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Abstract. The 4D Semi-Lagrangian code CYGNE for solving electrostatic drift-kinetic equations
is presented. The code simulates well the linear phase. In the non-linear, phase development of
negative value regions are investigated.

INTRODUCTION

Microturbulence is thought to play a key role in energy transport in thermonuclear fusion
devices based on magnetic confinement. Its simulation in the frame of the 5 dimensional
gyrokinetic equations represents a challenging numerical problem. As a first step toward
the treatment of the 5D system in toroidal geometry, a 4D code, CYGNE [1], is being
developed for solving the electrostatic drift-kinetic equations in cylindrical geometry.
This code uses a semi-Lagrangian approach based on cubic spline interpolation. In this
approach the distribution function f is computed on a fixed grid and is updated from
time t −∆t to time t using its invariance along particles trajectories. One of the main
advantages of this method is that it provides a grid description of f, with no stability
restriction on the time step such as the Courant Friedrichs Lewy condition. The code
simulates well the linear phase. In the non-linear regime however, when fine scale
structures start to appear, simulations exhibit development of negative value regions of
the distribution function, as well as bad energy conservation, which are investigated in
this paper.

PHYSICAL MODEL

A periodic cylindrical plasma of radius a and length L is considered. The plasma is
confined by a uniform magnetic field of the form B = B0ez, where ez is the unit vector
along the z direction.
The equations of motion for the guiding centers of the ions in cylindrical coordinates
(r,θ ,z) are given by

Ṙ = v‖ez +
ez∧∇φ

B0
= v‖ez +vGC (1)

v̇‖ = − qi

mi
ez ·∇φ (2)
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where qi = Zie and mi are the ion charge and mass, respectively, vGC is the guiding
center drift velocity, and φ is the electrostatic potential.

Neglecting finite Larmor radius effects, the time evolution of the ion guiding center
distribution function f (R,v‖) is governed by the drift-kinetic equation (DKE) :

∂ f
∂ t

+vGC ·∇⊥ f + v‖
∂ f
∂ z

+ v̇‖
∂ f
∂v‖

= 0 (3)

Assuming adiabatic electrons bound to the field lines, and including the linearised
polarisation-drift term, the quasi-neutrality equation is given by:

−∇⊥ ·
[

n0(r)
B0Ωi

∇⊥φ(R, t)
]
+

en0(r)
Te(r)

[φ(R, t)− φ̄(R, t)] =
∫

f (R,v‖) dv‖−n0(r) (4)

where Ωi = qiB0/mi is the ion cyclotron frequency, n0 and Te are the initial density and
electron temperature profiles, and φ̄ is the average of the electrostatic potential along the
magnetic field lines given by φ̄(r,θ , t) = (1/L)

∫ L
0 φ(r,θ ,z, t) dz.

Equation (3) and (4) conserve the total energy, defined as Etot = Ekin +Epot with

Ekin =
∫ 1

2
miv2

‖( f − feq) dRdv‖ and Epot =
1
2

qi

∫
( f − feq)φ dRdv‖ (5)

where feq is the equilibrium part of f .

THE NUMERICAL SCHEME

A detailed description of the numerical scheme can be found in [1]. In summary, the
code is based on the semi-Lagrangian approach, the 4D distribution function f is
represented on a fixed grid in phase space. f is evaluated from time t−∆t to time t by
invoking its invariance along trajectories. More specifically, f is updated at grid point
xi using the relation : f (xi, t) = f (X(t −∆t,xi, t), t −∆t) , where X(t −∆t,xi, t) is the
position at time t − ∆t of the trajectory that ends up on xi at time t. This operation
requires an interpolation of f (t−∆t) which is performed with cubic splines.
A time-splitting technique is used to solve the DKE (3) with a sequence
S = (v̂‖/2) (ẑ/2) Q̂ r̂θ (ẑ/2) Q̂ (v̂‖/2), where v̂‖, ẑ, r̂θ denote the advections in v‖,
z and r-θ plane, respectively, and Q̂ denotes the solution of the quasi-neutrality equa-
tion (4). The advection in r̂θ must in fact be carried out simultaneously with the update
of the self-consistent field φ and thus involves additional Q̂ operations. This is achieved
here with a predictor-corrector approach ensuring 2nd order time accuracy, with the field
φ being updated after the predictor step. The interpolations are performed using cubic
splines.
The quasineutrality equation (4) is solved in Fourier space along θ and z, and using
cubic spline finite elements method in the r direction.
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FIGURE 1. (a) linear growth rate from the local dispersion relation - (b) Potential energy growth,
CYGNE

NUMERICAL RESULTS AND NEGATIVE VALUES STUDY

In the following, the system parameters are : a = 14.5ρs, Lθ = 2π , Lz = 1508ρs and
v‖max = 6.1vthi0, where ρs =

√
Te(rpeak)/mi/Ωi, Ti0 = Ti(rpeak) and vthi0 =

√
Ti0/mi.

The electron temperature is assumed uniform, while the ion temperature profile is
defined by the functional form :

dlnTi

dr
=−κTi

a
cosh−2(

r− rpeak

∆rTia
) (6)

with parameters κTi = 4, ∆rTi = 0.1, rpeak = 0.5a and the ion density is ini-
tially constant. The time t is given in units of Ωi = qiB0/mi. The grid is
Nr×Nθ ×Nz×Nv‖ = 64×64×64×64 and ∆t = 2.5 /Ωi.
To validate the linear phase, we compare results from CYGNE with the numerical
solution to a local dispersion relation computed using parmeters at r = rpeak. At this
position the temperature gradient is the strongest, therefore the local growth rate is
expected to be somewhat higher than the one found in the global simulation. With the
local relation, the most unstable mode is found to be (m = 4,n = 4), Fig. 1.a., with
a growth rate of γ = 10.3× 10−3, which is in good agreement with the result from
CYGNE where we find a global growth rate for the potential energy of γ = 8.2×10−3

Fig. 1.b. In addition the code has been benchmarked against the linear code LORB5 [1].

In the non-linear regime negative values appear in the (z,v‖) plan, in the region
| v‖ |> 2vth , Fig.2, where | f / f (v‖ = 0)| � 1. The amplitudes of these negative values
are largest in the region 2.2vth ≤| v‖ |≤ 4vth, close to the position where the equilibrium
gradients are strong.

The contributions of the negative part of the distribution function to the density is not
very large : 0.1% at most in this case, Fig. 3.i.a.. However one can see that overshoot



FIGURE 2. (z,v‖) cross section of the distribution function at (r = rpeak,θ = 2π/3), negative values
appears in white

(i) (ii)

FIGURE 3. (i.a.) Contribution of the negative part of f to the density, (i.b.) minimum and maximum of
f - (ii.a.) Kinetic, potential and total energy,(ii.b) Contribution of the negative and positive part of f to the
kinetic energy.

and undershoot are increasingly growing all over the run, Fig. 3.i.b.

In addition, since the kinetic energy is a second order moment of the parallel velocity
and negative values concentrate in region of high v‖, their contribution to this quantity
rapidly become non negligible, Fig. 3 ii.b. - the contribution of the negative part of f to



the kinetic energy is defined as :

Ekin( f < 0) =
∫

f <0

1
2

miv2
‖( f − feq) dRdv‖ (7)

After t=600, the total kinetic energy is the sum of a very large contribution from the
positive part of f and from its negative part. For t=1000, the negative contribution to the
kinetic energy is already one order of magnitude greater than the total kinetic energy.
Note that the conservation of the total energy breaks down somewhat later at t=1200
Fig. 3 ii.a., showing that the simulation cannot be considered relevant from this point on.

The code CYGNE is based on a sequence of 1d advections, in z and in v‖ directions, and
2d advections in (r,θ), which in the Semi-Lagrangian frame require an interpolation of
f . These interpolations are performed using cubic splines which may introduce spurious
oscillations through the Gibbs phenomena in regions where there is a discontinuity or
a steep gradient. This happens in the non-linear regime when small scale structures
develop , Fig. 4. In regions where | f / fmax|� 1 these oscillations lead to negative values.

FIGURE 4. (r,θ) cross section, at t = 1275, grid : 128×256×128×64, ∆t = 0.5,z = 1/3Lz

For the 1d advections it is possible to replace in the code the spline interpolation by
a finite volume based scheme call Positive and Flux Conserving (PFC) method [2]
which, using slope limiters, guarantees that the maximum and minimum values will not
increase or decrease respectively. Fig. 5 a. shows the evolution of the negative values
for the scheme with PFC method and cubic spline interpolation for the advection in z v‖
direction. The PFC method reduces the development of negative values, as reflected by
the decrease of the contribution of the negative part of f to the kinetic energy, however
they still appear, which leads to the conclusion that the advection in (r,θ) is also a
source for the negative values.

The phenomena is reduce when using more grid points Fig. 5. b. ii. Indeed with a finer
grid the small scale structures are better resolved. On the contrary a smaller time step
will increase the number of negative values, Fig. 5. b. i., since more interpolation steps
are performed in this case to reach a given time.
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FIGURE 5. Contribution of the negative part of f to Ekin (a) PFC scheme and spline interpolation - (b)
Convergence studies

CONCLUSION

The 4-D Semi-Lagrangian code CYGNE, solving the electrostatic drift-kinetic equations
in cylindrical geometry, has been presented. It has shown a good description of the linear
phase. In the non-linear regime, the development of negative value regions has been in-
vestigated. These negative values reflect a more general problem, namely the generation
of spurious oscillations, which appear when fine scale structures develop. Such over-
shoots are inherent to the cubic spline interpolation step and results in the degradation
of the simulation. The phenomena is reduced when using a finer grid but is increased
with a smaller time step.
Some alternative scheme might be needed if one intends to carry out long time simu-
lations. The Positive and Flux Conserving (PFC) method [2] has shown to be able to
decrease the negative values, and some other scheme are under study such as the Essen-
tially Non Oscillatory (ENO) scheme [3].
Finally, the physical case studied here corresponds to a strongly driven instability (large
ηi = dlnTi/dlnNi) and some preliminary tests show that negative values are reduced for
weaker driven cases (smaller ηi). further investigations are thus still to be done in that
direction.
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