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Abstract. ITG and ETG turbulence is investigated with the nonlineabgl PIC code ORB5. The
large variety of numerical schemes and simulations domased has sometimes lead to important
discrepancies in the transport predictions. In order toudis these disagreements, emphasis must
be put on ways to check the numerical accuracy, such as eoenggrvation and numerical noise
measurement. This paper therefore presents benchmarkalgarithms and a noise diagnostic [1].
After having demonstrated the numerical quality of our datians, 2 topics are visited: the unclear
role of the parallel nonlinearity [4, 5] and the transpovikein ETG turbulence, for which predic-
tions differing by one order of magnitude had been made éises\2, 3].
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INTRODUCTION

Gyrokinetic codes are powerful tools for studying microafslities, which are com-
monly held responsible for anomalous transport. Severalenical schemes are em-
ployed. In Eulerian codes, the distribution function iscdetized on a 5D grid and is
evolved with finite difference or spectral methods. Senupaagian codes use the same
discretization, but the temporal evolution is done by tigdiack in time the trajectories
ending up at grid points at each time step. In Particle-1ii{€¢C) codes, the distribution
function is discretized with markers. Besides, microihgii@es can be simulated locally
(along a field-line), globally (in a full torus) or with fluxibe (in a tube surrounding the
field-line). These various types of numerical schemes anchgérical domains can lead
to important discrepancies in the predicted radial trartspoefficients. For example,
flux-tube simulations [2] and global PIC simulations [3] gitransport coefficients that
differ by 1 order of magnitude for ETG turbulence. Moreouée role of the parallel
nonlinearity (PNL) is still controversial [4, 5]. In ordey tinderstand the origin of these
discrepancies, it is important to benchmark gyrokinetidesoand to provide diagnos-
tics that show the numerical quality of simulations. The eugal noise associated with
the PIC method inevitably leads to the loss of energy corserv in the late nonlin-



ear phase. In the case of ETG simulations, the turbulencealay at late times due
to discrete particles noise [7], yielding a unphysical $gzort level. This motivates us to
develop the global nonlinear PIC code ORBS5 [6] to obtain lueise, energy and particle
number conserving simulations: In this paper, we will foonsdemonstrating the con-
vergence of our simulations. Several new algorithms wilpbesented, which strongly
improve the quality of our simulations, together with a hagerease of CPU. Finally,
we will investigate 2 important issues, namely the role & BNL in ITG turbulence

and the influence of numerical noise on ETG turbulence.

THE GYROKINETIC MODEL

We consider gyrokinetic equations of Hahm [8] with the fallog gyrokinetic ordering:
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w and Q; are characteristic fluctuation and cyclotron frequendiesandk, are the
parallel and perpendicular components of the wave numhkarrespect to the magnetic
field, @ is the fluctuating electrostatic potential, ; is the Larmor radiusln,L1,LTe
andLg are characteristic lengths for density, ion and electrarptrature and magnetic
field. The 2 small parameters are such tat p* ands? ~ 5> >> 1, wherep* = %!, a

is the Tokamak minor radius, arsgd = % is the inverse aspect ratiBy being the major
radius. Terms of orde@ (£2) are neglected. Equations of motion are:
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and<E> is the gyro-averaged electric field. These equations ircthd parallel motion,
drifts due to the magnetic field gradient and its curvature,dressure gradient and the
perturbed electric field. The equation for the parallel gglocontains a mirror term to
account for trapped particles and the so-cafladhllel nonlinearity Since it is a second
order term, many gyrokinetic models ignore it.

To solve the Vlasov equation,gf scheme [9] is applied, in other words the distribution
function f is split into an equilibrium partp (in our case a Maxwellian) and a perturbed

whereh = B, 0, = 48 gr — g+ ™ <ﬁ ><F1> h, oy = % is the magnetic moment



partof:

FRv,ut) = fole,1,Y)+SF(RV,1,1) (5)
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€ is the kinetic energy of a single particle,= %m\ﬂ, np is the equilibrium density
and v the ion thermal speed. 3 different coordinates can be chioseni If Y = (,
wherey is the poloidal flux, the resultintpcal Maxwellian can lead to the generation

of spurious zonal flows, as shown in [10], sin%@’ ~ %’” # 0 (the subscript 0
means "along the unperturbed orbits"). The latter c%n b'mla%lday using aanonical
Maxwellian, i.e.Y = (i, whereyp =  + %@VH is the toroidal angular momentum.
The canonical Maxwellian can be corrected by usihgnstead ofyp, where y =

Yo — sign(vH(to))%Rm /2(€ — UBp) (€ — UBp) is another constant of motion defined
only for passing particles due to the Heavyside functi6tix). ¢ can be viewed as the
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andk (v) = ———. The subscript 1 refers to terms containing the gyro-a\estag
electric field. The model is closed with a linearized Poissguation, which can
be reduced to a quasineutrality condition. Furthermoreiras®y k, p_ j < 1 (long-
wavelength approximation) and adiabatic electrons on miégsurfaces, it is written

as:
No(Y)
ZiTe(Lm
Where a term of ordeﬁ’(sg) has been neglected. The first term of the LHS is the

adiabatic contribution. The so callednal flowterm is described with the flux-surface
averaged potential:
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WhereJyg4 (¢, 6) is the Jacobian fo(y,6,¢). The second term is the polarization
density, and the RHS is the perturbed density whose compnutiast called thecharge
assignment

o = [ BjdRdydudasdt(R vy, u,t)8(R+ i~ (10)



a is the gyro-angle. The great advantage of Hahm’s equatiessin its associated
conservation laws. The total number of particles is corexd!rg/':tlh =0, with:

N
d = /fB dRdyvduda = 0. (11)
If one defines the total kinetic and potential energy of theteawy:
En = /m <uB+ ') fBjdRdyduda (12)
Er = 3 [ X((n)(%1) ~ o) (0. (13)

Then the total energy is conserved, Egk'gf—a 0. The proof can be found in [11].

Such conservation laws provide a useful check of the quafithe simulation at each
time step. Finally, due to the absence of external sourcesrimodel, the free evolving
temperature and density profiles relax during the nonlipbase.

NUMERICAL IMPLEMENTATION

of is discretized according to the PIC method:

—NNphp 271157 wo()3(R—=Ro(0)) 8(v =V}, p(1)) 8k — Hp(to)  (14)

It is therefore described witN markers, evolving in the 5D phase space and carrying
a weightw. Vlasov equation can be solved with thiandardé f scheme by a temporal
integration of Eq. (7), or with thdirect-0f scheme. The latter uses the conservation of
f in the phase space, so we simply hae= f(tg) — fo(ﬁ(t),v‘|(t),u(to)). Equations

of motion are either solved in cartesian coordindteg, z) or in "pseudo-cartesian” co-
ordinates(f = sCc0s,, ¢,n = ssinb,), wheres= | /(J/ Jeqgeis the magnetic label and

foe sgg/de’ is the straight-field-line angle. The use(df, ) avoids the singu-

Iarlty on axis. Poisson equation is solved ofsg0, ¢) or (s, 6., ¢) grid with 3D cubic
B-spline finite elements [12]. The second option avoidsrpatations(r,z) — (s, 6/6,)
during the charge assignment and the electric field compuatddepending on the pro-
cessor architecture, the total CPU gain can be as high as 25%.

Numerical noise is produced during the charge assignmém@reveach marker is rep-
resented by a gyro-ring projected onto a discrete grid. Arnomway to reduce the
numerical noise is to Fourier-filter the perturbed density:

of

Fon(x,t) = men (S)8Nmn(s,t) €M &n? (15)

A first naive choice forfmn(S) is called thesquarefilter (SF): all modes outside a win-
dow [Mmax : Mmin] X [Nmax : Nmin] @re suppressed after the charge assignment. However,



this type of filter contains modes that are inconsistent wighgyrokinetic ordering (1).

Assuming a(m,n) mode is propagating locally at=so, ask| = m+(”?( S the highesk

mode contained in the SF will B¢ = qzr;")‘ax . Approximatingk, ~ 2, we get:

(k_|) maxg £ 026 pf (16)
Ky d(so)

with the CYCLONE base case parameters [13]. Obviously, gmple local estimate
shows that (16) breaks the gyrokinetic ordering (1), indeleatly of the plasma size.
Consequently a SF contains unphysical tighmodes, which increases numerical noise.
A better choice is called thigeld-alignedfilter (FAF). For eachn in [Nmax : Nmin], the
modes[—nq(s) — Am: —nq(s) + Am| are retainedAm can be estimated from an ITG
dispersion relation [14]:

~ 4(%0) 2\ Ry
Am= =20 (L—E)E;; (17)

Wheren; = ,_ Note thatAm only depends on the profile gradients. We obtain:
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As aresult the FAF is consistent with the gyrokinetic ordgi(l), since it keeps the field
aligned structure of ITG modes. The time step of a simulasaiosely linked with the
Fourier filter. The general time step criterion writes:

wdt =6 < 1 (19)

Where w is the fastest relevant frequency of the system. For ITGulerite in a

tokamak, there are mainly 3 frequencies of interest: thesttdrequencyw, = (”)r,

the frequency related to tHex B velocity We, g = K1 Vg, g = MK Vihi, whereM is the
Mach number and the Landau damping frequesgy= k;v,. Using previous estimates
of k; for both kinds of filter, the time step criterion fos becomes:
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The (p*)~! dependence of Eq. (21) clearly shows the beneficial influehtiee FAF
in the parallel direction. However, quantitative estinsadéw; andwg, 5 are needed to
see if the FAF has an influence on the global time step of thelation. Fig. 1 shows
estimation of the different time steps for modes having tleimumk /k; with the

CYCLONE parameters anbll = 5-103, which is the typical value observed in our
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FIGURE 2. Average radial heatflux (left) and relative energy consoungright) vs time for a square
filter (solid line) and a field-aligned (dotted line) simtidat

simulation. The value od&tﬁ is extremely small. Since usual time steps are of the order

of 5Q;%, we conclude that the evolution of many modes in the SF wilinaecurate
and will impair the quality of the simulation. On the othemlain the limit of small-

p* plasmas, simulation using a FAF could be run, according toestimate, with a
one order of magnitude higher time step, thus decreasing BPthhe same amount.
In order to confirm our predictions, the FAF has been testeal simulation with the
following parametersp* = %,RO/LTJ =131 = 0,65="5,(m,n) € [+40,£16, Am=5
andAt = 40(2(1. Convergence tests have been made to ensurdmhét large enough.
Note that usingd, instead off as poloidal angle narrows the poloidal spectrum of all
toroidal modes. Fig. 2 shows the temporal evolution of tHemwe-averaged radial heat
flux Q, defined by:

(EyxB Oy
BB C .
I Oy Rp.V||,p:Hp

N o1
Q=Y Wpémv% (22)
p=1

The square filter simulation is totally unphysical. The sysdoes not relax to a quasi-
steady state. On the contrary, numerical noise totallg kile simulation. In the field-
aligned case, the system relaxes to a quasi-steady stateel@live energy conservation
is improved by one order of magnitude with the same numberaskars. To get similar
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FIGURE 3. Energy of toroidal modes with the field-aligned (left) andiace (right) filters. Then=0
mode is the dashed-dotted line.

FIGURE 4. Late-time structure of potential along the magnetic fiéhe-b5 = 0.5 for the field-aligned
(left) and square (right) filters

results with a SF, many more markers and a smaller time stepovioee required. The
degradation of the SF simulation can be seen on Fig. 3. Thetlyiaf then = 0 modes at
late times is due to higky modes, and is not observed for the field-aligned case. kjnall
the late-time structure of the electric potential along $he 0.5 field line is shown
on Fig. 4. ITG modes tend to align with the field lines, but tf@ature is apparently
destroyed with the SF: the perturbation is a superpositidngh-k; modes.

The notion of convergence is an important issue in nonliggaokinetic simulations.
Believable physical results require convergence in teringrid resolution and time
step, but a PIC simulation needs to be converged with respéice number of markers
as well. The left plot of Fig. 5 shows a scan for the number ofke¥s. The overshoot
is shifted in time as the number of markers is increased, ebbelcomes hard to say if
the convergence is reached or not. This is because thd Igit& of the perturbation is
inversely proportional to the number of markers: the ihitiaights are defined by:

Wp(to) = Aofo(R(to), v (to), K (to)) QpRyp (23)
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FIGURE 5. Temporal evolution of radial heat flux with a random initiafion (left) and mode initial-
ization (right) for different number of markers.

whereAq is the initial amplitude of the perturbatiof, is the volume of phase space
occupied by the markep and R, € [-1: 1] is a random number. Eq. (23) will be
denoted as theandominitialization. An alternative to Eq. 23 is obtained by déim
initial weights by:

Wp(to) = Aofo(R(to), V| (to), k(to) ) Qp cogmob. (to) — nO‘I’(tO))LT.’Ii(SO)
LT,l(S(tO>)
Wheremy and ng are integers. Eq. (24) will be denoted as thedeinitialization.
The right plot of Fig. 5 shows the radial heat flux of a simwaatwith the mode
initialization for N = 64-10° andN = 128- 10°. Both curves are almost similar. We
can therefore say that our simulation is converged. Thitabse the initial level of
the perturbation obtained with the mode initialization slo®t depend on the number
of markers anymore. Eq. (24) is useful to determine the agevee of a simulation
with the number of markers. However, the mode initializati® not really physical, as
one mode strongly dominates in the linear phase. This cahtlea different bursty
transient phase. A more realistic method would be to intgeseveral modes instead of
one. Nevertheless, the convergence@lidoes not depend on the initial conditions.

(24)

THE ROLE OF THE || NONLINEARITY

The role of the PNL is still unclear. PIC simulations in cger [15] and tokamak [4]
geometry showed that this term has an effect on the zonal timwetare. On the other
hand, other authors found that this term has no influence rmmggort for smalp*
plasmas [5]. CYCLONE simulations were performed with=1/175 andp* = 1/35,
with and without the PNL. On Fig. 6, one sees that if the PNLasnetained, energy
conservation is totally lost, even for smalf-plasmas. Still on Fig. 6, the temporal
evolution ofx;/ xee againstRy/Lt is plotted, where:

Xi = —&, XeB=——— (25)

LI

Both profiles are averaged owgr+ 0.05. Globally, the evolution ofi/ xeg andRo/Lr,
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FIGURE 7. Temporal evolution ofdg(s) for CYCLONE simulations with (left) and without (right)
PNL.

follows the Dimits fit, and there is no visible effect of the PNn transport. Our
simulations also show that the absence of the PNL does notédny relevant global
effect. On Fig. 7, the temporal evolution@fp(y,t) is shown for cases with and without
the PNL. Qualitatively, both structures are quite simildre only noticeable difference
is a higher level near the edge, for the case without the PiNtohclusion, we can say
from our simulation that the PNL has no relevant effect orhlibe structure of zonal
flows and the radial transport for CYCLONE parameters.

ETG SIMULATIONS

Lately, there has been a growing interest in ETG turbulewbgch, according to flux-

tube simulations [2] could be experimentally relevant. @a other hand, global PIC
ETG simulations [3] found a negligible transport level. Dpkain this large discrep-
ancy, mainly two possible mechanisms have been invoked:nanear toroidal cou-

pling, which is not retained by flux-tube codes [3] and staiid noise induced by the
PIC method [7]. Therefore, a quantification of numericalseas desirable. The latter
Is created during the charge assignment, a process equivale Monte-Carlo integra-
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tion [16]. According to [1], we have:

on; = ON; signal+ ONi noise ONi noise= %(‘NZ>G (26)
WhereNy, is the number of Fourier modes in the simulatiNris the number of markers,
w?) = 1/NyN . w? and G is a factor which depends on the projection algorithm.
Eq. (26) tells us how to decrease numerical noise: by incrgake number of markers,
by reducing the number of Fourier modes in the simulatiorydigg sampling methods
such as optimized loading [11] to reduce the statisticalanae of the weights or to
improve the projection algorithm, for example with higheder splines. In practice,
on; noise IS Obtained by adding the contribution of filtered modes tefihe filtering
process. To check the validity of Eq. (26), CYCLONE ETG siatigns withpg = 1/80
have been performed. In the left plot of Fig. 8, the valudnf,oise/ (W?) is displayed.
We see that the noise is clearly proportionaNg/N, demonstrating Eq. 26. The right
plot of Fig. 8 shows that numerical noise does not depend®nimber of markers per
cell, but on the number of markers per mode. In order to gfyatite radial transport
for ETG turbulence, simulations have been performed withoaemealisticps = 4—%0.
The noise to signal ratio does not exceed 15%. Fig. 9 showtethporal evolution of
Xe/XecB VS Ro/Lt.e. Due to profile relaxation, the expected value fgf xecg can be
estimated by a linear fit from the values obtained when trexegion is small, i.e. at the
end of the simulation. The fit indicates thad/ xe cg = 14, which is in agreement with
flux-tube simulations. To make more quantitative prediti@and to recover the flux-
tube limit, a smaller value gb; is required, which is impossible with the computational
power at our disposal.

CONCLUSIONS

Discrepancies obtained with the different existing gyneitic codes have emphasized
the need to demonstrate the validity of PIC simulations.tfinr& in ORB5 simulations is
obtained with excellent energy conservation and low nucaénoise. The key algorithm
is the field aligned Fourier filter, whose implementationxgr@mely simple and could
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FIGURE 9. Temporal evolution of(e/ Xce VS Ro/Lte for a CYCLONE ETG simulation withp* =
1/450.

be applied to any gyrokinetic code. The FAF reduces the numibi€ourier modes by
one order of magnitude and allows us to increase the timebstéipe same amount. In
addition to a huge gain of CPU, the field-aligned filter enlesrenergy conservation and
yields low numerical noise. Therefore, ORB5 is a powerfal tor studying ITG and
ETG turbulence. Our simulations have shed light on 2 impottapics in the gyrokinetic
community. Firstly, there is no visible effects of the pahhonlinearity on both the
zonal flow structure and the radial transport for snmellvalues, but this term should
nevertheless be kept in the model to ensure energy andlpartimber conservation.
Secondly, the new noise diagnostic implemented in ORB5 sltbat the noise depends
on the number of markers per Fourier mode kept in the filtercbved thus perform low-
noise ETG CYCLONE simulation, whose transport level is camaple with flux-tube
simulations.

ACKNOWLEDGMENTS

This research was partially sponsored by the Fonds Natidugise de la Recherche
Scientifique and by Euratom. All simulations were perfornoedthe IBM BlueGene
Cluster of the Ecole Polytechnique Fédérale de Lausanne.

REFERENCES

1. A Bottino, P. Angelino, R. Hatzky, S. Jolliet, A. G. PemteE. Poli, O. Sauter, T. M. Tran and L.
Villard Proc.339 EPS Conf. on Plasma Physics and Controlled Fusion (Romig, lane 2006), to
be published

2. F.Jenko and W. DorlandRhys. Rev. LetB9, 225001 (2002).

3. Z.Lin, L. Chenand F. ZoncRhys. Plasma42, 056125 (2005).

4. L. Villard, P. Angelino, A. Bottino, S. J. Allfrey, R. Haty, Y. Idomura, O. Sauter and T. M. Tran
Plasma Phys. Controlled Fusiat®, B51 (2004).

5. J.Candy and R. E. Wal2hys. Plasma3, 032310 (2006).

6. T.M. Tran, K. Appert, M. Fivaz, G. Jost, J. Vaclavik and Lillafd Theory of fusion Plasmas, Int.
Workshop, Editrice Compositori, Societd italiana di Fasi®&olognap.45 (1999).

7. W. M. Nevins, G.W. Hammett, A.M. Dimits, W. Dorland and D.EhumakerPhys. Plasmad2,
122305 (2005).



8.
9.

10.
11.
12.
13.
14.
15.

16.

T. S. HahmPhys. Fluids31, 2670 (1988).

M. KotschenreutheBull. Am. Phys. So@&3, 2107 (1988).

Y. Idomura, S. Tokuda and Y. Kishimobucl. Fusior43, 234 (2003).

R. Hatzky, T. M. Tran, A. Kdnies, R. Kleiber and S. J. AdjrPhys. Plasma$, 898 (2002).

M. Fivaz, S. Brunner, G. de Ridder, O. Sauter, T. M. Tranfatlavik, L. Villard and K. Appert
Comp. Phys. Comm11, 27 (1998).

A. M. Dimits, G. Bateman, M. A. Beer, B. I. Cohen , W. DortarG. W. Hammet, C. Kim, J. E.
Kinsey , M. Kotschenreuter, A. H. Kritz, L. L. Lao, J. Mandeek W. M. Nevins, S. E. Parker, A. J.
Redd, D. E. Shumaker, R. Sydora and J. Weil&iys. Plasmag, 969 (2000).

S. Brunner PhD Thesis No0.1701, Ecole Polytechniquergéxlde Lausanne, 1997.

L. Villard, S. J. ALlfrey, A. Bottino, M. Brunetti, G. L. &chetto, V. Grandgirard, R. Hatzky, J.
NiUhrenberg, A. G. Peeters, O. Sauter, S. Sorge and J. Viedidl. Fusiond4, 172 (2004).

A. Y. AydemirPhys. Plasmag, 822 (1994).



