and the results are compared for the same source-
destination node pairs. In the following, we measure the
performance gain through the use of virtual flooding, the
impact of the source location, scale and node mobility. Un-
less explicitly stated otherwise, we use the above default
values in our measurements.

25th IEEE Symposium on Reliable Distributed Systems (SRDS'06)
0-7695-2677-2/06 $20.00 © 2006

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

 200

 0 0.2 0.4 0.6 0.8 1

M
ax

 d
el

iv
er

y
la

te
nc

y,
 s

ec
on

ds

Rate delay

With VF
No VF

 0

 10

 20

 30

 40

 50

 60

 70

 0 2 4 6 8 10

S
pe

ed
up

Rate delay, seconds

base rate 100s
base rate 10s

(a) with and without VF: latency as a function (b) speedup as a function of rate delay
of rate delay, seconds

 4

 6

 8

 10

 12

 14

 16

 18

 20

 22

 0 20 40 60 80 100

S
pe

ed
up

Base TO-multicast rate

rate delay 0.1s
rate delay 0s

0

2

4

6

8

10

12

14

16

18

20

1 source,
center

1 source,
origin

2 sources 4 sources

Position of source

N
br

 p
hy

si
ca

l f
lo

od
in

gs

be
fo

re
 d

el
iv

er
y

avg
max
min

(c) speedup as a function of flooding base rate, (d) number of floods needed for delivery.

Figure 5. Speedup: delivery latency and number of floods comparison.

5.2 Speedup: The Impact of Virtual
Flooding

The delivery latency of TO-multicast depends on rates
with which the sources TO-multicast the messages (called
base rate) as well as on the relative difference in these
rates between the sources. To evaluate the effect of the
flooding rate and the relative rate difference, we vary the
multicast rate as follows. Node i multicasts with rate
baseRate + i ∗ rateDelay. We set baseRate at 100 sec-
onds and vary the rateDelay. Fig. 5(a) shows the results of
these experiments. The y-axis shows the average maximum
delivery latency per message. We calculate this latency as
follows. For each simulation run we measure the maximum
delivery latency for all the messages for a single source.
We then compute the average over all sources and all sim-
ulation runs. The graph in Fig. 5(a) shows the advantage
of TOVF over TOF. This advantage grows as the rate delay
increases. Indeed, TOF can only TO-deliver messages if it
has received logical clock information through a physical
flooding from every source, while TOVF can already TO-
deliver messages also if it received this information through

virtual flooding. Notice that the time to deliver the message
by reliable flooding is not shown in Fig. 5(a). However,
this delivery latency is in milliseconds and thus negligible
compared to the time needed to TO-deliver a message, even
using virtual flooding.

In what follows, the figures only show speedup with
and without virtual flooding rather than the absolute per-
formance. Fig. 5(b) shows the speedup for two base rates:
10 and 100 seconds. The speedup increases with increas-
ing rate delay. Also, the speedup is higher with a higher
base rate, up to a certain threshold (at a rate delay of ap-
proximately 700 milliseconds). Notice that the graph only
shows a rate delay interval between 0 and 1 seconds for the
base rate of 10 seconds. At 1 second, the lowest rate is
an eleventh of the highest rate, similar to the case of base
rate of 100 and rate delay of 10 seconds. In Fig. 5(c), we
show the dependency of speedup on the base rate. The rate
delay is fixed at 0.1 and 0 seconds. In the latter case all
nodes multicast at the same rate. The results show that the
speedup is smaller for the curve with 0 compared to the one
with 0.1 seconds rate delay, until a base rate of 75 seconds.

25th IEEE Symposium on Reliable Distributed Systems (SRDS'06)
0-7695-2677-2/06 $20.00 © 2006

As the relative impact of the rate delay decreases with in-
creasing base rate, the two curves converge. After a base
rate of 75 seconds, the speedup for the curve with 0.1 sec-
onds rate delay is smaller. Because of the rate delay, there
may be periods of time during which TO-multicasts are is-
sued within a short time of each other, thus improving the
delivery latency for TOF. Hence, the speedup for the curve
with 0.1 seconds rate delay is smaller.

5.3 Dependence of Virtual Flooding on
Source Locations

In this subsection we investigate how the positioning of
the physical flooding originator affects the efficiency of vir-
tual flooding. We set a fixed number of sources that origi-
nate the physical floods (we call them originating sources).
These nodes invoke TO-multicast. We vary their number
and positions in the network. The other sources (i.e., all
the other nodes) do not originate the floods, they only use
virtual flooding to propagate their timestamp information.
All nodes are also destinations. Notice that without vir-
tual flooding, no destination is able to TO-deliver messages.
There are the total of 1000 messages to send at intervals of
1 second. In this experiment the positions of the nodes are
deterministic. 100 nodes are positioned in a 10 × 10 grid
such that each node can only communicate with its adjacent
neighbors in the grid (i.e., either having the same x or y
coordinate). Direct communication with other nodes is not
possible. Notice that the diameter of the network is 18 hops.

We run the simulation for: (i) one originating source is
located in the center in the field (position [315, 315], where
the first and second number indicate the x-coordinate y-
coordinates respectively); (ii) one originating source is lo-
cated in the origin (position [1, 1]); (iii) two originating
sources are located at coordinates [1, 1] and [629, 629]; and
(iv) four originating sources in every corner of the network.
With multiple originating sources, every originating source
TO-multicasts one after the other with a fraction of the base
rate such that the overall base rate is still 1 second.

In Fig. 5(d), we show the number of physical floods
by originating sources that is needed before all virtually
flooded messages are delivered. We show the average, max-
imum and minimum number of physical floods. The max-
imum and minimum number are averaged over all simu-
lation runs. The results indicate that, comparing only the
single source simulations, the scenario with the originat-
ing source located in the center of the network leads to
the smaller maximum number of required floods while the
source at the origin leads to the smaller average number of
required floods. In the first scenario, the maximum is lower
because the number of hops between the source and the far-
thest node is half that for the source at the origin. In the
second scenario, the reason for the higher average is more
subtle. Indeed, if the source is positioned at the origin, then

the delivery latency for a large number of destinations is low
because the virtual floodings of other nodes travel with the
actual physical flooding (see also the best case scenario in
Fig. 2). This is also the reason why the average minimum
latency is smaller for this case. Adding more sources de-
creases the average and maximum delivery latency, but not
the minimum delivery latency compared to the source at the
origin case.

In Fig. 6, we show the spacial distribution of required
floods in our experiment. The x and y-axis show the co-
ordinates of a node, while the z-axis shows the average (in
the left column figures) and maximum (in the right column)
number of floods needed to deliver a particular message. If
the source is positioned at the center, the nodes along the
grid line with respect to the physical source have a slightly
lower average. Since they are closer (in hop count) to the
source than their equivalents on diagonals, they can also de-
liver messages slightly faster. However, this does not sig-
nificantly affect the maximum latency (see Fig. 6(b)). If the
source is positioned in the origin, the number of required
floods is highest close to the source (see Fig. 6(c) and (d)).
Indeed, virtual flooding data is traveling slowest in the di-
rection opposite to the physical floods. In this setup, the vir-
tually flooded data has to travel across the network in this
least advantageous direction. We also run the simulation
for two sources positioned at the origin and at coordinates
[629,629] of the field (Figs. 6(e) and (f)), and for four nodes
positioned in the corners (see Fig. 6(g) and (h)). The results
are rather intuitive. These results show that the efficiency
of virtual flooding and thus DRIFT depends on the position
of the sources with low TO-multicast rates relative to the
position of sources with high flooding rates.

 1

 2

 3

 4

 5

 6

 7

 0 10 20 30 40 50
 20

 30

 40

 50

 60

 70

 80

 90

 100

 110

 120

S
pe

ed
up

M
es

sa
ge

 o
ve

rh
ea

d,
 M

by
te

s

Number of transmitted virtual flooding tuples

Speedup
Message overhead ->

Figure 7. Varying number of virtual flooding
entries per physical message.

5.4 Scalability: The Impact of the Num-
ber of Sources

In this experiment we investigate how well DRIFT scales
with respect to the number of sources. With the increase of

25th IEEE Symposium on Reliable Distributed Systems (SRDS'06)
0-7695-2677-2/06 $20.00 © 2006

 0
 100

 200
 300

 400
 500

 600

x

 100 200 300 400 500 600

y

 9

 10

Avg nbr floodings

 0
 100

 200
 300

 400
 500

 600

x

 100 200 300 400 500 600

y

 10

 11

 12

Max nbr floodings

(a) single source positioned at [350,350], (b) single source positioned at [350,350],

 0
 100

 200
 300

 400
 500

 600

x

 100 200 300 400 500 600

y

 4
 6
 8

 10
 12
 14
 16

Avg nbr floodings

 0
 100

 200
 300

 400
 500

 600

x

 100 200 300 400 500 600

y

 8
 10
 12
 14
 16
 18

Max nbr floodings

(c) single source positioned at [1,1], (d) single source positioned at [1,1],

 0
 100

 200
 300

 400
 500

 600

x

 100 200 300 400 500 600

y

 5

 6

 7

Avg nbr floodings

 0
 100

 200
 300

 400
 500

 600

x

 100 200 300 400 500 600

y

 8

 9

 10

Max nbr floodings

(e) two sources positioned at [1,1] and [629,629], (f) two sources positioned at [1,1] and [629,629],

 0
 100

 200
 300

 400
 500

 600

x

 100 200 300 400 500 600

y

 5

 6

Avg nbr floodings

 0
 100

 200
 300

 400
 500

 600

x

 100 200 300 400 500 600

y

 6

 7

 8

Max nbr floodings

(g) four sources in the four corners, (h) four sources in the four corners.

Figure 6. Source location experiment: 100 nodes positioned on a grid with a single, two, or four
originating sources.

25th IEEE Symposium on Reliable Distributed Systems (SRDS'06)
0-7695-2677-2/06 $20.00 © 2006

 0

 2

 4

 6

 8

 10

 0 5 10 15 20

S
pe

ed
up

Speed, m/s

Figure 8. Speedup with mobile nodes and
varying speed.

the number of sources, the amount of virtual flooding in-
formation each message carries may also increase. This ad-
versely affects the performance of DRIFT. To mitigate this
effect, the number of virtual flooding entries per message
can be limited. Such limit, however, may delay delivery.
We investigate the performance of DRIFT under different
limits on the number of flooding entries. The results are
shown in Fig. 7. In this graph, the x-axis denotes the limit
of virtual flooding entries per message. The maximum limit
is the whole network of 50 nodes. All nodes act as sources
and TO-multicast every 10 seconds. The y-axis shows the
speedup while the second y-axis (indicated by an arrow in
the legend of Fig. 7) the message overhead. In the calcu-
lation of the overhead, the message payload of 128 bytes
is included. The message overhead increases linearly with
an increasing amount of virtual flooding information. Inter-
estingly, the speedup increases only sub-linearly with the
increased virtual flooding information. Thus, the imple-
menters can select the most appropriate settings for the de-
sired speedup and message overhead.

5.5 The Impact of Mobility
To measure the impact of mobility on delivery latency

we use the random way-point model [19]. In our model the
speed is fixed and the pause time is zero. This removes the
instability caused by varying speeds and pause times.2 In
this model, each node selects an arbitrary location in the
field and moves there in a direct line with constant speed.
When it reaches the selected location, it then selects a new
location. The flooding base rate is 10 seconds. All other pa-
rameters are the same as in the experiment in Fig. 5(a). The
results are shown in Fig. 8. The results indicate that mobil-
ity within the selected speed range does not have significant
impact on speedup.

2It is shown [27] that the random way-point model possesses certain
shortcomings. However, for our purposes these shortcomings are unim-
portant.

The last experiment studies the effect of the number
of sources in the network on speedup. All nodes except
for sources are stationary. We vary the number of mo-
bile sources while the overall number of nodes (including
sources) stays constant. The results are shown in Fig. 9. In-
terestingly, the speedup increases with increasing number
of sources. Thus, virtual flooding, appears to perform better
if the number of sources increases.

 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

 0 10 20 30 40 50 60 70

S
pe

ed
up

Number of mobile sources

Figure 9. Speedup with varying number of
mobile sources.

6 Wireless Sensor Network Implementation
To verify the applicability of DRIFT to practical ad hoc

networks, we implemented it on Crossbow’s MICA2 motes
[15, 16]. The motes are a sensor network platform popular
in both academia and industry.

Experimental setup. We used 16 motes arranged in a
4 × 4 grid. The motes were instrumented with a wired
backchannel. The motes run TinyOS v.1.1.15 [15] operating
system. As DRIFT assumes single source reliable FIFO de-
livery, we did not focus on the implementation of this mech-
anism. To emulate reliable delivery, instead of the radio, the
messages are transmitted over the backchannel. Each mote
reliably communicates with the adjacent neighbors in the
grid. That is, each mote can have up to 4 neighbors and the
network’s diameter is 6 hops.

To conserve memory and minimize computation over-
head on the motes, we implemented the data structure op-
timizations discussed in Section 4. As the number of mes-
sages multicast by each source during the run was known
a priori, we further optimized the code. Specifically, we
used a two-dimensional array that stored the highest seen
timestamp for each source and message sequence number.
We implemented TOF and TOVF separately.

The impact of rate delay on latency and speedup.
There were 4 sources located in the interior of the grid. Each

25th IEEE Symposium on Reliable Distributed Systems (SRDS'06)
0-7695-2677-2/06 $20.00 © 2006

source multicast 10 messages. Message size was 36 bytes.
We used a base rate of 30 seconds. In our experiment we
varied the rate delay from 0 to 10 seconds, one measurement
was taken at each data point. The results of the experiments
are shown in Fig. 10. The observed results coincide with
those obtained in the simulation (see Fig. 5). Notice that in
our experiments TOVF was up to 20 times faster than TOF.
Our experimental results lend greater credibility to the sim-
ulation measurements and show the applicability of DRIFT
in practice.

7 Handling Dynamic Groups and Failures
So far we assumed that the set of sources is static. How-

ever, in some applications, the nodes may join and leave the
network. In this case the nodes have to adjust their logi-
cal clock entries and other accounting information. Notice
that arrival and departure of non-sources does not affect the
algorithm. They may simply leave or start TO-delivering
messages respectively. In case of sources, the situation is
more complicated. If a source intends to leave the network
it TO-multicasts a message announcing its departure. It
can then immediately leave the network. Upon delivery of
this message, the destinations remove this source and adjust
their data structures accordingly.

The procedure of joining the network is as follows. A
new source d contacts one of the existing sources (e.g., by
using simple, geographically bounded flooding). The exist-
ing source then TO-multicasts a join message on d’s behalf.
Every existing source adds d and updates its data structures
accordingly. A special case arises if the network has no ex-
isting sources. This special bootstrap case can be handled
as described by Cavin et al [9].

Let us now consider crash-faults and un-announced node
departures. The latter occurs if the node fails to notify
the others when leaving the network. It is handled simi-
lar to crashes. Notice again that the crash for a non-source
does not affect DRIFT. If a source crashes, the other nodes
have to be able to detect this crash. Crash detection can
be implemented using simple flooding or other techniques.
However, the discussion of fault-detection mechanisms is
outside the scope of this paper; the interested reader is re-
ferred, for instance, to work of Friedman and Tcharny [14].
Upon detection of a source crash, the detecting source TO-
multicasts a message informing the network of the depar-
ture of the faulty source.

8 Conclusion
In conclusion, we would like to observe a salient prop-

erty of DRIFT. While convenient for total order multicast,
virtual flooding is applicable to efficient information propa-
gation of any type. For example, time synchronization is
frequently required in sensor networks. This application

needs to periodically exchange messages between the sen-
sor nodes. The period is rather well defined. Moreover, the
time synchronization information is rather compact. Thus,
virtual flooding can be used to piggyback other data (e.g.
sensor data) on time synchronization messages. Similarly,
the virtual flooding required for delivery in DRIFT does not
have to be carried by TO-multicast messages only. Any
other messages present in the network (e.g. time synchro-
nization messages) can also be suitable. Hence, DRIFT can
leverage existing traffic in the network to minimize delivery
latency for TO-multicast.

DRIFT and virtual flooding are based on physical flood-
ing as basic communication primitive. However, in other
settings message dissemination can be implemented us-
ing techniques other than flooding. For example, a mini-
mal connected dominating set [7] or tree-structured routing
scheme can be used. DRIFT and virtual flooding can be
adapted to work over these topologies as well.

We performed further experimental studies [11]. They
confirm the effectiveness of DRIFT.

In this paper we studied a TO-multicasting algorithm that
is specifically designed to perform well in ad hoc networks.
The resultant algorithm acquired new noteworthy qualities.
We believe that this is a propitious path of discovery, which
may help to re-evaluate other classic solutions for efficient
applications in such networks.

Acknowledgments
The authors thank Ken Birman for letting us run our sim-

ulations on a computing cluster at Cornell University and
M. Kazim Khan of Kent State University for a consultation
on statistical aspects of our experiments.

References
[1] JiST/SWANS. http://jist.ece.cs.cornell.edu.
[2] The network simulator - ns-2. http://www.isi.edu/nsnam/ns.
[3] D. Allen. Hidden terminal problems in wireless LAN’s. In

IEEE 802.11 Working Group Papers, 1993.
[4] G. Anastasi, A. Bartoli, and F. Spadoni. Group multicast

in distributed mobile systems with unreliable wireless net-
work. In Proceedings of the 18th IEEE Symposium on Re-
liable Distributed Systems (SRDS ’99), pages 14–23, Wash-
ington - Brussels - Tokyo, Oct. 1999. IEEE.

[5] R. Barr. An efficient, unifying approach to simulation using
virtual machines. PhD thesis, Cornell University, Ithaca,
NY, 14853, May 2004.

[6] A. Bartoli. Group-based multicast and dynamic member-
ship in wireless networks with incomplete spatial coverage.
Mobile Networks and Applications, 3(2):175–188, 1998.

[7] V. Bharghavan and B. Das. Routing in ad hoc networks us-
ing minimum connected dominating sets. In Proc. of the Int.
Conference on Communications, Montreal, Canada, June
1997.

25th IEEE Symposium on Reliable Distributed Systems (SRDS'06)
0-7695-2677-2/06 $20.00 © 2006

 0

 200

 400

 600

 800

 1000

 1200

 1400

 0 2 4 6 8 10

M
ax

 d
el

iv
er

y
la

te
nc

y,
 s

ec
on

ds

Rate delay, seconds

With VF
No VF

 0

 5

 10

 15

 20

 25

 0 2 4 6 8 10

S
pe

ed
 u

p

Rate delay, seconds

Base rate 10s

(a) latency as function of rate delay (b) speedup as a function of rate delay

Figure 10. Speedup in implementation: delivery latency comparison.

[8] K. Birman, A. Schiper, and P. Stephenson. Lightweight
causal and atomic group multicast. ACM Transactions on
Computer Systems, 9(3):272–314, Aug. 1991.

[9] D. Cavin, Y. Sasson, and A. Schiper. Consensus with un-
known participants or fundamental self-organization. In
Proc. of the 3rd Int. Conference on AD-HOC Networks &
Wireless (ADHOC-NOW), pages 135–148, Vancouver, BC,
Canada, 2004.

[10] T. Chandra and S. Toueg. Unreliable failure detectors for
reliable distributed systems. J ACM, 43(2):225–267, Mar.
1996.

[11] T. Clouser, S. Pleisch, M. Nesterenko, and A. Schiper. Ex-
perimental evaluation of DRIFT: Total message ordering
in ad hoc networks. Technical Report TR-KSU-CS-2006-
05, Dept of Computer Science, Kent State University, Kent,
Ohio, July 2006.

[12] F. Cristian. Asynchronous atomic broadcast. IBM Technical
Disclosure Bulletin, 33(9):115–116, Feb. 1991.

[13] X. Défago, P. Urbán, and A. Schiper. Total order broad-
cast and multicast algorithms: Taxonomy and survey. ACM
Computing Surveys,, 36(4):372–421, Dec. 2004.

[14] R. Friedman and G. Tcharny. Evaluating failure detection in
mobile ad-hoc networks. Int. Journal of Wireless and Mobile
Computing, 1(8), 2005.

[15] J. Hill and D. Culler. Mica: A wireless platform for deeply
embedded networks. IEEE Micro, 22(6):12–24, Nov./Dec.
2002.

[16] J. Hill, R. Szewczyk, A. Woo, D. Culler, S. Hollar, and
K. Pister. System architecture directions for networked sen-
sors. ACM SIGPLAN Notices, 35(11):93–104, Nov. 2000.

[17] J. W. Hui and D. Culler. The dynamic behavior of a data
dissemination protocol for network programming at scale. In
SenSys ’04: Proceedings of the 2nd international conference
on Embedded networked sensor systems, pages 81–94, New
York, NY, USA, 2004. ACM Press.

[18] IEEE. 802.11 specification (part 11): Wireless LAN
medium access control (MAC) and physical layer (PHY)
specifications, June 1997.

[19] D. Johnson and D. Maltz. Dynamic source routing in ad hoc
wireless networks. In Imielinski and Korth, editors, Mo-
bile Computing, volume 353. Kluwer Academic Publishers,
1996.

[20] L. Lamport. Time, clocks, and the ordering of events
in a distributed system. Communications of the ACM,
21(7):558–565, July 1978.

[21] J. Luo, P. T. Eugster, and J.-P. Hubaux. PILOT: ProbabilistIc
Lightweight grOup communication sysTem for Mobile Ad
Hoc Networks. IEEE Transactions on Mobile Computing,
3(2):164–179, 2004.

[22] N. Malpani, Y. Chen, N. H. Vaidya, and J. L. Welch. Dis-
tributed token circulation in mobile ad hoc networks. IEEE
Transactions on Mobile Computing, 4(2):154–165, 2005.

[23] S. Navaratnam, S. Chanson, and G. Neufeld. Reliable
group communication in distributed systems. In Proc. of
the 8th Int. Conference on Distributed Computing Systems
(ICDCS’88), pages 439–446, San Jose, CA, USA, 1988.

[24] K. Obraczka, K. Viswanath, and G. Tsudik. Flooding for
reliable multicast in multi-hop ad hoc networks. Wireless
Networks: The Journal of Mobile Communication, Compu-
tation and Information, 7(6):627–634, 2001.

[25] R. Prakash, M. Raynal, and M. Singhal. An efficient causal
ordering algorithm for mobile computing environments. In
ICDCS ’96: Proceedings of the 16th International Confer-
ence on Distributed Computing Systems (ICDCS ’96), pages
744–751, Washington, DC, USA, 1996. IEEE Computer So-
ciety.

[26] A. Schiper, J. Eggli, and A. Sandoz. A new algorithm to im-
plement causal ordering. In J.-C. Bermond and M. Raynal,
editors, 3rd International Workshop on Distributed Algo-
rithms, volume 392 of Lecture Notes in Computer Science,
pages 219–232, Nice, France, 26–28 Sept. 1989. Springer.

[27] J. Yoon, M. Liu, and B. Noble. Random waypoint consid-
ered harmful. In INFOCOM 2003, Apr. 2003.

25th IEEE Symposium on Reliable Distributed Systems (SRDS'06)
0-7695-2677-2/06 $20.00 © 2006

