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1. Introduction 

In this paper we present the results of measurements of the Te and ne profiles in the plasma 

edge region during quasi-stationary ELMy H-mode under ohmic heating conditions in the 

TCV tokamak. Measurements are provided by the edge Thomson scattering (TS) diagnostic, 

which improves the spatial resolution in 9 scattering volumes by a factor 3 compared to the 

main TS system, and was installed in collaboration with Consorzio RFX. Profiles have been 

characterized in terms of the pedestal height and width using a modified tanh function [1,2]. 

The time evolution of the profiles during an ELM cycle has been studied using random 

sampling during an extended quasi-stationary ELMy H-mode phase, sorting the 

measurements from TS according to the time delay with respect to 

the nearest ELM.  

 
Fig. 1: TCV poloidal cross 
section and flux surfaces for 
shot 26393 at t=0.7s. 
Viewing chords of TS system 
main (blue) & edge (green).  

2.  The Edge TS diagnostic on TCV 

The TS diagnostic on TCV was designed to collect the scattered 

radiation along a vertical chord covering almost the entire height 

of the vacuum vessel, to account for the wide variety of possible 

plasma equilibria. The main system [3] comprises a set of 25 

spatial channels with 3cm spatial resolution in vertical direction 

and 3 pulsed ND:YAG lasers each with a pulse repetition rate of 

20Hz. Studies of temperature and density profiles during H-mode 

experiments require higher accuracy and spatial resolution in the 

edge region. Therefore, nine additional polychromators [4], on 

loan from RFX, were installed on TCV to cover the range near the 

last closed flux surface (LCFS) with a resolution of 1cm in 

vertical direction (fig.1), equivalent to ~5mm when mapped onto 

the plasma midplane along flux surfaces. 
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3. Analysis method 

The system has been used during dedicated studies of the 

ELMy H-mode phase in quasi-stationary conditions, when 

it is possible to follow the time evolution of ne and Te 

profiles using TS measurements at relatively low sampling 

rates. Since the laser pulses (fixed repetition rate of 20Hz 

for each laser) cannot be synchronized to the ELMs 

(average ELM frequency of ~200Hz), random sampling 

has been used to build up the time evolution during a 

typical ELM cycle. Under well controlled conditions in TCV with constant plasma current, 

density and heating power, regular ELM sequences with small variations of ELM frequency 

and amplitude can be obtained. Random sampling provides measurements at different delays 

(∆tELM) with respect to the ELMs (referring to the peaks in the Dα emission). Under the 

specified conditions, these measurements (within the same shot or even from different but 

reproducible shots) can be combined to obtain a data set from which the time evolution is 

reconstructed. For analysis of the spatial variation, the positions of the scattering volumes are 

mapped onto magnetic flux surfaces and then projected onto the plasma midplane. The 

profiles are fitted by a linear-tanh function (fig.2) so that they can be parameterised in terms 

of pedestal height and width, as explained in [2].  These parameters have been used to 

describe the evolution of Te and ne profiles before and after the occurrence of an ELM.   

4.  Results 

Using the method described above, the ne and Te data from the quasi-stationary phase of shots 

26387 to 26393 (Ip~400kA, ne~6.5·1019m-3, κ~1.6, δ~0.4), have been grouped into two time 

 
Fig. 2: Modified tanh fitting function. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 2: Results of analysis in bins, ne and Te profiles data from series of reproducible shots (TCV-# 26387 
to 26393) superposed, bin [-1,-0.5]ms and bin [0,+0.5]ms  delay with respect to ELM. 

Pedestal  
height 

Pedestal  
center 

Pedestal 
width 



windows (bins), [-1,-0.5] ms before and [0,0.5] ms after the ELM. The data and the fitted 

profiles are plotted in fig.3. The scatter of the data points around the fitted curve is small (in 

particular for Te), which shows that the assumption of reproducible ELM events is justified. 

The spread of points in the R-coordinate, after mapping to the outer midplane, is due to small 

vertical displacements of the flux surfaces. They are caused by periodic external perturbations 

using current pulses in a set of coils inside the TCV vessel. These perturbations were applied 

for ELM triggering [5]; however, the associated displacements were beneficial for this study, 

since they permitted better spatial coverage of the edge profiles with a TS system of still 

marginal spatial resolution. The comparison of the measurements in the two time windows 

reveals a clear difference before and immediately after the ELM. The ne profile shows a 

collapse of the edge pedestal, whereas the Te profile appears to be unaffected. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 4:  Variation of pedestal height and width of ne and Te profiles during an ELM cycle. (TCV-# 26379 to 
26393). Transient period is evidenced by magenta dashed lines. 

In order to reconstruct the time evolution of the pedestal height and width during the ELM 

cycle in more detail, the analysis has been based on fits to data obtained for each individual 

time step. The results from a series of reproducible shots (26379 to 26393) are presented in 

fig.4. We observe that at the time of an ELM event the density pedestal reacts immediately, 

with a collapse of about 35% (from ~4.5 to ~3·1019m-3  in these cases). The pedestal recovers 

with a time constant of about ~500µs and then increases linearly until the next ELM occurs. 

The effect of an ELM on the Te pedestal is much weaker, but still present: it decreases by 

about 15% (from ~210eV to ~180eV) and reaches a shallow minimum at about 500µs after 

the ELM peak. These measurements confirm that the energy loss caused by ELMs is 

essentially due to a convective process and occurs on a time scale much shorter than the 

 



global energy confinement time. The drop in energy calculated on the basis of the measured 

profiles is consistent with measurements by a diamagnetic probe and reached values between 

2 and 4%.  The pedestal width, which gives a measure of the width of the edge transport 

barrier, is found to be ~10mm, close to the value of the poloidal ion Larmor radius.  It remains 

essentially constant during most of the ELM cycle, disregarding the narrow time window of 

±100µs around the ELM peak. In this interval the profile fits by a tanh function often failed 

and did not allow us to quantify the pedestal parameters. 

Concentrating our attention to this time window, we observe that in most cases (~75% when 

the time of the measurement falls inside this narrow interval), the profiles are modified; they 

extend beyond the LCFS and a pedestal can no longer be identified. In about 18% of the cases 

distinct structures (bumps) appear on the Te and the ne profiles at or outside the LCFS. At 

present, the low sampling rate of the TS measurements and a marginal spatial resolution set 

limits to a more detailed analysis of the profiles in this transient phase. Nevertheless, the 

measurements show a relaxation of the gradients and indicate that the outward flux of 

particles and energy across the separatrix occurs on a fast time scale (see fig.5). However, 

without further information 

about the poloidal and 

toroidal structure it is not 

possible to quantify the 

associated losses of particles 

and energy. These transient 

features are not yet fully 

understood, but they show 

similarities to observations 

on MAST [6,7]. 

Fig. 5:  Averaged Te and ne profiles measured in different time 
windows during the transient phase (±100µs from the peak of the 
ELM signal). A profile fit for ∆ tELM = -200µs is shown as 
reference.  
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