
Group Communication: from practice to theory ?

André Schiper

Ecole Polytechnique Fédérale de Lausanne (EPFL)
1015 Lausanne, Switzerland

Abstract. Improving the dependability of computer systems is a criti-
cal and essential task. In this context, the paper surveys techniques that
allow to achieve fault tolerance in distributed systems by replication. The
main replication techniques are first explained. Then group communica-
tion is introduced as the communication infrastructure that allows the
implementation of the different replication techniques. Finally the diffi-
culty of implementing group communication is discussed, and the most
important algorithms are presented.

1 Introduction

Computer systems become every day more and more complex. As a consequence
the probability of problems in these systems increases over the years. To avoid
this from becoming a major issue, researchers have since many years worked
on improving the dependability of these systems. The methods involved are
traditionally classified as fault prevention, fault tolerance, fault removal and fault
forecasting [22]. Fault prevention refers to methods for preventing the occurrence
or the introduction of faults in the system. Fault tolerance refers to methods
allowing the system to provide a service complying with the specification in
spite of faults. Fault removal refers to methods for reducing the number and the
severity of faults. Fault forecasting refers to methods for estimating the presence
of faults (with the goal to locate and remove them). We concentrate here on
fault tolerance.

Several techniques to achieve fault tolerance have been developed over the
years. The different techniques are related to the specificity of applications. For
example, a centralized application differs from a distributed application involv-
ing several computing systems. We consider here distributed applications. Fault
tolerance for distributed applications can be achieved with different techniques:
transactions, checkpointing and replication.

Transactions have been introduced many years ago in the context of database
systems [3]. A transaction allows us to group a sequence of operations while
ensuring some properties on these operations, called ACID properties [3]: Atom-
icity, Consistency, Isolation and Durability. Atomicity requires that either all

? The same paper will appear under the title Dependable Systems in Dependable Infor-
mation and Communication Systems, to be published in the Springer LNCS series,
2006. Research supported by the Hasler Stiftung under grant number DICS-1825.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Infoscience - École polytechnique fédérale de Lausanne

https://core.ac.uk/display/147941445?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

2

operations of the transaction are preformed, or none of them. Consistency is a
requirement on the set of operations, namely that the sequence of operations
brings the database from a consistent state to another consistent state. Trans-
actions can be executed concurrently. The isolation property requires that the
effect of transactions executed concurrently is the same as if the transactions
where executed in some sequential order (in isolation from each other). Durabil-
ity requires that the effect of the operations of the transaction are permanent,
i.e., survive crashes. Durability is achieved by storing data on stable storage,
e.g., on disk. Atomicity and durability are the two properties specifically related
to fault tolerance. A single protocol is used to ensure these two properties, the
so called atomic commitment protocol executed at the end of the transaction.
If all the data accessed by a transaction is located on the same machine, the
transaction is a centralized transaction. If the data is located on different ma-
chines, the transaction is a distributed transaction. Distributed transactions are
more difficult to implement then centralized transactions. The main technical
difficulty lies in the atomic commitment protocol. Except for this problem, the
implementation of distributed transactions derives more or less easily from the
implementation of centralized transactions. We discuss atomic commitment in
Section 4.5.

Checkpointing is another technique for achieving fault tolerance. It consists
of periodically saving the state of the computation on stable storage; in case of
a crash, the computation is restarted from the most recently saved state. The
technique has been developed for long running computations, e.g., simulations
that last for days or weeks, and run on multiple machines. These computations
are modelled as a set of processes communicating by exchanging messages. The
main problem is to ensure that, after crash and recovery, the computation is
restarted in a consistent state. We do not discuss checkpointing techniques here.
A good survey can be found in [12].

Replication is the technique that allows the progress of the computation
during failures (which is called failure masking). In a system composed of several
components, without replication, if one single component fails the system is no
more operational. Replicating a component C, and ensuring that the replicas of
C fail independently, allows the system to be tolerant to the failure of one or
several replicas of C. Replicating a component is very easy if the component is
stateless or if its state does not change during the computation. If the state of the
component changes during the computation, then maintaining the consistency
among the replicas is a difficult problem. Surprisingly, it is one of the most
difficult problems in distributed computing. We concentrate here on the problems
related to replication.

While replication allows us to mask failures, this is not the case of transac-
tions or checkpointing. However, the different techniques mentioned above can be
combined, e.g., transactions can be run on replicated data. Implementing such a
technique requires to combine transaction techniques and replication techniques.
This will not be discussed here.

3

The rest of the paper is structured as follows. Section 2 introduces issues
related to replication, and presents the two main replication techniques. Section 3
defines group communication as the middleware layer providing the tools for
implementing the different replication techniques. The implementation of these
tools is discussed in Section 4. Finally, Section 5 concludes this survey.

2 Replication

In this section we first introduce a model for discussing replication. Then we
define what it means for replicas to be consistent. Finally we introduce the two
main replication techniques.

2.1 Model for replication

Consider a system composed of a set of components. A component can be a
process, an object, or any other system structuring unit. Whatever the component
is, we can model the interaction between components in terms of inputs and
outputs. A component CO receives inputs and generates outputs. The inputs
are received from another component COin, and the outputs are sent to some
component COout. Whether COin is equal or not to COout does not make any
difference for CO. In the case COin = COout, the component CO is called a
server, and the component COin = COout is called a client. In this case we will
denote the server component by S and the client component by C. The input
sent by the client C to the server S is called a request, and the output sent by the
server S to the client C is called a response. From the point of view of the client,
the pair request/response is sometimes called an operation: for a client C, an
operation consists of a request sent to a server and the corresponding response.
We assume here that the client is blocked while waiting for the response.

2.2 Consistency criteria

A server S can have many clients C, C ′, C ′′, etc. For a non-replicated server S,
the simplest implementation is to handle client requests sequentially, one at
a time. A more efficient implementation could consist for the server to spawn
a new thread for each new incoming request. However, in this case the result
that the client obtains must be the same as if the operations were executed
sequentially, one after the other. The same holds if the server S is replicated,
with replicas S1, . . ., Sn: the result that the clients obtain must be the same as
if the operations were executed sequentially by one single server. This can be
defined more precisely, by the consistency criterion called linearizability [16] (also
called atomic consistency [24]). A weaker consistency criterion is called sequential
consistency [19]. We discuss only linearizability, which is the consistency criterion
that is usually implemented.

4

Linearizability: An execution σ is linearizable if it is equivalent to a sequential
execution such that (a) the request and the response of each operation occur
both at some time t, and (b) t is in the interval [treq, tres], where treq is the time
when the request is issued in σ, tres is the time when the response is received
in σ. We explain this definition on two examples. A formal definition can be
found in [16].

Consider a server S that implements a register with the two operations read
and write:

– S.write(v) denotes the request to write value v in the register managed by
server S. The operation returns an empty response, denoted by ok.

– S.read() denotes the request to read the register managed by server S. The
operation returns the value read.

�

��

������	
��

������	
�

���	��
��

���	��
��

�������	����	��	������

	�	������

�

�� ��

�� ��

�� �

�!

�" �

�"

�� �# �� ��

��	�������

Fig. 1. A linearizable execution

Figure 1 shows an execution σ that is linearizable:

– Client C issues the request write(0) at time t1, and receives the empty
response ok at time t3.

– Client C ′ issues the request write(1) at time t2, and receives the empty
response ok at time t5.

– Client C issues the request read() at time t4, and receives the response 0 at
time t7.

– Client C ′ issues the request read() at time t6, and receives the response 1
at time t8.

The bottom time-line in Figure 1 shows a sequential execution equivalent
to σ that satisfies the two requirements (a) and (b) above (ta is in the interval
[t1, t3], tb is in the interval [t4, t7], etc.).

Figure 2 shows an execution that is not linearizable. In an equivalent sequen-
tial execution write(1) issued by C ′ must precede read() issued by C. So there
is no way to construct a sequential execution in which read() returns 0 to C.

2.3 Linearizability vs. isolation

Linearizability differs from the isolation property of transactions. There are two
main differences. First, linearizability is defined on the whole sequence of oper-
ations issued by a client process in the system, while isolation is defined on a

5

C

C’

S.write(0)

S.write(1)

S.read()

S.read()

ok 0

ok 1

Fig. 2. A non linearizable execution

subset of the operations of a client process. Consider for example that process
p issues operations op1 and op2 within transaction T1, and later operations op3

and op4 within transaction T2. Isolation does not require that the operations of
T1 are ordered before the operations of T2 (they can be ordered after those of
T2). However, if opi precedes opj on process p, then linearizability requires opi

to be ordered before opj .
The second difference is that linearizability does not ensure isolated execution

of a sequence of operations. If process p issues operation op1
p = S.read() that

returns v and later op2
p = S.write(v+1), and process q issues operation op1

q =
S.read() that returns v′ and later op2

q = S.write(v′+1), linearizability does not
prevent the operation op1

q of q to be executed between the two operations op1
p and

op2
p of p. There are basically two ways to prevent this from occurring. The first

solution is for p and q to explicitly use locks or semaphores. The second solution
is to add a new operation to the server S, e.g., increment, and to invoke this
single operation instead of read followed by write. The second solution is better
than the first one (locks and semaphores lead to problems in the presence of
failures).

2.4 Replication techniques

In the previous section, linearizability defined the desired semantics for oper-
ations issued by clients on servers. In the definition of linearizability, servers
are black boxes. This means that the definition applies to non-replicated single-
threaded servers, to non-replicated multi-threaded servers, to replicated single-
threaded servers and to replicated multi-threaded servers. In this section we
address the question of implementing a replicated server while ensuring lin-
earizability. We discuss only the single-threaded case. The two main replication
techniques are called active replication and passive replication. Other replication
techniques can be seen as variants or combinations of these two basic techniques.

Active replication: Active replication is also called state-machine replica-
tion [18, 28]. The principle is illustrated on Figure 3, which shows a replicated
server S with three replicas S1, S2 and S3. The client sends its request to all the
replicas, each replica processes the request and sends back the response to the
client. The client waits for the first response and ignores the others. This client’s

6

behavior is correct if we assume that the servers do not behave maliciously, and
the servers are deterministic:1 in this case all the responses are identical.

In Figure 3 there is only one client. The problem becomes more difficult with
multiple clients that concurrently send their requests. In this case it is sufficient
that all replicas Si receive the clients’ requests in the same order, as shown in
Figure 4. This allow the replicas to process the clients’ requests in the same
order. In Section 3 we introduce a group communication primitive that ensures
such an ordering of client requests.

S1

S2

S3

Client

Request Response

Request processing

Fig. 3. Active replication

��

��

��

����	
��

����	
���

�������	��

������
�����

�������	��

������
������

Fig. 4. Active replication: requests re-
ceived in the same order

Passive replication: The principle of passive replication is illustrated on Fig-
ure 5, which shows the same replicated server S with its three replicas S1, S2

and S3. One of the replicas, here S1, is the primary replica; the other replicas,
S2 and S3 are called backups. The client sends its request only to the primary,
and waits for the response. Only the primary processes the request. Once this
is done, the primary sends an update message to the backups, to bring them to
a state that reflects the processing of the client request. In Figure 5 the update
message is also sent to the primary. The reason is that, if we include failures, it is
simpler to assume that the modification of the state of the primary occurs only
upon handling of the update message, and not upon processing of the request.

If several clients sent their requests at the same time, the primary processes
them sequentially, one after the other. Since the primary sends an update mes-
sage to the backups, the processing can be non-deterministic, contrary to active
replication. Note that this superficial presentation hides most of the problems
related to the implementation of passive replication. We mention them in the
next paragraph. With active replication, the implementation problems are hid-
den in the implementation of the group communication primitive that orders the
clients’ requests.

1 A server is deterministic if its new state and the response depend only on the request
and on the state before processing the request.

7

S2

S3

Client

Request Response

Request processing

Update

S1 = primary

Fig. 5. Passive replication

Problems implementing passive replication: When the primary crashes,
a new primary must be selected. However, requiring the failure detection of the
primary to be reliable (i.e., never making mistakes) is a very constraining as-
sumption. For this reason, solutions to passive replication that do no require a
reliable failure detection mechanism for the primary have been developed. The
three main problems to address are the following: (a) prevention of multiple pri-
maries being able to process requests, (b) prevention of multiple executions of a
request, and (c) reception of the update message by all replicas. Problem (a) is
related to the unreliable failure detection mechanism. Problem (b) arises when
the current primary is falsely suspected to have crashed. Consider a client C
sending its request to the primary S1. Assume that S1 is incorrectly suspected
to have crashed, and S2 becomes the new primary. If this happens, and C did not
receive any response, it will resend its request to S2. This may lead to execute
the client request twice. Multiple execution of a request can be prevented by
attaching a unique identifier to each request (this request identifier being pig-
gybacked on the update message). Problem (c) arises when the primary crashes
while multicasting the update message. In this case, we must prevent the unde-
sirable situation where the update message is received by some replicas, but not
by all of them. In Section 3 we present the group communication primitive that
allows us to solve the problems (a) and (c).

3 Group communication

In the previous section we have introduced the two basic replication techniques,
namely active replication and passive replication. We have also pointed out the
need for communication primitives with well defined ordering properties to im-
plement these techniques. Group communication is the infrastructure that pro-
vides these primitives. A group is simply a set of processes with an identifier.
Messages can be multicast to the members of some group g simply by referring
to the identifier of group g: the sender of the message does not need to know
what processes are members of g. For example, if we consider a replicated server
S with three replicas S1, S2 and S3, we can refer to these replicas as the group
gS = {S1, S2, S3}. As illustrated by Figure 6, group communication is a mid-
dleware layer between the transport layer and the layer that implements repli-

8

cation. In this section we define the two main group communication primitives
for replication, namely atomic broadcast and generic broadcast. Before doing so,
we introduce some concepts needed to understand the various aspects of group
communication.

Replication technique

Group communication

Transport layer

Fig. 6. Group communication

3.1 Various group models

Static group vs. dynamic group: A static group is a group whose member-
ship is constant over time: a static group is initialized with a given membership,
and this membership never changes. This is the simplest type of group. However,
static groups are often too restrictive. For example consider the replicated server
S implemented by the group gS = {S1, S2, S3}. If one of the replicas Si crashes,
it might be desirable to replace Si with a new replica, in order to maintain the
same degree of replication. A group whose membership changes over time is
called a dynamic group. Dynamic groups require to manage the addition and
the removal of members to/from the group. This problem is called the group
membership problem: it is discussed in Section 3.4.

Benign vs. malicious faults: The group (or system) model encompasses also
the type of faults that are considered. The distinction is made between benign
faults and malicious faults (also called Byzantine faults). With benign faults, a
process or a channel does its job correctly, or does not do its job. A process crash,
or a channel that looses a message, are benign faults. With malicious faults, a
process or a channel can behave arbitrarily.

Crash-stop vs. crash-recovery: In the context of benign faults, the distinc-
tion is made between the crash-stop and the crash-recovery process model. In
the crash-stop model processes do not have access to stable storage. In this case,
a process that crashes looses its state: upon recovery, the process is indistin-
guishable from a newly started process. In the crash-recovery model processes
have access to stable storage, allowing them to periodically save their state. In
this case, a process that crashes can recover its most recently saved state.

9

Combining these models: Combining these three dimensions lead to differ-
ent models for group communication. The simplest model is the benign static
crash-stop model. Other models have been considered in the literature, but they
lead to more complexity in the specification of group communication and in the
algorithms. There are some subtle differences between the different models, as
we explain now.

Figure 7 shows the difference between active replication with dynamic crash-
stop groups (left) and active replication with static crash-recovery groups (right).
In the crash-stop model, to keep the same replication degree, a crashed process
(here replica S3) must be replaced with a new process (here S4). The initial
membership of the group gS is denoted by v0(gS) = {S1, S2, S3} (v stands for
view, see Section 3.4). When S3 crashes, the membership becomes v1(gS) =
{S1, S2}. Once S4 is added, we have the membership v2(gS) = {S1, S2, S4}.
Note that the state of p4 must be initialized. This is done by an operation
called state transfer : when S4 joins the group, the state of one of its members
(here S2) is used to initialize the state of S4. In the static crash-recovery model
(Figure 7, right), the same degree of replication is kept by assuming that crashed
replicas recover (here S3). However in this context, since S3 remains all the time
a member of gS , a message broadcast to the group while S3 is down must be
delivered to S3 (here m2). As a result, no state transfer is needed. The static
crash-recovery model is preferable to the dynamic crash-stop model whenever
the state of the replicas is large.

��

��

��

��

�
���	

�����

��

��

��
�

���	

�����

�

�����

	��� ����	��

�� �� ���� ����

Fig. 7. Active replication with a dynamic crash-stop group (left), or a static
crash-recovery group (right)

In the following we consider mainly the static crash-stop model, which is
the most widely model considered in the literature, and the simplest. Dynamic
groups are briefly mentioned in Section 3.4.

3.2 Atomic broadcast for active replication

One of the most important group communication primitives is atomic broad-
cast [8]. Atomic broadcast is also sometimes called total order broadcast, or sim-

10

ply abcast. The primitive ensures that messages are delivered ordered. To give a
more formal specification of the properties of abcast, we need to introduce the
following notation:

– The atomic broadcast of message m to the members of some group g is
denoted by abcast(g, m).2

– The delivery of message m is denoted by adeliver(m).

It is important to make the distinction between abcast/adeliver, and the
send/receive primitives at the transport layer (see Figure 8). The semantics of
send/receive is defined by the transport layer. The semantics of abcast/adeliver
is defined by atomic broadcast. An atomic broadcast protocol uses the semantics
of send/receive to provide the semantics of abcast/adeliver.

Replication technique

Group communication

Transport layer

abcast(g, m) adeliver(m)

send(m) to p receive(m)

Fig. 8. Send/receive vs. abcast/adeliver

The definition of atomic broadcast in the static crash-stop model relies on the
definition of a correct process: a process is correct if it does not crash. Otherwise
it is faulty. Note that even though these definitions are simple, they are easily
wrongly understood. Correct/faulty are predicates that characterize the whole
lifetime of a process. This means that if some process p crashes at time t = 10,
then p is faulty (even at time t = 9). With this definition, atomic broadcast in
the static/crash-stop model is specified by the following four properties [15, 2]:3

– Validity: If a correct process executes abcast(g,m), then some correct process
in g eventually adelivers m or no process in g is correct.

– Uniform agreement: If a process in g adelivers a message m, then all correct
processes in g eventually adeliver m.

– Uniform integrity: For any message m, every process p adelivers m at most
once, and only if p is in g and m was previously abcast to g.

– Uniform total order: If process p in g adelivers message m before message
m′, then no process in g adelivers m′ before having previously adelivered m.

2 The primitive should be called atomic multicast. For simplicity, we keep the term
broadcast here.

3 More precisely, the specification corresponds to the primitive called uniform atomic
broadcast. We will call it here simply atomic broadcast.

11

Validity, uniform agreement and uniform integrity define the primitive called
reliable broadcast.4 Atomic broadcast is defined as reliable broadcast with the
uniform total order property.

It is easy to see that active replication is easily implemented using atomic
broadcast. If gS is the group of replicas that provide some service S, clients C
send requests using the primitive abcast(gS , req). The validity property ensures
that if C does not crash, its request is received by at least one member of
gS (unless all members of gS crash). Combining this guarantee with uniform
agreement ensures that all correct processes in gS eventually adeliver m. The
uniform total order property ensures that all replicas adeliver the clients’ requests
in the same order.

The response from a replica in gS to a client is sent using a unicast message,
i.e., a point-to-point message. The transport layer must ensure the following
quasi-reliable channel property [1]: if a correct process p sends message m to a
correct process q, then q eventually receives m. This property is stronger than
the property provided by TCP (if a TCP connection breaks, reliability is no
more guaranteed).

3.3 Generic broadcast for passive replication

Atomic broadcast can also be used to implement passive replication, but this is
not necessarily the best solution in terms of cost. Atomic broadcast can be used
as follows. Consider a replicated server S defined by the (static) group gS , and
assume that the members of gS are ordered in a list. Initially, the member at
the head of the membership list is the primary. The primary sends the update
message to gS using abcast. Whenever some member of gS suspects the current
primary to have crashed, it abcasts the message 〈primary change〉. Upon ade-
livery of this message every process moves the process at the head of the list to
the tail. The new primary is the new process at the head of the list.

Passive replication can also be implemented using the group communication
primitive called generic broadcast [25, 2], which can be cheaper to implement
than atomic broadcast. While atomic broadcast orders all messages, generic
broadcast orders only messages that conflict. Conflicts are defined by a relation
on the set of messages. This conflict relation is part of the specification of the
primitive, and makes the primitive generic. The generic broadcast of message m
to the group g is denoted by gbcast(g,m); the delivery of message m is denoted
by gdeliver(m). Formally, generic broadcast is defined by the same properties
that define atomic broadcast, except that the uniform total order property is
replaced with the following weaker property:

– Generic total order: If process p in g gdelivers message m before message m′,
and m, m′ conflict, then no process in g gdelivers m′ before having previously
gdelivered m.

4 More precisely, uniform reliable broadcast.

12

We have seen that passive replication can be implemented with atomic broad-
cast for the update messages and the primary-change messages. Consider the
following conflict relation between these two types of messages:

– Messages of type primary-change do not conflict with messages of the same
type, but conflict with messages of type update.

– Messages of type update conflict with messages of the same type, and also
with messages of type primary-change.

This ensures enough ordering to implement generic broadcast correctly. Note
that most of the time one single process considers itself to be the primary, and
during this period no concurrent update messages are issued. So most of the
time no concurrent conflicting messages are issued.

The implementation of generic broadcast (and atomic broadcast) is discussed
in Section 4.

3.4 About group membership

With dynamic groups, the successive membership of a group is called a view.
Consider for example a group g, with initially three processes p, q, r. This initial
membership is called the initial view of g, and is denoted by v0(g). Assume that
later r is removed from g. The new membership is denoted by v1(g) = {p, q}.
If s is added later to the group the resulting membership is denoted by v2(g) =
{p, q, s}. So the history of a dynamic group is represented as a sequence of views,
and all group members must see the sequence of views in the same order. The
problem of maintaining the membership of a dynamic group is called the group
membership problem [27].

3.5 About view synchronous broadcast

View synchronous broadcast or vscast (sometimes also called view synchrony), is
another group communication primitive, defined in a dynamic group model [4,
7]. However, the importance of vscast has been overestimated, and stems from
a time where the difference between static groups and dynamic groups was not
completely understood.

Consider some message m vscast by process p in view vi(g): vscast orders m
with respect to view changes. In other words, vscast ensures that m is delivered
by all processes in the same view vj . The property is also called same view
delivery [7]. A stronger property, called sending view delivery, requires i = j:
the view in which the message is delivered is the view in which the message was
sent [7].

The overestimated importance given to view synchronous broadcast has led
to several misunderstandings. The first is that dynamic groups are needed to
implement passive replication: Section 3.3 has sketched an implementation of
passive replication with a static group. The second misunderstanding is that the
specification of group communication with dynamic groups is inherently different
from the specification of group communication with static groups. This is not
the case, as shown in [26].

13

3.6 Group communication vs. quorum systems

In the previous sections we have shown the use of group communication for
implementing replication. Quorum systems is another technique for replication,
anterior to group communication and also more widely known. In this section
we explain the advantage of group communication over quorum systems in the
context of replication [11].

Definition of quorum systems: Consider a set Π = {p1, . . . , pn} of processes.
The set of all subsets of Π is called the powerset of Π, and is denoted by 2Π .
We have for example:

{p1}, {p2}, {p1, p2}, {p2, p3, p4}, . . . , {p1, . . . , pn} ∈ 2Π .

A quorum system of Π is defined as any set Q ⊂ 2Π such that any two Qi ∈ Q
have a non empty intersection:

∀Q1, Q2 ∈ Q, we have Q1 ∩Q2 6= ∅.

Each Qi ∈ Q is called a quorum. For example, if Π = {p1, p2, p3}, then the set
Q = {{p1, p2}, {p1, p3}, {p2, p3}} is a quorum system of Π; {p1, p2}, {p1, p3},
{p2, p3} are quorums.

Quorum systems for implementing a fault tolerant register: The use of
quorums systems for fault tolerance can be illustrated on a very simple example:
a server that implements a register. A register is an object with two operations
read and write: read returns the value of the register, i.e., the most recent value
written; write overwrites the value of the register.

The register can be made fault tolerant by replication on three replicas e.g.,
Π = {p1, p2, p3} with the quorum system Q = {{p1, p2}, {p1, p3}, {p2, p3}}. Each
operation needs only to be executed on one quorum of Q, i.e., on {p1, p2}, on
{p1, p3}, or on {p2, p3}. In other words, the quorum system Q tolerates the crash
of one out of the three replicas. Using the quorum system Q, linearizability of
the read and write operations is easy to implement [11].

Requiring isolation: A fault tolerant register is easy to implement using quo-
rum systems. However, clients usually want to perform more complex operations.
Consider for example the operations (a) increment a register and (b) decrement
a register. These two operations can be implemented as follows: (1) read the
register, then (2) update the value read, and finally (3) write back the new
value. However, one client C may increment the register, while at the same time
another client C ′ decrements the register. To ensure a correct execution, the
two operations must be executed in mutual exclusion. With group communica-
tion, no mutual exclusion is needed: atomic broadcast can be used to send the
corresponding operation to the replicated servers.

14

This difference between quorum systems and group communication is illus-
trated in Figure 9. The left part illustrates the quorum solution, and the right
part the group communication solution. In the quorum solution, the increment
operation is performed by the client, after reading the register and before writing
the new value. The implementation requires mutual exclusion, represented by
ECS (enter critical section) and LCS (leave critical section). In the group com-
munication solution, the increment operation is sent to the replicas using atomic
broadcast; no mutual exclusion is required.5 Implementing atomic broadcast
requires weaker assumptions about the crash detection mechanism than imple-
menting mutual exclusion [11].

��

��

��

����

��

��

��

�	
������
�������
�
� ��
������

��
������

�
�

�����

������ ������

Fig. 9. Replication: quorum systems (left) vs. group communication (right)

4 Implementation of group communication

In the previous section we have seen the role of group communication for repli-
cation. We discuss now the implementation of the two group communication
primitives that we have introduced, namely atomic broadcast and generic broad-
cast. We consider only static groups, non Byzantine processes and the crash-stop
model.

4.1 Impossibility results

Consider a static group g, and processes in g communicating by message ex-
change. The most general assumption is to consider that the time between the
sending of a message m and the reception of m by its destination is not bounded,
i.e., the transmission delay can be arbitrarily long. Similarly, if we model the ex-
ecution of a process as a sequence of steps, the most general assumption is to
consider that while the slowest process performs one step, the fastest process
can perform an unbounded number of steps. These two assumptions define the
asynchronous system model. The absence of bounds for the message transmission

5 The reader may wonder why no increment operation can be sent with quorum sys-
tems. Sending the increment operation requires atomic broadcast!

15

delay models an open network in which the load of the links are unknown. The
absence of bounds on the relative speed of processes models processes running
on CPUs with an unknown load. The asynchronous system model is the most
general model, but it has a major drawback: several problems are impossible to
solve in that model when one single process may crash.

One of these problems is consensus. The problem is defined on a set of pro-
cesses, e.g., on some group g. Every process p in g starts with an initial value
vp, and all correct processes in g have to decide on some common value v that
is the initial value of one of the processes. Formally, the consensus problem is
defined by the following properties [6]:

– Validity: If a process decides v, then v is the initial value of some process.
– Agreement: No two correct processes decide differently.
– Termination: Every correct process eventually decides some value.

An explanation of problem solvability is needed here. Consider a distributed
algorithm AP that is supposed to solve problem P . Algorithm AP can be launched
many times. Due to the variability of the transmission delay of messages, each
execution of AP can go through a different sequence of states. However, in all of
these executions, AP must solve P . If there is one single execution in which this
is not the case, then we say that algorithm AP does not solve P . This clarifi-
cation is important in the context of the consensus problem: it has been shown
that consensus is not solvable by a deterministic algorithm in an asynchronous
system with reliable links if one single process may crash. This result is known
as the FLP impossibility result [13].

The FLP impossibility result is easy to extend to atomic broadcast by the
following argument [9]. Assume for a contradiction that atomic broadcast can be
implemented in an asynchronous system with process crashes. Then consensus
can be solved as follows (in the context of some group g):

– Each process p in g executes abcast(vp), where vp is p’s initial value.
– Let v be the first message adelivered by p.
– Process p decides v.

If there is a least one correct process, then at least one message is adelivered.
By the property of atomic broadcast, every correct process adelivers the same
first message, and so decides on the same value. Consensus is solved, which shows
the contradiction.

4.2 Models for solving consensus

Consensus and atomic broadcast are not solvable in an asynchronous system
when processes may crash. We thus need to find a system model in which consen-
sus is solvable (whenever consensus is solvable, atomic broadcast is also solvable,
see Section 4.3). One such system is the synchronous system model, defined by
the following two properties:

16

– There is a known bound on the transmission delay of messages.
– There is a known bound on the relative speed of processes.

Consensus is solvable in a synchronous system [23], but the synchronous
system model has drawbacks from a practical point of view. The model requires
to consider the worst case: the worst case for the transmission delay of messages,
the worst case for the relative speed of processes. These bounds have a direct
impact on the time it takes to detect the crash of a process: the higher these
bounds are, the higher the time it takes to detect a process crash, i.e., the longer
it takes to react to a crash. In a replicated service a long reaction to a crash
leads to a long delay before clients get the replies.

The drawback of the synchronous model has led to look for system models
weaker than the synchronous model, but strong enough to solve consensus (and
so atomic broadcast). The first of these models is called the partially synchronous
model [10]. The model considers bounds on the message transmission delay and
on the relative speed of processes. There are two variants of the model:

1. There is a bound on the relative speed of processes and a bound on the
message transmission delay, but these bounds are not known.

2. There is a known bound on the relative speed of processes and on the message
transmission delay, but these bounds hold only from some unknown point
on.

The two definitions are equivalent, but the first variant seems more appealing
from a practical point of view.

A different approach was proposed later in [6]. It consists in augmenting the
asynchronous model with an oracle that satisfies some well defined properties.
In other words, the system is assumed to be asynchronous, but the processes
can query an oracle about the status crashed/not crashed of processes. For this
reason the oracle is called failure detector oracle, or simply failure detector. If
the failure detector returns the reply crashed q to process p, we say p suspects q.
Note that this information may be incorrect: failure detectors can make mistakes.
The legal replies to a query of the failure detector are defined by two properties
called completeness and accuracy. For example, the replies of the failure detector
called 3S must satisfy the following completeness and accuracy properties [6]:

– Strong completeness: Eventually every process that crashes is permanently
suspected to have crashed by every correct process.

– Eventual weak accuracy: There is a time after which some correct process is
never suspected by any correct process.

Consensus is solvable in the asynchronous system augmented with the failure
detector 3S and a majority of correct processes [6]. Moreover, it has been shown
that 3S is the weakest failure detector that allows us to solve consensus in an
asynchronous system [5]. This result shows the power of the failure detector
approach and explains its popularity.

17

4.3 Solving consensus

The first algorithm to solve consensus in a model weaker than the synchronous
model is the consensus algorithm by Dwork, Lynch and Stockmeyer for the par-
tially synchronous model [10]. The algorithm – called here DLS – requires a ma-
jority of correct processes, and is based on the rotating coordinator paradigm.
In this paradigm, the computation is decomposed into rounds r = 0, 1, 2, . . .,
and in each round another process, in some predetermined order, is the coor-
dinator. Typically, with n processes p0, . . . pn−1, the coordinator of round r is
process pr mod n. In each round the coordinator leads the computation in order
to try to decide on a value. The algorithm is based on the notions of locked value
and acceptable value. The coordinator of round r tries to lock a value, say v, and
if it learns that a majority of processes have locked v in round r, it can decide v.
If the coordinator of round r is suspected to have crashed, then the computation
proceeds to the next round r + 1 with a new coordinator. Note that a process
can become coordinator more than once, e.g., in rounds k, n + k, 2n + k, etc.
The key property of the DLS algorithm is that the safety properties of consensus
(validity and agreeement) hold even if the properties of the partially synchronous
model do not hold. In other words, these properties are only needed for liveness,
i.e., to ensure the termination property of consensus.

Two other consensus algorithms had a major impact and led to the devel-
opment of variations of these algorithms. The first one is the Paxos algorithm
proposed by Lamport [20, 21]. The second one is the Chandra-Toueg consensus
algorithm (denoted CT hereafter) based on the failure detector 3S [6]. Paxos
and CT, similarly to DLS, require a majority of correct processes. CT, similarly
to DLS, is based on the rotating coordinator paradigm. Paxos is also based on
a coordinator, but the coordinator role is not predetermined as in the rotating
coordinator paradigm, but determined during the computation (the algorithm
tolerates multiple coordinators for the same round). Paxos and CT are also
based on the notion of locked value (but there is no notion of acceptable value):
each coordinator, one after the other, tries to lock a value v, and if it learns
that a majority of processes have locked v, it can decide v. In this sense Paxos
and CT are very similar. The two algorithms also share the key property of
DLS, namely that no matter how asynchronous the system behaves, the safety
properties of consensus are never violated. However, Paxos and CT differ on the
following issues:

– CT requires reliable channels, while Paxos tolerates message loss (similarly
to DLS).

– The condition for termination is rigorously defined for CT, namely the even-
tual weak accuracy property of 3S. No such condition that ensure termina-
tion exists for Paxos.

Note that after the publication of Paxos, the failure detector Ω – which
eventually outputs at each process the identity of the same correct process [5] –
has been mentioned as ensuring the termination of Paxos. However, this makes
sense only if we consider Paxos with reliable channels.

18

4.4 Implementing atomic broadcast and generic broadcast

A large number of atomic broadcast algorithms have been proposed in the last
20 years. These algorithms can be classified according to several criteria. One of
those criteria is the mechanisms used for message ordering [8]: fixed sequencer,
moving sequencer, privilege-based, communication history, destinations agree-
ment. For example in a fixed sequencer algorithm, one process is elected as the
sequencer and is responsible for ordering messages. Obviously this solution is
not tolerant to the crash of the sequencer. The solution must be completed by
a mechanism for electing a new sequencer in case the current sequencer crashes.
This is usually done using a group membership service (see Section 3.4) to re-
move the current sequencer from the group. Once this is done, a new sequencer
can be elected. Thus the solution implements atomic broadcast in the context
of dynamic groups (see Section 3.1). The same comment applies to most of the
implementations of atomic broadcast described in the literature. These imple-
mentations require order to provide order : the group membership service orders
views, and this order is used to implement the ordering required by atomic
broadcast.

Atomic broadcast can also be solved in the context of static groups. The
solutions rely on consensus (which explains the fundamental role of the consensus
problem in the context of fault tolerance computing). The consensus problem
allows processes to agree on a value. This value can be of any type. Atomic
broadcast can be implemented by solving a sequence of consensus problems,
where each instance of consensus agrees on a set of messages. The idea is the
following [6]. Consider a static group g and abcast(g, m). Each process p in g
has a variable kp used to number the various instances of consensus. Whenever
p has received messages that need to be ordered, p starts a new instance of
consensus, uniquely identified by kp, with the set of messages to be ordered as
its initial value. By the properties of consensus, all processes agree on the same
set of messages for consensus #kp, say msg(kp). Then the messages in the set
msg(kp) are adelivered in some deterministic order (e.g., according to their IDs),
and before the messages in the set msg(kp + 1). This solution for static groups
can be extended to dynamic groups [26].

The implementation of generic broadcast is more difficult to sketch. The basic
idea of the implementation is to control whether conflicting messages have been
gbcast. As long as only non conflicting messages are gbcast, these messages can
be gdelivered without invoking consensus, i.e., without the cost of consensus.
However, as soon as conflicting messages are detected, the gdelivery of messages
require to execute an instance of the consensus problem. More details can be
found in [25, 2].

4.5 Solving the atomic commitment problem

In Section 1 we have mentioned the atomic commitment problem as the main
problem related to the implementation of distributed transactions. The problem
has similarities with the consensus problem, but also has significant differences.

19

In the atomic commitment problem, each process involved in the transaction
votes at the end of the transaction. The vote can be yes or no. A yes vote
indicates that the process is ready to commit the transaction; a no vote indicates
that the process cannot commit the transaction. As in the consensus problem,
all processes must decide on the same outcome: commit or abort. The conditions
under which commit and abort can be decided make the difference between
consensus and atomic commitment. If one single process votes no, the decision
must be abort ; if no failure occurs and all processes vote yes, then the decision
must be commit ; if there are failures, the decision can be abort. So “failures” can
influence the decision of atomic commitment, which is not the case for consensus.

Another important difference is that, for practical reasons, the atomic com-
mitment problem needs to be solved in the crash-recovery model (in the context
of transactions, processes have access to stable storage). A third difference is
related the notion of blocking vs. non-blocking solution, a difference that has not
been made for consensus (the distinction between a blocking and a non-blocking
solution exists only in the crash-recovery model). In the crash-recovery model, a
protocol is blocking if a single crash during the execution of the protocol prevents
the termination of the protocol until the crashed process recovers. In contrast,
a non-blocking protocol can terminate despite one single process crash (or even
despite more than one crash).

The most popular atomic commitment protocol is the blocking 2PC (2 Phase
Commit) protocol [3]. The first non-blocking atomic commitment protocol was
proposed by Skeen [29]. At that time the consensus problem was not yet identified
as the key problem in distributed fault tolerant computing. This explains that
the protocol proposed in [29] does not solve atomic commitment by reduction to
consensus. Today such a reduction is considered to be the best way to solve the
non-blocking atomic commitment problem (see for example [14], for a solution
in the crash-stop model).

5 Conclusion

More than twenty years of research have contributed to a very good understand-
ing of many issues related to fault tolerance, replication and group communi-
cation. However, the understanding of theoretical issues is not the same in all
models. For example, while static group communication in the crash-stop model
has reached maturity, the same level of maturity has not yet been reached for
dynamic group communication or for group communication in the crash-recovery
model. More work needs also to be done to quantitatively compare different al-
gorithms in the context of replication. Typically, while a lot of atomic broadcast
algorithms have been published, little has been done to compare these algorithms
from a quantitative point of view. Specifically, more work needs to be done to
compare these algorithms under different fault-loads, as done for example in [30].
Addressing real-time constraints, e.g., [17], needs also to get more attention.

Acknowledgments. I would like to thank Sergio Mena and Olivier Rütti for their
comments on an earlier version of the paper.

20

References

1. M. K. Aguilera, W. Chen, and S. Toueg. Heartbeat: a timeout-free failure detector
for quiescent reliable communication. In Proceedings of the 11th International
Workshop on Distributed Algorithms (WDAG’97), pages 126–140, Saarbrücken,
Germany, September 1997.

2. M. K. Aguilera, C. Delporte-Gallet, H. Fauconnier, and S. Toueg. Thrifty generic
broadcast. In Proceedings of the 14th International Symposium on Distributed
Computing (DISC’2000), October 2000.

3. P.A. Bernstein, V. Hadzilacos, and N. Goodman. Concurrency Control and Recov-
ery in Distributed Database Systems. Addison-Wesley, 1987.

4. K. Birman and T. Joseph. Reliable Communication in the Presence of Failures.
ACM Trans. on Computer Systems, 5(1):47–76, February 1987.

5. T. D. Chandra, V. Hadzilacos, and S. Toueg. The Weakest Failure Detector for
Solving Consensus. Journal of ACM, 43(4):685–722, 1996.

6. T. D. Chandra and S. Toueg. Unreliable failure detectors for reliable distributed
systems. Journal of ACM, 43(2):225–267, 1996.

7. G. V. Chockler, I. Keidar, and R. Vitenberg. Group Communication Specifications:
A Comprehensive Study. ACM Computing Surveys, 4(33):1–43, December 2001.

8. X. Défago, A. Schiper, and P. Urban. Totally Ordered Broadcast and Multicast Al-
gorithms: Taxonomy and Survey. ACM Computing Surveys, 4(36):1–50, December
2004.

9. D. Dolev, C. Dwork, and L. Stockmeyer. On the minimal synchrony needed for
distributed consensus. Journal of ACM, 34(1):77–97, January 1987.

10. C. Dwork, N. Lynch, and L. Stockmeyer. Consensus in the presence of partial
synchrony. Journal of ACM, 35(2):288–323, April 1988.

11. Richard Ekwall and André Schiper. Replication: Understanding the Advantage of
Atomic Broadcast over Quorum Systems. Journal of Universal Computer Science,
11(5):703–711, May 2005.

12. E.N. Elnozahy, L. Alvisi, Y-M. Wang, and D.B. Johnson. A Survey of Rollback-
Recovery Protocols in Message-Passing Systems. ACM Computing Surveys,
34(3):375–408, September 2002.

13. M. Fischer, N. Lynch, and M. Paterson. Impossibility of Distributed Consensus
with One Faulty Process. Journal of ACM, 32:374–382, April 1985.

14. R. Guerraoui, M. Larrea, and A. Schiper. Reducing the cost for Non-Blocking in
Atomic Commitment. In IEEE 16th Intl. Conf. Distributed Computing Systems,
pages 692–697, May 1996.

15. V. Hadzilacos and S. Toueg. Fault-Tolerant Broadcasts and Related Problems.
Technical Report 94-1425, Department of Computer Science, Cornell University,
May 1994.

16. M. Herlihy and J. Wing. Linearizability: a correctness condition for concurrent
objects. ACM Trans. on Progr. Languages and Syst., 12(3):463–492, 1990.

17. J.-F. Hermant and G. Le Lann. Fast Asynchronous Uniform Consensus in Real-
Time Distributed Systems. IEEE Transactions on Computers, 51(8):931–944, Au-
gust 2002.

18. L. Lamport. Time, Clocks, and the Ordering of Events in a Distributed System.
Comm. ACM, 21(7):558–565, July 1978.

19. L. Lamport. How to make a multiprocessor computer that correctly executes
multiprocess programs. IEEE Trans. on Computers, C28(9):690–691, 1979.

20. L. Lamport. The Part-Time Parliament. TR 49, Digital SRC, September 1989.

21

21. L. Lamport. The Part-Time Parliament. ACM Trans. on Computer Systems,
16(2):133–169, May 1998.

22. J.C. Laprie, editor. Dependability: Basic Concepts and Terminology. Springer-
Verlag, 1992.

23. N. A. Lynch. Distributed Algorithms. Morgan Kaufmann, 1996.
24. J. Misra. Axioms for memory access in asynchronous hardware systems. ACM

Trans. on Progr. Languages and Syst., 8(1):142–153, 1986.
25. F. Pedone and A. Schiper. Handling Message Semanticas with Generic Broadcast

Protocols. Distributed Computing, 15(2):97–107, April 2002.
26. A. Schiper. Dynamic Group Communication. TR IC/2003/27, EPFL, April 2003.

To appear in ACM Distributed Computing.
27. A. Schiper and S. Toueg. From Set Membership to Group Membership: A Sepa-

ration of Concerns. TR IC/2003/56, EPFL - IC, September 2003.
28. F. B. Schneider. Implementing Fault Tolerant Services Using the State Machine

Approach: A Tutorial. Computing Surveys, 22(4):299–319, December 1990.
29. D. Skeen. Nonblocking Commit Protocols. In ACM SIGMOD Intl. Conf. on

Management of Data, pages 133–142, 1981.
30. Péter Urbán, Ilya Shnayderman, and André Schiper. Comparison of failure de-

tectors and group membership: Performance study of two atomic broadcast algo-
rithms. In Proc. Int’l Conf. on Dependable Systems and Networks, pages 645–654,
San Francisco, CA, USA, June 2003.

