Plasma Current Ramp-up Phase Simulation of ITER

S.H Kim, J-F. Artaud², V. Basiuk², V. Dokuka³, R.R. Khayrutdinov³, J.B. Lister, V. E. Lukash⁴

CRPP-EPFL, Lausanne, Switzerland, ²CEA-Cadarache, France, ³TRINITI, Moscow, Russia, ⁴4RRC Kurchatov, Moscow, Russia

Introduction	Combined DINA-CH and CRONOS simulator
 Background The proposed ITER reference scenarios still have uncertainties, mainly from the plasma transport and boundary evolution. Now is the time to confirm the ITER reference scenarios, at least the reference scenario 2 (it is designed to use maximum inductive current ramp-up capability of ITER) The desired flat-top tokamak operation conditions are obtained by tailoring the plasma current ramp-up phase. The ohmic flux (volt-second) consumption during the current ramp-up phase limits the duration of the burn. 	 For this type of study, we need a full tokamak simulator, such as the combined DINA-CH and CRONOS simulator DINA-CH 2D free-boundary equilibrium evolution Self-consistent current diffusion with the surrounding conducting systems Magnetic feedback control on PF-coil currents E Diagnostic models for kinetic profile control

- **Objective : Feasibility study of the ITER reference scenario 2**, focusing on the current ramp-up phase with
- CS & PF coil current limits : some of coil reference currents are very close to the current limits (CS1, CS2U, CS2L, PF6)
- CS & PF coil voltage limits : additional coil voltages are required at the beginning of the ramp-up phase (SNUs for CSs and PF1&6, booster power supplies for PF2-5)
- Plasma shape evolution with X-point formation : requires a virtual radial position controller and a switch to the shape controller
- Ohmic energy confinement : resistive ohmic flux losses are closely related to the transport

. . **CRONOS**

- Transport calculation for heat and particles
- Various transport models (kiauto for ITER)
- Advanced source calculations
- Interpretive or predictive mode simulation
- Initial inputs from the existing CRONOS simulation
- MATLAB SIMULINK environment and graphic user interface
- Synchronized sawtooth events

Simulation of ITER reference scenario 2

Simulations with modified conditions

- **1. Stopping the density ramp-up**
- Density ramp-up stops from 50 sec
- Plasma temperature increases
- Resistive ohmic flux losses decrease
- A slight improvement of CS1 current evolution : the increase of the plasma temperature is limited by the degradation of the energy confinement

• Ohmic confinement time scaling law \rightarrow low plasma temperature (low beta)

 Provide additional ohmic flux from CS2U&L, CS3U&L and PF1&6 to slow down the decrease of CS1 current

• A slight improvement of CS1 current evolution : the control of Ip is much stronger than the control of coil currents during the current ramp-up

— PF1 — PF6

70 80

time [s]

Conclusions and remarks

- 1. Combined DINA-CH and CRONOS full tokamak simulator has been improved for the plasma current ramp-up simulation
- The feasibility of the current ramp-up phase of the ITER reference scenario 2 is studied using the Combined DINA-CH and CRONOS full tokamak simulator
- 3. Strongly coupled effect between the plasma transport and boundary evolution is observed
- The time-step of data exchange between two codes is reduced to 1ms to guarantee the stability of the simulations
- 5. The ITER reference scenario 2 seems to be developed with slightly promising assumptions
- Application of additional heating seems to be a good choice to reduce the resistive loss of ohmic flux and to avoid the coil current limits