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This paper reports on the experimental observation of toroidal rotation braking and plasma

spin up due to the growth and decay of Magnetohydrodynamic (MHD) modes in the Tokamak

à Configuration Variable (TCV) operated in the ohmic regime. The results of numerical simu-

lations of momentum spin up, with the goal of evaluating the momentum diffusion coefficient

Dφ , are also presented. Unlike most experimental studies of momentum transport no external

momentum source is applied so the observed rotation is entirely generated by the plasma it-

self by some transport mechanism such as collisions or turbulence. The ion impurity toroidal

velocity is measured via active Charge eXchange Recombination Spectroscopy (CXRS) along

the equatorial plane of the vacuum vessel [1] with a temporal resolution of 50÷100 ms and a

spatial resolution of 2.5 cm. The MHD activity is monitored with Mirnov magnetic coil arrays

and several fast soft X-ray detector arrays.

Ion momentum losses with large MHD
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Figure 1: Evolution of the toroidal rotation profile in the
presence of a large magnetic island. The rotation in ab-
sence of mode is also shown for comparison (cyan color)

In steady state Ohmic TCV plasmas,

the ion rotation velocity generally flows

in the direction opposite to the plasma

current (counter-current, negative for

positive Ip). The profile monotonically

increases up to the sawtooth inversion

radius, rinv, is stationary at the edge,

and flat or hollow inside rinv [1]. In

this work, we consider non steady-state

plasmas with large persistent MHD os-

cillations or stronger disruptive instabilities. The presence of MHD modes are observed to flat-

ten the ion toroidal rotation profile over the central region, out to the rational surface of the

corresponding mode. Fig. 1 plots the evolution of the ion toroidal angular velocity, ωi = vφ/R,

in the presence of a quasi-stationary mode that slows in frequency eventually locking to the

vacuum vessel.
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Figure 2: a) Time trace of central
SXR emission, b) n=1 component of the
edge magnetic signal showing mode
amplitude evolution

The rotation profile that is observed in the absence of

the magnetic island is also shown. The temporal evolu-

tion of the instability from the magnetic and central SXR

signals is shown in figure 2. The phase difference in the

magnetic coils shows a m/n=2/1 mode structure with an

island width of about 7 cm estimated from the soft-X-ray

emissivity at t=0.5 s. The flat region of the rotation pro-

file extends well outside the magnetic island. While slow-

ing down, the MHD mode presence reduces the central

ion rotation to its rotation frequency. As shown in fig. 3,

the rotation frequency at the q=2 rational surface agrees,

within the error, with the mode frequency from the Mirnov coils.
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Figure 3: Comparison of the
ion rotation frequency and the
MHD mode frequency during
mode locking
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Figure 4: Comparison of edge
rotation profiles with and with-
out MHD mode

The MHD mode also appears to shift the whole rotation pro-

file while retaining the same gradient outside the rational sur-

face as suggested by the comparison of the black (diamond

marker) and red (asterisk marker) profiles in fig. 1. The pres-

ence of the instability may thus induce, for a sufficiently low

mode frequency, a rotation inversion. This is visible in a sim-

ilar discharge with the CXRS observation chord observing the

plasma edge shown in figure 4. Here the presence of the mode

induces a rotation inversion at about ρ = 0.85 with consider-

able edge co-current rotation while the steady state plasma, in

absence of the mode, has zero toroidal rotation at the edge. We

may conclude that the MHD mode induces a net loss of total

momentum in the plasma first reducing the natural rotation fre-

quency of the flux surface where the mode is resonant and then

making the central plasma rotate at this frequency. This evolu-

tion implies a mechanism that strongly couples the ion fluid with the MHD mode. Usually, when

the magnetic island is still rotating at finite frequency, the plasma undergoes a minor disruption.

This abrupt instability almost completely brakes the plasma rotation except at the plasma edge

where some co-current rotation persists (green profile in figure 1). It should be noted that, in this

rapidly evolving plasma, the CX rotation measurement are susceptible to much increased errors

due to the rapid variation of the background CX emission (see [1] for details). The toroidal ac-

celeration, or spin-up following the decay of an MHD mode, is considered in the next section.



Toroidal rotation spin-up

0 0.2 0.4 0.6 0.8 1
−10

0

10

20

30

40

ρ

ω
φ,

i [k
ra

d/
s]

0.5 0.55 0.6 0.65 0.7 0.75 0.8
−10

0

10

20

30

40

Time [s]

ω
φ,

i [k
ra

d/
s]

TIME 

CH#1 r/a=0.03 

CH#6 r/a=0.54 τφ∼ 150ms 

27481 

Figure 5: a) Spin-up of the toroidal rotation, b) De-
tails of the temporal evolution

The toroidal rotation profiles evolves on a

slower time scale than other main plasma pa-

rameters such as electron density and tem-

peratures. These profiles attain a stationary

value in less than 90ms while the rotation pro-

file is still evolving. An analysis of the, rela-

tively limited, time evolution of the CX veloc-

ities shows a growth with a characteristic time

constant in the range of τφ = 100÷150ms in

the radial region outside the inversion radius.

The more linear growth in the central plasma

region may be the effect of the central sawtooth activity, which reappears early after the minor

disruption. An example of such an evolution in shown in figure 5 and analysed in detail in the

next section.

Momentum transport modelling

The time evolution of the velocity profiles has been simulated with a 1D momentum transport

model of the form:
∂P
∂ t

= ∇ ·Γrφ +Sφ (1)
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where P = nimivφ , Γrφ is the radial angular momentum flux, Sφ is an edge localised momentum

source, ε is the inverse aspect ratio, a is the minor radius and α is a numerical constant. The

first term in (2) represents the momentum diffusion arising from the ion viscosity, the second a

convective contribution to the flux and the third a simplified form of the neoclassical momen-

tum source arising from the non-diagonal part of the transport matrix calculated in [2]. The

initial condition is taken from the experiment and the boundary condition at the edge, vφ(a,t),

is reduced to zero exponentially with a characteristic time of τφ = 150 ms, consistent with the

experimental observation. Dφ , vc, α and Sφ are used as free parameters to be fitted to the experi-

mental data in the least square sense. The diffusion coefficient is proportional to the neoclassical

value [2] Dφ = βDneo with Dneo = 0.1νiiρ2
L where νii is the ion collision frequency and ρL is

ion Larmor radius. Dneo typically ranges from 0.003 m/s2 at the plasma centre to 0.015 m/s2

at the edge. To approximately account for the effect of the sawtooth activity, which flattens the



source model D/Dneo vc α Sφ

distributed 12 (best-fit) 0 (fixed) -1.2 (best-fit) 0 (fixed)
edge localized 40 (best-fit) 3.4 m/s (best-fit) 0 (fixed) 6.5 ·104m/s2 (best-fit)

Table 1: Summary of the source models and best-fit results

central profile, only the diffusive part of the radial momentum flux (2) is retained inside rinv.

Density gradients are neglected. We consider here two source models. The first employs the neo-

classical distributed momentum source (2nd term in eq. 2) with no convective term (3rd term).

0 0.2 0.4 0.6 0.8 1
−10

0

10

20

30

40

r/a

<
v φ>

 [k
m

/s
]

experiment        
distributed source
localized edge source  

27481 

TIME 

edge source 

Figure 6: Comparison of different model of the mo-
mentum spin-up (full line: distributed source, dash
line: edge localized source) with the experiment
(points).

Equation 1 then reproduces the neoclassical

momentum diffusion equation derived from

kinetic theory by Rosenbluth in [2]. The sec-

ond model explores a situation where the mo-

mentum source is located at the plasma edge,

possibly generated by edge turbulence, with

the momentum diffusing to the plasma centre.

An inward pinch term is used to reproduce

the profile peaking. This kind of scenario has

been sometimes invoked to explain the spin

up during the L-H transition [3]. The models

and the best-fit results are summarised in ta-

ble 1 and figure 6. The simulation is quite satisfactory for both models for the plasma core.

Only the outermost measurement significantly differs in the simulations. Due to large uncer-

tainties and poor edge temporal and spatial resolution it is not possible to establish which is

the most appropriate source model, although, given the low steady-state observed edge rotation

the localised edge source model would not be appropriate for TCV ohmic plasmas. The best-fit

coefficient α ∼−1.2 of the neoclassical flux has same sign and order of magnitude as that cal-

culated by Rosenbluth (α =−3.5). The almost four times higher diffusion coefficient required

for the edge source model may be explained by considering that the same momentum must

diffuse through a larger portion of plasma to reach the centre. A non negligible inward pinch

of 3.4 m/s is needed to reproduce the experimental peaking. In all conditions the momentum

diffusion coefficient, Dφ , is found to be much larger than neoclassical indicating anomalous

momentum transport in TCV Ohmic plasmas. This work was partly supported by the Swiss

National Science Foundation.
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