FLUID PLASMA STABILITY IN STELLARATORS WITH ANISOTROPIC ENERGETIC SPECIES

W. A. Cooper ¹, J. P. Graves ¹, M. Jucker ¹, K. Y. Watanabe ², Y. Narushima ²

¹ Centre de Recherches en Physique des Plasmas, EPFL, Lausanne, Switzerland ² National Institute for Fusion Science, Toki, Japan

wilfred.cooper@epfl.ch

Abstract

The energetic ion content in typical high- β LHD discharges accounts for about 1/3 of the total β [1]. Furthermore, because the densities are relatively low ($n_e < 3 \times 10^{19} m^{-3}$), there is a measurable anisotropy in the plasma pressure [2]. Local and global fluid MHD stability in anisotropic pressure plasmas can be investigated with the Kruskal-Oberman energy principle [3] (ignoring the kinetic energy integral) and with the rigid hot particle energy principle of Johnson et al. [4]. These energy principles have been adapted in the TERPSICHORE code. A heliotron configuration that models LHD with finite parallel anisotropy driven by neutral beams with a total $\beta \simeq 3.9\%$ (unstable according to ideal MHD) shows that the Kruskal-Oberman based theory predicts stability when $\beta_b/\beta \geq 1/3$, where β_b corresponds to the beam ion β value. The rigid hot particle model requires $\beta_b/\beta \geq 1/4$ to obtain stability. Large perpendicular anisotropy driven by ICRH may lead to more interesting results because the MHD equilibrium properties become more highly distorted.

References

- [1] K. Y. Watanabe et al., Nucl. Fusion 45 (2005) 1247.
- [2] T. Yamaguchi et al., Nucl. Fusion 45 (2005) L33.
- [3] M. D. Kruskal and C. R. Oberman, *Phys. Fluids* 1 (1958) 275.
- [4] J. L. Johnson, R. M. Kulsrud and K. E. Weimer, Plasma Phys. 11 (1969) 463.