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INTRODUCTION

The motivation of this work is to characterise a model for the distribution function of
ICRH populations which can easily be employed in stability codes. The model described
here has already been incorporated in the 3D equilibrium code VMEC [1], and 3D
fluid stability code TERPSICHORE [2]. Furthermore, the model lends itself to relatively
straightforward semi-analytical calculations of macroscopic stability in tokamaks, and in
particular the stability of the internal kink mode in the presence of ICRH ions. Despite
the apparent simplicity of the model, it will be seen that the three radially dependent
parameters in the distribution function enable the recovery of the salient features of the
SELFO [3] simulations. In this work an attempt is made to parameterise the distribution
function for SELFO simulations of the important JET discharge 58934 [4], shown here
in Fig. 1. This discharge demonstrates that an off-axis ion cyclotron resonant surface,
with phasing to enable ion cyclotron current drive (ICCD), can destabilise (shorten
period of) sawteeth even when the sawteeth are initially stabilised by trapped energetic
RF ions in the core. Hence, in the latter part of the discharge two resonant surfaces co-
exist. It is the sum of these two populations that ultimately require modelling in order to
ascertain the internal kink mode stability.

MODEL ICRF DISTRIBUTION FUNCTION

The distribution of particlesF depend only the constants of the particle motion: energy
E = mv2/2, magnetic momentµ = mv2

⊥/B and flux surface labelr. Here v⊥ is the
velocity perpendicular to the magnetic field. The distribution is written in terms of a
bi-Maxwellian inv‖ andv⊥:

F =
( m

2π

)3/2 nc(r)

T⊥(r)T1/2
‖ (r)

exp

[
− µBc

T⊥(r)
− |E −µBc|

T‖(r)

]
.
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FIGURE 1. Pulse 58934 in JET [4], plotting the electron temperature, sawtooth period, sawtooth
inversion radiusRinv and first harmonic H cyclotron resonance layerRres(H) for +90◦ and−90◦ phasings,
and heating power for the two antennas.

Here in general the critical field strengthBc can in principle also depend on the flux
label r, but a constantBc is usually more appropriate. In the abovenc is the local
density evaluated whereB = Bc on the flux surfacer. Taking the zero’th moment of
the distribution function yields the variation of the density with respect toB:

n(r,B) = ncNB

where

NB =
T⊥a

T⊥
for B > Bc and

NB =
T⊥a

T⊥
+

T⊥b−T⊥a

T⊥

(
T⊥
T‖

)1/2(
Bc−B

Bc

)1/2

for B < Bc, and

T⊥a = T⊥

[
Bc

B
+

T⊥
T‖

(
1− Bc

B

)]−1

and T⊥b = T⊥

[
Bc

B
− T⊥

T‖

(
1− Bc

B

)]−1

.

Denoting the flux surface average with angular brackets we can identify

nc = 〈n〉G(r) and G = (2π)2
[∫ 2π

0
dθ

∫ 2π

0
dφ NB

]−1

whereG assumes the role of normalising a distribution function defined in terms of〈n〉,
andθ andφ are the poloidal and toroidal angles respectively.



Now, taking second moments of the distribution function it can be shown that

P‖ = ncT‖H‖ and P⊥ = ncT⊥H⊥,

where forB > Bc:

H‖ =
(

T⊥a

T⊥

)
and H⊥ =

(
T⊥a

T⊥

)2

,

while for B < Bc:
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[

T⊥a
T⊥

+
(
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T‖

)3/2(
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)3/2(T⊥b−T⊥a
T⊥

)]
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T⊥

)2
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(

T⊥
T‖
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2T⊥

(
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}]
.

PARAMETERISING THE DISTRIBUTION FUNCTION

Here 3D data files from the SELFO simulations ofn, P⊥ andP‖ are used to identify the
three radially dependent parameters of the model distribution function. In particular, in
the following, the LHS of the equations correspond to the parameters in the model, and
the RHS of the equations are the quantities from the SELFO simulations:

nc(r) = n(Rc,Z) , T⊥(r) =
P⊥(Rc,Z)
en(Rc,Z)

and A(r) ≡ T⊥(r)
T‖(r)

=
P⊥(Rc,Z)
P‖(Rc,Z)

.

Now, since the heating is approximately located on a vertical line through the plasma
cross section we can resolve the minor radius on the LHS of the equations through
r2 = Z2 +(Rc−R0)2 with Z defining the distance along a vertical chordR= Rc.

Where there are two resonant surfaces the problem is treated upon assuming the
sum of model distributions. Hence there are now six radially dependent parameters
to resolve namelync(r), T⊥(r) and A(r) for the two distributions. The problem has
been treated upon exploitation of simulations with off-axis heating alone. This enabled
identification of the three functions for off-axis heating, and thus when employed in
conjunction with the parameters obtained with on-axis heating alone, provided a first
guess for the distribution function for the combined heating case. The six functions
were then normalised iteratively to provide a best parameter fit of the 3D plots of the
density, parallel pressure and perpendicular pressure. The result of such a procedure for
the case at hand, i.e. JET discharge 58934, is shown in Fig. 2. Plotted are the radial
profiles ofnc(r), T⊥(r) andA(r) for the two coexisting resonant RF populations, and
the resulting flux surfaced averaged density and parallel pressure. The latter two are
compared favourably with the corresponding SELFO data. Finally, Fig. 3 shows the
density and parallel pressure over the entire poloidal cross section. Peaks in the density
and pressure result from the localised deposition of the RF heating, and are again seen
to recover the salient features of the SELFO data.
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FIGURE 2. Plots ofnc(r), T⊥(r) andA(r) for the two distributions to reproduce the SELFO simulations
of the latter part of discharge 58934. Also shown are SELFO and model comparisons of the resulting flux
averaged density and pressure profiles.
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FIGURE 3. A comparisons between the analytical model and SELFO of the density and perpendicular
pressure surfaces for the parameters in Fig.??

FAST ION CONTRIBUTION TO STABILITY OF INTERNAL
KINK MODE

Presented here are the equations required to assess the stability of the internal kink mode
for the model distribution function. It is assumed that the fast ion pressure is much



smaller than the core pressure, and thus does not significantly modify the equilibrium.
The opposite limit will be treated elsewhere. The ideal growth rate is identified with the
normalised potential energy terms:

γ

τA
= − π

s1
( ˆδWI + ˆδWA + ˆδWk)

with ˆδWI the ideal MHD, ˆδWA the adiabatic contribution due to pressure anisotropy,
and ˆδWk the non-adiabatic (kinetic) contribution

ˆδWk = −
3ε

−1/2
1

π23/2

(
2µ0

B2
0

)∫ r1

0
dr

(
r
r1

)3/2( 2
1+κ

)2

Fk(r),

with κ the elongation and

Fk(r) =
∫ 1

0
dk2 F2

q Jt

F1
( 2

1+κ

)
+2sF2−ζ

(
1

4q2 +F3

) ,

andJt is determined by the model distribution:

Jt =
(ncT⊥A1/2)′− 5

2

(
ncT⊥A1/2|εc+ε(2k2−1)|

1+A|εc+ε(2k2−1)|

)
A′

(1+A|εc + ε(2k2−1)|)5/2
,

whereεc defines the resonant surface location through the identityBc = B0/(1+ εc).
The following is a reasonable fit ofFq:

Fq = 2E(k2)−K(k2)+4[1−q(r)][E(k2)+(k2−1)K(k2)]

whereE andK are compete elliptic integrals of the second and first kinds. Furthermore,

F1 = 2E(k2)−K(k2),F2 = 2E(k2)+2(k2−1)K(k2),

F3 =
4
3
[(2k2−1)E(k2)+(1−k2)K(k2)]

andζ = −2Rµ0
B2

dP
dr q2 is ‘ballooning’ parameter, andP the plasma pressure.

The anisotropic term ˆδWA is the sum of trapped (t) and passing (p) contributions
given by:

ˆδW
t,p
A = −

3ε
−1/2
1

π23/2

(
2µ0

B2
0

)∫ r1

0
dr

(
r
r1

)3/2( 2
1+κ

)
F t,p

A (r),

F t
A(r) =

∫ 1

0
dk2 2Gt

1 +Gt
2

[1+ ε(2k2−1)]5/2
Jt and F p

A (r) =
∫ 1

0
dk2 2Gp

1 +Gp
2

[k2 + ε(2−k2)]5/2
Jp,



with

Jp =
k5
[
(ncT⊥A1/2)′− 5

2

(
ncT⊥A1/2|k2εc+ε(2−k2)|

k2+A|εck2+ε(2−k2)|

)
A′
]

(k2 +A|εck2 + ε(2−k2)|)5/2

andGt
1, Gt

2, Gp
1, Gp

2 are given in Ref. [6]:

Gt
1 =

(
2ε

3

)[
(1−k2)K(k2)+(2k2−1)E(k2)

]
,

Gt
2 = 2E(k2)−K(k2)+

(
2ε

3

)[
(1−4k2)K(k2)+(8k2−4)E(k2)

]
,

Gp
1 =

(
2ε

3k2

)[
(2−k2)E(k2)−2(1−k2)K(k2)

]
−

(
2ε2

15k4

)[
(4k4−12k2 +8)K(k2)+

(
7k4 +8k2−8

)
E(k2)

]
,

Gp
2 = 2E(k2)+(k2−2)K(k2)−

(
2ε

3k2

)[(
3k4−8k2 +8

)
K(k2)+

(
4k2−8

)
E(k2)

]
−

(
2ε2

15k4

)[
16(k4−3k2 +2)K(k2)−2(k4−16k2 +16)E(k2)

]
.

CONCLUSIONS

The work presented here provides a means of assessing the stability of the internal
kink mode with ICRH distributed ions. It will also enable analysis of the impact of
the fast ions on the equilibrium [1, 2]. Calculations of the fast ion contribution to ideal
stability ˆδWA + ˆδWk indicate that the internal kink mode is strongly stabilised with the
single resonant surface close to the magnetic axes. However, calculations with the two
resonant surfaces reveal that the contribution of the ICRH population to ideal stability
is negligible. For the latter case the net effect of the ICRH population on sawteeth is
thus felt predominantly through the effect of ICCD on the evolution of the safety factor.
Sawtooth control techniques in ITER will employ localised current drive in conditions
where there is strong ideal stabilisation from alpha particles.
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