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Figure 1.  Diagram of the TCV X2 ECRH 
system showing the available poloidal 
angle ranges.

Figure 2. Each launcher is adjustable in 
the ‘toroidal’ and ‘poloidal’ directions.  
The ‘poloidal’ angle θ is adjustable in real 
time.

Figure 8. Results of the elongation control 
experiments.

• controlling the elongation and the 
deposition location in this pulse

• plasma elongates

• control system maintains the deposition 
on ρ ~ 0.65 surface.

• At step down in the elongation reference, 
ECRH power is reduced and elongation 
decreases.

• some drift in the deposition location as 
the elongation decreases, possibly due to 
non-linearity inherent in our κ

realtime.
 

approximation.
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Figure 5: Comparison of our real time 
elongation signal and the LIUQE 
reconstructed signal
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THE TCV X2 ECRH SYSTEM

• 6 gyrotrons, 0.5MW each totalling 3MW X2 ECRH power

• flexible launcher system - 6 independent launchers

• independent, real time control of 2 power supplies (3 gyrotrons each)

• real time control of poloidal angle

• In constant shaping (quadrupole) field, plasma elongation (κ) is a 
function of the current profile.

• heat off axis (ρ ~ 0.7), flatten current profile and elongate the 
plasma [2].

• No real time equilibrium reconstruction code on TCV.

• derive κ
realtime

 signal based on the sum of fluxes at pre-defined 
points along the expected plasma boundary:

• The fluxes are calculated from a simple finite element model of the 
plasma as 6 current filaments, [3]:

• at constant mirror angle, the ECRH 
deposition becomes more centralised as the 
plasma elongates.

• implement real time control of the mirror 
angle to maintain the ECRH deposition at 
constant radius

• From the geometry of the plasma-mirror 
system, first find the linear relation between 
the elongation and the required mirror 
position.

• Insert the coefficients of this relation into 
the controller, as proportional terms and 
feedforwards/references - see figure for 
details.

Matrix A: calculates observables eg plasma 
current

Matrix G:  calculates the actuator signal eg coil 
voltage.

Matrix M: corrects coil mutual inductance and 
resistivity.

• The matrix coefficients may be changed 
several times during a shot at pre-defined times.

• Replace the coil control loops with ECRH 
actuators - power and mirror position and place 
coils in controllers internal to their power 
supplies  
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Real time plasma current and elongation control 
on TCV using ECRH actuators

• currently installing a mutli-DSP controller to replace the PID and G matrices. [4].

• will provide more channels for feedback control and the ability to utilise much more powerful 
algorithms.

• initial experiments will aim to replace the current analogue X3 mirror real time controller which 
moves the X3 top launch mirror to the position which maximises X3 ECRH absorption [5].

• other possible feedback loops include sawteeth, NTMs, ITBs etc.

• An example sawtooth control algorithm: Scan the X2 mirrors and calculate the sawtooth 
frequency at each position. Move the mirror to the position which maximises the frequency.

• Later, use other diagnostics (e.g. SXR, ECE) to find the rough location of the inversion radius to 
reduce the scan-and-test time. 
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INTRODUCTION

• Real time control of ECRH systems is important for MHD control (sawteeth and NTMs) etc.

• Requires real time movable mirrors - TCV is uniquely placed to investigate this. 

• Experiments to control the ECRH power & mirrors in real time.

PLASMA CURRENT CONTROL

 • Fully non-inductive ECCD plasmas

 • Ohmic transformer coils set to constant 
current during ECRH phase to guarantee zero 
loop voltage.

 • controlling 200kW to 450kW per gyrotron

 • totalling 1.2MW to 2.7MW

 • real time plasma current signal generated, 
as usual, in the A matrix.

 • use Proportional and Integral terms in the 
PID controller

 • able to control +/- 30kA 

PLASMA ELONGATION CONTROL

ECRH DEPOSITION TRACKING CONTROL

Figure 7. Programming the TCV controller for deposition 
tracking
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Figure 6. Controlling the elongation in real time. Here we  use 
a reference elongation with a step-down at 1.0s.

• Proportional control only this pulse.

• ECRH power decreases at 1.0s and elongation responds 
as expected.

• Step-up elongation reference experiments showed a 
poor response to the step as the plasma density rapidly 
decreases during ECRH phase, decreasing the absorption 
efficiency.

FUTURE DIGITAL CONTROL ON TCV
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DEPOSITION TRACKING AND ELONGATION CONTROL RESULTS

Mirror motor voltage required to maintain the ECRH 
absorption at constant ρ, as a function of the elongation:

The coefficients C and D are constructed from the matrices, 
gains and signals in the controller:
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• The current in each filament (Ji) is derived from linear combinations of the flux (µk) at a network of poloidal field 
detection coils:

rearranging

• The fluxes are now a linear combination of magnetics signals, the coefficients of which are entered into the A 
matrix to generate κ

realtime
 

 
j ij iG Jψ =

 
k ik iF Jµ =

 ( )1
j ij ik kG Fψ µ−=

Figure 4. Controlling the plasma current. Reference 
current signal with a step from 160kA to 180kA at 1.6s. 

Figure 3. The TCV controller is based upon matrix 
operations on signals and a PID controller.

• design the matrix M coefficients to limit the gyrotron power when the input is saturated at ~+/-10V.
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